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Abstract

We establish two results concerning a class of geometric rough paths X which arise
as Markov processes associated to uniformly subelliptic Dirichlet forms. The first is
a support theorem for X in α-Hölder rough path topology for all α ∈ (0, 1/2), which
proves a conjecture of Friz–Victoir [13]. The second is a Hörmander-type theorem for
the existence of a density of a rough differential equation driven by X, the proof of
which is based on analysis of (non-symmetric) Dirichlet forms on manifolds.
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1 Introduction

Consider a symmetric Dirichlet form on L2(Rd, λ)

E(f, g) =
∫
Rd

d∑
i,j=1

ai,j(∂if)(∂jg)dλ , (1.1)

where λ is the Lebesgue measure and a is a measurable, uniformly elliptic function
taking values in the space of symmetric d× d matrices (we make our set-up precise in
Section 1.1). It is well-known that there exists a symmetric Markov process X in Rd

associated with E; see [14] for a general construction of X and [23] for fundamental
analytic properties of E .

We are interested in differential equations of the form

dYt = V (Yt)dXt , Y0 = y0 ∈ Re , (1.2)

driven by X along vector fields V = (V1, . . . , Vd) on Re. When a is taken sufficiently
smooth, the process X can be realised as a semi-martingale for which the classical
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framework of Itô gives meaning to the equation (1.2). However for irregular functions a,
this is no longer the case, and (1.2) falls outside the scope of Itô calculus.

One of the applications of Lyons’ theory of rough paths [19] has been to give meaning
to differential equations driven by processes outside the range of semi-martingales.
One viewpoint of rough paths theory is that it factors the problem of solving equations
of the type (1.2) into first enhancing X to a rough path by appropriately defining its
iterated integrals (which is typically done through stochastic means), and then solve (1.2)
deterministically.

Probabilistic methods to enhance the Markov processX to a rough path and the study
of its fundamental properties appear in [18, 2, 16, 17], where primarily the forward-
backward martingale decomposition is used to show existence of the stochastic area. A
somewhat different approach, which we follow here, is taken in [10] where the authors
define X directly as a diffusion on the free nilpotent Lie group GN (Rd) (in particular
the iterated integrals are given directly in the construction). One can show that in the
situation mentioned at the start, the two methods give rise to equivalent definitions of
rough paths. The latter construction in fact yields further flexibility in that the evolution
of X can depend in a non-trivial way on its higher levels (its iterated integrals). Note
that this is a common feature with Lévy rough paths studied in [12, 7]. Markovian rough
paths have also recently been investigated in [6, 8] in connection with the accumulated
local p-variation functional and the moment problem for expected signatures.

The goal of this paper is to contribute two results to the study of Markovian rough
paths in the sense of [10]. Our first contribution (Theorem 2.11) answers in the positive
a conjecture about the support of X in α-Hölder rough path topology. Such a support
theorem appeared in [10] for α ∈ (0, 1/6), and was improved to α ∈ (0, 1/4) in [13] where
it was conjectured to hold for α ∈ (0, 1/2) in analogy to enhanced Brownian motion.
Comparing our situation to the case of Gaussian rough paths, where such support
theorems are known with sharp Hölder exponents (see e.g., [13, Sec. 15.8], and [11] for
recent improvements), the difficulty of course lies in the lack of a Gaussian structure, in
particular the absence of a Cameron-Martin space.

Our solution to this problem relies almost entirely on elementary techniques. Indeed,
we first show that any stochastic process (taking values in a Polish space) admits explicit
lower bounds on the probability of keeping a small α-Hölder norm, provided that it
satisfies lower and upper bounds on certain transition probabilities comparable to
Brownian motion. This is made precise by conditions (1) and (2) and Theorem 2.5. We
then verify these conditions for the translated rough path Th(X) (which is in general
non-Markov, see Remark 2.8) for any h ∈ W 1,2([0, T ],Rd) using heat kernel estimates
of X (we also note that, just like for enhanced Brownian motion, all relevant constants
depend on h only through ‖h‖W 1,2).

As usual, in combination with the continuity of the Itô-Lyons map from rough paths
theory, an immediate consequence of improving the Hölder exponent in the support
theorem for X is a stronger Stroock-Varadhan support theorem (in α-Hölder topology)
for the solution Y to the rough differential equation (RDE) (1.2) along with the lower
regularity assumptions on the driving vector fields V (Lip2 instead of Lip4).

Our second contribution (Theorem 3.4 and its Corollary 3.8) may be seen as a non-
Gaussian Hörmander-type theorem, and provides sufficient conditions on the driving
vector fields V = (V1, . . . , Vd) under which the solution to the RDE (1.2) admits a density
with respect to the Lebesgue measure on Re. Once again, while this result is reminiscent
of density theorems for RDEs driven by Gaussian rough paths (e.g., [3, 4, 5]), the primary
difference in our setting is that methods from Malliavin calculus are no longer available
due to the lack of a Gaussian structure.

We replace the use of Malliavin calculus by direct analysis of (non-symmetric) Dirich-
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let forms on manifolds. Indeed, we identify conditions under which the couple (X,Y)

admits a density on its natural state-space, and conclude by projecting to Y. We note
however that our current result gives no quantitative information about the density
beyond its existence (not even for the couple (X,Y)), and we strongly suspect that
the method can be improved to yield further information (particularly Lp bounds and
regularity results in the spirit of the De Giorgi–Nash–Moser theorem).

1.1 Notation

Throughout the paper, we adopt the convention that the domain of a path x : [0, T ] →
E, for T > 0 and a set E, is extended to all of [0,∞) by setting xt = xT for all t > T . For a
metric space (E, d), r ≥ 0, and x ∈ E, we denote the ball B(x, r) = {y ∈ E | d(x, y) ≤ r}.

We let G = GN (Rd) denote the step-N free nilpotent Lie group over Rd for some
N ≥ 2, and let U1, . . . , Ud be a set of generators for its Lie algebra g = gN (Rd), which we
identify with the space of left-invariant vector fields on G. We equip Rd with the inner
product for which U1, . . . , Ud form an orthonormal basis upon canonically identifying Rd

with a subspace of g.
We equip G with the corresponding Carnot–Carathéodory metric d. Let 1G denote

the identity element of G and let λ denote the Haar measure on G normalised so that
λ(B(1G, 1)) = 1.

For Λ > 0, let Ξ(Λ) = ΞN,d(Λ) denote the set of measurable functions a on G which
take values in the space of symmetric d× d matrices and which are sub-elliptic in the
following sense:

Λ−1|ξ|2 ≤ 〈ξ, a(x)ξ〉 ≤ Λ|ξ|2 , ∀ξ ∈ Rd , ∀x ∈ G .

For a ∈ Ξ(Λ), we define the associated Dirichlet form E = Ea on L2(G,λ) for all f, g ∈
C∞

c (G) by

E(f, g) =
∫
G

∑
i,j

ai,j(Uif)(Ujg)dλ . (1.3)

We let X = Xa,x denote the Markov diffusion on G associated to E with starting point
X0 = x ∈ G. We recall that the sample paths of X are a.s. geometric α-Hölder rough
paths for all α ∈ (0, 1/2), and when a(x) depends only on the level-1 projection π1(x) ∈ Rd

of x ∈ G, X serves as the natural rough path lift of the Markov diffusion associated to
the Dirichlet form (1.1) on L2(Rd) discussed earlier. For further details, we refer to [13].

Remark 1.1. Throughout the paper we assume the symmetric Dirichlet form (1.3) is
defined on the Hilbert space L2(G,λ) so that X is symmetric with respect to λ. As
pointed out in [6], it is natural to also consider E defined over L2(G,µ) for a measure
µ(dx) = v(x)λ(dx), v ≥ 0. While for simplicity we only work with E defined on L2(G,λ),
we note that appropriate assumptions of v and a Girsanov transform (see, e.g., [9]) can
be used to relate the results of this paper to this more general setting.

2 Support theorem

2.1 Restricted Hölder norms

We first record some deterministic results on Hölder norms which will be used in
the sequel. Throughout this section, let (E, d) be a metric space, α ∈ (0, 1], T > 0, and
x ∈ C([0, T ], E) a continuous path. Let � denote any of the relations <,≤,=,≥, >, and
consider the quantity

‖x‖α-Höl,�ε;[s,t] = sup
u,v∈[s,t],|u−v|�ε

d(xu,xv)

|u− v|α
,
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where we set ‖x‖α-Höl,�ε;[s,t] = 0 if the set {(u, v) ∈ [s, t]2 | |u− v|�ε} is empty.

Definition 2.1. For ε, γ > 0 and s ∈ [0, T ], define the times (τε,γ,sn )n≥0 = (τn)n≥0 by
τ0 = s and for n ≥ 1

τn = inf{t > τn−1 | ‖x‖α-Höl,≥ε;[τn−1,t] ≥ γ} .

We call any such τn a Hölder stopping time of x.

Lemma 2.2. Let ε, γ > 0 and s = 0, and suppose that for some c > 0

sup
t∈[τn,τn+ε]

d(xτn ,xt) < c , ∀n ≥ 0 . (2.1)

Then ‖x‖α-Höl,=ε;[0,T ] < γ̃ := (3cε−α) ∨ (4γ + cε−α).

Proof. For n ≥ 1 and t ∈ [τn−ε, τn], we have one of the following three mutually exclusive
cases: (a) τn = τn−1 + ε, (b) τn ∈ (τn−1 + ε, τn−1 + 2ε] and t ∈ [τn−1, τn−1 + ε], or (c) t >
τn−1 + ε. In case (a), (2.1) implies that d(xt,xτn) < 2c. In case (b), d(xτn ,xτn−1

) ≤ γ(2ε)α

and (2.1) implies that d(xt,xτn−1
) < c, so that

d(xt,xτn) < c+ γ(2ε)α ≤ (2c) ∨ (4γεα) .

In case (c), we have d(xt−ε,xt) ≤ γεα and d(xt−ε,xτn) ≤ γ(2ε)α, so that

d(xt,xτn) ≤ γεα + γ(2ε)α ≤ 3γεα .

Hence, in all three cases

d(xt,xτn) < (2c) ∨ (4γεα) . (2.2)

Consider now

τ = inf{t > 0 | ‖x‖α-Höl;=ε;[0,T ] = γ̃} .

Note that ‖x‖α-Höl;=ε;[0,T ] ≥ γ̃ ⇔ τ < ∞. Arguing by contradiction, suppose that τ < ∞,
which means that d(xτ−ε,xτ ) = γ̃εα. Consider the largest n for which τn ≤ τ . Observe
that τn ∈ [τ − ε, τ ], since otherwise d(xτ−ε,xτ ) < γεα, which is a contradiction since
γ̃ > γ. It follows from (2.1) that d(xτn ,xτ ) ≤ c, and therefore by (2.2) and the triangle
inequality

d(xτ−ε,xτ ) < c+ (2c) ∨ (4γεα) = γ̃εα ,

which is again a contradiction.

Lemma 2.3. Suppose that ‖x‖α-Höl;=2−nε;[0,T ] ≤ γ for every n > N ∈ Z. Then

‖x‖α-Höl;<2−Nε;[0,T ] ≤
γ

1− 2−α
.

Proof. Consider (t− s)/ε ∈ (0, 2−N ) with binary representation (t− s)/ε =
∑∞

n=m cn2
−n

with cn ∈ {0, 1}, m > N , and cm = 1. It follows that

d(xs,xt) ≤ γ

∞∑
n=m

εαcn2
−nα .

Since 2−m ≤ (t− s)/ε, we have εα2−nα ≤ 2α(m−n)(t− s)α. Hence

d(xs,xt) ≤ γ

∞∑
n=m

2α(m−n)(t− s)α =
γ(t− s)α

1− 2−α
.
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Lemma 2.4. Suppose there exist x ∈ E and r > 0 such that for all integers k ≥ 0,
xkε ∈ B(x, r) and ‖x‖α-Höl;≤ε;[kε,(k+1)ε] ≤ γ. Then

‖x‖α-Höl;[0,T ] ≤ 2γ + 2rε−α .

Proof. Consider 0 ≤ s < t ≤ [0, T ], and denote s ∈ [kε, (k+1)ε), t ∈ [nε, (n+1)ε). If k = n

there is nothing to prove, so suppose k < n. If |t− s| ≤ ε, so that n = k + 1, then

d(xs,xt) ≤ d(xs,xnε) + d(xnε,xt) ≤ γ21−α|t− s|α .

Finally, if |t− s| > ε then since xkε,xnε ∈ B(x, r), it follows that

|t− s|−αd(xs,xt) ≤ |t− s|−α(d(xkε,xs) + d(xkε,xnε) + d(xnε,xt))

≤ |t− s|−α(2εαγ + 2r)

≤ 2γ + 2rε−α .

2.2 Positive probability of small Hölder norm

Suppose now (E, d) is a Polish space. In this section, we give conditions under which
an E-valued process has an explicit positive probability of keeping a small Hölder norm.
We fix α ∈ (0, 1/2), a terminal time T > 0, and an E-valued stochastic process X adapted
to a filtration (Ft)t∈[0,T ].

Consider the following conditions:

(1) There exists C1 > 0 such that for every c, ε > 0, and every Hölder stopping time τ

of X, a.s.

P
[

sup
t∈[τ,τ+ε]

d(Xτ ,Xt) > c | Fτ

]
≤ C1 exp

(
−c2

C1ε

)
.

(2) There exist c2, C2 > 0 and x ∈ E such that for every s ∈ [0, T ] and ε ∈ (0, T − s], a.s.

P
[
Xs+ε ∈ B(x,C2ε

1/2) | Fs

]
≥ c21{Xs ∈ B(x,C2ε

1/2)} .

Roughly speaking, the first condition states that the probability of large fluctuations
of X over small time intervals should have the same Gaussian tails as that of a Brownian
motion, while the second condition bounds from below the probability that Xs+ε is in a
ball of radius ∼ ε1/2 given that Xs was in the same ball.

Theorem 2.5. Assume conditions (1) and (2). Fix x as in (2). Then there exist C2.5, c2.5 >

0, depending only on C1, c2, C2, α, T , such that for every γ > 0, a.s.

P
[
‖X‖α-Höl;[0,T ] < γ | F0

]
≥ C−1

2.5 exp
( −C2.5

γ2/(1−2α)

)
1{X0 ∈ B(x, c2.5γ

1/(1−2α))} .

Lemma 2.6. Assume condition (1). Then there exists C2.6 > 0, depending only on C1

and α, such that for all 0 ≤ s < t ≤ T and ε ∈ (0, t− s], a.s.

P
[
‖X‖α-Höl;≤ε;[s,t] ≥ γ | Fs

]
≤ C2.6(t− s)ε−1(γ−2ε1−2α + 1) exp

(−γ2(1− 2−α)2

9C1ε1−2α

)
.

Proof. Let τn = τε,γ,sn be defined as in Definition 2.1 with τ0 = s. Note that (1) implies
that for all c, γ > 0, t > s and ε ∈ (0, t− s],

P

[
∃n ≥ 0, τn ≤ t, sup

u∈[τn,τn+ε]

d(Xτn ,Xu) > c | Fs

]
≤ d(t− s)/εeC1 exp

(−c2

C1ε

)
,
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so that by Lemma 2.2

P
[
‖X‖α-Höl;=ε;[s,t] ≥ (3cε−α) ∨ (4γ + cε−α) | Fs

]
≤ d(t− s)/εeC1 exp

(−c2

C1ε

)
.

In particular, choosing c = 2γεα yields that for all γ > 0, t > s, and ε ∈ (0, t− s],

P
[
‖X‖α-Höl;=ε;[s,t] ≥ 6γ | Fs

]
≤ d(t− s)/εeC1 exp

( −(2γ)2

C1ε1−2α

)
.

Hence

P
[
∃n ≥ 0, ‖X‖α-Höl;=2−nε;[s,t] ≥ γ | Fs

]
≤ 2C1(t− s)ε−1

∞∑
n=0

2n exp
(−2n(1−2α)γ2

9C1ε1−2α

)
.

The conclusion now follows from Lemma 2.3 and the observation that for every θ > 0

there exists C4 such that for all K > 0

∞∑
n=0

2n exp
(
−K2θn

)
≤ C4(K

−1 + 1)e−K

(which can be seen, for example, by the integral test and the asymptotic behaviour of
the incomplete gamma function Γ(p,K)).

Proof of Theorem 2.5. For γ, ε > 0 and s ∈ [0, T ], consider the event

As = {‖X‖α-Höl;≤ε;[s,s+ε] < γ,Xs+ε ∈ B(x,C2ε
1/2)} .

Applying condition (2) and Lemma 2.6 with t = s+ ε, we see that for all s ∈ [0, T ], and
ε, γ > 0

P [As | Fs] ≥ c21{Xs ∈ B(x,C2ε
1/2)} − C2.6(γ

−2ε1−2α + 1) exp
(−γ2(1− 2−α)2

9C1ε1−2α

)
.

Observe also that Lemma 2.4 (with r = C2ε
1/2) implies that for all ε, γ > 0

P
[
‖X‖α-Höl;[0,T ] < 2γ + 2C2ε

1/2−α | F0

]
≥ P

[ dT/εe−1⋂
k=0

Akε | F0

]
.

It remains to control the final probability on the RHS. We set ε = c1γ
2/(1−2α) (so that

ε1/2−α ∼ γ), where c1 > 0 is sufficiently small (and depends only on C1, c2, C2, C2.6 and
α) such that

κ := c2 − C2.6(c
1−2α
1 + 1) exp

(−(1− 2−α)2

36C1c
1−2α
1

)
> 0 ,

so in particular for all s ∈ [0, T ] and γ > 0,

P [As | Fs] ≥ κ1{Xs ∈ B(x,C2ε
1/2)} .

Inductively applying conditional expectations, it follows that for all n ≥ 0

P
[ n⋂
k=0

Akε | F0

]
≥ κn+11{X0 ∈ B(x,C2ε

1/2)} .

Taking n = dT/εe − 1 yields the desired result.
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2.3 Support theorem for Markovian rough paths

We now turn to the support theorem for Markovian rough paths in α-Hölder topology,
which we state in Theorem 2.11 at the end of this section.

Recall the Sobolev path space W 1,2 = W 1,2([0, T ],Rd) and the translation operator
Th(x) defined for x ∈ Cp-var([0, T ], G), 1 ≤ p < N + 1, and h ∈ C1-var([0, T ],Rd) (see [13,
Sec. 1.4.2, 9.4.6]). Let us fix α ∈ (0, 1/2) and Λ > 0. Recall further Notation 1.1, in
particular the set Ξ(Λ).

Proposition 2.7. Let h ∈ W 1,2. There exists a constant C2.7 > 0, depending only on Λ,
‖h‖W 1,2 , α, and T , such that for all a ∈ Ξ(Λ), x ∈ G, and γ > 0

Pa,x
[
‖Th(X)‖α-Höl;[0,T ] < γ

]
≥ C−1

2.7 exp
( −C2.7

γ2/(1−2α)

)
.

For the proof, let us fix h ∈ W 1,2 and a filtration (Ft)t∈[0,T ] to which X (and thus
Th(X)) is adapted (e.g, the natural filtration generated to X).

Remark 2.8. If a(x) depends only on the first level π1(x) for all x ∈ G, then Th(X) is a
(non-symmetric, time-inhomogeneous) Markov process. In general, however, Th(X) is
non-Markov. The reason is that, for any fixed t ∈ (0, T ], the sigma-algebra σ(Xt) is not
necessarily contained in σ(Th(X)t), i.e., information on whether Th(X)t ∈ A for Borel
subsets A ⊂ G does not yield full information about Xt, which is necessary to determine
the evolution of X, and thus of Th(X).

Recall that the Fernique estimate [13, Cor. 16.12] implies that for every stopping
time τ and p > 2, a.s.

P
[
‖X‖p-var;[τ,τ+ε] > c | Fτ

]
≤ CF exp

(−c2

CF ε

)
, (2.3)

where CF depends only on Λ and p. We now prove two lemmas which demonstrate that
the process Th(X) satisfies conditions (1) and (2).

Lemma 2.9. There exists a constant C > 0, depending only on Λ, such that for all
c, ε > 0 satisfying

ε ≤ c2

4‖h‖2W 1,2

, (2.4)

it holds that for every stopping time τ , a.s.

P
[

sup
t∈[τ,τ+ε]

d(Th(X)τ , Th(X)t) > c | Fτ

]
≤ C exp

(−c2

4Cε

)
.

Proof. Suppose c, ε > 0 satisfy (2.4). Using that ‖h‖1-var;[s,s+ε] ≤ ε1/2‖h‖W 1,2;[s,s+ε], we
have ‖h‖1-var;[s,s+ε] ≤ c/2. Fix now any 2 < p < N + 1. Observe that (see [13, Thm. 9.33])

sup
t∈[s,s+ε]

d(Th(X)s, Th(X)t) ≤ ‖Th(X)‖p-var;[s,s+ε]

≤ C1

(
‖X‖p-var;[s,s+ε] + ‖h‖1-var;[s,s+ε]

)
,

from which the conclusion follows by the Fernique estimate (2.3).

Lemma 2.10. For all C ≥ C0(Λ, ‖h‖W 1,2) > 0, there exists c = c(C,Λ, ‖h‖W 1,2) > 0 such
that for all x ∈ G, s ∈ [0, T ], and ε ∈ (0, T − s], a.s.

P
[
Th(X)s+ε ∈ B(x,Cε1/2) | Fs

]
≥ c1{Th(X)s ∈ B(x,Cε1/2)} .
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Proof. We use the shorthand notationY = Th(X). For every x, y ∈ G, consider a geodesic
γy,x : [0, 1] → G with γy,x

0 = y and γy,x
1 = x parametrised at unit speed. Let z(y, x) := γy,x

1/2

denote its midpoint. For any x ∈ G, observe that

d(Ys+ε, x) ≤ d(Ys+ε, z(Ys, x)) + d(z(Ys, x), x)

≤ d(Ys,s+ε,Xs,s+ε) + d(Xs,s+ε,Y
−1
s z(Ys, x)) + d(z(Ys, x), x) .

If Ys ∈ B(x, r), then evidently d(z(Ys, x), x) ≤ r/2. Moreover, since G is a homogeneous
group and due to our normalisation of λ, it holds that λ(B(x, r)) = rQ for all r ≥ 0 and
x ∈ G, where Q ≥ 1 is the homogeneous dimension of G. Recall also the lower bound on
the heat kernel [13, Thm. 16.11]

p(ε, x, y) ≥ C−1
l ε−Q/2 exp

(−Cld(x, y)
2

ε

)
, ∀x, y ∈ G , ∀ε > 0 ,

where Cl > 0 depends only on Λ. It follows that there exists C1 > 0, depending only on
Λ, such that, for any r, ε > 0 and y ∈ B(1G, r/2),

P [d(Xs,s+ε, y) < r/4] ≥ λ(B(y, r/4))C−1
l ε−Q/2 exp

(−Clr
2

ε

)
≥ C−1

1 rQ

εQ/2
exp

(−C1r
2

ε

)
.

Note that if Ys ∈ B(x, r), then necessarily Y−1
s z(Ys, x) ∈ B(1G, r/2), so we obtain for all

x ∈ G, r, ε > 0 and s ∈ [0, T ]

P
[
d(Xs,s+ε,Y

−1
s z(Ys, x)) < r/4 | Fs

]
≥ C−1

1 rQ

εQ/2
exp

(−C1r
2

ε

)
1{Ys ∈ B(x, r)} .

Finally, by standard rough paths estimates (using that Th(X)s,t is equal to Xs,t plus a
combination of cross-integrals of X and h over [s, t]) we have

d(Xs,s+ε,Ys,s+ε) ≤ C2 max
i∈{1...,N}

( i∑
k=1

‖h‖k1-var;[s,s+ε]‖X‖i−k
p-var;[s,s+ε]

)1/i

≤ C2 max
i∈{1...,N}

( i∑
k=1

εk/2‖h‖kW 1,2;[s,s+ε]‖X‖i−k
p-var;[s,s+ε]

)1/i

.

Hence, if ‖X‖p-var;[s,s+ε] ≤ Rε1/2, then for some C3 > 0 depending only on G

d(Xs,s+ε,Ys,s+ε) ≤ C3ε
1/2(‖h‖1/NW 1,2;[s,s+ε] + ‖h‖W 1,2;[s,s+ε])(1 +R(N−1)/N ) .

We now let r = Cε1/2. It follows that if C and R satisfy

C ≥ 4C3(‖h‖1/NW 1,2;[s,s+ε] + ‖h‖W 1,2;[s,s+ε])(1 +R(N−1)/N ) , (2.5)

then by the Fernique estimate (2.3), for any 2 < p < N + 1,

P
[
d(Xs,s+ε,Ys,s+ε) > Cε1/2/4 | Fs

]
≤ P

[
‖X‖p-var;[s,s+ε] > Rε1/2, | Fs

]
≤ CF exp

(−R2

CF

)
.

It follows that if C and R furthermore satisfy

c := C−1
1 CQ exp

(
−C1C

2
)
− CF exp

(−R2

CF

)
> 0 , (2.6)

EJP 23 (2018), paper 56.
Page 8/16

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP184
http://www.imstat.org/ejp/


A support and density theorem for Markovian rough paths

then we obtain

P
[
d(Ys+ε, x) < Cε1/2 | Fs

]
≥ c1{Ys ∈ B(x,Cε1/2)} .

We now observe that due to the factor R(N−1)/N in (2.5) above, there exists C0 > 0,
depending only on ‖h‖W 1,2 and Λ, such that for every C ≥ C0, we can find R > 0 for
which (2.5) and (2.6) are satisfied.

Proof of Proposition 2.7. By Theorem 2.5, it suffices to check that Th(X) satisfies con-
ditions (1) and (2) with constants C1, c2, C2 only depending on Λ and ‖h‖W 1,2 . However
this follows directly from Lemmas 2.9 and 2.10.

Theorem 2.11. Let γ,R > 0. It holds that

inf
x∈G

inf
a∈Ξ(Λ)

inf
‖h‖W1,2≤R

Pa,x
[
dα-Höl;[0,T ](X, SN (h)) < γ

]
> 0 , (2.7)

where dα-Höl;[0,T ] denotes the (homogeneous) α-Hölder metric and SN (h) is the level-N
lift of h. In particular, the support of Xa,x in α-Hölder topology is precisely the closure
in Cα-Höl([0, T ], G) of {xSN (h) | h ∈ W 1,2}.

Proof. By uniform continuity of the map (x, h) 7→ Th(x) on bounded sets [13, Cor. 9.35],
and the fact that ThT−h(x) = x and Th(0) = SN (h), there exists δ = δ(γ,R) > 0 such that
for all h ∈ W 1,2 with ‖h‖W 1,2 ≤ R

‖T−h(x)‖α-Höl;[0,T ] < δ(γ,R) ⇒ dα-Höl(x, SN (h)) < γ .

The bound (2.7) then follows from Proposition 2.7. As a consequence, we see that the
support of Xa,x contains the closure of {xSN (h) | h ∈ W 1,2}. The reverse inclusion
follows from the fact that Xa,x is a.s. a geometric α-Hölder rough path, and is therefore
the limit in the dα-Höl;[0,T ] metric of lifts of smooth paths.

Remark 2.12. The main difference with the approach taken in [10, Thm. 50] and [13,
Thm 16.33] to prove a bound of the form P[dα-Höl(X, SN (h)) < γ] > 0 (with α ∈ [0, 1/6)

and α ∈ [0, 1/4) respectively) is that we do not rely on a support theorem in the uniform
topology. As a consequence, our analysis is more delicate but does not lose any power at
each step, which allows us to push to the sharp Hölder exponent range α ∈ [0, 1/2).

Note also that [13, Thm 16.39] and [10, Cor. 46] give this bound for h ≡ 0 with the
sharp range α ∈ [0, 1/2). The proof therein relies crucially on lower and upper bounds
on the probability that X stays in small balls, namely Pa,x[‖X‖0;[0,t] < γ] � e−λ(γ)tγ2

with
0 < λmin ≤ λ(γ) ≤ λmax < ∞, which yields a version of Lemma 2.6 for the untranslated
process Xa,x conditioned to stay in a small ball around x. This argument is rather
sensitive to the fact that for each fixed γ > 0 the same quantity λ(γ) appears in the lower
and upper bounds; this is not true for the translated process Th(X), which is the reason
for our different strategy.

3 Density theorem

3.1 Semi-Dirichlet forms associated with Hörmander vector fields

In this subsection, let O be a smooth manifold and W = (W1, . . . ,Wd) a collection of
smooth vector fields on O. For z ∈ O, let LiezW denote the subspace of TzO spanned by
the vector fields (W1, . . . ,Wd) and all their commutators at z. We say that W satisfies
Hörmander’s condition on O if LiezW = TzO for every z ∈ O, in which case we call W a
collection of Hörmander vector fields.
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Fix a collection W = (W1, . . . ,Wd) of Hörmander vector fields on O and U ⊂ O an
open subset with compact closure. Consider a bounded measurable function a on U

taking values in (not necessarily symmetric) d× d matrices such that for some Λ ≥ 1

Λ−1|ξ|2 ≤ 〈ξ, a(z)ξ〉 , ∀ξ ∈ Rd , ∀z ∈ U . (3.1)

Let µ be a smooth measure on O and define the bilinear map

E : C∞
c (U)× C∞

c (U) → R

E : (f, g) 7→ −
d∑

i,j=1

∫
U

ai,j(z)(Wif)(z)(W
∗
j g)(z)µ(dz) ,

where W ∗
j = −Wj −divµWj is the formal adjoint of Wj with respect to µ. In the following

lemma, the Lp norm ‖ · ‖p for p ∈ [1,∞] is assumed to be on Lp(U, µ). For background
concerning (non-symmetric, semi-)Dirichlet forms, we refer to [21].

Lemma 3.1. The bilinear form E is closable in L2(U, µ), lower bounded, and satisfies
the sector condition. Denote by Pt the associated (strongly continuous) semi-group
on L2(U, µ). Suppose further that Pt is sub-Markov (so that the closed extension of E
is a lower-bounded semi-Dirichlet form) and maps Cb(U) into itself. Then there exists
ν > 2 and b > 0 such that for every x ∈ U and t > 0 there exists pt(x, ·) ∈ L2(U, µ) with
‖pt(x, ·)‖2 ≤ bt−ν/2 such that for all f ∈ L2(U, µ)

Ptf(x) =

∫
U

pt(x, y)f(y)µ(dy) .

The proof of Lemma 3.1 is based on the sub-Riemannian Sobolev inequality combined
with a classical argument of Nash [20]. We believe this result should be standard, but
as we were unable to find a sufficiently similar form in the literature, we prefer to
give a proof in Appendix A (see [22, 24] for closely related results in the case that E is
symmetric or positive semi-definite).

Note also that in the sequel, namely in the proof of Theorem 3.4, we will only require
the fact from Lemma 3.1 that the kernel pt exists. The bound on ‖pt(x, ·)‖2 is merely a
free consequence of the proof of its existence.

3.2 Density for RDEs

We now specialise to the setting of Markovian rough paths. Recall Notation 1.1 and
consider the RDE

dYt = V (Yt)dXt , Y0 = y0 ∈ Re , (3.2)

for smooth vector fields V = (V1, . . . , Vd) on Re. We suppose also that V are Lip2 so
that (3.2) admits a unique solution. We fix also the starting point X0 = x0 ∈ G of X.

For the reader’s convenience, we recall the Nagano–Sussmann orbit theorem (see,
e.g., [1, Chpt. 5]).

Theorem 3.2 (Orbit theorem, Nagano–Sussmann). Let W be a set of complete smooth
vector fields on a smooth manifold M . Let O denote the orbit of W through a point
z0 ∈ M . Then O is a connected immersed submanifold of M . Furthermore, for any z ∈ O,

TzO = span
{
d(P−1)P (z)w(P (z)) | P ∈ P, w ∈ W

}
,

where
P = {et1w1 ◦ . . . ◦ etkwk | ti ∈ R, wi ∈ W, k ≥ 1} ⊂ DiffM .

A particularly useful consequence of the orbit theorem is the following.
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Corollary 3.3. Let notation be as in Theorem 3.2. It holds that LiezW ⊆ TzO for all
z ∈ O. Furthermore, LiezW = TzO for all z ∈ O if and only if dimLiezW is constant in z.

Proof. The fact that LiezW ⊆ TzO and the “only if” implication are obvious. For the “if”
implication, suppose dimLiezW is constant in z ∈ O. Then Lie W defines a distribution
on O (a subbundle of the tangent bundle), so the Frobenius theorem implies that Lie W

arises from a regular foliation of O. However, each leaf of this foliation is itself an orbit
of W . Therefore the foliation contains only one leaf, namely O, which concludes the
proof.

Consider the manifold G×Re. We canonically identify the tangent space T(x,y)(G×Re)

with TxG ⊕ TyR
e and define smooth vector fields on G × Re by Wi = Ui + Vi. Let

z0 = (x0, y0) ∈ G × Re and denote by O = Oz0 the orbit of z0 under the collection
W = (W1, . . . ,Wd).

Denote the couple Zt = (Xt,Yt) which is a Markov process on G × Re. One can
readily show that a.s. Zz0

t ∈ O for all t > 0 (e.g., by approximating each sample path of
X in p-variation for some p > 2 by piecewise geodesic paths).

Theorem 3.4. Suppose W satisfies Hörmander’s condition on O, i.e., LiezW = TzO for
all z ∈ O. Then for all t > 0, Zz0

t admits a density with respect to any smooth measure on
O.

The proof of Theorem 3.4 will be given at the end of this section. We first state
several remarks and a consequence of the theorem.

Remark 3.5. Note that from Notation 1.1 we always consider G = GN (Rd) with N ≥ 2.
However, in the special case that a(x) depends only on the first level π1(x) for all x ∈
GN (Rd), the identical statement in Theorem 3.4 holds for the process Zt = (π1(Xt),Yt) ∈
Rd × Re (the conditions change by substituting G by Rd everywhere). The reason for
this is that Lemma 3.13 below can be readily adjusted to give analogous infinitesimal
behaviour of the process Zt (now taking values in O ⊆ Rd ×Re), after which the proof of
the theorem carries through without change.

For a statement of the density of Yt itself, let O′ ⊆ Re denote the orbit of y0 ∈ Re

under V .

Lemma 3.6. Suppose Zz0
t admits a density with respect to a smooth measure on O.

Then Yt admits a density with respect to any smooth measure on O′.

Proof. By the description of the tangent space TzO in Theorem 3.2, it holds that the
projection p2 : O → O′, (x, y) 7→ y, is a (surjective) submersion (in fact a smooth fibre
bundle) from O to O′. The conclusion follows from the fact that pre-images of null-sets
under submersions are null-sets for smooth measures.

Moreover, the condition in Theorem 3.4 may be restated in terms of just the driving
vector fields V = (V1, . . . , Vd) as follows.

Lemma 3.7. For a multi-index I = (i1, . . . , ik) ∈ {1, . . . , d}k of length |I| = k, denote by
V[I] the vector field [[. . . [Vi1 , Vi2 ], . . .], Vik ]. It holds thatW satisfies Hörmander’s condition
on O if and only if

dim span{V[I](y) : |I| > N} ⊆ TyR
e is constant in y ∈ O′. (3.3)

Proof. Since the vector fields U1, . . . , Ud are freely step-N nilpotent and generate the
tangent space of G, observe that

dimLie(x,y)W = dimG+ dim span{V[I](y) : |I| > N} , ∀(x, y) ∈ G×Re . (3.4)
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Suppose W satisfies Hörmander’s condition on O. Then dimLiezW is constant in z ∈ O,
and by (3.4) it follows that (3.3) holds. Conversely, suppose (3.3) holds. It now follows
from (3.4) that dimLiezW is constant in z ∈ O, and thus W satisfies Hörmander’s
condition on O by Corollary 3.3.

Combining Theorem 3.4 with Lemmas 3.6 and 3.7, we obtain the following corollary.

Corollary 3.8. Suppose condition (3.3) holds. Then for all t > 0, the RDE solution Yt

admits a density with respect to any smooth measure on O′.

Remark 3.9. Note that O′ = Re whenever V satisfies Hörmander’s condition on Re, in
which case every smooth measure is equivalent to the Lebesgue measure.

Remark 3.10. Following Remark 3.5, in the case that a(x) depends only on the first
level π1(x), we are able to take N = 1 in (3.3) when applying Corollary 3.8.

Remark 3.11. Note that while (3.3) (for anyN ≥ 0) implies that V satisfies Hörmander’s
condition on O′, the reverse implication is clearly not true. In particular, we do not know
if it is sufficient for V to only satisfy Hörmander’s condition on O′ in order for Yt to
admit a density on O′. The difficulty of course is that unless (3.3) is satisfied, the couple
(Xt,Yt) will in general not admit a density in O, whereby our method of proof breaks
down.

For the proof of Theorem 3.4, we first recall for the reader’s convenience the infinites-
imal behaviour of the coordinate projections of Xa. As before, let λ denote the Haar
measure on G.

Lemma 3.12. Let g ∈ C∞
c (G). Then for all k, l ∈ {1, . . . , d}

lim
t→0

t−1〈g,Ea,· [Xk
0,t

]
〉L2(G,λ) = −

d∑
j=1

∫
G

ak,j(x)Ujg(x)λ(dx) ,

lim
t→0

t−1〈g,Ea,· [Xk
0,tX

l
0,t

]
〉L2(G,λ) = 2

∫
G

ak,l(x)g(x)λ(dx) ,

lim
t→0

t−1〈g,Ea,·[Xk,l
0,t

]
〉L2(G,λ) = 0 .

Proof. This is [10, Lem. 27] extended mutatis mutandis to the general case GN (Rd),
N ≥ 1, cf. [13, Prop. 16.20].

Lemma 3.13. Let U ⊂ O be an open subset with compact closure. Consider the (sub-
Markov) semi-group PU

t of Zt killed upon exiting U , defined for all bounded measurable
f : U → R by

PU
t f(z) = Ez [f(Zt)1{Zs ∈ U,∀s ∈ [0, t]}] .

Then PU
t maps Cb(U) into itself, and for any smooth measure µ on O it holds that for all

f, g ∈ C∞
c (U)

lim
t→0

t−1〈PU
t f − f, g〉L2(U,µ) =

d∑
i,j=1

∫
U

ai,j(p1(z))(Wif)(z)(W
∗
j g)(z)µ(dz) , (3.5)

where p1 : O → G is the projection (x, y) 7→ x and W ∗
j = −Wj − divµ(Wj) is the adjoint

of Wj in L2(U, µ).

Proof. To show that PU
t maps Cb(U) into itself, let f ∈ Cb(U). As zn = (xn, yn) →

z = (x, y) in U , it holds in particular that xn → x in G. It follows that Xa,xn
D→Xa,x

in α-Hölder topology for any α ∈ [0, 1/2) [13, Thm. 16.28], and we readily obtain that
PU
t f(zn) → PU

t f(z). Hence PU
t f ∈ Cb(U), so indeed PU

t maps Cb(U) into itself.
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It remains to verify (3.5). Note that for every z ∈ U the probability that Zz leaves U
in [0, t] is bounded above by C−1 exp(−Ct−1) for some C = C(z, U,Λ) > 0 (see, e.g., the
Fernique estimate (2.3)). It follows by a localisation argument and the stochastic Taylor
expansion (e.g., [10, Lem. 26]), that

lim
t→0

t−1〈PU
t f − f, g〉L2(U,µ) = lim

t→0
t−1

∫
U

( d∑
i=1

Wif(z)E
x
[
Xi

0,t

]
+

d∑
i,j=1

1

2
WiWjf(z)E

x
[
Xi

0,tX
x;j
0,t

]
(3.6)

+

d∑
i,j=1

1

2
[Wi,Wj ]f(z)E

x
[
Xi,j

0,t

])
g(z)µ(dz) .

Since p1 : O → G is a (surjective) submersion (in fact a smooth fibre bundle), by
integrating over the fibres (e.g., [15, p. 307]) we can associate to any v ∈ C∞

c (U) a
function v̂ ∈ C∞

c (G) such that for any bounded measurable h : G → R∫
U

(h ◦ p1)(z)v(z)µ(dz) =
∫
G

h(x)v̂(x)λ(dx) .

In particular, setting vi := (Wif)g, vi,j := (WiWjf)g and wi,j := ([Wi,Wj ]f)g, we can
apply Lemma 3.12 to obtain that (3.6) equals

d∑
i,j=1

∫
G

[
−ai,j(x)(Uj v̂i)(x) + ai,j(x)v̂i,j(x)

]
λ(dx) . (3.7)

It remains to show that (3.7) agrees with the RHS of (3.5). To this end, we may assume
by a limiting procedure that a is smooth, and note that the same argument as in [10,
p. 503] applies mutatis mutandis to our current setting.

Proof of Theorem 3.4. Consider an increasing sequence of relatively compact open sets
(Un)n≥1 such that ∪n≥1Un = O. By Lemma 3.13, we can apply Lemma 3.1 to conclude that
for every x ∈ O and n ≥ 1 such that x ∈ Un, there exists a non-negative kernel pnt (x, ·) ∈
L2(Un, µ) such that PUn

t f(x) = 〈pnt (x, ·), f〉L2(Un,µ) for all f ∈ Cb(Un). Moreover, by

definition of PUn
t , the sequence pnt (x, ·) is increasing in n and satisfies ‖pnt (x, ·)‖L1(Un,µ) ≤

1. Hence the limit pt(x, ·) := limn→∞ pnt (x, ·) is almost everywhere finite and gives
precisely the transition kernel of the Markov process Zt in O with respect to µ.

Remark 3.14. The pre-compact subsets Un were considered in the proof only to obtain
existence of pnt from Lemma 3.1 for each n ≥ 1. We could have avoided considering such
a compact exhaustion by formulating Lemma 3.1 without a pre-compactness assumption
on U (however, at least without extra assumptions, the proof of such a formulation itself
would seem to require a compact exhaustion).

A Proof of Lemma 3.1

We follow the notation from Section 3.1. For f ∈ C∞
c (U) denote

‖Wf‖22 :=

d∑
i=1

‖Wif‖22 ,

and for α > 0

Eα(f, f) := E(f, f) + α‖f‖22 .
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Lemma A.1. 1. For every ε < Λ−1, there exists α > 0, depending only on ε, Λ, ‖a‖∞
and

∑d
i=1 ‖divµWi‖∞, such that for all f, g ∈ C∞

c (U)

Eα(f, f) ≥ ε‖Wf‖22 . (A.1)

2. There exist β > 0, depending only on ‖a‖∞ and
∑d

i=1 ‖divµWi‖∞, such that

|E(f, g)| ≤ β‖Wf‖2 (‖Wg‖2 + ‖g‖2) . (A.2)

Proof. By the Cauchy-Schwartz inequality and (3.1), for some C1, α > 0

E(f, f) =
d∑

i,j=1

∫
U

ai,j(z)Wif(z)Wjf(z)µ(dz) +

d∑
i,j=1

∫
U

ai,j(z)Wif(z)divµWj(z)f(z)µ(dz)

≥
d∑

i=1

∫
U

Λ−1|Wif(z)|2µ(dz)−
d∑

i,j=1

‖divµWj‖∞‖ai,j‖∞‖Wif‖2‖f‖2

≥ Λ−1‖Wf‖22 − C1‖Wf‖2‖f‖2
≥ ε‖Wf‖22 − α‖f‖22 ,

which implies (A.1). On the other hand, by Cauchy-Schwartz, for some C2, C3 > 0

∣∣∣ d∑
i,j=1

∫
U

ai,j(z)Wif(z)Wjg(z)dz
∣∣∣ ≤ C2‖Wf‖2‖Wg‖2 ,

and ∣∣∣ d∑
i,j=1

∫
U

ai,j(z)Wif(z)divµWj(z)g(z)dz
∣∣∣ ≤ C3‖Wf‖2‖g‖2 ,

from which we obtain (A.2).

Since W satisfies Hörmander’s condition on O, recall that for every x ∈ O there exist
constants νx > 2, Cx > 0, and a neighbourhood Ux of x with µ(Ux) < ∞ such that for all
f ∈ C∞

c (Ux) (see, e.g., [24, p. 296])

(∫
Ux

|f |2νx/(νx−2)dµ
)(νx−2)/νx

≤ Cx

∫
Ux

( d∑
i=1

|Wif |2 + |f |2
)
dµ .

Since U is pre-compact, it is routine to patch together such inequalities using a partition
of unity and apply interpolation to arrive at the following Sobolev inequality.

Lemma A.2 (Sobolev inequality). There exist constants ν > 2 and C,R > 0 such that for
all f ∈ C∞

c (U) with ‖f‖1 ≤ 1 and ‖f‖2 > R

‖f‖22ν/(ν−2) ≤ C‖Wf‖22 .

Fix ε < Λ−1 and α > 0 such that (A.1) holds. Let F be the closure of C∞
c (U) under

‖ · ‖F := Eα(·, ·)1/2.
Corollary A.3 (Nash inequality). Let ν > 2 and R > 0 be the same as in Lemma A.2.
There exists c > 0 such that for all f ∈ F with ‖f‖1 ≤ 1 and ‖f‖2 > R, it holds that

E(f, f) ≥ c‖f‖2+4/ν
2 . (A.3)
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Proof. Consider first f ∈ C∞
c (U). The Sobolev inequality (Lemma A.2), along with

Hölder’s inequality, implies that

‖f‖2+4/ν
2 ≤ C‖f‖4/ν1 ‖Wf‖22 ,

from which the conclusion follows first for all f ∈ C∞
c (U) by (A.1), and then for general

f ∈ F by an approximation argument.

Proof of Lemma 3.1. The desired properties of E all follow from (A.1) and (A.2) and the
fact that each Wi is a closable operator defined on C∞

c (U) ⊂ L2(U, µ).
Denote by A the generator of the associated adjoint semi-group P ∗

t in L2(U, µ) with
domainD(A). Consider f ∈ D(A)with ‖f‖1 ≤ 1 and set ut = P ∗

t f . Since Pt is sub-Markov,
we have ‖ut‖1 ≤ 1, so by Corollary A.3, whenever ‖ut‖2 > R,

d

dt
‖ut‖22 = lim

h→0

‖P ∗
hut‖22 − ‖ut‖22

h
= −2E(ut, ut) ≤ −2c‖ut‖2+4/ν

2 ,

from which it follows that there exists b > 0 such that ‖P ∗
t f‖2 ≤ bt−ν/2.

To complete the proof, it remains only to apply an approximation of the Dirac delta
〈φ, fn〉 → 〈φ, δx〉 = φ(x) for all φ ∈ Cb(U), with fn ∈ D(A) and ‖f1‖ ≤ 1, and use the fact
that supn ‖P ∗

t fn‖2 ≤ bt−ν/2 and that Pt preserves Cb(U).
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