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Abstract: The stereological problem of unfolding the distribution of
spheres radii from linear sections, known as the Spektor-Lord-Willis prob-
lem, is formulated as a Poisson inverse problem and an L2-rate-minimax
solution is constructed over some restricted Sobolev classes. The solution
is a specialized kernel-type estimator with boundary correction. For the
first time for this problem, non-parametric, asymptotic confidence bands
for the unfolded function are constructed. Automatic bandwidth selection
procedures based on empirical risk minimization are proposed. It is shown
that a version of the Goldenshluger-Lepski procedure of bandwidth selec-
tion ensures adaptivity of the estimators to the unknown smoothness. The
performance of the procedures is demonstrated in a Monte Carlo experi-
ment.
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1. Introduction

Consider a population of balls with random radii, randomly placed in an opaque
medium and, hence, not directly observable. A linear section through the me-
dium, like drilling through a rock or a muscle biopsy, allows for measuring the
radii (half-lengths) of the line segments that are intersections of the line probe
with the balls. The ultimate goal is to use those measurements to unfold both
the balls radii distribution and the ’density’ of the balls in the medium. Early
formulation of the problem dates back to Spektor [30] and Lord and Willis
[23] and was related to some measurements in material sciences. A review of
some heuristic algorithms traditionally used for solving the Spektor-Lord-Willis
problem (henceforth, SLW problem) and related stereological problems is given
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in [10, Ch. 10.4.3]. Although planar rather than linear sections through the
medium are generally preferred in experimental setups, leading to the better
known Wicksell’s problem, there are also important practical applications of
line probes (e.g., [2, 21]). Moreover, linear intercept measurements on polished
metallographic sections may lead to the SLW problem, even if plane sections
through the medium are taken [22, p. 117].

Following [33] and [16], we formulate the SLW problem as a Poisson inverse
problem. Assume that the balls radii distribution is supported in [0, 1] and the
balls centers form a homogeneous Poisson process in R3 with intensity λ (all
density and intensity functions are taken w.r.t. respective Lebesgue measures).
If the balls radii distribution has a density, say ρ, then the observed radii of
the line segments form a Poisson process on [0, 1] with intensity function ns(u),
where n is the ’size of the experiment’, related to the total length of the observed
linear probe, and

s(u) = 2u

∫ 1

u

f(x) dx =: (Sf)(u), (1)

with f(x) = λρ(x), see [33]. The goal is to unfold f from observed linear sections
radii and to study asymptotics with n → ∞, which is a special form of a Poisson
inverse problem. With S : L2([0, 1], dx) → L2([0, 1], du), S is a compact Hilbert-
Schmidt operator, its inverse is unbounded and the SLW problem is ill-posed in
the Hadamard sense.

Poisson inverse problems were studied in some generality in, e.g., [31, 32, 1].
Spectral type solutions for the SLW problem, minimax on Sobolev ellipsoids
were constructed in [16] and [34] and B-spline sieved quasi-maximum likelihood
estimation was studied in [33]. Adaptive wavelet solutions, rate-minimax over
some Besov balls were found in [11, 12].

The main new contribution of the present paper is the construction of non-
parametric, asymptotic confidence bands for the unfolded intensity function.
Construction of confidence bands in direct problems of function estimation
started in 1973 with the seminal paper by Bickel and Rosenblatt [3], who con-
structed confidence bands for density estimated from an i.i.d. sample, and con-
tinued in several further developments, as summarized, e.g., in [19, Ch. 5.1.3]
and [6]. The latter paper was also the first step towards the construction of con-
fidence bands in inverse problems and was followed in recent years by several
similar works [7, 4, 24, 8, 13, 25]. Despite their practical importance, no confi-
dence bands had been constructed, however, for densities in stereological inverse
problems until only recently, when such bands were produced in the Wicksell’s
problem in [36].

The methodology developed in [3, 6, 36] works well for estimators of kernel
type. Therefore, in Section 2 we propose a new kernel-type estimator in the
SLW problem and study its theoretical properties. Rate minimaxity over some
Sobolev classes and adaptivity issues are studied in Section 3, and asymptotic,
non-parametric confidence bands are constructed in Section 4. We also report
in Section 5 on a practical implementation, including automatic bandwidth se-
lection based on the empirical risk minimization principle, and on results of an
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extensive Monte Carlo study of the proposed procedures. Some final conclu-
sions are formulated in Section 6. Proofs related to adaptivity are presented in
Appendix A.

It should be stressed that, in contrast to all the previous constructions of con-
fidence bands in inverse problems, we construct the bands in the Poisson inverse
problem setup with random number of data points, which is more realistic in
stereology than inverse density estimation setup with non-random sample size.

2. The estimator

Our first goal is to construct an L2-rate-minimax estimator of the intensity func-
tion f , given observations of a Poisson process with the intensity function ns,
related to f via (1). The main idea of our approach is based on the observation
that this problem may be reformulated as the problem of derivative estimation
with a weighted L2-loss function. Let X1, . . . , XN(n) be random points associ-
ated with the Poisson process with intensity ns. Then X2

1 , . . . , X
2
N(n) form a

Poisson process with intensity ng, where g(u) = s(
√
u)/(2

√
u) and

g(u) =

∫ 1

√
u

f(x) dx =: (Gf)(u).

For continuous f , g′(u) = −f(
√
u)/(2

√
u) and f(x) = −2xg′(x2). Hence, any

estimator ĝ′ of g′ gives a natural estimator f̂(x) := −2xĝ′(x2) of f and

∫ 1

0

[
f̂(x)− f(x)

]2
dx =

∫ 1

0

[
ĝ′(u)− g′(u)

]2
2
√
u du.

To express the smoothness assumptions, the functions f and g will be further
considered as functions defined on R. The L2 and L∞ norms will be denoted
with ‖ · ‖2 and ‖ · ‖∞. For some m ∈ N, define a Sobolev-type class of functions

W (m,L) =
{
s : R → R : s(m−1) is absolutely continuous and ||s(m)||2 � L

}
.

To evaluate the estimation risk for f in W (m,L) with standard methods, as
in, e.g., [35], it would be convenient to have g in W (m + 1, L). However, since

g(0) =
∫ 1

0
f(x) dx, any g is necessarily discontinuous at zero. To circumvent

the problem, we will use the reflection device (e.g., [29, Ch. 2.10]) and estimate
the function g′ under the assumption that the symmetrized g, i.e. the function
u → gsym(u) := g(|u|), belongs to W (m+ 1, L). Define

Fm,C = {f : R → [0,∞) : supp f ⊂ [0, 1] and (Gf)sym ∈ W (m+ 1, C)} .

It is elementary to see that, if f has a left limit f(1−) at 1, then the left
derivative g′(1−) of g at 1 exists and g′(1−) = −f(1−)/2. Because m ≥ 1, g′

must be continuous on R for f ∈ Fm,C , which implies that f(1−) = 0. Further,
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it follows by induction that, for k = 1, . . . ,m+1, there exist absolute constants
Ck

0 , . . . , C
k
k−1 such that, for almost every u > 0 and every f ∈ W (m,L),

g(k)(u) =

k−1∑
i=0

Ck
i

f (k−1−i)(
√
u)√

uk+i
, (2)

so that the class Fm,C contains the functions f ∈ W (m,L) with derivatives
tending to zero sufficiently fast, when the argument goes to zero.

Proposition 1. Let f ∈ W (m,L), supp f ⊂ [0, 1] and f � 0. Assume that
there exist ε > 0, a > 0 and ξ > 0 such that

|f (m)(x)| � axm+ξ, for x ∈ [0, ε).

Then, f ∈ Fm,C for some C dependent on m,L, ε, a, ξ.

Proof. Since f (i)(0) = 0 for i = 0, . . . ,m − 1, one has, for every u ∈ [0, ε),
k = 0, . . . ,m− 1, and with some γ ∈ [0, 1],

∣∣∣f (k)(u)
∣∣∣ =

∣∣∣∣∣
m−1−k∑

i=0

f (i+k)(0)
ui

i!
+ f (m)(γu)

um−k

(m− k)!

∣∣∣∣∣ � a [γu]m+ξ um−k

(m− k)!

� Bk(a,m) u2m−k+ξ.

Using this inequality in equation (2), we obtain

∣∣∣g(m+1)(u)
∣∣∣ � m∑

i=0

∣∣Cm+1
i

∣∣Bm−i(a,m)
√
u ξ−1 = Am+1(a)

√
u ξ−1

and ∣∣∣g(m)(u)
∣∣∣ � Am(a)

√
uξ+1,

for every u ∈ (0, ε2). Since f (k) is absolutely continuous for k = 0, . . . ,m− 1, it
is obvious that g(m) is absolutely continuous. We also have

∫ 1

0

[
g(m+1)(u)

]2
du �

∫ ε2

0

A2
m+1(a)u

ξ−1 du +

∫ 1

ε2

[
g(m+1)(u)

]2
du

� A2
m+1(a)

ε2ξ

ξ
+ (m+ 1)

m∑
i=0

(Cm+1
i )2

∫ 1

ε2

[
f (m−i)(

√
u)
]2

um+1+i
du

� A2
m+1(a)

ε2ξ

ξ
+ 2(m+ 1)

m∑
i=0

(Cm+1
i )2

ε2m+2i+1

∫ 1

ε

[
f (m−i)(x)

]2
dx

� C(m,L, ε, a, ξ),

which completes the proof.
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Following the idea sketched above, we start with a kernel estimator of the
derivative g′, based on symmetrized sample ±X2

1 , . . . ,±X2
N(n), and obtain the

estimator for f in the form

f̂n(x) = − 2x

nh2

N(n)∑
i=1

[
K ′
(
x2 −X2

i

h

)
+K ′

(
x2 +X2

i

h

)]
1[0,1](x), (3)

with some kernelK and some bandwidth h. For the minimaxity of the estimator,
it is convenient to make h a function of the non-random experiment size n. For
the construction of confidence bands in Section 4, however, it will be more
natural to make h dependent on the random number N(n) of data points. As
N(n)/n tends a.s. to a limit (depending on f), those two types of assumptions
are closely related.

Throughout this article, we define the order of a kernel as the order of its
first non-zero moment. At several places, we impose

Assumption 1. K is an absolutely continuous, symmetric kernel with square-
integrable derivative K ′ and such that

∫
K(u) du = 1.

Theorem 1. If K is a kernel of order at least m, such that
∫
|umK(u)| du < ∞

and Assumption 1 is fulfilled, and if h 	 n−1/(2m+3), then there exists a constant
Dm,C such that for every f ∈ Fm,C

E||f̂n − f ||22 � Dm,C n
−2m
2m+3 .

Proof. Let p(u) := g(|u|) and let

p̂′(u) :=
1

nh2

N(n)∑
i=1

[
K ′
(
u−X2

i

h

)
+K ′

(
u+X2

i

h

)]

be the standard kernel estimator of p′, based on the symmetrized sample. Define
ĝ′(u) = p̂′(u)1[0,1](u). Then

∫ 1

0

[
ĝ′(u)− g′(u)

]2
2
√
u du � 2

∫ 1

0

[
ĝ′(u)− g′(u)

]2
du

�
∫

R

[
p̂′(u)− p′(u)

]2
du,

and, consequently,

E||f̂n − f ||22 � E||p̂′ − p′||22.

With b(x) = Ep̂′(x)−p′(x) and σ2(x) = E[p̂′(x)−Ep̂′(x)]2, one has the standard
variance-bias decomposition of the risk

E||p̂′ − p′||22 =

∫
R
σ2(x) dx+

∫
R
b2(x) dx.



Confidence bands in the Spektor-Lord-Willis problem 199

Let

ηi(x) =

[
K ′
(
x−X2

i

h

)
+K ′

(
x+X2

i

h

)]

− E

[
K ′
(
x−X2

i

h

)
+K ′

(
x+X2

i

h

)]
,

for i = 1, . . . , N(n). Then, representing the Poisson process as a mixed empirical
process (cf. [26, Th. 1.2.1]),

σ2(x) = E

⎛
⎝ 1

nh2

N(n)∑
i=1

ηi(x)

⎞
⎠

2

= E

⎧⎪⎨
⎪⎩E

⎡
⎢⎣
⎛
⎝ 1

nh2

N(n)∑
i=1

ηi(x)

⎞
⎠

2 ∣∣∣∣N(n)

⎤
⎥⎦
⎫⎪⎬
⎪⎭

=
1

n2h4
E
[
N(n)E

(
η21(x)|N(n)

)]
� c

nh4
E
[
η21(x)

]
,

where E[N(n)]/n = c =
∫ 1

0
g(x) dx, which is bounded because p = (Gf)sym ∈

W (m+ 1, C). Since

E
[
η21(x)

]
� E

[
K ′
(
x−X2

1

h

)
+K ′

(
x+X2

1

h

)]2

� 2

∫
R

[
K ′
(
x− z

h

)]2
g(z)

c
dz + 2

∫
R

[
K ′
(
x+ z

h

)]2
g(z)

c
dz,

we have ∫
R
σ2(x) dx � 2c

nh4

∫
R

{∫
R

[
K ′
(
x− z

h

)]2
dx

+

∫
R

[
K ′
(
x+ z

h

)]2
dx

}
g(z)

c
dz

=
4c

nh3

∫
R
[K ′(u)]

2
du =

C1(c)

nh3
.

Now, we evaluate the bias, using the absolute continuity of K in the integration
by parts step:

b(x) =
1

nh2
E

{
N(n)E

[
K ′
(
x−X2

1

h

)
+K ′

(
x+X2

1

h

) ∣∣∣∣N(n)

]}
− p′(x)

=
c

h2

[∫ 1

0

K ′
(
x− z

h

)
g(z)

c
dz +

∫ 0

−1

K ′
(
x− z

h

)
g(−z)

c
dz

]
− p′(x)

=
1

h2

∫
R
K ′
(
x− z

h

)
p(z) dz − p′(x) =

1

h

∫
R
K

(
x− z

h

)
p′(z) dz − p′(x)

=

∫
R
K (u) [p′(x− uh)− p′(x)] du.
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Standard calculation with p ∈ W (m + 1, C), analogous to that on page 14 in
[35], gives after Taylor expansion of p′(x − uh) − p′(x) and double application
of the generalized Minkowski inequality∫

R
b2(x) dx ≤ C2(m,C)h2m.

With h 	 n
−1

2m+3 , this finally gives

E||f̂n − f ||22 � C1(C)

nh3
+ C2(m,C)h2m � Dm,C n

−2m
2m+3 .

3. Lower bounds, minimaxity and adaptivity

For a good lower bound, a possibly large number of well separated functions
in Fm,C should be constructed, for which the corresponding data distribu-
tions are close to each other. As in [11], the construction will be based on
smooth wavelets. Let ψ ∈ Cm be a compactly supported mother wavelet, e.g.
a Daubechies wavelet, and let ψjk(x) = 2j/2ψ(2jx− k), with j, k ∈ Z. Suppose
that suppψ = [0, S(m)] for some S(m) ∈ N. For some L > 0, define

Gm,L(j) :=

⎧⎨
⎩fω : fω = f0 + δj

∑
k∈Gj(ψ)

ωkψjk

⎫⎬
⎭ ,

where

1. f0 ∈ W (m,L/2) is a fixed, non-negative function supported on [1/8, 1]
and such that minx∈[1/4,1/2] f0(x) = C3 > 0,

2.
∫ 1

1/2
f0(x) dx = C4 > 0,

3. ω = (. . . , ω−1, ω0, ω1, . . .) with ωk ∈ {0, 1}, for k ∈ Z,

4. Gj(ψ) :=
{
k ∈ Z : suppψjk ⊂

[
1
4 ,

1
2

]}
,

5. δj = min
{

L
S(m)||ψ(m)||∞ 2−j(m+ 1

2 ), C3

S(m)||ψ||∞ 2−j/2
}
.

Note that, for every j and x, the cardinality of the set {k ∈ Z : ψ
(m)
jk (x) �= 0}

does not exceed S(m) and ψ
(m)
jk (x) = 2j(m+ 1

2 )ψ(m)(2jx − k). It is now easy to
see that Gm,L(j) ⊂ Fm,C for all j ∈ Z and with some C > 0. Indeed, for all
fω ∈ Gm,L(j), we have

||f (m)
ω ||2 � ||f (m)

0 ||2 + δj
∑

k∈Gj(ψ)

‖ψ(m)
jk ‖2

� L

2
+

L

S(m)||ψ(m)||∞
∑

k∈Gj(ψ)

( ∫ 1/2

1/4

∣∣∣ψ(m)(2jx− k)
∣∣∣2 dx

)1/2
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� L

2
+

L

2
= L

and it is obvious that each fω is non-negative because of the condition 5 above
and because, again, for every fixed j and x, the cardinality of the set {k ∈ Z :
ψjk(x) �= 0} does not exceed S(m). Since supp fω ⊂ [1/8, 1], using Proposition 1,
we conclude that fω ∈ Fm,C . Reasoning further as in the proof of Proposition 1
in [11], with 2j 	 n1/(2m+3) and using conditions 2 and 5, we obtain, via an
application of the Assouad’s cube technique, the existence of a constant C5 > 0
such that

sup
f∈Fm,C

E||f̃n − f ||22 � C5 n
−2m
2m+3

for any estimator f̃n. The constant C may influence the value of C5, but not the
rate. This means that the estimator f̂n in Theorem 1 is rate-minimax over Fm,C .

Moreover, this also implies that, for any estimator f̃n, supf∈Fm,C
E‖f̃n − f‖∞

cannot approach zero faster than n−m/(2m+3), which is more relevant for the
discussion of uniform confidence bands. It will be seen in the next section that
the width of our confidence bands converges to zero at the rate n−(m/(2m+3)−ξ),
with ξ that may be arbitrarily small, but positive because of undersmoothing
used for bias control.

The bandwidth depends on the generally unknown smoothness of the esti-
mated function, but the estimator can be made adaptive through a suitable
data-driven choice of the bandwidth. A natural choice for adaptive bandwidth
selection for kernel estimators is the Goldenshluger-Lepski method (cf. [20]).
For brevity, call such adaptive estimators ’GL-estimators’. A version of GL-
estimators has been studied for probability densities and their derivatives in
the i.i.d. setup in [15]. For Poisson process intensity functions (but not for their
derivatives), GL-estimators have been studied in [28]. In order to produce an
oracle inequality for our boundary corrected estimator of the derivative of the
intensity of the observable Poisson process (and, consequently, for the unfolded
intensity), we adapt to the Poisson process setup with boundary correction the
proof of Proposition 3 in [15], pretty much in the same spirit, in which Propo-
sition 2 in [15] has been ported to the Poisson process setup as Theorem 2
in [28].

As in the proof of Theorem 1, we work with symmetrized functions p, p′ and
with the estimator p̂′h, with the index that marks the dependence on the band-

width. Similarly, we write in this section f̂h rather than f̂n. For the reflection
device, it is natural to assume K symmetric. This makes p̂′h antisymmetric and
simplifies some technical arguments in the proofs.

From the proof of Theorem 1,

Ep̂′h = Kh � p′ and E‖p̂′h −Kh � p′‖22 =

∫
R
Var p̂′h dx ≤ 4‖g‖1‖K ′‖22

nh3
,

where Kh(·) = h−1K(·/h), � denotes the convolution and ‖ · ‖1 stands for the
L1-norm. For a function, say v, denote with ‖v‖∗ the L2-norm with respect to
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2
√
udu of v truncated to the [0, 1] domain. The ultimate goal is to approximate h

that minimizes E‖f̂h−f‖22. This will be achieved through minimization of some

tight upper bound, say Φ(h), for the lower bound E‖f̂h−f‖2 to (E‖f̂h−f‖22)1/2,
with suitably estimated unknown quantities. By triangle and Cauchy-Schwarz
inequalities, and because ‖ · ‖∗ ≤ ‖ · ‖2 for antisymmetric functions,

E‖f̂h − f‖2 = E‖p̂′h − p′‖∗ ≤ ‖Kh � p′ − p′‖∗ +
2‖g‖1/21 ‖K ′‖2√

nh3
=: Φ(h).

The oracle bandwidth is defined as the minimizer of Φ(h) over a set, say H,
of candidate bandwidths. It depends on the unknown p. The idea of the GL
method is to minimize a specific estimator of the function Φ(h). Set

p̂h(x) =
1

n

N(n)∑
i=1

[
Kh(x−X2

i ) +Kh(x+X2
i )
]
,

the kernel estimator of p. Then p̂′h = (p̂h)
′ and, since Kh � p′ = (Kh � p)′, a

natural estimator of this term may be defined as

p̂′h,h′(x) := (Kh � p̂h′)′(x)

=
1

n

N(n)∑
i=1

[
(Kh � Kh′)′(x−X2

i ) + (Kh � Kh′)′(x+X2
i )
]
,

with some fixed h′. Further, since EN(n) = n‖g‖1, a natural estimator of ‖g‖1
is N(n)/n. In the GL method, the secondary bandwidth h′ is eliminated by
minimizing w.r.t. h an ’upper envelope’ of a family of functions indexed by h′

and suitably constructed to properly estimate the bias term.
With some η > 0, define χ := (1 + η)(1 + ‖K‖1)‖K ′‖2 and

A(h) := sup
h′∈H

{
‖p̂′h,h′ − p̂′h′‖∗ −

χ
√

N(n)

n(h′)3/2

}
+

,

and set

ĥ := argmin
h∈H

{
A(h) +

χ
√

N(n)

nh3/2

}
.

For the GL estimator of p′, defined as p̂′GL := p̂′ĥ, we have the following oracle
inequality proved in Appendix A.

Proposition 2. Assume that K satisfies Assumption 1. If H = {D−1 : D =
1, . . . , �(δn)1/2
}, with some δ > 0, then, for all n,

E‖p̂′GL − p′‖2∗ ≤ C3 inf
h∈H

{
‖Kh � p′ − p′‖22 +

4‖g‖1‖K ′‖22
nh3

}
+

C4

n
,

where C3 = 1 + 12(1 + η)2(1 + ‖K‖1)2 and C4 is a constant that depends only
on the kernel and on ‖g‖∞ and ‖g‖1.
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This easily gives the adaptivity of the GL estimator of f , naturaly defined as

f̂GL(x) := −2xp̂′GL(x
2)1[0,1](x).

Theorem 2. If K is a kernel of order at least m such that
∫
|umK(u)| du <

∞, Assumption 1 is fulfilled and H = {D−1 : D = Dmin, . . . , Dmax}, with
1 ≤ Dmin ≤ �n1/(2m+3)
 and Dmax = �n1/2
, then for all s = 1, . . . ,m,

E‖f̂GL − f‖22 	 n− 2s
2s+3 , (4)

if f ∈ Fs,C .

Note that, for f ∈ Fs,C , the bias term ‖Kh � p′ − p′‖22 can be bounded, as in
the proof of Theorem 1, by C2(s, C)h2s and the leading constants in (4) depend
on f only through ‖g‖1. Since, in the SLW problem, ‖g‖1 ≤ ‖g‖∞ = ‖f‖1,
the rates are uniform over intersections of Fs,C with any fixed ball in L1. Note
also that conditions of Proposition 1 ensure that ‖f‖1 is upper bounded by a
constant that depends on L only.

4. Confidence bands

The goal of this section is to construct asymptotic confidence bands for the
intensity function f on an interval [a, b] ⊂ [0, 1], with a > 0 and b < 1, based on
the data X2

1 , . . . , X
2
N(n).

If f0(x) = f(
√
x)/(2

√
x) corresponds to the intensity function of the Poisson

process of the unobserved squared spheres radii, then, for continuous f0, f0(u) =
−g′(u). Therefore, to adapt the idea of Bickel and Rosenblatt ([3]), who proposed
a method of construction of confidence bands around kernel estimators of a
specific type, it is convenient to first construct confidence bands for f0 on [a2, b2]
around a suitable kernel estimator of the derivative −g′, and then transform the
results back to the original problem.

More specifically, let

f̂0,n(x) = − 1

nh2

N(n)∑
i=1

[
K ′
(
x−X2

i

h

)
+K ′

(
x+X2

i

h

)]
1[0,1](x)

be an estimator of f0, similar to the estimator f̂n of f defined in (3), but with
a random bandwidth h = h [N(n)] that depends on the random sample size
N(n). The first step is to investigate the asymptotic distribution of the maximal

deviation of the estimator f̂0,n from its mean over [a2, b2]. Define the process

ZN(n)(t) = − nh3/2

N(n)1/2q̃N(n)(t)1/2

[
f̂0,n(t)− Ef̂0,n(t)

]
, t ∈ [a2, b2],

where h = h [N(n)] and q̃N(n) is an appropriate estimator of the density q(x) =
g(x)/c of the observations X2

i (see Assumption 2(c) below).
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The main results of this section depend on two sets of assumptions. The first
and less restrictive one allows for construction of confidence bands for Ef̂0,n.
The second set includes stronger assumptions needed for bias-correction and for
construction of confidence bands for f itself. Denote with ‖·‖∞,I the sup-norm
on the interval I = [a2, b2].

Assumption 2.
(a) K is supported and twice continuously differentiable on [−1, 1],

(b) h is a function such that h(k) → 0 and kh(k)2/ log{1/h(k)} → ∞ as
k → ∞,

(c) the estimator q̃k of q satisfies ‖q̃k − q‖∞,I = op (1/ log{1/h(k)}) as the
sample size k → ∞, with h as in assumption (b),

(d) the intensity function f is continuous on (a−Δ, b+Δ), for some Δ > 0,

and
∫ 1

b
f(x) dx > 0.

Assumption 3.
(a) For some integer m ≥ 1, K is a kernel of order at least m, supported and

twice continuously differentiable on [−1, 1],

(b) the bandwidth h satisfies h 	 N(n)−γ , with γ ∈ ( 1
2m+3 ,

1
2 ),

(c), (d) same as Assumptions 2(c) and 2(d), respectively,

(e) for m as in assumption (a) and for some Δ > 0, f is (m − 1)-times
continuously differentiable in (a−Δ, b+Δ) and there exists bounded f (m)

in (a−Δ, b+Δ).

With h(k) 	 k−γ , Assumption 2(c) reduces to ‖q̃k − q‖∞,I = op (1/ log k),
which is typically satisfied by, e.g., kernel estimators with polynomial rate of
convergence (cf. [14]).

For any a > 0 and b < 1, the conditions imposed on the intensity function f
hold for most commonly assumed distributions, including SML-A (with m = 1)
and SML-B, NM, Beta(4,2) (with any m ≥ 1), used in our simulation studies
in Section 5.

Note that, due to Assumption 2(d), g is bounded away from zero on [a2, b2],

because it is non-increasing and g(b2) =
∫ 1

b
f(x) dx, which also implies that

g1/2 has bounded derivative in [a2 − Δ, b2 + Δ], with some Δ > 0. Also, due
to Assumption 3(e), g is m-times continuously differentiable in [a2 −Δ, b2 +Δ]
and there exists bounded g(m+1) in (a2 −Δ, b2 +Δ). All those features of g are
used in the proofs of Theorem 3 and Corollary 1 below.

The limiting distribution of the supremum of the process {ZN(n)(t) : a2 ≤
t ≤ b2} is given in the following theorem.

Theorem 3. Under Assumption 2, for each x ∈ R,

P
(
[2 log(1/h)]1/2

[
‖ZN(n)‖∞,I

/
C

1/2
K,1 − dN(n)

]
≤ x
)
→ exp [−2 exp(−x)]

as n → ∞, where

dN(n) = [2 log(1/h)]1/2 +
log
[
C

1/2
K,2

/
(2π)

]
[2 log(1/h)]1/2

, h = h[N(n)],
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and

CK,1 =

∫ 1

−1

K ′(x)2 dx, CK,2 =
b2 − a2

CK,1

∫ 1

−1

K ′′(x)2 dx.

Proof. The proof will only be sketched briefly, because large parts of it are
similar to the proofs in [36]. The first part of the proof goes, conditionally on
N(n) = k, along the same lines as the proof of Theorem 1 in [36] with the
estimator

f̃0,k(x) = − 1

h2

k∑
i=1

[
K ′
(
x−X2

i

h

)
+K ′

(
x+X2

i

h

)]
1[0,1](x), h = h(k),

based on i.i.d. sample X1, . . . , Xk and with the process

Yk(t) = − h3/2

k1/2q(t)1/2

[
f̃0,k(t)− Ef̃0,k(t)

]

=
h−1/2

q(t)1/2

∫ 1

0

[
K ′
(
t− x

h

)
+K ′

(
t+ x

h

)]
dαk(x), t ∈ [a2, b2],

where αk is the empirical process corresponding to the distribution function of
X2

1 , . . . , X
2
k . After noting that asymptotically, for h ≤ a2,

Yk(t) =
h−1/2

q(t)1/2

∫ 1

0

K ′
(
t− x

h

)
dαk(x), t ∈ [a2, b2],

one can construct appropriate approximations Yk,0, Yk,1, Yk,2, and Yk,3 of the
process Yk, and obtain, for each x ∈ R,

P
(
[2 log(1/h)]1/2

[
‖Yk‖∞,I

/
C

1/2
K,1 − dk

]
≤ x
)
→ exp [−2 exp(−x)]

as k → ∞, where

dk = [2 log(1/h)]1/2 +
log
[
C

1/2
K,2

/
(2π)

]
[2 log(1/h)]1/2

, h = h(k).

The unknown quantity in Yk is q(t), with t ∈ [a2, b2]. However, reasoning as
in the proof of Corollary 1 in [36], one deduces, using Assumption 2(c), that the
above result remains true after replacing Yk with

Yk,4(t) = − h3/2

k1/2q̃k(t)1/2

[
f̃0,k(t)− Ef̃0,k(t)

]
, t ∈ [a2, b2].

Now, it follows from Lemma 4.1.1 in [26] that the same limiting distribution
is valid for the process

T (Nk) = [2 log(1/h)]1/2
[
‖Yk,4‖∞,I

/
C

1/2
K,1 − dk

]
, h = h(k),

with k = N(n). An obvious modification of the results obtained for the esti-

mator f̃0,k, with k = N(n), gives the required result for the estimator f̂0,n and
completes the proof.
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To finish the construction of the confidence bands for f , one has to deal with
the bias of f̂0,n, and then transform the obtained bands for f0 to bands for f .
To control the impact of the bias, we follow one of the major strategies which
is undersmoothing: accepting less smooth estimator in order to reduce the bias
(cf., e.g., [6], [5], [4], [25], [19, Ch. 6.4.2], [36]). (An alternative approach is ex-
plicit bias correction, see, e.g. [17].) In our case, this idea is realized in Assump-
tion 3(b), which becomes clear after comparison with the rate of convergence of
h to zero imposed in Theorem 1.

Summarizing, the confidence bands constructed using an undersmoothing
bandwidth have the form implied by the following corollary.

Corollary 1. Under Assumption 3, for each x ∈ R,

P
(
f̂n(t)− ln(t, x) ≤ f(t) ≤ f̂n(t) + ln(t, x) for all t ∈ [a, b]

)
→ exp [−2 exp(−x)] ,

as n → ∞, where

ln(t, x) =
2tq̃N(n)(t

2)1/2N(n)1/2C
1/2
K,1

nh3/2

[
x

[2 log(1/h)]1/2
+ dN(n)

]
,

the estimator f̂n is defined by Equation 3, with h 	 N(n)−γ , and the constants
CK,1 and dN(n) are defined in Theorem 3.

Proof. For x ∈ [a2, b2],

Ef̂0,n(x) = E
[
E
(
f̂0,n(x) | N(n)

)]

= −E

[
N(n)

cn

(∫ x/h

(x−1)/h

K(s)g′(x− hs) ds+

∫ (x+1)/h

x/h

K(s)g′(hs− x) ds

)]

and, because suppK = [−1, 1], for x ∈ [a2, b2] and sufficiently small h one
obtains

Ef̂0,n(x) = −E

(
N(n)

cn

∫ 1

−1

K(s)g′(x− hs) ds

)
.

Therefore, standard reasoning based on the Taylor expansion of g′(x − hs)
around x shows that, under Assumptions 3(a), (b), (d), and (e), the bias of

f̂0,n is bounded by

|Ef̂0,n(x)− f0(x)| = O(n−mγ),

uniformly in x ∈ [a2, b2].
Consequently, the difference between

Tn,1 = [2 log(1/h)]1/2
[
‖ZN(n)‖∞,I

/
C

1/2
K,1 − dN(n)

]
and

Tn,2 = [2 log(1/h)]1/2

[
nh3/2

N(n)1/2‖q̃N(n)‖1/2∞,I

‖f̂0,n − f0‖∞,I

/
C

1/2
K,1 − dN(n)

]
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is of the order of Op

[
n−(m+3/2)γ+1/2(logn)1/2

]
and, for γ > 1/(2m + 3) as in

Assumption 3(b), converges to zero in probability.

Finally, it follows from Theorem 3, by Slutsky's theorem, that, for each x ∈ R,

P (Tn,2 ≤ x) → exp [−2 exp(−x)] ,

as n → ∞, and Corollary 1 now follows by rearranging the terms and the
substitution f0(x) = f(

√
x)/(2

√
x).

5. Bandwidth selection and simulations

The Goldenshluger-Lepski (GL) procedure, although attractive theoretically,
proved to be computationally very expensive. Even with effective, parallel im-
plementation on a large grid of processors, it was hardly feasible to conduct
Monte Carlo experiments of conclusive size, and this only for Gaussian kernels,
for which convolutions can be computed analytically in closed forms. The ne-
cessity of numerical computation of convolutions (and their derivatives) of com-
pactly supported kernels made the computing time explode, even with FFT.
This is unfortunate, because smooth, compactly supported kernels are used for
construction of confidence bands (cf. Assumption 2(a), even if, strictly speak-
ing, the theory only allows the bandwidths to depend on N(n) and, hence, does
not allow for data-driven bandwidth selection). Moreover, as will be demon-
strated below, the GL-estimators consistently tend to oversmooth, at least with
sample sizes used in our simulations. Therefore, as a practical alternative, we
propose to select the bandwidth for the estimator f̂n, given by formula (3),
in another data-dependent way with the following version of the empirical risk
minimization (ERM) principle, which is computationally much cheaper than the
GL-method. Define

R(h) = ||f̂n − f ||22 − ||f ||22 = ||f̂n||22 − 2

∫ 1

0

f̂n(x)f(x) dx.

Substituting f(x) = −2xg′(x2), we obtain, after a change of variable,

R(h) = ||f̂n||22 + 2

∫ 1

0

f̂n(
√
x) dg(x),

which can be estimated with

R̂(h) = ||f̂n||22 + 2

M−1∑
i=0

f̂n(
√
xi) [g̃(xi+1)− g̃(xi)] ,

where M is a positive integer, 0 = x0, . . . , xM = 1 are equally spaced points
in [0, 1], and g̃ is some, independent of h, estimator of the intensity function g.
The bandwidth h is chosen as the minimizer of R̂(h).
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In the numerical experiment, we used M = 210 and the following kernel
estimator of the function g:

g̃(x) =
1

nH

N(n)∑
i=1

[
Kep

(
x−X2

i

H

)
+Kep

(
x+X2

i

H

)]
, (5)

where Kep is the Epanechnikov kernel and H = 5(N(n)/n)2n−1/5, which proved
to work well in a wide range of examples studied in simulations. Notice that

N(n)/n converges almost surely to
∫ 1

0
g(x) dx and the function g is decreasing

with g(0) =
∫ 1

0
f(x) dx and g(1) = 0. This means that, for fixed

∫ 1

0
f(x) dx, the

smaller
∫ 1

0
g(x) dx, the more rapid decrease of the function g. In that case, one

should take a smaller bandwidth for better estimation of the function g. The
minimization of R̂(h) was performed for h = Cn−1/7 through a grid search with
C ∈ [0.2, 2.0] and with step 0.05 for C.

Data samples were generated from several intensity functions, but we only
present selected results for the following four functions (taken from [16]) that
represent typical behaviour of our procedures in various setups:

1. Beta(4,2): f(x) = 20x3(1− x)1[0,1](x)

2. Swapped Minerbo-Levy A (SML-A):
f(x) = 4x21[0,0.5](x) + [2− 4(1− x)2]1[0.5,1](x)

3. Swapped Minerbo-Levy B (SML-B):
f(x) = 1.241(2x− x2)−3/2 exp{1.21[1− (2x− x2)−1]}1[0,1](x)

4. Normal mixture (NM): 0.7 ·N(0.7, 0.082) + 0.3 ·N(0.35, 0.082).

Note that only Beta(4,2) belongs to F1,C , which guarantees the MISE con-
vergence rate n−2/5, according to Theorem 1. The other functions, being dis-
continuous at 1, fail to belong to Fm,C . Nevertheless, all four functions satisfy
the less restrictive conditions of Corollary 1, so that asymptotically valid con-
fidence bands may be constructed for all of them. The mean numbers of the
observed data points were 47.6%, 54.2%, 41.3%, and 38.6% of n, respectively
for the functions from Beta(4,2) to NM.

The SML-B and NM functions are much more difficult to estimate in stere-
ological problems than Beta(4,2) and SML-A. SML-B is hard mainly because
of rapid local changes of the derivative, being close to zero over the rest of the
support (step-like behaviour). For the NM function, in addition to rapid local
changes of the derivative, problems with the coverage can be expected near
to one, where the function is close to zero and steepy, because the confidence
bands will be narrow there, due to the presence of q̃N(n) in the nominator of
ln(t, x) (cf. Corollary 1). Additionally, for NM data is scarce, indeed, in that
region because, due to the very nature of the SLW problem, the observed data
are shifted to the left w.r.t. the original radii, and there is not much to be
shifted from the neighbourhood of one, although Assumption 2(d) is formally
satisfied.

For the GL-method, one has to select some value of the parameter η. Numer-
ical experiments have shown that the bandwidths selected with η = 0.5 were
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Fig 1. Left: worst and best estimates (out of 10 data samples) of the NM intensity function
(solid), obtained with GL (dotted) and ERM (dashed) method of bandwidth selection, with
experiment size n = 105. Right: L2-errors of ERM and GL based estimates for 10 data
samples used in the left panel (medians, quartiles, extremes).

always larger than those selected with η = 10−2, and the increasing tendency
continued to η = 1.5 and η = 2, for all generated data samples. On the other
hand, the difference between using η = 10−2 and η = 10−4, say, was negligible.
To compare the GL-method (with η = 10−2) with the ERM method, we have
run both (with the Gaussian kernel) on the same data and compared the estima-
tors and their L2 squared errors. Typically, GL-estimators tend to oversmooth
and to have larger errors than those of the ERM-based estimators. Figure 1
illustrates that for the NM function, with n = 105 and estimators computed
from 10 data samples. In view of the above discussion, only ERM method and
estimators with the biweight kernel K(x) = (15/16)(1 − x2)21[−1,1](x) of or-

der two in the estimator f̂n will be further discussed below. Figures 2 and 3
illustrate the behaviour of the estimator f̂n for Beta(4,2) and SML-B functions.
For each function and each experiment size, 10 artificial data samples were gen-
erated and the estimator f̂n with bandwidth selected with ERM principle was
computed. Additionally, the best possible bandwidths were found, i.e. those
that minimize the numerically computed L2 distance between f̂n and the true
f . The best and worst cases (out of 10) are presented in the left panels of Fig-
ures 2 and 3. The right panels of those figures illustrate the performance of
the ERM principle. For similar results on spectral-type and wavelet estimators,
see [16, 12]. As seen in Figures 2 and 3, minimization of empirical risk pro-
duces good estimates of the unfolded intensity function, close to those with the
optimal bandwidth.

The last part of this section presents the results of our simulation study of the
asymptotic confidence bands given in Corollary 1. The asymptotic theory ap-
plies to confidence bands constructed on intervals [a, b] with any 0 < a < b < 1.
In finite samples, however, a and b should not be chosen too close to the bound-
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Fig 2. Worst (dotted) and best (dashed) reconstruction (out of 10 data samples) of Beta(4,2)
intensity function (solid line) for the experiment size, from top: n = 104, n = 105, n = 106.
On the right side the scatterplots of L2 error of ERM solutions versus those of the best possible
solutions.
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Fig 3. Similar to Figure 2, but for the SML-B intensity function.
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aries. Problems with actual coverage probability can be expected because of at
least two reasons: wrong width of the band and/or bad behaviour of the central
estimator. The half-width ln(t, x) of the band is proportional to the estimate
q̃N(n) of the density q(·) = g(·)/c (cf. Corollary 1). With f ∈ Fm,C , symmetriza-
tion allows for reliable estimation of q(·) near to zero, so that the bands width
may be expected reasonable there (provided h is chosen correctly). In the vicin-
ity of one, however, problems with estimation of q(·) should be expected, due to
well-known boundary effects. Moreover, since q(1) = 0, the bands can become

too narrow in the vicinity of one. On the other hand, the central estimator f̂n
may be expected to cause problems at both ends of the interval [0, 1] due to
boundary effects, because it is based on the estimator of the derivative of g and
symmetrization does not necessarily help in this case. Problems may be more
serious near to zero, due to the additional square transformation of the argu-
ment (cf. formula (3)). In effect, to fully eliminate the boundary effects, one
would have to concider only a and b such that

√
h < a < b <

√
1− h, which

may be quite restrictive in finite samples. To which extent these restrictions can
be relaxed, may depend on the estimated function.

In the first stage of our numerical experiment, all confidence bands were
constructed on the interval [0.1, 0.9] and with the bandwidth h = 0.85h∗, where
h∗ was chosen according to the ERM procedure. For rapidly changing functions
SML-B and NM, however, the coverage probabilities were too low, and we were
forced to use h = 0.75h∗ in those cases. Alternatively, one can use h = 0.85h∗

on a shorter interval. As q̃N(n), we used the kernel estimator (5), with N(n)
instead of n in the normalizing factor.

Table 1 shows the simulated coverage probabilities and the confidence bands
mean widths for all considered intensity functions f , for three values of the ex-
periment size n: 10 000, 30 000, 100 000, and for three levels of nominal coverage
probability. The results are based on 1 000 simulation runs. Note that, out of
all scenarios for SML-B, only the last row of the table (approximately) meets
the restriction

√
h < a and, at the same time, produces coverage probabilities

very close to nominal ones. The remaining functions are much less problematic
in this respect.

Figures 4 and 5 show some typical examples of 80% and 95% confidence
bands for n = 104 and n = 105. It is seen in those figures and in Table 1
that the bandwidth selected with the ERM procedure may also be used, after
multiplication by a shrinkage factor, in the construction of confidence bands. The
difficulty of the SML-B case is reflected in larger sample sizes needed to obtain
reasonable estimates and in too low actual coverage probabilities in smaller
samples. Similar effect, although less pronounced, can be seen in case of the
NM function.

6. Discussion and conclusions

The proposed kernel-type estimator with an automatic bandwidth selection and
the related confidence bands provide the first solution to the problem of uniform



Confidence bands in the Spektor-Lord-Willis problem 213

Table 1

Simulated coverage percentages (Cov.) and mean widths of the confidence bands
(Mean width = mean area/length) for various intensity functions f , various experiment

sizes n and various intervals (S) and shrinkage factors applied to h∗. Mean h is averaged
over 1 000 simulations, run to empirically approximate each of the coverage percentages.

Approximate standard errors for simulated coverage percentages are 1.3%, 0.9%, and 0.7%,
respectively for nominal coverage 80%, 90%, and 95%.

Nominal coverage

80% 90% 95%

Intensity n Mean h Cov.
Mean
width

Cov.
Mean
width

Cov.
Mean
width

h = 0.85h∗, S = [0.1, 0.9]

Beta(4.2) 10 000 0.180 83 0.71 93 0.82 98 0.92
30 000 0.145 84 0.59 94 0.67 97 0.75
100 000 0.114 84 0.48 92 0.54 98 0.60

SML-A 10 000 0.234 80 0.50 93 0.59 97 0.67
30 000 0.189 76 0.42 89 0.48 96 0.54
100 000 0.148 76 0.34 88 0.39 95 0.43

h = 0.75h∗, S = [0.1, 0.9]

NM 10 000 0.105 73 1.40 87 1.56 95 1.70
30 000 0.085 75 1.15 89 1.28 95 1.40
100 000 0.066 81 0.95 90 1.06 95 1.14

SML-B 10 000 0.120 64 1.29 78 1.45 87 1.60
30 000 0.096 68 1.08 81 1.21 88 1.33
100 000 0.076 66 0.87 79 0.96 87 1.06

h = 0.85h∗, S = [0.25, 0.9]

SML-B 10 000 0.136 63 1.18 74 1.34 84 1.50
30 000 0.109 70 0.98 81 1.11 90 1.23
100 000 0.086 79 0.79 89 0.88 96 0.97

interval estimation in the Spektor-Lord-Willis problem of stereology, formulated
as a Poisson inverse problem. As seen in Proposition 1, the smoothness class
Fm,C is essentially the Sobolev class W (m,L), with some local restrictions in
an arbitrarily small vicinity of zero. Balls with radii below detectability limit
in a given experiment are, however, not observable anyway, so that such local
restrictions seem acceptable from the applied point of view. As shown in Sec-
tion 2, estimating f in the standard L2-norm is equivalent to estimating g′ in
the weighted L2-norm, with the weight

√
x. This weight does not influence the

minimax rate, which is n−2m/(2m+3), as one would expect with the standard L2-
norm. Recall, however, that g has m − 1 zero derivatives at zero, which makes
estimation of g′ in the vicinity of zero an easy task. Hence, the estimation er-
ror in (ε, 1] dominates the global error and the weight does not influence the
minimax rates.

Relatively large samples needed for the applicability of asymptotic confi-
dence bands motivate studying alternative bootstrap constructions. This is also
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Fig 4. Estimate f̂n along with associated 80% (shaded) and 95% (– – –) nominal coverage
probability confidence bands of the intensity functions Beta(4,2) (left) and SML-A (right) for
the experiment size n = 104 (top) and n = 105 (bottom). The thick solid lines represent the
true functions.

attractive from theoretical point of view because, strictly speaking, asymptotic
confidence bands based on the standard Bickel-Rosenblatt theorem do not allow
for data-driven choice of the bandwidth. This restriction can be relaxed only
at the cost of serious additional theoretical effort, as in [18], or in [9], where
an approach based on, so-called, anti-concentration property of the supremum
of a relevant Gaussian process was proposed, along with a Gaussian multiplier
bootstrap version of the Lepski’s method and a corresponding construction of
confidence bands for densities. Adaptation of those techniques to our setup and
empirical verification of the performance of such (again, computationally very
costly) confidence bands is, however, beyond the scope of this article and may
be the subject of a separate project.
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Fig 5. Similar to Figure 4, but for the intensity functions SML-B (left) and NM (right).

Appendix A: Proof of Proposition 2

We closely follow the ideas from the proof of Proposition 3 in [15] and Theorem
2 in [28]. For any h ∈ H,

‖p̂′GL − p′‖∗ ≤ ‖p̂′GL − p̂′ĥ,h‖∗ + ‖p̂′ĥ,h − p̂′h‖∗ + ‖p̂′h − p′‖∗ =: A1 +A2 +A3,

with

A1 ≤ A(h) +
χ
√
N(n)

nĥ3/2
and A2 ≤ A(ĥ) +

χ
√

N(n)

nh3/2
.

By definition of ĥ,

A1 +A2 ≤ 2A(h) +
2χ
√

N(n)

nh3/2
.
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Set

ξn(h) = sup
h′∈H

{
‖(p̂′h,h′ − Ep̂′h,h′)− (p̂′h′ − Ep̂′h′)‖2 −

χ
√

N(n)

n(h′)3/2

}
+

.

Then, because ‖p̂′h,h′ − p̂′h′‖∗ ≤ ‖p̂′h,h′ − p̂′h′‖2,

A1 +A2 ≤ 2ξn(h) + 2 sup
h′∈H

‖Ep̂′h,h′ − Ep̂′h′‖2 +
2χ
√

N(n)

nh3/2
.

For the middle term, recall that Ep̂′h′ = Kh′ � p′ and evaluate

Ep̂′h,h′ = E
[
E
(
p̂′h,h′ |N(n)

)]
= E

[
N(n)

n‖g‖1

(∫
(Kh � Kh′)′(x− u)g(u) du+

∫
(Kh � Kh′)′(x+ u)g(u) du

)]

=

∫
(Kh � Kh′)′(x− u)g(u) du+

∫
(Kh � Kh′)′(x− u)g(−u) du

=

∫
(Kh � Kh′)′(x− u)p(u) du = Kh � Kh′ � p′.

Then,

A1 +A2 ≤ 2ξn(h) + 2 sup
h′∈H

‖Kh � Kh′ � p′ −Kh′ � p′‖2 +
2χ
√
N(n)

nh3/2

≤ 2ξn(h) + 2‖K‖1‖Kh � p′ − p′‖2 +
2χ
√

N(n)

nh3/2
.

As a byproduct, it is seen that A(h) represents, up to the factor ‖K‖1, the
approximation term. From (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2, one gets

E(A1 +A2)
2 ≤ 12Eξ2n(h) + 12‖K‖21‖Kh � p′ − p′‖22 +

12χ2‖g‖1
nh3

.

For A3, we obtained in the proof of Theorem 1 in Section 2

EA2
3 ≤ 4‖g‖1‖K ′‖22

nh3
+ ‖Kh � p′ − p′‖22.

Finally, using (a+ b)2 ≤ 2a2 + 2b2,

E‖p̂′GL − p′‖2∗ ≤ 2E(A1 +A2)
2 + 2EA2

3

≤ 2
[
4 + 12(1 + η)2(1 + ‖K‖1)2

]{
‖Kh � p′ − p′‖22 +

‖g‖1‖K ′‖22
nh3

}
+ 24Eξ2n(h).

This will give the thesis because of the following lemma.
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Lemma 1. If H ⊂ {D−1 : D = 1, . . . , �(δn)1/2
} with some δ > 0, then there
exists a constant C = C(δ, η, ‖K‖2, ‖K ′‖2, ‖g‖1, ‖g‖∞) such that, for each h ∈ H
and for all n, Eξ2n(h) ≤ Cn−1.

Proof. For any h ∈ H,

ξn(h) ≤ sup
h′∈H

{
‖p̂′h,h′ − Ep̂′h,h′‖2 + ‖p̂′h′ − Ep̂′h′‖2 −

χ
√

N(n)

n(h′)3/2

}
+

,

‖p̂′h,h′ − Ep̂′h,h′‖2 = ‖Kh � p̂′h′ −Kh � Kh′ ∗ p′‖2 ≤ ‖K‖1‖p̂′h′ − Ep̂′h′‖2,
and, consequently,

ξn(h) ≤ sup
h′∈H

{
(1 + ‖K‖1)‖p̂′h′ − Ep̂′h′‖2 −

χ
√
N(n)

n(h′)3/2

}
+

= (1 + ‖K‖1) sup
h′∈H

{
‖p̂′h′ − Ep̂′h′‖2 −

(1 + η)‖K ′‖2
√
N(n)

n(h′)3/2

}
+

=: (1 + ‖K‖1)Sn.

With any α ∈ (0, 1), we then have Eξ2n(h) ≤ (1 + ‖K‖1)2(A+B), with

A := E
[
S2
n1(N(n) ≤ (1− α)2n‖g‖1)

]
,

B := E
[
S2
n1(N(n) > (1− α)2n‖g‖1)

]
.

To handle A, we use again (a1 + · · ·+ a�)
2 ≤ �(a21 + · · ·+ a2�) and obtain

S2
n ≤ sup

h∈H
‖p̂′h − Ep̂′h‖22 ≤ 2 sup

h∈H
‖p̂′h‖22 + 2 sup

h∈H
‖Ep̂′h‖22

≤ 2 sup
h∈H

∫ ⎡⎣ 1
n

N(n)∑
i=1

[
K ′

h(x−X2
i ) +K ′

h(x+X2
i )
]⎤⎦

2

dx+ 2 sup
h∈H

‖Kh � p′‖22

≤ 2 sup
h∈H

2N(n)

n2

∫ N(n)∑
i=1

(
K ′

h(x−X2
i )

2 +K ′
h(x+X2

i )
2
)
dx+ 2 sup

h∈H
‖Kh � p′‖22

≤ 8 sup
h∈H

N2(n)‖K ′‖22
n2h3

+ 8 sup
h∈H

‖g‖21‖K ′‖22
h3

≤ 8‖K ′‖22(δn)3/2
(
N2(n)

n2
+ ‖g‖21

)
,

because h3 ≥ (δn)−3/2. Further, since N(n)/n ≤ ‖g‖1, one obtains with C0 =
16‖K ′‖22(δn)3/2‖g‖21

A ≤ C0P
(
N(n) ≤ (1− α)2n‖g‖1

)
≤ C0 exp[−α′‖g‖1n],

with some α′(α), as in [28, Additional File 2]. This finally gives, for all n,

A ≤ CAn
−1,
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with a constant CA = CA(‖g‖1, ‖K ′‖2, δ, α).
Now we deal with B, fixing the previous value of α to α = min(η/2, 1/4),

which implies (1 + η)(1− α) ≥ 1 + η/4 and

B ≤ E

⎡
⎣sup
h∈H

{
‖p̂′h − Ep̂′h‖2 −

(1 + η/4)‖K ′‖2‖g‖1/21

n1/2h3/2

}2

+

⎤
⎦

=

∫ ∞

0

P

⎛
⎝sup

h∈H

{
‖p̂′h − Ep̂′h‖2 −

(1 + η/4)‖K ′‖2‖g‖1/21

n1/2h3/2

}2

+

≥ x

⎞
⎠ dx

≤
∑
h∈H

∫ ∞

0

P

⎛
⎝{‖p̂′h − Ep̂′h‖2 −

(1 + η/4)‖K ′‖2‖g‖1/21

n1/2h3/2

}2

+

≥ x

⎞
⎠ dx.

Set

U(x) = p̂′h(x)−Ep̂′h(x) =
1

n

∫
[K ′

h(x− t) +K ′
h(x+ t)] dNng(t)− (Kh � p

′)(x),

where Nng =
∑N(n)

i=1 δX2
i
is the observed Poisson process. In any Hilbert space,

‖u‖ = sup‖a‖≤1 |〈a, u〉|. Hence, if A is a countable, dense subset of the unit ball

in L2(R), we have, because of the symmetry of K,

‖U‖2 = sup
a∈A

∣∣∣∣
∫

a(x)U(x) dx

∣∣∣∣
= sup

a∈A

∣∣∣∣
∫

a(x)

[
1

n

∫
(K ′

h(x− t) +K ′
h(x+ t)) dNng(t)

−
∫

K ′
h(x− t)p(t) dt

]
dx

∣∣∣∣
= sup

a∈A

∣∣∣∣
∫

a(x)

[
1

n

∫
K ′

h(x− t) dNng(t)−
∫

K ′
h(x− t)g(t) dt

+
1

n

∫
K ′

h(x+ t) dNng(t)−
∫

K ′
h(x− t)g(−t) dt

]
dx

∣∣∣∣
≤ 2 sup

a∈A

∣∣∣∣
∫

a(x)

n

[∫
K ′

h(x− t)(dNng(t)− ng(t)dt)

]
dx

∣∣∣∣
= sup

a∈A

∣∣∣∣
∫

ψa(t)(dNng(t)− ng(t)dt)

∣∣∣∣ ,
with

ψa(t) =

∫
2a(x)

n
K ′

h(x− t) dx.

For any t,

ψ2
a(t) ≤

4

n2

∫
a2(x) dx

∫
[K ′

h(x− t)]
2
dx =

4‖K ′‖22
n2h3

.
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Set b = 2‖K ′‖2/(nh3/2). Then ‖ψa‖∞ ≤ b and

E‖U‖22 =

∫
EU2(x) dx =

∫
var
[
p̂′h(x)

]
dx ≤ 4‖g‖1‖K ′‖22

nh3
,

as in the proof of Theorem 1 in Section 2, which gives

E‖U‖2 ≤ 2‖g‖1/21 ‖K ′‖2
n1/2h3/2

.

Also,

v := sup
a∈A

∫
ψ2
a(t)ng(t) dt = sup

a∈A

∫ [∫
2a(x)

n
K ′

h(x− t) dx

]2
ng(t) dt

≤ 4

n
sup
a∈A

∫ ∫
a2(x)|K ′

h(x− t)| dx‖K ′
h‖1g(t) dt

=
4‖K ′

h‖1
n

∫
a2(x)

∫
g(t)|K ′

h(x− t)| dt dx ≤ 4‖K ′
h‖21‖g‖∞
n

=
4‖K ′‖21‖g‖∞

nh2
.

Since

‖p̂′h − Ep̂′h‖2 ≤ sup
a∈A

∣∣∣∣
∫

ψa(t)(dNng(t)− ng(t)dt)

∣∣∣∣ ,
Corollary 2 in [27] gives, for any ε > 0 and u > 0,

P

[
‖p̂′h − Ep̂′h‖2 ≥ (1 + ε)

2‖g‖1/21 ‖K ′‖2
n1/2h3/2

+

√
48‖K ′‖21‖g‖∞u

nh2

+

(
5

4
+

32

ε

)
2‖K ′‖2
nh3/2

u

]
≤ e−u.

Setting u = x+ Lh with x > 0 gives

P

[
‖p̂′h − Ep̂′h‖2 −Mh ≥

√
48‖K ′‖21‖g‖∞x

nh2

+

(
5

4
+

32

ε

)
2‖K ′‖2
nh3/2

x

]
≤ e−xe−Lh ,

with

Mh = (1 + ε)
2‖g‖1/21 ‖K ′‖2

n1/2h3/2
+

√
48‖K ′‖21‖g‖∞Lh

nh2
+

(
5

4
+

32

ε

)
2‖K ′‖2
nh3/2

Lh.

One has

E

(
sup
h∈H

[
‖p̂′h − Ep̂′h‖2 −Mh

]2
+

)
(6)

≤
∑
h∈H

∫ ∞

0

P

([
‖p̂′h − Ep̂′h‖2 −Mh

]2
+
> v

)
dv.
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In the last integral substitute

√
v =

√
48‖g‖∞‖K ′‖1

√
u

n1/2h3/2
+ 2

(
5

4
+

32

ε

)
‖K ′‖2

u

nh3/2
.

The right hand side of (6) can then be bounded by

∑
h∈H

e−Lh

(
D1

nh3
+

D2

n3/2h3
+

D3

n2h3

)
,

with constants D1, D2, D3 that depend only on ‖K ′‖1, ‖K ′‖2, ‖g‖∞, and ε. Set
Lh = θ2/h. Then, since h−1 ≤ (δn)1/2,

Mh ≤(1 + ε+ θ
√
12)

2max{‖g‖1/21 , ‖g‖1/2∞ }max{‖K ′‖1, ‖K ′‖2}
n1/2h3/2

+ 2

(
5

4
+

32

ε

)
‖K ′‖2θ2δ1/2
n1/2h3/2

.

After suitable choice of ε and θ, one gets

Mh ≤ (1 + η/4)‖K ′‖2‖g‖1/21

n1/2h3/2

and, hence, with D = max{D1, D2, D3},

B ≤ D

n

∞∑
i=1

e−θ2ii3 ≤ CBn
−1,

with some constant CB = CB(‖K ′‖1, ‖K ′‖2, ‖g‖∞, ‖g‖2). This completes the
proof of Lemma 1 and of Proposition 2.

Recall from Section 2 that g is nonincreasing and g(0) =
∫
f(x) dx. This

implies that ‖g‖∞ = ‖f‖1. Also, ‖g‖1 ≤ ‖f‖1, so that all the constants will be
uniform over the function class, if we impose a limit ‖f‖1 ≤ D, say, in addition
to the definition of Fn,C . Note that if a function f satisfies the conditions of
Proposition 1, then automatically ‖f‖1 has an upper limit.
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