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Two-valued local sets of the 2D continuum Gaussian
free field: connectivity, labels, and induced metrics
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Abstract

We study two-valued local sets, A−a,b, of the two-dimensional continuum Gaussian
free field (GFF) with zero boundary condition in simply connected domains. Intuitively,
A−a,b is the (random) set of points connected to the boundary by a path on which the
values of the GFF remain in [−a, b]. For specific choices of the parameters a, b the
two-valued sets have the law of the CLE4 carpet, the law of the union of level lines
between all pairs of boundary points, or, conjecturally, the law of the interfaces of the
scaling limit of XOR-Ising model.

Two-valued sets are the closure of the union of countably many SLE4 type of loops,
where each loop comes with a label equal to either −a or b. One of the main results of
this paper describes the connectivity properties of these loops. Roughly, we show that
all the loops are disjoint if a+ b ≥ 4λ, and that their intersection graph is connected
if a + b < 4λ. This also allows us to study the labels (the heights) of the loops. We
prove that the labels of the loops are a function of the set A−a,b if and only if a 6= b

and 2λ ≤ a+ b < 4λ and that the labels are independent given the set if and only if
a = b = 2λ. We also show that the threshold for the level-set percolation in the 2D
continuum GFF is −2λ.

Finally, we discuss the coupling of the labelled CLE4 with the GFF. We characterise
this coupling as a specific local set coupling, and show how to approximate these
local sets. We further see how in these approximations the labels naturally encode
distances to the boundary.
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1 Introduction

Two-valued local sets (TVS) of the two-dimensional Gaussian free field (GFF), denoted
A−a,b, were introduced in [5]. They are the two-dimensional analogue of the exit times
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Two-valued sets of the 2D Gaussian free field

from an interval [−a, b] by a standard Brownian motion. Intuitively, they correspond to
the set of points of the domain that can be connected to the boundary via a path on
which the GFF takes values only in [−a, b]. TVS are tightly linked to the study of the
2D GFF: for λ =

√
π/8 the set A−2λ,2λ describes the outer boundaries of the outermost

sign clusters of the 2D GFF [9, 15], and Qian and Werner used A−λ,λ to couple the free
boundary and zero boundary GFFs [16]. TVS also appear naturally in other statistical
physics models: for example it is known that CLE4 has the law of A−2λ,2λ [11, 5] and
moreover it is conjectured that A−a,b with a+ b = 2(1 +

√
2)λ should be the scaling limit

of interfaces corresponding to the XOR-Ising model [25].
As the 2D GFF is not defined pointwise, one has to give meaning to TVS. This was

done in [5, 1], using the concept of local sets. This concept appeared first in the study of
Markov random field in the 70s and 80s (see in particular [17]) and it was reintroduced
in [19] in the context of the coupling between the GFF and SLE4. Local sets are the
natural generalisation of stopping times for multi-dimensional time. More precisely, take
(Γ, A) a coupling between Γ a (zero-boundary) GFF in a domain D and A ⊆ D a closed
set. We say that A is a local set of Γ if, conditionally on A, the law of Γ restricted to
D\A is equal the sum of ΓA, a GFF in D\A, and a (conditionally) independent a random
harmonic function hA defined in D\A. This harmonic function can be interpreted as the
harmonic extension to D\A of the values of the GFF on ∂A.

In [5] two-valued sets were defined via their expected properties and their construc-
tion was provided using SLE4 type of level lines. More precisely, it was shown that if
a, b > 0, a+ b ≥ 2λ and Γ is a GFF in a simply connected domain D, then there exists a
unique local set A−a,b that satisfies

1. hA−a,b
is constant in every connected component of D\A−a,b with values in {−a, b}.

2. The set A−a,b is a thin local set. In the current setting it means that for any smooth
test function f , the random variable (Γ, f) is almost surely equal to (ΓA−a,b , f) +∫
D\A−a,b

hA−a,b
(x)f(x)dx.

3. A−a,b ∪ ∂D has a finite number of connected components.

In the same article several basic properties were proved, all of which are intuitive
from the heuristic description as a set of points connected to the boundary via a path
on which GFF takes values in [−a, b]. For example, (A−a,b,Γ

A−a,b , hA−a,b
) is measurable

function of the GFF Γ. Also, the sets A−a,b are monotone with respect to a and b, in other
words, if [−a, b] ⊆ [−a′, b′], then A−a,b ⊆ A−a′,b′ . Furthermore, A−a,b ∪ ∂D is connected.
Thus, all connected components of D\A−a,b are simply-connected. A notable difference
to the continuous setting also appeared in [5]:when a+ b < 2λ, there are no local sets A
satisfying (1), (2) and (3): this roughly just says that the GFF is so rough that you cannot
move away from the boundary without making a fluctuation of at least the size of 2λ.

In the current article, we are interested in the study of the geometric properties of
the set A−a,b and its complement. We describe in more detail its size, its connectivity,
but also answer the question whether given the set, one can recover the heights.

Before describing our results in more detail, let us also mention the recent work
of [6]. Whereas some of the connectivity properties we prove are directly related to
versions of SLE4 processes, in [6] the authors study connectivity properties of the loops
generated by a SLEκ process with κ ∈ (4, 8), using very different techniques from ours.

1.1 An overview of results

Let us now state some of the results that we shall derive, several other smaller results
can be found in the main text. Throughout the present section, D can be thought of as
the unit disk.
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Two-valued sets of the 2D Gaussian free field

The bulk of the paper deals describes the “connectivity properties” of the loops of
A−a,b. Here, by loops, we mean the boundaries of the connected components of D\A−a,b.
Indeed, it follows from the construction in [5] that these boundaries are Jordan curves.
Loops of A−a,b are always locally SLE4 curves and thus of Hausdorff dimension 3/2.

We now loosely state our main result, see Theorem 4.1 for a rigorous statement and
Figure 1.1 for an illustration:

• If a+ b = 2λ, one can pass from each loop to any other via a finite number of loops
such that every two consecutive loops share a boundary segment.

• If 2λ < a+ b < 4λ, one can pass from each loop to any other one via a finite number
of loops such that every two consecutive loops intersect.

• If a+ b ≥ 4λ, all loops are pairwise disjoint.

0 2λ 4λNon-existent Connected Totally
Disconnected

Figure 1: Connectivity properties of the loops of A−a,b given a + b. We also study the
behaviour at the critical points which correspond to that at its right.

The central idea in the proof of the first two cases is to provide a particular construc-
tion of A−a,b where it is easy to see that the required property holds. This is a recurrent
technique in our proofs. The demonstration of the third statement uses the fact that the
loops of A−2λ,2λ have the law of a CLE4 and that CLE4 loops are non-intersecting.

Figure 2: On the left a simulation of A−λ,λ done by Brent Werness. On the right a
simulation of A−2λ,2λ done by David Wilson. Note the difference in the connectivity
properties of loops.

A direct consequence of the main theorem concerns the SLE4 fan. The SLE4 fan is the
equivalent of the SLEκ fan defined in [12] for other values of κ and it corresponds to a
closed union of all level lines of Γ between two boundary points. Due to the roughness of
Γ, this is a random fractal set of 0 Lebesgue measure. Again, the connected components
of its complement are surrounded by loops and we show that the intersection graph of
these loops is connected. See Corollary 4.8 for a precise proof and statement.

The main theorem also gives us tools to study the height profile of the two-valued
sets. More precisely, for any loop ` of A−a,b, the label of ` is defined to be the value of
hA−a,b

inside this loop. One can then ask the following question [5]: when is hA−a,b
a

measurable function of the set A−a,b?. It was known [11, 5] that in the case of A−2λ,2λ,
the law of the labels conditionally on A−2λ,2λ is given by independent fair coin tosses. In
Proposition 5.3 we show that this independence property is true if and only if a = b = 2λ.
Moreover, in Proposition 5.1 we show that not only independence, but also measurability
of the labels fails for a+ b ≥ 4λ:
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Two-valued sets of the 2D Gaussian free field

• If 2λ ≤ a+ b < 4λ and a 6= b, the labels of A−a,b are a measurable function of the
set A−a,b.

• If λ ≤ a < 2λ, the labels of A−a,a are a measurable function of the set A−a,a and
the label of the loop surrounding 0.

• If a+ b ≥ 4λ, the labels of A−a,b cannot be recovered only knowing A−a,b and any
finite number of labels.

Another result we would like to mention corresponds to the “level-set percolation” of
the 2D continuum GFF. More precisely, we say that there is “level set percolation” at
height (−a, b) if one can almost surely join any two boundary points via a continuous
path inside the domain on which the GFF has values in [−a, b]. We show in Proposition
3.12 that “level set percolation” occurs if and only if min(a, b) ≥ 2λ.

Finally, we construct and characterise, (Γ,Br), a local set coupling where Br has the
same law as A−2λ,2λ−r, for 0 < r < 2λ, and such that the label of any loop ` encodes its
distance to the boundary (see Proposition 6.8). More precisely, the label of each loop ` is
given by 2λ − rd(`, ∂D), where d(`, ∂D) is the minimal length of a path of intersecting
loops that connects ` to the boundary (see Proposition 6.10).

When we let r → 0 in the latter coupling, we recover the coupling with the labelled
CLE4. Labelled CLE4 was introduced in [24] via a conformally invariant growth-process,
and a coupling to the GFF was proved in [22]. In fact, the labels of the CLE4 are given by
2λ− t, where t is exactly the time-parameter in the conformally invariant growth-process
mentioned above. In some sense, this coupling describes to how the outer-boundary of
the outer-most sign cluster of the GFF changes after the Lévy transformation of the GFF,
and we will explain how the sets Br are in some sense natural approximations to a Lévy
transform.

Lévy transform is well-defined in the case of the metric graphs [10] and our axiomatic
characterisation of the coupling with the labelled CLE4 in Section 6.4 allows us to study
convergence of this Lévy transform. Our two aims in studying the labelled CLE4 were as
follows: to show that the labels in this coupling are measurable w.r.t. the underlying set,
and to prove the existence of a conformally invariant metric, that has been mentioned in
[22, 24]. The sets Br described above satisfy both of these properties, however we are
unable to deduce the same statements in the limit.

The rest of the paper is roughly structured as follows: we start with preliminaries
on the GFF and the local sets in Section 2. In Section 3, we introduce the sets A−a,b,
recall their construction and study some of their basic properties. In this section, we
also prove a new construction of A−a,2λ−a and study the level set percolation. In Section
4, we study the connectivity properties of the loops of A−a,b and in Section 5 we address
the question of the measurability of the labels A−a,b. Finally, in Section 6 we study the
local set coupling with the labelled CLE4.

2 Preliminaries on the Gaussian free field and local sets

Let D ⊆ R2 denote a bounded, open and simply connected planar domain. By
conformal invariance, we can always assume that D is equal to D, the unit disk. Recall
that the (zero boundary) Gaussian free field (GFF) in D can be viewed as a centred
Gaussian process Γ, indexed by the set of continuous functions in D, such that if f, g are
continuous functions

E[(Γ, f)(Γ, g)] =
x

D×D

f(x)GD(x, y)g(y)dxdy.

Here GD is the Green’s function (with Dirichlet boundary conditions) in D, that is by
convention normalized such that GD(x, y) ∼ 1

2π log(1/|x− y|) as x → y. For this choice of
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normalization of G (and therefore of the GFF), we set

λ =
√
π/8.

Sometimes, other normalizations are used in the literature: If GD(x, y) ∼ c log(1/|x− y|)
as x → y, then λ should be taken to be (π/2)×

√
c.

The Gaussian free field satisfies a spatial Markov property, and in fact, it also satisfies
a strong spatial Markov property. To formalise this concept Schramm and Sheffield
introduced local sets in [19]. They can be thought of as a generalisation of stopping
times to a higher dimension.

Definition 2.1 (Local sets). Consider a random triple (Γ, A,ΓA), where Γ is a GFF in D,
A is a random closed subset of D and ΓA a random distribution that can be viewed as
a harmonic function, hA, when restricted to D\A. We say that A is a local set for Γ if
conditionally on A and ΓA, ΓA := Γ− ΓA is a GFF in D\A.

Here, by a random closed set, we mean a probability measure on the space of closed
subsets of D, endowed with the Hausdorff metric and its corresponding Borel σ−algebra.
For random distributions we use the topology of the Sobolev space H−1.

All the local sets we consider in this paper are going to satisfy the following two
assumptions, thus for the rest of the paper we may as well take them to be part of the
definition of local sets, simplifying some non-important, but technical aspects:

• we work with local sets A that are measurable functions of Γ;

• and such that A ∪ ∂D is connected.

The first part allows us to talk about “exploring” a specific local set of the free field.
The second claim implies that all connected components of D\A are simply-connected
and that the only polar local set is the empty set.

Let us list a few properties of local sets :

Lemma 2.2 (Basic properties of local sets).

1. Any local set can be coupled in a unique way with a given GFF: Let be (Γ, A,ΓA, Γ̂A),
where (Γ, A,ΓA) and (Γ, A, Γ̂A) satisfy the conditions of this definition. Then, a.s.
ΓA = Γ̂A. Thus, being a local set is a property of the coupling (Γ, A), as ΓA is a
measurable function of (Γ, A).

2. When A and B are local sets coupled with the same GFF Γ, and that (A,ΓA) and
(B,ΓB) are conditionally independent given Γ, then A∪B is also a local set coupled
with Γ. Additionally, B\A is a local set of ΓA with (ΓA)B\A = ΓB∪A − ΓA.

3. Let (Γ, An) be such that for all n ∈ N (Γ, An) is a local set coupling, and for
some k ∈ N almost surely An ∪ ∂D has less than k connected components. Then
(Γ, An,ΓAn) is tight and any subsequential limit is a local set coupling.

If moreover the sets An are increasing in n, then,
⋃

An is also a local set and
ΓAn

→ Γ⋃
An

in probability in H−1(D) as n → ∞.

4. Let (Γ, An) be such that for all n ∈ N (Γ, An) is a local set coupling and the sets
An are decreasing in n. Then,

⋂
An is also a local set and ΓAn → Γ⋂

n An
a.s. as

n → ∞.

Proof. These properties can be found in [19, 23, 1]. More precisely, the first claim
comes from Lemma 3.9 of [19]. The second result follows from Lemma 3.10 of [19]
and the proof of Lemma 3.11 of [19]. The last two results follow because under the
conditions on An, Beurling estimate ensures that GD\An

→ GD\A as n → ∞. A slightly
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Two-valued sets of the 2D Gaussian free field

more complicated version of this result is proved in Lemma 5.7 of [1], where the local
sets An are coupled with metric graph GFFs on finer and finer meshes. Similarly, the
first part of (3) can also be obtained via a slight adaptation of Lemma 4.6 of [19], which
considers a sequence of discrete GFFs on finer and finer meshes.

Often we deal with a sequence of local sets that result form an exploration process,
motivating the following definition:.

Definition 2.3 (Local set process). We say that a coupling (Γ, (η(t))t≥0) is a local set
process if Γ is a GFF in D, η(0) ⊆ ∂D, and ηt is an increasing continuous family of local
sets such that for all stopping time τ of the filtration Ft := σ(η(s) : s ≤ t), (Γ, η(τ)) is a
local set.

Local set processes can be naturally parametrised from the viewpoint of any interior
point z: the expected height hηt(z) then becomes a Brownian motion. More precisely, if
we define CR(z;D) as the conformal radius of D from z we have that:

Proposition 2.4 (Proposition 6.5 of [12]). For any z ∈ D, if (η(t))t≥0 is parametrised
such that (log(CR(z;D)) − log(CR(z;D\η([0, t])))(z, z) = t, then (hη([0,t])(z))t≥0 has the
law of a Brownian motion.

We mainly work with local sets that do not charge the GFF, called thin local set (see
[23, 20]). More precisely, they are local sets A such that for any smooth test function
f ∈ C∞

0 , the random variable (Γ, f) is almost surely equal to (
∫
D\A hA(x)f(x)dx)+(ΓA, f).

This definition assumes that hA belongs to L1(D\A), which is always the case in our
paper. For the general definition see [20]. In this setting it is not hard to derive a
sufficient condition for a local set to be thin: if the Minkowski dimension of A is almost
surely strictly smaller than d < 2, then A is thin (e.g. see proof of Proposition 4.3 in
[20]).

Thin local sets are not that easy to work with: for example, we still cannot prove the
intuitively clear statement that any thin sets has a.s. zero Lebesgue measure. Yet, we
can still say that they are small in a certain way:

Lemma 2.5. Let Γ be a GFF in D. If A is a thin local set of a GFF Γ, then, a.s. A has
empty interior.

Proof. Assume for contradiction that A has non-empty interior. Then there exists an
x ∈ D and r > 0 such that with positive probability B(x,D) ⊆ A. Define f a non-zero
function with compact support in B(x,D). Then, on the event where B(x,D) ⊆ A

(ΓA, f) = (Γ, f) 6= 0 =

∫
hA(x)f(x)dx,

giving a contradiction.

Another natural class of local sets is that of bounded type-local set (BTLS), introduced
in [5]. A K−BTLS is a thin local set such that almost surely |hA| ≤ K for some fixed
K > 0. Intuitively K−BTLS correspond to stopping times τ of the Brownian motion Bt,
which are small in the sense that, say, E[τ ] < ∞, and satisfy |Bτ | ≤ K for some K > 0. It
is easy to see that in the case of the Brownian motion, any K−BTLS satisfies τ ≤ σ−K,K

where σ−K,K is the first exit time from the interval [−K,K]. An analogue result was
proved in [5]: any K−BTLS of the 2D GFF is contained in a two valued set A−K′,K′ with
K ′ ≥ K + 2λ (we believe it should be true with K ′ = K).
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2.1 Level lines of the continuum GFF with piecewise boundary conditions

One of the simplest families of BTLS are the generalised level lines, first described in
[19]. We recall here some of their properties, see [22, 5] for a more thorough treatment
of the subject. To simplify our statements take D := H. Furthermore, let u be a harmonic
function in D. We say that (η(t))t≥0, a curve parametrised by half-plane capacity, is the
generalised level line for the GFF Γ + u in D up to a stopping time τ if for all t ≥ 0:

(∗) The set η([0, t ∧ τ ]) is a BTLS of the GFF Γ, with harmonic function ht := hη([0,t∧τ ])

satisfying the following properties: ht+u is a harmonic function inD\η([0,min(t, τ)])

with boundary values −λ on the left-hand side of η, +λ on the right side of η, and
with the same boundary values as u on ∂D.

The first example of level lines comes from [19]: Let u0 be the unique bounded
harmonic function in H with boundary condition −λ in R− and λ in R+. Then it is shown
in [19] that there exists a unique η satisfying (∗) for τ = ∞, and its law is that of an SLE4.
Several subsequent papers [19, 12, 22, 14] have studied more general boundary data in
simply-connected case and also level lines in a non-simply connected setting [5].

In this paper, we are just going to work with piecewise constant boundary conditions1.
A careful treatment of level lines in this regime is done in [22]. We are now going to state
Theorem 1.1.1 of [22]. Let u be a bounded harmonic function with piecewise constant
boundary data such that u(0−) < λ and u(0+) > −λ.

Lemma 2.6 (Existence of generalised level line targeted to ∞). There exists a unique
law on random simple curves (η(t), t ≥ 0) coupled with the GFF such that (∗) holds for
the function u and possibly infinite stopping time τ that is defined as the first time when
η hits a point x ∈ R such that x ≥ 0 and u(x+) ≤ −λ or x ≤ 0 and u(x−) ≥ λ. We call η
the generalised level line for the GFF Γ + u.

For convenience we also use the notion of a (−a,−a + 2λ)-level line of Γ + u: it is
a generalised level line of Γ + a− λ+ u and has boundary conditions −a,−a+ 2λ with
respect to the field Γ + u. Moreover, it is known that when u = 0 this level line has the
law of a SLE4(−a/λ, a/λ− 2) process, see Theorem 1.1.1 of [22].

Notice that as the level line is parametrised using half-plane capacity, it will accumu-
late at ∞ if not stopped earlier.

Finally, let us recall Lemma in Section 3 of [1], that sums up one of the key arguments
of [5]:

Lemma 2.7. Let η be a generalized level line of a GFF Γ + u in D as above and A a
BTLS of Γ conditionally independent of η. Take z ∈ D and define O(z) the connected
component of D\A containing z. On the event where on any connected component of
∂O(z) the boundary values of (hA + u) |O(z) are either everywhere ≥ λ or everywhere
≤ −λ , we have that a.s. η([0,∞]) ∩O(z) = ∅.

3 Basic properties of two-valued local sets

The primary objective of this section is to introduce and state elemental properties of
two-valued local sets (TVS). TVS were defined in [5] as the equivalent of the exit times
of an interval by a one-dimensional Brownian motion. After that, they have been used as
a tool to construct the Liouville Quantum gravity [4], to couple the Dirichlet and the free
boundary GFF [16], and to study first passage sets [1].

This section is organised as follows: first, we define TVS and recall some of the
properties that were proved in [5, 1]. Then, we recall their construction. Finally, we

1Here, and elsewhere this means that the boundary conditions are given by a piecewise constant function
that changes only finitely many times
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show some new properties about the loops of TVS.

3.1 Definition and basic properties of TVS

Fix a, b > 0, and Γ a GFF in a simple connected domain D. We say that A−a,b is a TVS
of levels −a and b if it is a thin local set of Γ such that :

(�) For all z ∈ D\A−a,b, a.s. hA−a,b
(z) ∈ {−a, b}.

Let us recall the main properties of TVS.

Proposition 3.1 (Proposition 2 of [5]). Let us consider −a < 0 < b.

1. When a+ b < 2λ, there are no thin local sets of Γ satisfying (�).

2. When a+ b ≥ 2λ, it is possible to construct A−a,b coupled with a GFF Γ. Moreover,
the sets A−a,b are

• Unique in the sense that if A′ is another thin local set of Γ satisfying (�), then
A′ = A−a,b almost surely.

• Measurable functions of the GFF Γ that they are coupled with.
• Monotonic in the following sense: if [a, b] ⊂ [a′, b′] and −a < 0 < b with

b+ a ≥ 2λ, then almost surely, A−a,b ⊂ A−a′,b′ .
• For any compact set K ⊆ D, A−a,b ∩K has Minkowski dimension smaller or
equal 2− 2λ2/(a+ b)2. In particular they are thin local sets.

The prime example of such a set is CLE4 coupled with the Gaussian free field as
A−2λ,2λ, see [11, 5].

As A−a,b is a measurable function of the GFF Γ. When there are several GFFs at hand,
we sometimes write A−a,b(Γ) to be clear which GFF the set is coupled to. Sometimes,
Γ =

∑
O ΓO, where each O is a simply connected domain and ΓO is an independent GFF

in O. In those cases we write A−a,b(Γ, O) as the TVS of level −a and b of the GFF ΓO.
Additionally, note that from the uniqueness statement we can conclude that almost surely
A−a,b(Γ) = A−b,a(−Γ).

The building stone of TVSs are the smallest ones, i.e., those such that a+ b = 2λ. We
call A−a,−a+2λ (sometimes) the arc loop ensemble (ALE)2 associated to −a, as they are a
union of SLE4 type of arcs. ALEs are used as a building block to construct more general
TVS and are central in their study. Also, they were used in [16] to couple the Dirichlet
and Neumann free fields.

3.2 Construction of A−a,b

Before discussing some further properties of two value sets, let us recall their
construction as given in Section 6 of [5] in some detail:

3.2.1 Construction of A−a,−a+2λ

Consider a GFF Γ in D and fix two boundary points, say −i and i and explore the
(−a,−a+ 2λ)-level line from −i to i. Then for each connected component of D\η([0,∞]),
hη([0,∞]) is the only bounded harmonic function with boundary condition 0 in ∂D and −a

or 2λ− a in η([0,∞)) depending on whether the connected components lies at the left or
at the right of η(∞) respectively. We define A1 = η([0,∞]).

In each connected component O of D\A1 to the left of η, we take each x and y to be
one of the two different intersection points between η and ∂D. Suppose that (−i, x, y)

are in counter-clockwise order. We then explore ηO(·), the (−a,−a+ 2λ)-level line from

2Especially when listening to the Beatles in a British pub close to the Newton Institute.
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Two-valued sets of the 2D Gaussian free field

x to y of ΓA1

+ hA1 restricted to O. There are two types of connected components of
O\ηO([0,∞]): the ones whose boundary is a subset of ηO([0,∞]) ∪ A1 and the others
whose boundary is a subset of ηO([0,∞]) ∪ ∂D. Note that if Õ is a connected component
of the first type, hηO([0,∞])∩A1 restricted to Õ is equal to −a (see Figure 3).
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Figure 3: Construction of A−λ,λ. On the left we see a (−λ, λ)-level line from −i to i, this
is A1. On the right we also see additional level lines going from one intersection point of
A1 to the other, thus the whole of A2.

For each connected component O of D\A1 to the right of η, we do similarly. The only
difference is that we explore, ηO(·), the (−a,−a+ 2λ) level line from y to x of ΓA1

+ hA1

restricted to O.
Now, define A2 to be the closed union of A1 with ηO[0,∞] for each O connected com-

ponent of D\A1. Then in the connected components of D\A2 whose boundary is a
subset of A2, the harmonic function hA2 is either constant equal to −a or 2λ− a and we
stop the iteration in these components. In the other components, hA2 is equal to the
only bounded harmonic function with boundary condition 0 in ∂D and −a or 2λ− a in
A2 ∩ ∂O′ depending on whether the connected components lies to the right or the left
of A1 respectively. In these components, we iterate exactly as before to construct An.
A−a,−a+2λ is the closed union of An.

From the uniqueness of A−a,−a+2λ (Proposition 3.1), we know that the arbitrary
chosen starting and target points for the level lines and the order in which we sampled
the level lines do not matter.

Remark 3.2. Note that the ALE, A−a,−a+2λ, is constructed as a union of SLE4-type
paths. Moreover, each excursion of η away from ∂D is on the boundary between two
connected components of A−a,−a+2λ (one loop labelled −a to its right and one 2λ − a

loop to its left). In particular, the Hausdorff dimension of an ALE is almost surely equal
to 3/2. Additionally, each connected component O of A−a,−a+2λ is such that O ∩ ∂D 6= ∅.

3.2.2 Construction of A−a,b

We first the construct A−a,b for some ranges of values of a and b, and then describe the
general case. In order to simplify the notation, we use the following convention: if A is
a BTLS and O is a connected component of D\A, we say that O is labelled c ∈ R if hA

restricted to O is equal to the constant c.
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Two-valued sets of the 2D Gaussian free field

Figure 4: ALE of level −λ. Does it look similar to our drawings?. Simulation done by
Brent Werness.

• a = 0 or b = 0: We set A−a,b = ∅ and the corresponding harmonic function takes
the value 0 everywhere.

• a = n1λ and b = n2λ, where n1 and n2 are positive integers: Define A1 = A−λ,λ,
and define An+1 iteratively in the following way: inside each connected com-
ponent of O of D\An not labelled −n1λ or n2λ explore A−λ,λ(Γ

An

, O). Define An+1

as the closed union between An and the explored sets. Then, A−a,b =
⋃

An.

• a+ b = nλ where n ≥ 3 is an integer: Define u ∈ [0, 2λ) such that there exists two
integers n1 ≥ 0, n2 ≥ 2 with a = u + n1λ and b = −u + n2λ. Let us start with
A := A−u,−u+2λ. Inside each connected component O of D\A labelled −u, resp.
−u + 2λ, explore A−n1λ,n2λ(Γ

A, O), resp. A−(n1+2)λ,(n2−2)λ(Γ
A, O). We have that

A−a,b is the closed union of A with the explored sets.

• General case with b+ a > 2λ: As A−a,b(Γ) = A−b,a(−Γ), we may assume that b > λ.
Letm ∈ N such thatmλ−a ∈ (b−λ, b] and note thatm ≥ 2. Define A1 := A−a,mλ−a,
and iteratively construct An in the following way:

– If n is odd, then D\An is made of the closed union of loops with labels equal
to either −a, b or mλ− a. In every connected component, O, of D\An labelled
mλ − a we explore Ab+a−2mλ,b+a−mλ(Γ

An

, O). Define An+1 the closed union
of An with the explored sets. Then all loops of An+1 have labels −a, b or
b−mλ ∈ [−a,−a+ λ).

– If n is even, then D\An is made of the closed union of loops labelled either
−a, b or b −mλ. In every connected component O of D\An labelled b −mλ

explore A−a−b+mλ,−a−b+2mλ(Γ
An

, O). Define An+1 the closed union of An with
the newly explored sets. It is clear that all loops of An+1 have label −a, b or
mλ− a.

Then A−a,b :=
⋃
An.
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Note that the uniqueness of A−a,b implies that any arbitrary choice we made during
the construction of A−a,b does not matter.

Remark 3.3. Let us make an important point here: all explored sets throughout the
construction are thin. One way to prove this fact, is to use Proposition 3 of [5]: at any
point in the construction we have only used level lines whose boundary data is bounded
by some absolute constant K = max{−a, b}. Each such level line is a K−BTLS and thus
by Prop 3 of [5] contained in a certain (onlyK-dependent) iteration of CLE4. In particular,
in any compact of D the Minkowski dimension of the constructed sets is bounded by
C(K) < 2.

Remark 3.4. Let u be bounded harmonic function whose boundary value is piece-wise
constant and changes only twice, i.e. is such that u |∂D takes only two values c and
d, such that u−1({c}) is a connected. Then, by inspecting the construction above it is
not hard to see that if c, d ∈ [−a, b], one can construct a thin local set Au

−a,b such that
hAu

−a,b
+u ∈ {−a, b}, i.e. such that hAu

−a,b
+u satisfies (�). Moreover, inspecting the proof

of uniqueness of TVS in [5], one can also deduce their uniqueness. A generalisation of
this statement, when u takes finitely many values in the boundary is proved in [1]. In
that article TVS are also studied in finitely-connected domains.

3.3 Some basic properties of A−2λ,2λ

One of our handles for answering questions on the geometry of two-valued set comes
from our existing knowledge about the properties of A−2λ,2λ. Indeed, as discovered by
Miller & Sheffield [11] and explained in [5], the set A−2λ,2λ has the law of a CLE4 carpet.
We will state some of these properties in a proposition below.

To do this, recall that we say that ` is a loop of A if ` is the boundary of a connected
component of D\A. In our case, these boundary components are indeed Jordan curves.
Define Loop(A) as the set of loops of A, and note that A =

⋃
`∈Loop(A) `. In this context,

we say that a loop ` ∈ Loop(A−a,b) is labelled −a or b, if hA−a,b
restricted to the interior

of ` is equal to −a or, respectively, to b.

Proposition 3.5. Let Γ be a GFF in D and A−2λ,2λ be its TVS of level (−2λ, 2λ). Then
this coupling satisfies the following properties:

1. The loops of A−2λ,2λ are locally finite, i.e. for any ε > 0 there are only finitely many
loops that have diameter bigger than ε.

2. Almost surely no two loops of A−2λ,2λ intersect, nor does any loop intersect the
boundary.

3. The conditional law of the labels of the loops of A−2λ,2λ given A−2λ,2λ is that of
i.i.d random variables taking values ±2λ with equal probability.

The first wo properties just follow from the fact A−2λ,2λ has the law of a CLE4 (See
Section 4 of [5]) and that this property are true for the CLE4 (see [21]). For (3) see, for
example, the last comment in Section 4.3 of [5].

3.4 ALE as the closed union of level lines

In Section 3.2.1 we saw how to construct A−a,−a+2λ iteratively. We now show the
intuitively appealing statement that this set can be obtained by just taking the union of
all (−a,−a+ 2λ) level lines.

Let Γ be a GFF in D. To simplify notations we write ηa,x,y for the (−a,−a+ 2λ)-level
line going from x to y, and η̃a,x,y, (−a + 2λ,−a)-level line, going also from x to y. The
following lemma makes the previous statement precise:
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Two-valued sets of the 2D Gaussian free field

Lemma 3.6. Let (xi)i∈I be a countable dense sets of boundary points. Then, for all
a ∈ (−λ, λ) a.s.

A−a,−a+2λ =
⋃

i,j∈N
ηa,xi,yi ∪ η̃a,xi,yi .

Remark 3.7. Notice that the countable union is well-defined as all these level lines can
be coupled with the same GFF so that they are measurable w.r.t. that GFF. In particular
the union can be constructed by exploring these level lines in any convenient order that
guarantees exploring all of them. Additionally, thanks to the reversibility of level lines
(Theorem 1.1.6 of [22]) ⋃

i,j∈N
ηa,xi,yi ∪ η̃a,xi,yi =

⋃
i,j∈N

ηa,xi,yi .

Proof. By Lemma 2.7 for all i, j ∈ N, the level line ηa,xi,yi is a subset of A−a,−a+2λ. Thus,
U :=

⋃
i,j∈N ηa,xi,yi ⊆ A−a,−a+2λ.

To show the other direction, we may assume that ±i ∈ {xi : i ∈ N}, as this was an
arbitrary choice in the construction of the ALE. Now, let us prove by induction on n ∈ N
that the sets An of the construction in Section 3.2.1 are a.s. contained in

⋃
i,j∈N ηa,xi,yi .

Note that this is true for A1, as it is just the (−a,−a+ 2λ) level line from −i to i.

Let us note that for every connected component O of D\An whose label is not yet
equal to constant −a or −a + 2λ, the set An+1\An restricted to (the closure of) O is a
level line η0 belonging to a unique loop `O ⊆ Ō of A−a,−a+2λ such that `O ∩An 6= ∅. Thus,
to prove the induction step it is just enough to prove that the level line ηO is contained
in U .

Assume WLOG that we are in a connected component O of D\An such that the
boundary condition of hAn restricted to An is 2λ−a, this implies that `O is labelled 2λ−a.
Denote by (z1, z2) the counter-clockwise arc on ∂D ∩ ∂O.

Pick xjm and yjm on the arc (z1, z2) with yjm → z1 and xjm → z2. Draw ηa,xjm ,yjm . Now
we finish the construction ofA−a,−a+2λ inside each connected component of O\ηa,xjm ,yjm

that does not have a part of An on its boundary, exactly as in Section 3.2.1. This way
we obtain a local set Âm inside O such that hÂm

is equal to either −a or −a+ 2λ inside

all the connected components of O\Â which do not have a part of An on its boundary.
Moreover, in the one remaining component the boundary values are −a+2λ everywhere,
but on the two small intervals between z2 and the right-most boundary intersection point
of ηa,xjm ,yjm and between z1 and the left-most boundary intersection point of ηa,xjm ,yjm ,
where the boundary value are zero. Notice that the boundary of this one component did
not change during the completion of A−a,−a+2λ inside the other components.

Now from Lemma 2.2 (3) and Lemma 5.8 in [1] (or Lemma 4.5 in [19])it follows that
Âm converges in probability to the two-valued set A−a,−a+2λ inside O w.r.t the Hausdorff
distance. In particular, this means that ηO is contained in the closure of

⋃
m ηa,xjm ,yjm

and the induction step follows.

3.5 Boundary touching of single loops

Wewill now make our first step towards understanding the intersection between loops:
we study when the loops of A−a,b touch the boundary. Moreover, we also determine the
Hausdorff dimension of the intersection of any of these loops with the boundary. The
key ingredient here and later on in the paper is the uniqueness of TVSs: it allows us to
choose a particular construction of the TVS, where the property in question becomes
evident.

EJP 23 (2018), paper 61.
Page 12/35

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP182
http://www.imstat.org/ejp/


Two-valued sets of the 2D Gaussian free field

Lemma 3.8. Let a, b, δ > 0 with a+ b ≥ 2λ. Then almost surely,

1. Each loop of of A−a,b with label −a is also a loop of A−a,b+δ with label −a.

2. A loop ` of A−a,b labelled −a touches the boundary iff a < 2λ and ` is a loop of
A−a,−a+2λ labelled −a.

Proof. For the first part, note that we can construct A−a,b+δ in the following way:

• explore A−a,b;

• exploreA−a−b,δ(Γ
A−a,b , O) inside each connected component O ofD\A−a,b labelled

b.

Defining A′ as the closed union of A−a,b with the newly explored sets, we see that it is a
BTLS that satisfies (�) with levels −a and b+ δ. The fact that that it is thin follows as in
Remark 3.3. Thus, A′ = A−a,b+δ by uniqueness (Proposition 3.1). The claim now follows
as in the second step there were no explored set inside the loops labelled −a.

For the second part, let us first assume a ≥ 2λ and show that no loop with label
−a touches the boundary. If b ≥ 2λ, then A−2λ,2λ ⊆ A−a,b by monotonicity of TVS and
Proposition 3.5 (ii) we see directly that there are no loops of A−a,b touching the boundary.
If b < 2λ, then from part (1) it follows that all loops of A−a,b with label −a are also loops
of A−a,2λ with the same label and thus do not touch the boundary.

Now, let us study the case a < 2λ. By using the part (i) and the fact that all loops of
A−a,−a+2λ touch the boundary we get that all loops of A−a,b that are loops of A−a,−a+2λ

touch the boundary. We still need to show that these are the only ones. Remember
that b ≥ −a+ 2λ. Thus, one can construct A−a,b by first exploring A−a,−a+2λ and then
exploringA−2λ,b+a−2λ(Γ

A−a,−a+2λ , O) inside all connected components O ofD\A−a,−a+2λ

with the label−a+2λ. Thus, the loops with label−a inA−a,b are of two types: either those
with labelled −a in A−a,−a+2λ, or those with the label −2λ in A−2λ,b+a−2λ(Γ

A−a,−a+2λ , O).
We conclude by noting that, thanks to the previous paragraph, the latter loops do not
touch the boundary of the domain.

To understand how “often” the loops of A−a,b hit the boundary, we need to know the
boundary touching behaviour of SLE4(ρ1, ρ2). The case of SLE4(ρ) is covered in [18],
and for all other κ 6= 4 it was covered in Theorem 1.6 of [13]. The full result then follows
by, for example, absolute continuity for the GFF and Proposition 14 of [5].

Proposition 3.9 ([18]). Take ρ1, ρ2 > −2 and let η be an SLE4(ρ1, ρ2) on H. Then

DimHaus(η ∩R+) = max

{
1− (ρ2 + 2)2

4
, 0

}
.

Now in the construction of A−a,−a+2λ (see Section 3.2.1) the level lines used to build
the loops labelled −a have the law of SLE4(−a/λ, aλ− 2) and SLE4(−a/λ, 0) processes
(see Theorem 1.1.1 [22]). Moreover, from the construction of A−a,−a+2λ it follows each
loop is finished after a finite number of iterations. Thus, we can calculate the a.s.
dimensions of the boundary intersection of the loops labelled −a in A−a,−a+2λ. Together
with Lemma 3.8 this implies the following corollary.

Corollary 3.10. Let 0 < a < 2λ, and Γ a GFF in H. Then a.s. any loop of A−a,b

labelled −a either does not touch the boundary or it touches the boundary infinitely
often. Moreover, in the latter case, the set of intersection points has Hausdorff dimension
1− (2− a/λ)2/4.
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Finally, recall that one can construct A−a,b by first exploring A−a,−a+2λ and then
exploring sets A−2λ,b+a−2λ inside loops with the label −a+ 2λ. Thus from (2) of Lemma
3.8 and from the fact that A−a,−a+2λ = M where M is the union of all loops of A−a,−a+2λ

with the label−a (see Remark 3.2), it follows that we can inversely reconstructA−a,−a+2λ

from A−a,b by just observing its intersection with the boundary.

Corollary 3.11. Suppose b 6= a < 2λ. Let M be the union of all loops of A−a,b touching
the boundary with dimension 1− (2− a/λ)2/4, then almost surely M = A−a,−a+2λ.

3.6 Level set percolation of the 2D continuum GFF

It comes out that the properties of the two-valued sets we have described are already
enough to describe the critical point of “the level set percolation” of the two-dimensional
GFF. More precisely, we ask when can any two boundary points be connected inside the
set A−a,b, i.e. heuristically via a path where the GFF only takes values in [−a, b]. We
expect that such results in the continuum would help to find the level set percolation
threshold for the 2D metric graph GFF and the 2D discrete GFF.

Proposition 3.12. Take a, b > 0 with a+ b ≥ 2λ, Γ a GFF on D. Then

• The boundary is not connected viaA−a,b if a < 2λ or b < 2λ : for any fixed x, y ∈ ∂D,
almost surely there is no continuous path joining x and y and whose interior is
contained in A−a,b ∩D.

• The boundary is connected via A−a,b if a, b ≥ 2λ: almost surely for any x, y ∈ ∂D

there exists a continuous path joining x and y and whose interior is contained in
A−a,b ∩D.

Remark 3.13. Notice that even in the case of the ALE A−a,−a+2λ there are exceptional
points that are connected via a continuous path in A−a,b ∩ D, corresponding to the
endpoints of SLE excursions away from the boundary.

Remark 3.14. We use quotation marks for “level set percolation” as the GFF is not
defined pointwise. However, let us mention that via convergence results from the metric
graph it is shown in [3] that the first passage set A−a :=

⋃
b∈NA−a,b does correspond to

a certain level set connected to the boundary: it is the limit as the mesh size goes to zero
of the set of points on the metric graph that can be connected to the boundary via a path
on which the metric graph GFF is bigger or equal −a. So when two boundary points can
be joined inside A−a, then this indeed says that there is level set percolation in terms
of boundary-to-boundary percolation. As the proof of the first part of the proposition
directly works for A−a as well, we can intrpret the results as follows:

• the critical height for the boundary-to-boundary level set percolation of the 2D
continuum GFF is −2λ, and moreover, there is percolation at the critical level.

Proof. Let us first prove the first statement. It suffices to consider the case a < 2λ.

We say that x, y ∈ ∂D are separated by a loop ` if x, y /∈ ` and they are not in the
same connected component of ∂D\`. Thanks to the fact that D is simply connected
and that the loops are continuous curves, if x and y are separated, then they belong to
different components of D\`. Thus, to finish the proof it is enough to find a loop of A−a,b

separating x from y. Furthermore, by Lemma 3.8, it suffices to find a loop of A−a,−a+2λ

labelled −a that separates x and y.
Let us prove now that for any x, y ∈ ∂D there is a loop of A−a,−a+2λ labelled −a

that separates x and y: consider some points z1, z2 ∈ ∂D such that z1, x, z2, y are in
counter-clockwise order, and conformally map the domain to a disk such that φ(z1) = i,
φ(z2) = −i, φ(x) = 1. Now, consider the construction of A−a,−a+2λ of Section 3.2.1.
Almost surely the (−a,−a+2λ) level line from −i to i separates 1 from φ(y), and does not
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touch 1 nor φ(y). In particular, there will be an excursion off the boundary of this level
line (i.e. a subcurve of the level line that touches the boundary only at its two endpoints)
that separates 1 from φ(y). By the construction of A−a,−a+2λ such an excursion belongs
to the boundary of a connected component with label −a in D\A−a,−a+2λ.

We will now prove the second statement. By monotonicity of A−a,b it suffices to prove
it for the case of A−2λ,2λ. Thanks to Proposition 3.5 (iv), for any ε > 0 there are only
finitely many loops of A−2λ,2λ of diameter larger than ε. Moreover, as mentioned before
the boundaries of these connected components are given by Jordan curves. Denote by
CLEε

4 the complement of all the components of size larger than ε and call the boundaries
of these components loops. By the interior of a loop we mean the open set separted by
the loop from the boundary.

Now, take x, y ∈ ∂D and draw a straight line segment L joining x and y parametrized
by [0, 1]. To construct a continuous curve between x, y inside CLEε

4 we follow the straight
line L, unless we meet a CLEε

4 loop, in which case we follow it in the clock-wise sense
until we meet L again. More precisely, we define Cε as follows: for all t ∈ [0, 1]

• if L(t) is not in the interior of a loop of CLEε
4, we let Cε(t) = L(t).

• If L(t) is in the interior of a loop, define t− < t as the last time L(t−) ∈ CLEε
4

and t < t+ as the first time after t such that L(t+) ∈ CLEε
4. Then Cε restricted to

[t−, t+], follows in a counter-clockwise manner the loop that contains L(t−), from
L(t−) to L(t+) (with some arbitrary continuous speed).

As the loops added between ε and ε′ < ε have a diameter smaller than ε, we have that
‖Cε − Cε′‖∞ ≤ ε. Thus, Cε converges uniformly to C0 as ε → 0. Moreover, thanks to
the fact that Lε is contained in CLEε

4 and as
⋂

ε>0 CLEε
4 = A−2λ,2λ, C0 is contained in

A−2λ,2λ. Moreover, C0 cannot touch the boundary in other points than x or y: indeed,
suppose for contradiction it hits some point z ∈ ∂D at distance δ from L. Then notice
that all loops of A−2λ,2λ intersecting in L and not contained in CLE

δ/2
4 stay at a distance

δ/2 from z. However, we know that any loop of CLE
δ/2
4 stays at a positive distance from

∂D. Thus the claim follows.

3.7 A−a,b are locally finite when a+ b ≤ 4λ

We now prove a very basic, but important property of the TVS: we show that when
a + b ≤ 4λ, then almost surely A−a,b is locally finite, i.e. there are only finitely many
loops of size diameter bigger than ε. The proof is based on the monotonicity of TVS and
the fact that A−2λ,2λ is locally finite.

Proposition 3.15. Take a+ b ≤ 4λ and let A−a,b be the TVS in D. Then almost surely
A−a,b is locally finite.

Remark 3.16. In fact, TVS are always locally finite. The only way we know how to prove
this in the case when a + b is larger than 4λ is to use loop soup techniques. Thus the
proof is presented in [3].

Proof. It suffices to show local finiteness separately for loops labelled −a and for loops
labelled b. Let us concentrate on the case −a, the other case following similarly. By
Lemma 3.8 it suffices to prove the claim for A−a,−a+4λ. As for the case a = 2λ, this is (1)
of Proposition 3.5, we may assume that a 6= 2λ.

Let us constructA−2λ,2λ in two steps: first we exploreAa−2λ,2λ if a < 2λ, orA−2λ,a−2λ

if a > 2λ, and call this local set A. Then inside all connected components O of D\A
labelled a − 2λ, we further explore A−a,4λ−a(Γ

A, O). Now consider Ô, the connected
component of D\A containing 0, and define fÔ to be the conformal map from Ô to
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D such that fÔ(0) = 0. With positive probability d(0, A) ≥ 1/8 and on this event, by

Proposition 3.85 of [8], the image fÔ(`) of any loop ` ⊆ Ô of diameter smaller than ε,
has diameter smaller than cε1/2 (for a deterministic constant c > 0). Thus, on this event
fÔ(A−2λ,2λ ∩ Ô) is locally finite, as A−2λ,2λ is locally finite.

But now, conditionally on A and conditioned on the label of Ô being a− 2λ, the image
of fÔ(A−2λ,2λ ∩ Ô) has the law of A−a,−a+4λ in D independently of Ô. Thus we conclude
that A−a,−a+4λ is locally finite.

4 Connectivity properties for two-valued local sets

This section aims to understand the connectivity properties of the loops of A−a,b. To
do this, we formulate the connectivity properties using two different graphs. We say that
two loops of A−a,b are ‘side-connected’ if the intersection of these two loops contains a
set that is homeomorphic to a segment; we say that they are ‘point-connected’ if their
intersection is non-empty. Consider the graphs Gs, Gp whose vertex set are the loops of
A−a,b and edge sets Es, Ep consisting of pairs of loops that are either ‘side-connected’
or ‘point-connected’ respectively. Notice that by definition Es ⊂ Ep.

We now state how the connectivity properties of the loops of A−a,b depend on a+ b

(see Figure 5)

Theorem 4.1. Let A−a,b with a, b > 0 and a+ b ≥ 2λ be a two valued set of level −a and
b. Then

1. If a + b = 2λ, the graph Gs is equal to Gp. Additionally, it is connected, i.e. one
can pass from each loop to any other one in finite number of steps using ‘side-
connections’.

2. If 2λ < a + b < 4λ, the edge set Es is empty but the graph Gp is connected, i.e.
one can pass from each loop to any other one in finite number of steps using
‘point-connections’.

3. If a+ b ≥ 4λ, then Ep is empty, or in other words all loops are pairwise disjoint.

Moreover, in all phases any two loops with the same label are neither side-nor point-
connected, in particular Gp and Gs are bipartite.

Remark 4.2. Thus in the regime a+b < 4λ one can define conformally invariant distance
between the loops of A−a,b using the graph distance Gp. We will see in Section 6 how
to encode the distances to the boundary as labels of another family of thin local sets
and how to rescale these distances in order to extend to define distances in the case
a = b = 2λ.

4.1 Proof of Theorem 4.1

We will in sequence prove the parts (1), (2) and (3):

Part (1): the ALE (a+ b = 2λ)

We use the construction of the basic TVS given in Section 3.2.1; in particular recall
the notation An from this Section - here n refers to the n−th layer of level lines in the
construction. By conformal invariance, we may assume that we are working in H and
that the first level line is started from 0 and targeted to ∞.

Let us start by showing that all loops of A−a,−a+2λ that also belong to A2 are con-
nected via a finite path in Gs. We differentiate two types of loops: those which contain a
segment joining R− to R+, and those which touch either only R+ or R−. Notice that the
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Figure 5: The three phases described in Theorem 4.1. The left picture representsAb−2λ,b:
two loops that intersect share a whole side. The middle pictures represents A−a,b with
a ∈ (2λ− b, 4λ− b): each loops intersects with infinitely many other loops, but no two
loops share a side; also loops with the same label do not touch. The right picture is a
simulation by D. Wilson of A−2λ,2λ, in which case all loops are pairwise disjoint.

loops of the second type are at a distance 1 from some loop of the first type. Thus, it
suffices to prove that the loops of the first type are connected via a finite path only using
loops of the first type, i.e., loops that will also belong to Gs. However, this fact follows
from the fact that the level line is a.s. non-self-crossing, continuous up to its target point,
and attains its target point almost surely ([22]).

Now, notice that the rest follows inductively: indeed, any loop of A−a,−a+2λ that was
not present at An, but is present at An+1 is side-connected to a loop that appears at
level An. Thus, as any loop of A−a,−a+2λ appears at AN for some finite random N , we
conclude that Gs is connected.

It also follows from the construction that Gp(A
n) = Gs(A

n) and that any loops that
share a segment have different labels.

Part (2): the connected phase (2λ < a+ b < 4λ)

First notice that throughout this subsection it is sufficient to work in the case when
a < 2λ (otherwise we can consider A−b,a).

From the construction of An (Section 3.2.2), it follows that in this phase two loops
do not share sides. Indeed, we first construct A−a,−a+2λ and then iterate TVS in loops
with value −a+ 2λ; as no loop of any TVS shares a segment with the boundary, the claim
follows.

To show that A−a,b is point-connected in this regime, it suffices to prove two things:

• All loops are point-connected to a loop with label −a that touches the boundary.

• All loops labelled −a that touch the boundary are point-connected between each
other.

Claim 4.3. Let 2λ ≤ a+ b < 4λ. Then almost surely for every loop of A−a,b there exists
a path in Gp connecting it to a loop that touches the boundary and has label −a.

Proof. When a + b = 2λ, we are in the case of an ALE, and thus all loops are point-
connected to the boundary. So suppose 2λ < a+ b < 4λ. To deal with this case, recall
the very last construction of Section 3.2.2 in the concrete case we have n2 = 2. Thus
A−a,b can be constructed by starting from A−a,−a+2λ and then iterating ALEs inside the
loops that do not yet have value −a or b. As all loops of any ALE touch the boundary, and
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we iterate at every step only in the loops that don’t have value −a or b, we see that any
loop constructed at some finite step n intersects a loop constructed at step n− 1. Thus,
any loop constructed at step n is point-connected to a boundary-touching loop via a path
of (side-length) n. As any loop is constructed at some finite random step N , the claim
follows.

We now show that any two boundary touching loops with label −a are point-connected.
Note that, thanks to Lemma 3.8 all boundary-touching loops of A−a,b with label −a are
also loops of A−a,−a+2λ which is point-connected. Thus, it suffices to prove that any two
loops with label −a intersecting the boundary and at a distance 2 in A−a,−a+2λ are at a
finite distance in Gp(A−a,b).

But (as in the previous claim) A−a,b can be constructed by first exploring A−a,−a+2λ

and then further exploring A−2λ,b+a−2λ inside the loops with label −a+ 2λ. Moreover,
any two loops of A−a,−a+2λ labelled −a, and that are at distance 2 in A−a,−a+2λ are
side-connected to a loop of label −a+ 2λ of A−a,−a+2λ. In particular, to show that these
two loops are at finite distance in Gp(A−a,b), it suffices to prove the following claim:

Claim 4.4. Let 2λ ≤ a′ + b′ < 4λ. Then, for any two fixed intervals of the boundary, there
is almost surely a point-connected path in Gp(A−a′,b′) going from a loop touching one
interval to another loop touching the other interval.

For simplicity, assume that we work now in D, we take again a′ = a, b′ = b and
fix two disjoint boundary arcs I = [x, y] and Ĩ = [x̃, ỹ], where the arcs are taken in a
counter-clockwise sense.

Proof of the claim. The proof is again based on choosing a particular way of constructing
A−a,b: we first construct a loop that touches I and then, iteratively, at each step build
a loop in the connected component containing Ĩ, that touches the loop of the previous
step. We continue until a loop touches Ĩ (see Figures 6 and 7).

In this respect, consider A1 := η1([0,∞]), where η1 is a (−a,−a+ 2λ) level line from
y to x and denote I0 = I. Either

• η1 hits Ĩ: then from the construction of A−a,b in Section 3 we see that a part of η1

is contained in the boundary of a loop of A−a,b labelled −a intersecting both I and
Ĩ. More precisely, this part is given by η1([τ−, τ+]), were τ+ is the first time where
η hits Ĩ and τ− is the largest time before τ+ where η hits I.

• η1 disconnects I from Ĩ before hitting x, in particular η1 does not hit Ĩ: in this case,
Ĩ belongs to ∂O, where O is a connected component of D\η1. By the fact that η1

is non-self-crossing and ends at y, we know that hη1 restricted to O has boundary
condition −a+2λ on η1∩∂O. On the other hand, the segment η1∩∂O is also part of
the boundary of another connected component Õ of D\η1, that contains a part of I.
Moreover, hη1 restricted to Õ has boundary condition −a on η1 ∩ ∂Õ. By exploring
additional −a,−a+ 2λ level line in Õ, as in the construction of Section 3.2.1, we
can finish the construction of all loops with label −a that intersect I and ∂O (see
the dashed lines in the middle of Figure 6).

In the latter case we continue the construction of a sequence of loops joining I to
Ĩ recursively: if An does not touch Ĩ, we continue the construction of A−a,b in On, the
connected component ofD\An that contains Ĩ. We now take In to be the subset ∂On∩An.
Notice that the extremal distance of In to Ĩ in D\An is larger than the extremal distance
of In−1 to Ĩ in D\An−1. Denote In = [xn, yn] in a counter-clockwise sense and depending
on the parity of n, continue as follows (see Figures 6 and 7):
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• If n is odd, hAn is equal to −a+ 2λ on In and zero on ∂On\An. Hence, as b− 2λ <

−a+ 2λ < b, from Lemma 2.6 it follows that we can explore a (b− 2λ, b)-level line
ηn+1 of ΓAn

+ hAn restricted to On from xn to yn. We now have two scenarios as
above: either the level line intersects Ĩ, then we stop as above and observe that
there is now a loop with label b that joins Ĩ and In. Otherwise we set An+1 :=

An ∪ ηn+1([0,∞]) and note that the boundary values of hAn+1 , restricted to closed
connected component of D\An+1 containing Ĩ, are equal to b− 2λ on the level line
ηn+1([0,∞]). Moreover, on the other side of this level line segment we can, using
additional level lines, again finish all loops labelled b that intersect In and In+1.

• If n is even, hAn restricted to O has boundary values constant equal to b− 2λ on
In and zero elsewhere on ∂On\An. Thus, it is possible to construct a (−a,−a+ 2λ)

level line ηn+1 of ΓAn

from yn to xn. Again, if ηn+1 intersects Ĩ we stop. If not,
we observe that the boundary values of hAn+1 , restricted to closed connected
component of D\An+1 containing Ĩ, are equal to −a+ 2λ in ηn. Moreover, on the
other side of this level line segment we can, using additional level lines, again
finish all loops labelled −a that intersect In and In+1.

−a + 2λ

−a

−a

−a+ 2λ

b

b− 2λ

−a

−a

b

b

Figure 6: Scheme of the first two steps of the proof. We want to connect the bottom
dashed segment with the upper dashed segment. In the Figure a < 2λ and b ≥ 2λ.

We claim that this procedure stops at a finite (random) time N almost surely. Indeed,
by using conformal invariance of generalised level lines, we can map On to the unit disk
via φn such that In maps to a fixed interval. As the extremal distance between In and
Ĩ is decreasing, the φn(Ĩ) is increasing in length. As on the other hand the boundary
conditions are equal on In on even and odd steps separately, and equal to zero elsewhere
on ∂On, we conclude that the probability of hitting Ĩ before finishing at y is increasing
separately in even and odd steps (for n ≥ 3). As this probability is non-zero to begin
with (as SLE4(ρ1, ρ2) process hits any interval that it potentially could hit with positive
probability), we see that N is stochastically dominated by a geometric random variable
of positive parameter p.

As each In is joined to I via a path of n point-connected loops of labels −a or b, it
just remains to see that we can finish the construction of A−a,b (i.e. that these loops we
constructed indeed are loops of A−a,b). Notice that after having finished the local set in
the construction above, it remains to construct A−a,b in simply connected components
with boundary conditions whose values are piece-wise constant in [−a, b] and change at
most twice. Thus, the claim follows from Remark 3.4.
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Figure 7: Scheme of the last steps of the proof. In the first image we show the first time
a level line hit the targeted interval. In the second one we show how to complete the
loops whose boundaries are the explored level lines. In the third image we show the
path of loops from one segment to the other.

Part (3): the disconnected case (a+ b ≥ 4λ)

In the case of a = b = 2λ, the claim follows from the fact that A−2λ,2λ has the law of
a CLE4. Now consider A−a,−a+4λ with a < 2λ. We can construct it by first exploring
A−a,−a+2λ and then inside connected components of D\A−a,−a+2λ with the label −a+2λ

further exploring A−2λ,2λ(Γ
A−a,−a+2λ , O) - the closed union of the explored sets gives

precisely A−a,−a+4λ.
We know that loops with the label −a that also belong to A−a,−a+2λ do not touch each

other. But all other loops come from exploring A−2λ,2λ(Γ
A−a,−a+2λ , O) in the second step.

These loops do not touch each other, nor the boundary of O, i.e. the loops with label −a.
For general a+ b ≥ 4λ, we conclude from the previous case and the montonicity: any

loop ofA−a,b is contained in the interior of some loop ofA−a′,−a′+4λ for some 0 < a′ < 4λ.
Similarly, we can draw the following Corollary:

Corollary 4.5. Suppose a ≥ 2λ. Then the loops of A−a,b with the label −a are pairwise
disjoint. Similarly if b ≥ 2λ, then all loops with the label b are pairwise disjoint.

Proof. From Lemma 3.8, we know that loops with label −a in A−a,b remain also loops
with label −a of A−a,b+2λ. But we know that any two loops of the latter are disjoint.

Part (4): loops with the same label do not touch.

As this is trivially true in the case a+ b ≥ 4λ, we suppose a+ b < 4λ.
First, note that for the ALE (a+ b = 2λ) this follows from the construction using level

lines. Indeed, the labels on the two sides of a level line are different, so two loops could
only touch at the endpoints of SLE4(ρ1, ρ2) excursions constructing them. However, any
two SLE4(ρ1, ρ2) excursions away from the boundary are disjoint as they correspond to
excursions of Bessel-type of processes with dimension strictly less than 2. Moreover, for
the same reason, none of the excursions also touches the starting point nor the endpoint
of the process.

Suppose now that 2λ < a+ b < 4λ and assume WLoG that a < 2λ. Let us first show
that no two loops with label −a touch each other. As in the proof of Lemma 3.8, we can
construct A−a,b by:

(1) Exploring A−a,−a+2λ.

(2) Exploring A−2λ,b+a−2λ inside the connected components of D\A−a,−a+2λ with the
label −a+ 2λ.
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Now, we know that no two loops labelled −a from step (1) can touch each other by the
previous paragraph. Also, by Lemma 3.8 no loop labelled−a constructed in step (2)
touches the loops with the label −a of step (1). Finally, by Corollary 4.5 loops labelled
−a constructed in step (2) are also pairwise disjoint.

Consider now the loops with label b. If b < 2λ, then we can argue as just above. If
b ≥ 2λ, two loops with label b do not touch each other by Corollary 4.5.

Remark 4.6. In Remark 3.4 we discussed TVS with piece-wise constant boundary
condition that changes in two points. It is not hard to convince oneself that Theorem
4.1 also holds in this setting. In fact, with minor modifications in the proof, one can
also prove it in the more general setting of a GFF with a piecewise constant boundary
condition changing finitely many times, a setting used in [1].

4.2 A corollary: the SLE4 fan

Before presenting the main consequences of Theorem 4.1 let us discuss a simple
consequence about the SLE4 fan. The SLE4 fan, introduced for other values of κ in [12],
is roughly the union of all possible (−a,−a+ 2λ) level lines with a ∈ (0, 2λ) going from x

to y coupled with the same underlying GFF. To make this precise one takes the closed
union over any dense countable subset of (0, 2λ):

Definition 4.7 (SLE4 fan). Let Γ be a GFF and fix x, y ∈ ∂D. Then the SLE4 fan is defined
as

F(x, y) :=
⋃

a∈(0,2λ)∩Q

ηa,x,y,

where ηa,x,y is the (−a,−a+ 2λ)-level line of Γ going from x to y.

It can be seen that the resulting set does not depend on the underlying choice of
the countable dense set of points in the following sense: for any two such choices, the
corresponding SLE4 fan is the same. Indeed, this just follows from the monotonicity
of the level lines, Lemma 7.2 in [14]: for any fixed a and an ↘ a, we have that a.s.
the (−an,−an + 2λ) level lines converge to the (−a,−a+ 2λ) level line in the Hausdorff
topology. This monotonicity allows to define a 7→ ηa,x,y over the whole parameter interval
(0, 2λ). However, this mapping cannot be continuous, as can for example be seen from
the fact that the whole union of (−a,−a + 2λ) level lines over a ∈ (0, 2λ) is contained
in A−2λ,2λ. Thus the SLE4 fan, denoted F(x, y), is a fractal set whose complement
consists of simply-connected open sets. Again, it is natural to ask whether the connected
components of the complement are point-connected in the same sense as above.

Corollary 4.8. Let Γ be a GFF and fix x, y ∈ ∂D. The graph Gp(F(x, y)) defined as before
is connected.

Let us first see that no connected component of the complement of the SLE4 fan
shares a boundary segment with the boundary of the domain:

Claim 4.9. Let Γ be a GFF and fix x, y ∈ ∂D. Then a.s. no connected component of the
complement of the SLE4 fan F(x, y) contains a boundary arc of ∂D.

Proof. WLOG let x = −i and y = i. It suffices to prove the that for any z ∈ D, there is
some random ε(z), such that the point z is to the right of the (−2λ+ ε, ε) level line and to
the left of the (−ε, 2λ− ε) level line. To show this, we argue that (−2λ+ ε, ε) level line
from x to y converges to the clock-wise arc from −i to i, and that the (−ε, 2λ− ε) level
line converges to the counter-clock-wise arc from −i to i.

We know that the (−2λ + ε, ε) level line is contained in A−2λ+ε,ε. But A−2λ+ε,ε

converges to ∂D as ε → 0: indeed, by Lemma 2.2 it converges to a local set A, that is
moreover a BTLS (i.e. a thin local set with bounded hA). As hA is however non-negative,
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this set has to be empty by Lemma 9 in [5] (using A = ∂D, B = A and k = 0). Thus, we
know that the (−2λ + ε, ε) level line converges to a part of the boundary in Hausdorff
distance. As this part of the boundary is always to the left of the (−λ, λ) level line, it
has to converge to the clock-wise arc from −i to i. Similarly the (−ε, 2λ− ε) level line
converges to the counter-clock-wise arc from −i to i and the claim follows.

We now prove the corollary:

Proof. WLOG let x = −i and y = i. Define the ε-SLE4 fan:

Fε(x, y) :=
⋃

a∈(ε,2λ)∩Q

ηa,x,y.

Let us note that for all ε > 0, Fε(x, y) ⊆ A−2λ,2λ−ε. This is because, for any ε ≤ c < 2λ,
the (−c, 2λ−c) level line is contained inA−c,2λ−c ⊆ A−2λ,2λ−ε by monotonicity. Moreover,
for all ε > 0, a.s. Fε(x, y) remains to the left of (−ε, 2λ− ε)-level line η2λ−ε,x,y.

Now, consider a connected component O of D\ηε,x,y. For the ease of notation set
uε = hAηε,x,y . We claim that Fε(x, y) ∩ O is contained in Auε

−2λ,2λ−ε(Γ
Aηε,x,y , O), the two-

valued set for a GFF with piece-wise constant boundary condition changing in two points,
as considered in Remark 3.4. Indeed, notice that A−2λ,2λ−ε (on the whole domain)
can be constructed in two steps: we first explore ηε,x,y, and then in each connected
component O of D\ηε,x,y we construct the Auε

−2λ,2λ−ε(Γ
Aηε,x,y , O). But A−2λ+ε,2λ ∩ O

equals Auε

−2λ,2λ−ε(Γ
Aηε,x,y , O), and we conclude this claim.

Further, any two loops `1, `2 of Fε(x, y) that are inside the same component O of
D\ηε,x,y always surround some loops of Auε

−2λ,2λ−ε(Γ
Aηε,x,y , O). From Theorem 4.1 (see

also Remark 4.6 as we are in the setting where the boundary values are piece-wise
constant and change twice) it follows that the loops of Auε

−2λ,2λ−ε(Γ
Aηε,x,y , O) are point-

connected. Thus, we conclude that `1 and `2 are point-connected via loops of Fε(x, y)

that remain inside O.

To finish the proof it suffices to observe that for any two given loops of F(x, y) (i.e.
loops around some fixed points z and w), there exists (a random) ε such that both of them
are loops of Fε(x, y) and, moreover, are contained in the same connected component O
of D\ηε,x,y that lies to the left of ηε,x,y. This just follows from the proof of Claim 4.9.

5 Measurability of labels for two-valued local sets

We now use the properties of the graph Gp to study the following question: can the
labels of A−a,b be recovered just from the geometry of A−a,b?. The answer is given by
the following proposition:

Proposition 5.1. Let a, b > 0 and consider the local set coupling (Γ,A−a,b, hA−a,b
):

• If 2λ ≤ a+ b < 4λ and a 6= b, then the labels of A−a,b are a measurable function of
the set A−a,b (or in other words hA−a,b

is measurable w.r.t. A−a,b).

• If λ ≤ a < 2λ, the labels of A−a,a are a measurable function of the set A−a,a and
the label of the loop surrounding 0.

• If a+ b ≥ 4λ, the labels of A−a,b cannot be recovered only knowing A−a,b and any
finite number of labels.

We now prove this proposition and then describe the explicit law of the labels in the
case a+ b = 4λ.
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Connected case with a 6= b (2λ ≤ a+ b < 4λ).

We may again assume that a < 2λ. From Corollary 3.10 we know the label of any loop
touching the boundary with Hausdorff dimension 1 − (2 − a/λ)2/4 has the label −a.
Moreover by Lemma 3.8 there is some loop `a with label −a that touches the boundary.
But now from Theorem 4.1 it follows that any loop ` is point-connected to `a. The label
of ` is −a if the graph distance in Gp between ` and `a is even, and b if it is odd.

Connected case with case with a = b (λ ≤ a < 2λ).

The previous proof fails as loops of label ± touch the boundary with the same Hausdorff
dimension. However, as soon as we know the label of the loop surrounding 0 we can
again similarly use the connectedness of Gp to deduce the claim.

Disconnected case (a+ b ≥ 4λ).

This case needs a bit more care. The idea is to use the fact that conditionally on the set
A−2λ,2λ, the labels are given by i.i.d. fair coin tosses (Proposition 3.5 (3)).

In this respect, we show that there are two GFF Γ and Γ̃ such that a.s.

(a) A−a,b(Γ) = A−a,b(Γ̃).

(b) There are infinitely many loops of A−a,b(Γ), such that their label under Γ is different
than their label under Γ̃.

(c) Any finite subset of labels has the same value for Γ and Γ̃ with positive probability.

Note that this implies the statement, as conditionally on A−a,b and any finite subset of
labels, the (conditional) law of the rest of the labels is non-trivial.

First let us construct this coupling when a = b ≥ 2λ. We first sample a GFF Γ and
then explore A−a,a(Γ). We do this in two steps:

1. We explore A−2λ,2λ(Γ).

2. We explore A−a+2λ,a+2λ(Γ
A−2λ,2λ , O) in all connected components O of D\A−2λ,2λ

labelled −2λ, and we exploreA−a−2λ,a−2λ(Γ
A−2λ,2λ , O) in all connected components

O with label 2λ.

Note that in this construction the law of the TVS being explored in each component O is
the same as the law of −Γ and Γ agree.

Let us now construct Γ̃. We start by constructing A−a,a(Γ̃) and its labels. First, and
as an equivalent of (1), set A−2λ,2λ(Γ̃) = A−2λ,2λ but resample the labels of the loops of
A−2λ,2λ(Γ̃) independently, by tossing an independent fair coin for each loop.

There are now two types of connected components of D\A−2λ,2λ(Γ̃): those where the
new labels agree with the ones sampled before for A−2λ,2λ(Γ) and those where the new
labels differ. In the components of the first type, we do the equivalent of (2) using exactly
the same set and labels as the ones used for Γ. In other words, in loops labelled −2λ we
set A−a+2λ,a+2λ(Γ̃

A−2λ,2λ , O) = A−a+2λ,a+2λ(Γ
A−2λ,2λ , O) and we keep the same labels;

analogously for the components of the first type, but with label 2λ. In those connected
components O where the sign changed we use again the same set, but change the sign
of all the labels inside. We have thus constructed h̃A−a,a

.

Finally, define Γ̃A−a,a in some way, say by setting it equal to ΓA−a,a . Due to the
equality in law noted at the beginning, Γ̃ has the law of a GFF. Additionally, it is clear to
see that Γ and Γ̃ satisfy the desired properties.
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For the general case a 6= b assume WLoG that a ≤ b and define m = (b − a)/2 > 0.
To construct A−a,b we first explore A−a,m. To finish A−a,b it then remains to explore
A−a−m,b−m, i.e. A−(b+a)/2,(b+a)/2, inside the loops labelled m. But observe that this is
again a two-valued set of the form A−a′,a′ . Thus by doing the same coupling as above for
A−(b+a)/2,(b+a)/2, we deduce the claim.

Law of the labels conditioned on A−a,b in the critical case a+ b = 4λ

In the case a+ b = 4λ, one can moreover precisely describe the law of the labels:

Proposition 5.2. Let 0 < a ≤ 2λ. Then, the law of the labels of A−a,−a+4λ given
A−a,−a+4λ is the following:

• The loops touching the boundary are labelled −a.

• For each loop that does not touch the boundary we toss independent fair coins to
decide whether the label is equal to −a or −a+ 4λ.

Proof. Note that the result holds for A−2λ,2λ due to the fact that no loop touch the
boundary (Proposition 3.5 (ii)). When a < 2λ, by Lemma 3.8, as −a + 4λ ≥ 2λ, the
loops that touch the boundary are labelled −a. The union of the loops touching the
boundary is A−a,−a+2λ by Remark 3.2. All the other loops are constructed by exploring
A−2λ,2λ(Γ

A−a,−a+2λ , O) inside any connected component O of D\A−a,−a+2λ labelled −a+

2λ. But we know that the labels of A−2λ,2λ are given by independent fair coin tosses.

Non-independence of labels A−a,b when b 6= 2λ

In this section we prove that A−2λ,2λ is the only TVS for which the labels of the loops
are i.i.d. conditioned on the set itself:

Proposition 5.3. Let Γ be a GFF on D. Let moreover a, b > 0 be such that a + b > 4λ.
Then, the labels of A−a,b conditioned on the underlying set are not independent.

Remark 5.4. In fact Proposition 5.1 shows directly that in the case a+ b ≤ 4λ, a weaker
version of the above proposition is true, where we replace “independent” by “i.i.d.”.
Indeed, recall in that case a+ b < 4λ the labels are determined by the set, thus they are
trivially conditionally independent. And in the case a+b = 4λ with a 6= b, conditionally on
A−a,b the labels are independent, but the loops touching the boundary are determined
by the set. In both cases conditioned on the underlying set the labels are however not
i.i.d.

The idea of the proof is to show that - in a certain weak sense - the outer boundary
conditions of the loop of A−a,b surrounding 0 are −a+ 2λ, if its label is −a, and b− 2λ

if its label is b. More precisely, we will show that the averages of the field over tinier
and tinier regions around the smallest intersection point of R+ and the loop converge
to either −a+ 2λ or b− 2λ. This choice of point is somewhat arbitrary, but makes the
proof technically simpler - the same proof would for example also work for a random
point according the harmonic measure on the loop seen from zero.

To define this average, recall that the loops of TVS are Jordan curves, yet they can be
relatively rough. Thus it is easier to define averages under a conformal image. In this
respect, for a Jordan curve ` surrounding 0 and at positive distance from 0, consider the
conformal map ϕ mapping ` to the unit circle and its outside to the inside of the unit disk,
such that minimal intersections points in norm of the coordinate axes −iR+,R+, iR+

with ` are mapped to −i, 1 and i respectively. Let further L(θ, ε) denote the set of points
z ∈ D such that |z| ∈ [1− ε, 1] and arg(z) ∈ (−θ, θ). For some integrable function f , we
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now define the averages

αn(f, `) =
1

Leb(L(n−1, 2−n))

∫
L(n−1,2−n)

f(ϕ−1(z))dz.

Here the exact choices of θ and ε are not so important, θ just has to go to zero sufficiently
slowly w.r.t. ε. The key lemma is as follows:

Lemma 5.5. Let Γ be a GFF in D, a+ b ≥ 2λ and ˆ̀be the loop of A−a,b surrounding 0.
Then, almost surely, as n → ∞ we have that

αn(hA−a,b
, ˆ̀) →

{
−a+ 2λ if the label of ˆ̀ is− a,

b− 2λ if the label of ˆ̀ is b.

Proposition 5.3 follows directly from this lemma, as given the set A−a,b and labels
of all loops not surrounding 0, we can calculate hA−a,b

outside of ˆ̀ and hence also

αn(hA−a,b
, ˆ̀). We thus conclude that the label of the loop surrounding 0 is measurable

w.r.t. A−a,b and the labels of the loops not surrounding 0.

Proof of Lemma 5.5. Assume WLOG that the label of ˆ̀ is −a.
First let us see that, up to a technical claim, it is enough to construct a BTLS A

such that the loop of A surrounding 0 is exactly ˆ̀, and under the assumption that the
label of ˆ̀ is −a, almost surely αn(hA, ˆ̀) → 2λ − a. Indeed, given such a BTLS A, we
write Γ = ΓA + hA, where ΓA has the law of the GFF in D\A and at the same time
Γ = ΓA−a,b + hA−a,b

, where ΓA−a,b has the law of the GFF in D\A−a,b. Assume for now
the following claim about the convergence of GFF averages:

Claim 5.6. Almost surely αn(Γ
A, ˆ̀) → 0 and αn(Γ

A−a,b , ˆ̀) → 0 as n → ∞.

Given this claim, we have that

lim
n→∞

αn(hA−a,b
, ˆ̀) = lim

n→∞
αn(Γ, ˆ̀) = lim

n→∞
αn(hA, ˆ̀)

and thus it indeed suffices to show that αn(hA, ˆ̀) → 2λ− a.
Let us thus now see how to construct such an A and then finally prove Claim 5.6.

Note that when a+ b = 2λ, we can just take A = A−a,−a+2λ, because by construction of
A−a,−a+2λ, ˆ̀almost surely does not hit 1.

Assume first that a ≥ 2λ. To construct A first define A1 as A−a+λ,b. As by assumption
the loop of A−a,b around 0 has label −a, and as moreover A−a+λ,b ⊂ A−a,b, we know that
the label of the loop of A−a+λ,b surrounding 0 will be −a+ λ. Then, iterate for n ∈ N as
follows:

• Inside the connected component O of D\An containing 0 explore A−λ,λ of ΓAn

and call the union of An and the explored set Ã. If the connected component O
of Ã containing 0 has label −a (which happens with probability 1/2) we stop the
procedure and call A = Ã. Otherwise, the label of this loop is −a+ 2λ. In this case
we define An+1 as the union between Ã and A−λ,b+a−2λ(Γ

An

, O). Again, as in the
case of A1 above, we know that the label of the loop of An+1 containing 0 cannot
be b, and is thus −a+ λ (see Figure 8).

Observe that this iteration finishes a.s. in finite time: on each step of the iteration we
finish the construction of the set A with probability 1/2 independently of the previous
steps. Moreover, note that because the label of ˆ̀ is −a by assumption, the last step
in finishing the construction of A will be exploring A−λ,λ inside some loop `0 labelled
−a+ λ surrounding 0.
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Figure 8: On the left: the first step in the construction of A. In the middle: we found the
loop with label −a around 0 in the second step, and we stopped. On the right: we did
not finish in the second step, and our iteration brought us back to the same situation
(w.r.t the point 0) as we had in the first step.

Now, denote by x+ the smallest intersection point of R+ and the loop ˆ̀. We claim that
x+ /∈ `0. Indeed, let further x

+
0 be the smallest intersection point of R+ and the loop `0.

Observe that x+ ∈ `0 iff x+ = x+
0 . But we know from the construction of A−λ,λ (as every

loop is just a union of finitely many level line segments), that the loop surrounding 0 of
A−λ,λ does not hit any fixed boundary point. In particular it cannot hit x+

0 almost surely,
and thus x+ /∈ `0 almost surely. Hence we know that x+ remains in the interior of the
loop `0. Thus the value of hA on the other side of ˆ̀ is equal to −a+2λ in a neighbourhood
around x+ (see Figure 8 middle part). This implies that αn(hA, ˆ̀) → −a+ 2λ.

If on the other hand a < 2λ, we can first sample Ã := A−a,−a+2λ. If the loop
surrounding 0 is ˆ̀ we take A = Ã; otherwise, the law of A−a,b inside Ã is that of
A−2λ,b−2λ+a inside the connected component of Ã surrounding 0. Thus we are back in
the case a ≥ 2λ.

To prove the lemma, it finally remains to verify the Claim 5.6.

Proof of Claim 5.6. First, note that the variance of αn(Γ
A, ˆ̀) and the variance of

αn(Γ
A−a,b , ˆ̀) are both smaller than the variance of αn(Γ

ˆ̀
, ˆ̀) where Γ

ˆ̀
is a zero boundary

GFF in the component of C\ˆ̀containing ∞. Indeed, this just follows from the fact that
for a local set A, ΓA is equal to the sum of independent zero boundary GFFs in each
connected component of the complement of A, and the Green’s function is monotonously
increasing w.r.t. to the underlying domain. But by definition of αn(Γ

ˆ̀
, ˆ̀), the variance of

αn(Γ
ˆ̀
, ˆ̀) is equal to

Leb(L(n−1, 2−n))−2

∫
L(n−1,2−n)2

GD(z, w)dzdw,

which by a direct calculation can be bounded by 2−cn for some deterministic constant
c > 0. By Markov inequality and Borel-Cantelli this proves the claim.

6 Labelled CLE4 and the approximate Lévy transforms

Let Bt be a standard Brownian motion, It its running infimum process and Lt its local
time. The Lévy theorem for the Brownian motion states that the pair (Bt − It, It) has the
same law as (|Bt|, Lt). This result provides several identities in law for the exit time. For
example, the symmetric exit time σ−a,a from the interval [−a, a] has the same law as the
first time τa such that the Brownian motion makes a positive excursion of size a above
its current infimum.
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In this section, we discuss an analogue of such an identity for the GFF by discussing
another coupling between the CLE4 and the GFF, introduced in [22]. In this coupling,
the associated harmonic function is constant inside each loop `, and it is given by 2λ− t`,
where t` denotes a time-parameter of the construction.In a subsequent article [2], we
will connect this to the Lévy transform of the metric graph GFF introduced in [10].

This section is organised as follows: first, we introduce the labelled CLE4 and state
its coupling with the GFF. Then, we revisit this coupling using an approximation via a
decreasing sequence of thin local sets (Br)0<r<λ that are constructed using TVS and
have the property that for 0 < r < λ, Br has the same law as A−2λ,2λ−r. After that, we
relate the labels of loops of Br with their distance to the boundary in the graph Gp(Br).
Finally, we show that a.s. as r → 0, Br ↘ B0, where (Γ,B0) is the coupling of the labelled
CLE4 with the GFF, first proved in [22].

6.1 Labelled CLE4: definition and coupling with the GFF

Labelled CLE4 in D, introduced in [24], corresponds to a Markovian exploration of
CLE4 loops, that keeps track of the time when each loop is discovered. We will here give
a brief idea of the construction on D and refer to [24] or [22] for more details.

The exploration discovers the bubbles of SLE4 pinned at the boundary of the domain
discovered so far. More precisely, we consider the SLE4 bubble measure µ pinned at the
boundary point 1 introduced in [21]. This is the unique infinite measure on simple loops
` in D̄ which satisfies the following properties:

• µ almost everywhere, all loops touch the boundary only at 1.

• If we denote by µε the measure on loops with a radius bigger than ε > 0, then µε

has finite total mass.

• When we normalize µε to be a probability measure, it satisfies the following Markov
property: when we explore the loop η from point 1 until the time τ when it first
exits the disk centred at 1 of radius ε, then the remaining part is given a chordal
SLE4 from ητ to 1 in D\η.

• The scaling is fixed by saying that the mass on loops surrounding 0 is equal to 1.

See Section 6 of [21] for the existence and uniqueness of this measure. It can be explicitly
constructed by properly normalizing the measure on chordal SLE4 curves from eiε to 1

as ε → 0; the uniqueness follows as the Markov property for all µε characterizes the loop
on measures surrounding any point z up to arbitrarily small initial segments.

Now define the measure M = µ⊗ ω, where ω is the harmonic measure on ∂D seen
from 0. A key property of this measure is its invariance under Mobius transformations,
see Lemma 6 of [24]. In particular, this means that 0 is not a distinguished point w.r.t.
M .

The exploration process is then given by a Poisson point process (PPP) Et with the
intensity M times the Lebesgue measure in R+, i.e. a PPP of loops pinned uniformly
over the boundary. Here, loops are naturally ordered and each loop ` comes with a time
label t`. To obtain CLE4 we embed this exploration inside D iteratively.

For example, to define the exploration of the loop surrounding 0, we consider τ0, the
first time that Et contains a loop containing 0. We then look at all the loops (`t : t ≤ τ0)

larger in ε in diameter. As there are finitely many of them, `tε1 , ..., `tεnε
we can add them

one by one: more precisely, we define D0 = D and inductively set Di to be the component
of Di−1\φi(`tεi ) containing the origin, where φi is the conformal map D→ Di−1 fixing the
origin. We can then define Lε

0 as the boundary of Dnε−1\Dnε . It can be shown that as
ε → 0, Lε

0 converges and that the resulting loop L0 has the law of the CLE4 loop around
zero.
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The result of the last paragraph can be strengthened: one can show that, in fact, the
whole exploration process converges. One can define the exploration of the loop around
any other point z ∈ D by conformal invariance. By coupling the exploration processes for
any two points z, w together such that they agree until the first time they are separated,
and evolve independently thereafter, we obtain the symmetric exploration of CLE4. This
process is target-independent and each loop comes with a label indicating its discovery
time in the exploration.

Theorem 1.2.1 of [22] shows a way to couple labelled CLE4 with the GFF. Let us
rephrase it in our framework.

Theorem 6.1 (Theorem 1.2.2 of [22]). There exist a coupling (Γ, (`, t`)`∈I) between a
GFF and a labelled CLE4, such that B̃ =

⋃
` ` is a thin local set of Γ whose harmonic

function is constant inside every loop ` with label given by 2λ− t`.

From the description above, it follows that if we have explored the loops `t up to any
fixed time T , then the remaining loops can be sampled by considering an independent
labelled CLE4 inside each connected component of the complement of ∪t≤T `t. This
should remind the reader of the local sets and thus in order to reinterpet the coupling of
the GFF and the labelled CLE4, we introduce the following local set:

Definition 6.2 (Lévy transform of A−2λ,2λ). Denote by B0 the thin local set of Γ that has
the following properties

1. hB0
is constant inside each loop of B0 with labels in {2λ− t : t ≥ 0}.

2. For all dyadic s ≥ 0, the closed union of the loops of B0 with label greater or equal
2λ− s, Bs

0, is a BTLS and such that hBs
0
∈ {−s} ∪ {2λ− t : 0 ≤ t ≤ s}.

This definition requires three clarifications.

Remark 6.3. The usage of the definite article in the definition above is justified by
Proposition 6.6 below that proves the uniqueness of B0.

Remark 6.4. In fact one can see that the second condition holds for any fixed s ∈ R+:
indeed, for a s ∈ R+ take dyadics sn such that sn ↓ s. Then Csn ⊃ Csn+1 are nested
decreasing local sets and thus a.s. converge to a local set C̃s. One can see that if we
define the set Cs as above, it is also given by the same limit, thus C̃s = Cs. As the
inclusion property is also clear (w.r.t dyadics), it remains to just show that the local set
has the given values for the harmonic function. But this is clear for rational z inside the
components of the complement that have hBr (z) ≥ 2λ− s, as their value never changes.
And for any other rational z that is in a component with hBr (z) < 2λ− s, there is some
sn0 such that hBr (z) < 2λ− sn0 and thus hCsn = −sn for all n ≥ n0 and thus converges
a.s. to −s.

Remark 6.5. It will be shown in [2] that B0 corresponds to the image under the Lévy
transform of A−2λ,2λ. This implies that the labels t` may be interpreted as sort of “local
times”. However, a key step is still missing in completing the Lévy transform picture.
Namely, although we prove that the labels are a measurable function of the underlying
GFF, we do not prove that these labels are measurable w.r.t. to the underlying set. This
measurability problem was first presented in Section 5.1 of [22], and we hope that the
results presented here make a step forward in its proof.

Theorem 6.1 implies the existence of such a local set. One of the key results of this
section is to prove the uniqueness of such a coupling:

Proposition 6.6. Almost surely for each Γ there exists a unique local set B0 satisfying
Definition 6.2. Moreover, if the loops of B0 are indexed by I and the labels of each loop
of B0 are written as h` = 2λ− t`, then (`, t`)`∈I has the law of labelled CLE4.
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In order to prove this proposition, we will approximate B0 by certain local sets that
already appeared in [22], but whose handling is considerably simplified in our setting.

6.2 Approximate Lévy transform

A natural way to approximate the first time τa when a standard Brownian motion
makes a positive excursion of size a off its minimum is as follows:

• Let τ r,1 = σa−r,−r be the first time that the BM exits the interval [−r, a− r].
• If Bτr,1 = a − r, set τ ra = τ r,1 and otherwise define iteratively τ r,2 = σa−2r,−2r for

Bt, t ≥ τ r,1.
• Iteratively, if the BM exits from a− 2r, set τ ra = τ r,2 and else continue.

Note that the stopping time τ ra comes with an interesting decoration: the end-value
Bτr

a
= a− kr. One can think of kr as an approximation of the running infimum.
It is also interesting to observe that τ ra has the law of σ−a,a−r, the fist exit time by

a BM from the interval [−a, a− r]. This just follows by reflecting the BM at times τ r,n.
Moreover, the k appearing before corresponds exactly to the number of crossings of
this new BM of the interval [0,−r] before the stopping time σ−a,a−r, i.e. to a (scaled)
approximation of its local time at zero. In other words, we have a way of approximating
the stopping time σ−a,a together with the local time at zero. Our aim in this section is to
do the same for the 2D GFF:

Definition 6.7 (Approximate Lévy transform of A−2λ,2λ). For any r ∈ (0, 2λ), we denote
by Br the thin local set of Γ that has the following properties:

1. hBr ∈ {2λ− kr : k ∈ N}.

2. For all j ≥ 0, the closed union of the loops of Br with label greater or equal 2λ− jr,
Bj

r, is a BTLS such that h
B

j
r
∈ {−jr} ∪ {2λ− kr : k ∈ N, k ≤ j}.

The reason for using the definite article in the definition comes again from a unique-
ness claim, incorporated in the main result of the next few subsections.

Proposition 6.8. The thin local sets from Definition 6.7 exist and have the same law
as the sets A−2λ,2λ−r. They are unique, measurable w.r.t the GFF and monotone in the
sense that Br ⊂ Br/2.

Let us already point out that, as the notations suggest, we will eventually (in Section
6.4) take r → 0, show that Br → B0 and moreover use the uniqueness of Br to prove
that of B0.

Remark 6.9. The sets Br appear as Υ(r) in Section 3.5 of [22]. They prove the measur-
ability of these sets, but do not characterise these sets. Moreover, their construction is
somewhat lengthy compared to ours.

6.2.1 Construction

For a GFF Γ the construction goes iteratively: Define B1
r := A−r,−r+2λ. Inside the

connected components O of D\B1
r labelled −r, explore A−r,−r+2λ(Γ

B1
r , O). Define B2

r

as the closed union of the sets explored. Note that the loops of B2
r have labels in

{2λ− r, 2λ− 2r,−2r}.
We proceed recursively: suppose we have constructed Bj

r. Now, in the connected
components O of Bj

r labelled −jr explore A−r,−r+2λ(Γ
Bj

r , O). Define Bj
r as the closed

union between Bj
r and the sets explored. Note that it is easy to see from the construction

that Bj
r ⊂ Bj+1

r . The limit of these iterations
⋃
B

j
r gives the desired set: it satisfies both

conditions of the definition by construction. It is also nice to note that the law of the label
of the loop surrounding any fixed point z is that of 2λ− `zr, where `z ∼ Geom(r/2λ).

EJP 23 (2018), paper 61.
Page 29/35

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP182
http://www.imstat.org/ejp/


Two-valued sets of the 2D Gaussian free field

−r

−r

−r

−r

−r
−r

−r

2λ− r

2λ− r

2λ− r

2λ− r

2λ− r

−r

2λ− r

2λ− r

2λ− r

2λ− r

2λ− r

2λ− r

2λ− r

2λ− 2r
−2r

−2r

−2r
−2r

−2r

−2r

−2r
−2r

−2r

−2r

2λ − 2r

2λ − 2r

2λ − 2r

2λ − 2r

Figure 9: On the left figure we have B1
r with its labels. On the right hand one we have

iterated A−r,−r+2λ inside each loop labelled −r and we have obtained B2
r.

6.2.2 The set Br has the same law as A−2λ,2λ−r

Note that this property implies that the Minkowski dimension of Br ∩K is smaller than
2, thus it is thin.

The proof is based on the following observation: A−r,−r+2λ has the same distribution
as A−2λ+r,r. Indeed, B2

r is constructed by exploring A−r,−r+2λ(Γ
A−r,−r+2λ , O) inside all

connected components O of D\A−r,−r+2λ labelled −r. But, if instead of that we explore
A−2λ+r,r(Γ

A−r,−r+2λ , O) = A−r,−r+2λ(−ΓA−r,−r+2λ , O), we obtain a BTLS with the same
law but whose labels takes values in {2λ− r, 0,−2λ}. We call the explored set A2. Note
that the loops of A2 labelled 0 correspond to the loops of B2

r labelled −2r, and loops of
A2 labelled −2λ to those of B2

r labelled 2λ− 2r.

We can now iterate the construction: to defineAk we exploreA−r,−r+2λ((−1)k−1ΓAk−1

,

O) in all connected components O of D\Ak labelled either 0 or −r. Inductively, the BTLS
Ak defined this way has the same distribution as Bk

r . Additionally, all the loops of Ak

have labels in {2λ− r, 0,−2λ}, and those labelled 0 correspond to loops of Bk
r labelled

−kr. We know that the sets Bk
r converge to Br as k → ∞. As any z ∈ D ∩Q will almost

surely be contained in a connected component of Ak with the label 0 for only finitely
many steps, Lemma 2.2 implies that Ak converges to A−2λ,2λ−r and the claim follows.

6.2.3 Uniqueness

Suppose that B̃r also satisfies the conditions of Definition 6.7 and is sampled conditionally
independently of Br given the GFF Γ. We aim to show that a.s. B̃r = Br. It is enough to
prove that B̃j

r from the condition (2) of the Definition 6.7 is a.s. Bj
r as defined in Section

6.2.1.

By the uniqueness of A−r,−r+2λ (Lemma 3.1), B1
r = B̃1

r. If we consider B̃2
r, then by

definition the 2λ− r components are the same as in B̃1
r and thus as in B1

r. Now, consider
a component O of B̃1

r with value −r. We have that B̃2
r ∩O is a thin local set with values in

{−r, 2λ− r}. But these are again unique by the uniqueness of A−r,−r+2λ. As this is also
the case in the construction of B2

r, we see that the connected components with values
−2r, 2λ− 2r of B2

r and B̃
2
r also agree, and thus B2

r = B̃2
r almost surely. Iterating the same

argument gives that B̃j
r and B

j
r agree. Finally, as both Br and B̃r are thin, Lemma 2.5
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implies that Br =
⋃

j B
j
r =

⋃
j B̃

j
r = B̃r.

6.2.4 Monotonicity

We claim that Br ⊂ Br/2.

First, note that all loops of B2
r/2 have labels in {−r, 2λ − r, 2λ − r/2}. Thus we can

build A−r,2λ−r/2 by exploring A−2λ,r/2(Γ
B2

r/2 , O) in all the connected components O of
D\B2

r/2 labelled 2λ− r. By Lemma 3.8 (2), no new loop labelled −r touches the boundary

of the original domain. But B1
r is equal to A−r,2λ−r, and we know by Lemma 3.8 that all

loops labelled −r of A−r,2λ−r are also loops of A−r,2λ and moreover touch the boundary.
Corollary 3.11 now implies that B1

r ⊆ B2
r/2. Now, observe that all loops labelled −r of B1

r

are loops with −r in B2
r/2. Thus using the iterative nature of the construction of Bj

r and

induction on j, it similarly follows that Bj
r ⊂ B2j

r/2 and thus the claim follows.

6.3 Connection with two-valued sets and the distances in Gp(A−2λ,2λ−r)

We will now see how to interpret the values of hBr
as distances to the boundary. More

precisely we have the following result:

Proposition 6.10. Let Γ be a GFF in D. Then, then the harmonic extension hBr inside
any loop ` of Br is equal to 2λ − rdp(∂D, `), where, dp(∂D, `) is one plus the minimum
distance, in the graph Gp(Br), of ` to a loop that touches the boundary.

As Br has the law of A−2λ,2λ−r and thus we can interpret this result by saying that
the labels of Br encode the Gp distances of the loops of A−2λ,2λ−r to the boundary.
Proposition 6.10 follows from the following lemma:

Lemma 6.11. Let Γ be a GFF in D, and consider the local set Br of Definition 6.7. Then,
almost surely, all loops of Br labelled 2λ− r touch the boundary and all loops labelled
2λ− 2r do not touch the boundary.

Indeed Proposition 6.10 now follows by the iterative nature of the construction
of Br: the loops with the label 2λ − nr of Br have the same law as the loops with
label 2λ− r of a copy of Br inside the components of the complement of Bn−1

r labelled
−r(n− 1). Moreover, they also have the same law as the loops with label 2λ− 2r inside
the components of the complement of Bn−2

r labelled −r(n− 2).

Proof of Lemma 6.11. All loops labelled 2λ− r stem from loops of B1
r = A−r,−r+2λ, thus

the first claim is true. The second claim follows from the first paragraph in Section 6.2.2.
Indeed, loops with the label 2λ− 2r stem from B2

r. In this paragraph it is shown that

• B2
r has the same law as a bounded type local set A with labels in {2λ− r, 0,−2λ},

• the loops of B2
r with the label 2λ− 2r correspond to the loops of A with the label

−2λ.

But by Lemma 3.8 (2) (as A can be always completed toA−2λ,2λ−r by exploringA−2λ,2λ−r

in the loops with label 0) the loops of A with label −2λ do not touch the boundary of the
domain.

Remark 6.12. Notice that the labels of the loops are a function of the distances in
Gp(Br) and thus in particular the labels are a measurable function of Br. Moreover,
notice also that the proposition above should also give the right scaling for distances
between any two loops: one would define d̄r := rdp in Loop(Br) as r times the minimum
distance between the two loops.
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6.4 The coupling with labelled CLE4: existence, uniqueness and labels

In this subsection we prove the Proposition 6.6 and interpret the labels in the coupling
of the GFF with the labelled CLE4 as distances to the boundary:

6.4.1 Existence

The existence of this set is shown by taking a limit of Br as r ↓ 0. Indeed, recall that
we have Br ⊂ Br/2. We define B0 :=

⋃
Bdn

for dn = 2−n. Now, thanks 6.2.2, B0 has
the same law as a CLE4, thus its Minkowski dimension is smaller than 2 and it is thin.
Lemma 2.2 implies that hB0

takes the right values. Thus (1), of Definition 6.2 is satisfied.
Let us prove that the condition (2) is also satisfied. For any dyadic s there is some ns

such that for n > ns we have that s/dns
∈ N. By the properties of Br we see that for all

n > ns, Bdn
satisfies the second condition of Definition 6.2 for this s, and thus does also

B0

6.4.2 Uniqueness

We next consider the uniqueness of the local set coupling with the labelled CLE4. The
key lemma is the following:

Lemma 6.13. Let B̃0 be coupled with Γ as in Definition 6.2. Then, Bdn
is contained in

B̃0 for all dyadic dn. Additionally, if two loops of B̃0 labelled l̃1 and l̃2 are surrounded by
the same loop of Bdn

labelled l, then both l̃1 ≤ l and l̃2 ≤ l + dn.

Proof. It suffices to prove the first claim for a some fixed dyadic dn > 0, that we denote by
r for simplicity. To show that Br is contained in B̃0, we will consider the approximations
B̃rk

0 of B0 as defined in Definition 6.2, and the approximations Bk
r of Br as defined in

Definition 6.7.
First, let us see that B1

r = A−r,−r+2λ is contained in B̃0. By condition (2) in the
Definition 6.2, we see that B̃r

0 is a BTLS with hB̃r
0
∈ {−r} ∪ {2λ− t : 0 ≤ t ≤ r}. Now, in

every connected component O of the complement of B̃r
0, with label 2λ− t with t as above,

we can explore A−r+t−2λ,t of the GFF ΓB̃
r
0 restricted to O to obtain A−r,2λ. This means

that we can construct A−r,2λ starting from B̃r
0. By the uniqueness of A−r,2λ, it follows

that B̃r
0 ⊂ A−r,2λ. Notice that the loops of A−r,2λ with the label −r constructed inside

such loops (i.e. inside the loops of B̃r
0 with value in 2λ− t) cannot touch the boundary of

the domain (exactly for the same reason as in Section 6.2.4). Hence, all the boundary
touching loops of A−r,2λ are in fact loops of B̃r

0 with the label −r. But by Corollary 3.11,
the union of the loops of A−r,2λ with label −r is equal to A−r,−r+2λ. Thus, we deduce
that B1

r = A−r,−r+2λ ⊂ B̃r
0.

We saw that any connected component O of D\B1
r with label −r is also a connected

component of B̃r
0 labelled −r. Now, consider any such component O. Then (B2

r\B1
r) ∩O

is equal to B1
r(Γ

B1
r , O). Moreover, we claim that conditionally on B̃r

0, the set B̂0 :=

(B̃0\B̃r
0) ∩ O satisfies the conditions of Definition 6.2 for the GFF ΓB̃r

0 restricted to O.
Indeed, by Lemma 2.2 (1) it is a local set of ΓB

r
0 restricted to O and satisfies conditions

(1) and (2) of Definition 6.2. Furthermore, it is thin by Corollary 4.4 of [20]. Thus, by the
previous paragraph B1

r(Γ
B1

r , O) ⊆ B̂r
0, which in turn implies that B2

r ⊆ B̃2r
0 . Iterating this

way we see that Bk
r ⊂ B̃kr

0 for all k, which by taking the limit in k shows that Br ⊂ B̃0.
Let us now prove the final statement of the lemma, setting again r = dn. Denote by `

the loop of Br labelled l surrounding both ˜̀
1 and ˜̀

2. Take k ∈ N such that l = 2λ − kr

and define O to be the connected component of the complement of Bk−1
r whose closure

contains `. As the loop ` is constructed when passing from Bk−1
r to Bk

r , inside the
component O, we see that the label of O in Bk−1

r is −(k − 1)r. Hence,we deduce from
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the last paragraph that O is also a connected component of B̃(k−1)r
0 with the same label.

Using the definition of B̃(k−1)r
0 , and the fact that ˜̀

1 and ˜̀
2 are also contained in the

closure of O, we see that both of these loops appear first in B̃s
0 for some s ≥ (k− 1)r. But

then, their labels satisfy l̃1, l̃2 ≤ 2λ− (k − 1)r = l + r as claimed.

Let us now show how uniqueness follows from the above lemma. As B̃0 is thin and
hence by Lemma 2.5 has empty iterior, it can be written as the closure of the union of its
loops. Lemma 6.13 shows that B0 :=

⋃
Bdn ⊂ B̃0. Thus, it is enough to prove that each

loop of B0 surrounds no more than one loop of B̃0.
Suppose for contradiction that with positive probability there is one loop ` of B0

labelled l that surrounds two or more loops of B̃0. Then, by the final part of above lemma
it can only surround loops that have label smaller than l. In particular |hB0

− 2λ| ≥
|hB̃0∪B0

− 2λ| and we can use Lemma 9 of [5] to conclude that B̃0 ⊆ B0. 3

6.4.3 B0 has the law of labelled CLE4

In this section we will explain why B0 has the law of labelled CLE4. In fact, this just
follows from the uniqueness statement of Proposition 6.6 and Theorem 6.1 as one can
verify that any local set coupling with the labelled CLE4 has to satisfy Definition 6.2.

For self-containedness, we will sketch how to prove it by hand. Note that we have
also already proven that B0 as a random set has the law of a CLE4 carpet. So it just
remains to argue that the label of a loop correspond to the time when it appears in the
Poisson point process described in Section 6.1. The details for each step of this sketch
can be found in Section 3 of [22]:

• The Renewal / Markov property, inherent to a PPP, comes from the local set property
of Bs

0 in Definition 6.2: inside each component of the complement of Bs
0 with the

label −s, one explores an independent copy of B0.

• From the construction it follows that all the labels 2λ− t` of the set B0 are different
and thus the loops can be considered as a simple σ−discrete point process indexed
by t`.

• It is known that such a renewal point process is a Poisson point process and is
uniquely defined by its characteristic measure (see for example Theorem 3.1 of
[7]); and that the characteristic measure can be recovered by looking at the law of
any instance of the point process.

• It thus remains to verify that a loop with label t` can be seen as an instance from
the symmetric measure M on pinned SLE4 loops described in the beginning of
Section 6.1. This is the part that requires some work, but it can be argued using
the approximation by Br. Roughly, a loop of Br that first appears in Bn

r , is given
by a SLE4(ρ) loop in a connected component of the complement of Bn−1

r . These
loops touch the boundary, and as r → 0, these loops converge to the pinned loop
measure M . The proof uses the fact that ρ → 0 as r → 0 and the characterization
of M via the Markov property.

6.4.4 CLE4 labels as distances to the boundary

Finally, notice that Proposition 6.10 gives us also a way to interpet the labels of B0 as
distances to the boundary: Br converges to B0 and hBr → hB0 . As the label of a loop ` of
Br is given by 2λ− rd`, where d` is the Gp distance to the boundary of the loop `, one

3In fact, Lemma 9 of [5] asks for the sets to be BTLS. However, one can check that it is just enough to have
thin local set whose harmonic functions are upper bounded.
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can see the labels of B0 as rescaled distances to the boundary. In fact, in [2] we will
see that they correspond exactly to the local time distances to the boundary, defined in
metric graph GFFs in [10].

In a similar spirit, one should be able to define a conformally invariant distance
between any two loops of CLE4 by taking a limit as r → 0 of d̄r := rdp, an thereby an
interesting metric space. One can obtain tightness for the distance between any pair
of loops surrounding a countable dense set zn ∈ D, and thus this seems to be the right
scaling. Indeed, this follows from considering the slightly easier distance structure,
corresponding to the distances in the “geodesic tree” from the boundary: one can define
a distance d̃(`1, `2) = t1 + t2 − 2T where T is the biggest t such that Bt

0 has a loop that
surrounds both `1 and `2. However, as for now we run short of proving any convergence
of actual interest.

Let us mention that a different approach to a conformally invariant distance be-
tween loops of CLE4, that should correspond to the one described just above, has been
announced in [22] Section 1.3.
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