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Abstract

We consider exclusion processes on a rooted d-regular tree. We start from a Bernoulli
product measure conditioned on having a particle at the root, which we call the tagged
particle. For d ≥ 3, we show that the tagged particle has positive linear speed and
satisfies a central limit theorem. We give an explicit formula for the speed. As a key
step in the proof, we first show that the exclusion process “seen from the tagged
particle” has an ergodic invariant measure.
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1 Introduction

The simple exclusion process is one of the most studied examples of an interacting
particle system. It can model a variety of systems as for instance cars in a traffic jam or
molecules in a low-density gas. The exclusion process is given by a locally finite graph
and a set of indistinguishable particles, which we initially place on distinct sites of the
graph. Each particle independently performs a simple random walk. However, when a
particle would move to an occupied site, the move is suppressed. In the following, we
assume that the graph has a root on which we initially place a particle. We then follow
the evolution of this tagged particle. Our goal is to study its distance from the root. We
will focus on the case where the underlying graph is a rooted d-regular tree for d ≥ 2

and establish a law of large numbers with respect to the shortest path distance from the
root. Moreover, for d ≥ 3, we show that a central limit theorem holds.

1.1 The model

For d ∈ N with d ≥ 2, let T d = (V,E) denote the d-regular tree with a distinguished
site o which we call the root. Consider transition rates p̃(x, y) ∈ R+

0 for all x, y ∈ V , and
assume they are symmetric, translation invariant, irreducible and of finite range. In
particular, for all sites x, y ∈ V , the transition rates have to satisfy p̃(x, y) = p(|x − y|)
for some function p : N0 → R+

0 of finite support, where |x − y| denotes the shortest
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Limit theorems for exclusion processes on regular trees

path distance of x and y in T d. We define the exclusion process on T d to be the Feller
process (ηt)t≥0 with state space {0, 1}V generated by the closure of

Lf(η) =
∑
x,y∈V

p̃(x, y) η(x)(1− η(y)) [f(ηx,y)− f(η)] . (1.1)

Here, ηx,y denotes the configuration where we exchange the values at positions x and
y in η. In the particular case where p̃(x, y) = d−11{x,y}∈E holds for all x, y ∈ V , we call
(ηt)t≥0 the simple exclusion process on T d. Since by our assumptions

sup
y∈V

∑
x∈V

p̃(x, y) <∞

holds, (1.1) indeed gives rise to a Feller process, see [5, Theorem 3.9]. For a given
configuration η, we say that a site x is occupied if η(x) = 1 and vacant otherwise.
For each ρ ∈ [0, 1], let νρ denote the Bernoulli-ρ-product measure on {0, 1}V with marginal
distributions

νρ (η : η(x) = 1) = ρ

for all x ∈ V . Under the above assumptions, the collection {νρ : ρ ∈ [0, 1]} is exactly the
set of extremal invariant measures of (ηt)t≥0, see [6, III, Theorem 1.10]. We define

ν∗ρ( . ) := νρ ( . | η(o) = 1)

to be the Bernoulli-ρ-product measure where we condition on having a particle at the
root. We call ν∗ρ the Palm measure with parameter ρ. The particle initially placed on
the root is called the tagged particle. We follow the evolution of the tagged particle
over time and denote by (Xt)t≥0 its position.

1.2 Main results

Our main result is to establish a law of large numbers for the position of the tagged
particle (Xt)t≥0. In the following, we write |z| := |z − o| for all z ∈ V .

Theorem 1.1. For d ≥ 2, let (ηt)t≥0 on T d have initial distribution ν∗ρ for some ρ ∈ [0, 1].
Then the position of the tagged particle (Xt)t≥0 satisfies a law of large numbers:

lim
t→∞

|Xt|
t

= (1− ρ)(d− 2)
∑
i∈N0

ip(i) =: v

Pν∗
ρ
-almost surely. In particular, we have a speed of (1− ρ)d−2d in the case of the simple

exclusion process on T d.

Remark 1.2. The result is not surprising, the same result was proved in [8] for an
exclusion process with drift on Zd. If ρ = 0, we obtain the speed of the random walk on
T d with transition rates p̃(., .), if ρ = 1, v = 0 holds and in between the speed is linear in
1− ρ.

For d ≥ 3, we show that the tagged particle has a diffusive behavior.

Theorem 1.3. For d ≥ 3 and ρ ∈ [0, 1), the tagged particle (Xt)t≥0 on T d satisfies

|Xt| − tv√
t

d−→ N (0, σ2)

for some σ = σ(d, ρ, p(.)) ∈ (0,∞) and v from Theorem 1.1.

Remark 1.4. Note that for d = 2, the d-regular tree is Z. In this case, the position of the
tagged particle shows a subdiffusive behavior, see [1].
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Limit theorems for exclusion processes on regular trees

1.3 Related work

The exclusion process can be studied from a variety of different perspectives. To give
limit laws for the position of a tagged particle is a classical problem, which was already
mentioned in Spitzer’s work [11]. In the case where the underlying graph is Zd, many
results were proved. For translation invariant transition probabilities (which are not
concentrated on the nearest neighbors in the one-dimensional case), Saada established
a law of large numbers in [8]. In Section 2, we will closely follow her approach in order
to show that the Palm measure is ergodic for the environment process. Kipnis and
Varadhan established a central limit theorem for the position of the tagged particle with
symmetric, translation invariant transition probabilities (which are not concentrated
on the nearest neighbors in the one-dimensional case) in their famous paper [2]. The
case of nearest neighbor transition probabilities in one dimension was treated before
by Arratia and Kipnis [1, 3]. In more general non-symmetric translation invariant cases,
the position of the tagged particle is diffusive as well, see [9, 10, 12]. For a general
introduction to limit theorems for tagged particles, we refer to [6, III] and [4].

1.4 Outline of the paper

This paper is organized as follows. In Section 2, we introduce the environment
process, which can be interpreted as the exclusion process “seen from the tagged
particle”. As a key step for the proof of Theorem 1.1, we show that the Palm measures ν∗ρ
are ergodic for the environment process, following the approach in [8]. This is a result of
independent interest. In Section 3, we study the tagged particle process in more detail.
We show that the tagged particle is transient using a martingale decomposition which
can be found in Section III.4 of [6]. We then deduce Theorem 1.1 following the ideas of
Lyons et al. in [7]. Section 4 is dedicated to the proof of Theorem 1.3 using the results
of Kipnis and Varadhan as well as Sethuraman et al., see [2, 10].

2 The environment process

In order to define the environment process, we first introduce some notation. The
d-regular tree T d = (V,E) with root o has a natural interpretation in terms of Cayley
graphs. For I = {1, . . . , d}, let

G := 〈ai, i ∈ I|a2i = e for all i ∈ I〉

denote the free group over all i ∈ I for the two-element groups {e, ai} with the relation
a2i = e and neutral element e. The tree T d can be now be identified with the Cayley
graph of G with respect to the generator S = {a1, . . . , ad}. Note that the vertex set V is
isomorphic to G with e ∼= o and two corresponding elements b, c ∈ G are neighbored if
and only if ba = c holds for some a ∈ S. The group structure of T d allows us to extend
this relation and define

b+ c := bc as well as b− c := bc−1 (2.1)

for b, c ∈ G. In the same way, we write x + y = z and x − y = z for x, y, z ∈ V if the
corresponding elements in G satisfy (2.1). Let the maps τx on configurations η ∈ {0, 1}V
be given as

τxη(y) := η(x+ y)

for all x, y ∈ V . Equipped with these notations, we define the environment process
(ζt)t≥0 as

ζt(x) := τXtηt(x) (2.2)
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for all t ≥ 0 and x ∈ V . Then (ζt)t≥0 is again a Feller process on the state space
{ζ ∈ {0, 1}V : ζ(o) = 1} generated by the closure of

Lf(ζ) =
∑
x,y 6=o

p(|x− y|)ζ(x)(1− ζ(y)) [f(ζx,y)− f(ζ)]

+
∑
x∈V

p(|x|)(1− ζ(x)) [f(τxζ)− f(ζ)] . (2.3)

Note that each transition in (ηt)t≥0 involving the root is a transition in (ζt)t≥0 followed
by a translation. In the following, our goal is to investigate the set of invariant measures
of (ζt)t≥0.

Proposition 2.1. The measure ν∗ρ is invariant for (ζt)t≥0 for all ρ ∈ [0, 1].

Proof. See [6, III, Proposition 4.3] for Zd, which is one-to-one for T d.

In order to calculate the speed of the tagged particle, we now show that (ζt)t≥0
started from ν∗ρ is a stationary and ergodic process.

2.1 Ergodicity of the Palm measure

In order to derive ergodicity with respect to ν∗ρ and ρ ∈ (0, 1), we closely follow the
arguments of Saada in [8]. For simplicity of notation, we only consider the case of the
simple exclusion process since for general p(.) the same arguments apply.

Proposition 2.2. For d ≥ 3, the measure ν∗ρ is ergodic for (ζt)t≥0 and all ρ ∈ (0, 1).

In order to show Proposition 2.2, suppose that ν∗ρ is not ergodic for (ζt)t≥0. Then we
can find a set A ⊆

{
ζ ∈ {0, 1}V : ζ(o) = 1

}
such that

0 < ν∗ρ(A) < 1 (2.4)

and A is invariant, i.e.
Pζ (ζt ∈ A) = 1

holds for almost all ζ ∈ A, hence A is a non-trivial invariant set for (ζt)t≥0. Define
B :=

{
ζ ∈ {0, 1}V : ζ(o) = 1

}
\A and note that B is a non-trivial, invariant set for (ζt)t≥0

as well. Recall that νρ is extremal invariant for the simple exclusion process (ηt)t≥0 and
hence (ηt)t≥0 started from νρ is ergodic, see [6, Theorem B52]. We want to use this

observation to establish a contradiction. Let the sets Ã and B̃ be given as

Ã :=
⋃

x∈V, ζ∈A

τxζ and B̃ :=
⋃

x∈V, ζ∈B

τxζ .

Then, Ã and B̃ are invariant for (ηt)t≥0. Since A ⊆ Ã and B ⊆ B̃, we obtain from (2.4)
that

νρ(Ã) = νρ(B̃) = 1 . (2.5)

In particular, the sets Ã and B̃ are not disjoint. From this, we want to deduce that A
and B are not disjoint, contradicting the definition of B. To do so, we need the following
lemma.

Lemma 2.3. For almost every η distributed according to νρ, there exist integers n,m, l
and sites

w, x, y, z; x1, x2, . . . , xn; y1, y2, . . . , ym; z1, z2, . . . , zl

with the following properties:

(i) τxη ∈ A, τwη ∈ B
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(ii) η(y) = η(z) = η(x1) = . . . = η(xn) = 0

(iii) x, y, z are located in pairwise different branches with respect to w in T d

(iv) w is connected to x via the path x1 ∼ x2 ∼ · · · ∼ xn, connected to y via the path
y1 ∼ y2 ∼ · · · ∼ ym and connected to z via the path z1 ∼ z2 ∼ · · · ∼ zl.

Proof. By (2.5), there almost surely exist sites x,w ∈ V such that τxη ∈ A and τwη ∈ B
holds. Let x1, x2, . . . , xn denote the shortest path connecting x and w, which may be
empty for x ∼ w. Without loss of generality, we assume that η(x1) = . . . = η(xn) = 0

holds. More precisely, note that A and B form a partition of {ζ ∈ {0, 1}V : ζ(o) = 1}
and so we have that τwη ∈ A ·∪B holds for all occupied sites w ∈ V . Hence, among the
occupied vertices along the path from x to w, there exist two sites x̃, ỹ with τx̃η ∈ A,
τỹη ∈ B with only vacant sites in between of them. Take x̃, ỹ as new choices for x and y.
In order to show that properties (iii) and (iv) hold, let C(x,w) and D(x,w) denote the
vertices of two arbitrary branches of w different from the one containing x. Since C(x,w)

and D(x,w) contain infinitely many sites, for ν∗ρ -almost every η there are infinitely many
y in C(x,w) and z in D(x,w) such that η(y) = η(z) = 0 holds. Choose two of these sites
as y and z arbitrarily and define y1, y2, . . . , ym and z1, z2, . . . , zl to be the shortest paths
connecting them to w, respectively.

Proof of Proposition 2.2. Take an η satisfying the properties in Lemma 2.3 for sites

N := {w, x, y, z, x1, x2, . . . , xn, y1, y2, . . . , ym, z1, z2, . . . , zl} .

Fix an arbitrary time t0 > 0. Let η̃ denote the configuration that agrees with η on N

while on the complement of N , η̃ has the distribution of a simple exclusion process
(ηt)t≥0 at time t0 which is started from η and where all moves involving the sites N are
suppressed. In the following, we consider two ways of transforming η into ηx,y. Since the
transformations use only transitions in N , they also provide two ways of transforming η̃
into η̃x,y for any fixed t0 > 0.

(a) First, move the particle from w to z along z1, z2, . . . , zl, i.e. for {ij , 1 ≤ j ≤ J}
being successive values of i such that η(zij ) = 1, move the particle from ziJ to z,
then from ziJ to ziJ−1

and so on. Secondly, move the particle from x to y along
x1, x2, . . . , xn and y1, y2, . . . , ym in the same way. Finally, move the particle from z

back to w along z1, z2, . . . , zl.

(b) Move the particle from w to y along y1, y2, . . . , ym, then the particle from x to w
along x1, x2, . . . , xn.

A visualization of the transformations in (a) and (b) is given in Figure 1. Note that in (a),
the particle originally at w moves back to w. Since τwη ∈ B and B is invariant for the
process (ζt)t≥0, we conclude that τwη̃x,y ∈ B holds almost surely. In transformation (b),
the particle originally at x moved to w. Since τxη ∈ A and A is invariant for (ζt)t≥0, we
conclude that τwη̃x,y ∈ A holds almost surely. Using the graphical representation, ob-
serve that ηt0 agrees with η̃x,y with positive probability. Hence, we obtain a contradiction
to A and B being disjoint.

3 Speed of the tagged particle

In this section, we prove that the tagged particle (Xt)t≥0 on T d satisfies a strong
law of large numbers. As a first step, we show that (Xt)t≥0 is transient for d ≥ 3, i.e.
(Xt)t≥0 visits the root of T d almost surely only finitely many times. To do so, we use the
framework introduced by Lyons et al. in order to study random walks on Galton-Watson
trees, see [7]. An infinite path x0, x1, . . . of sites in T d will be denoted by

→
x . We say that
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w

x

z

y

→

→

(a)

(b)

→

→

→

Figure 1: Transformations for η to ηx,y in T 3 where x, y, z are neighbors of w.

a path
→
x is a ray ξ if it never backtracks, i.e. xi 6= xj for all i 6= j. The set of rays starting

at the root is called the boundary ∂T d of the tree T d. We say that a path
→
x converges

to a ray ξ if
→
x visits every site at most finitely many times and ξ is the unique ray which

is intersected infinitely often. For a site x and a ray ξ, let [x, ξ] denote the unique ray
starting in x and converging to ξ. Moreover, for two distinct sites x, y ∈ V , let x ∧ξ y
denote the site where [x, ξ] and [y, ξ] meet for the first time.

For two vertices x, y ∈ V , recall that |x − y| denotes the shortest path distance
between x and y. We define their horodistance with respect to some given ray ξ as the
signed distance

〈y − x〉ξ := |y − x ∧ξ y| − |x− x ∧ξ y| .

We set 〈x〉ξ := 〈x − o〉ξ with respect to the root o of T d. Throughout the rest of this
section, let ξ ∈ ∂T d be an arbitrary, but fixed boundary point of T d, which will in the
following be omitted as a subscript in the notation of the horodistance. Note that without
loss of generality, we can define the addition on T d such that the horodistance defines a
group homomorphism between (T d,+) and (Z,+), i.e.

〈x+ y〉 = 〈x〉+ 〈y〉 (3.1)

holds for all sites x, y ∈ V .

Our goal is to show a law of large numbers for the stochastic process (〈Xt〉)t≥0 from
which we will deduce Theorem 1.1. We define

ψ(ζ) :=
∑
z∈V

p(|z|)(1− ζ(z))〈z〉

to be the local drift at the root for a configuration ζ ∈ {0, 1}V with ζ(o) = 1. Recall the
definition of the environment process (ζt)t≥0 in (2.2). We want to express (〈Xt〉)t≥0 in
terms of (ζt)t≥0. Observe that (Xt, ζt)t≥0 is a Feller process whose generator is given as
the closure of

L̃f(x, ζ) =
∑
y,z 6=o

p(|z − y|)ζ(y)(1− ζ(z)) [f(x, ζy,z)− f(x, ζ)]

+
∑
y∈V

p(|x− y|)(1− ζ(y)) [f(y, τy−xζ)− f(x, ζ)]

and let (Ft)t≥0 denote the respective σ-algebra. Note that the process (Xt)t≥0 on its own
is in general not Markovian. We now decompose the process (〈Xt〉)t≥0 into a martingale
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and a function depending only on the environment process. This follows the ideas of
Proposition 4.1 in [6, III].

Lemma 3.1. For all t ≥ 0, it holds that

〈Xt〉 =

∫ t

0

ψ(ζs) ds+Mt (3.2)

where (Mt)t≥0 is a martingale with respect to (Ft)t≥0.

Proof. Define the function f(x, ζ) := 〈x〉. Observe that for this choice of f , we have that

L̃f(x, ζ) =
∑
y∈V

p(|x− y|)(1− ζ(y)) [f(y, τy−xζ)− f(x, ζ)] = ψ(ζ) (3.3)

holds using (3.1). It remains to show that the process (Mt)t≥0 defined via the relation in
(3.2) is indeed a martingale with respect to (Ft)t≥0. In particular, for all s < t, we need
to verify that

E [Mt −Ms|Fs] = 0

holds. Using the Markov property of (Xt, ζt)t≥0, we obtain that

E [Mt −Ms|Fs] = E

[
〈Xt〉 − 〈Xs〉 −

∫ t

s

ψ(ζr) dr|Fs
]

= E(Xs,ζs)

[
〈Xt−s〉 − 〈X0〉 −

∫ t−s

0

ψ(ζr) dr

]
.

In particular, it suffices to show that for fixed x ∈ V and ζ ∈ {0, 1}V , we have that

E(x,ζ) [〈Xt〉 − 〈x〉]−
∫ t

0

E(x,ζ) [ψ(ζr)] dr = 0

holds for all t ≥ 0. Using (3.3), this follows immediately by Dynkin’s formula.

Applying the results of Section 2, we obtain the following lemma as an immediate
consequence and an analogue of Corollaries 4.5 and 4.16 in [6, III].

Lemma 3.2. Suppose that (ηt)t≥0 has initial distribution ν∗ρ for some ρ ∈ [0, 1]. Then the
martingale (Mt)t≥0 in Lemma 3.1 has stationary and ergodic increments.

Proof. Observe that 〈Xt〉 can be expressed as a function Ft of {ζs, 0 ≤ s ≤ t} for all t ≥ 0

since all transitions of (〈Xt〉)t≥0 correspond precisely to the shifts in the environment
process. In particular, we have that

〈Xt〉 − 〈X0〉 = Ft(ζs, 0 ≤ s ≤ t)

holds. Using that (ζt)t≥0 is stationary, we have by Lemma 3.1 that

Mt −Ms = Ft−s(ζr, s ≤ r ≤ t) +

∫ t

s

ψ(ζr) dr

holds for all s < t. Recall from Propositions 2.1 and 2.2 that the Palm measure is
stationary and ergodic for (ζt)t≥0. Hence, the claimed statement follows.

Next, we prove a law of large numbers for the process (〈Xt〉)t≥0. An analogous
statement for the tagged particle on Zd can be found as Theorem 4.17 in [6, III].
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Proposition 3.3. For d ≥ 2, let (ηt)t≥0 on T d have initial distribution ν∗ρ for some
ρ ∈ (0, 1). Then the associated tagged particle (Xt)t≥0 satisfies

E [〈Xt〉] = (1− ρ)(d− 2)
∑
i∈N0

ip(i) · t = v · t (3.4)

for all t ≥ 0. Moreover, we have that Pν∗
ρ
-a.s.

lim
t→∞

〈Xt〉
t

= v (3.5)

holds. In particular, the tagged particle (Xt)t≥0 on T d is transient for d ≥ 3.

Proof. For d = 2, (3.4) with v = 0 follows by symmetry and this easily implies (3.5), so
we assume that d ≥ 3. Taking expectations on both sides of (3.2) in Lemma 3.1 yields
that

E [〈Xt〉] =

∫ t

0

E [ψ(ζs)] ds+ E[Mt] .

Observe that (ψ(ζt))t≥0 is a stationary sequence. Hence, we have that

E [ψ(ζt)] = E [ψ(ζ0)] = (1− ρ)(d− 2)
∑
i∈N0

ip(i)

holds for all t ≥ 0. Since (Mt)t≥0 is a martingale, the statement in (3.4) follows. In order
to show (3.5), recall Proposition 2.2 and Lemma 3.2 and apply the ergodic theorem to
both terms on the right-hand side of (3.2), respectively.

As an immediate consequence of the transience of the tagged particle (Xt)t≥0 for
d ≥ 3 and T d being spherically symmetric, we obtain the following corollary.

Corollary 3.4. For d ≥ 3 and ρ ∈ (0, 1), let
→
x denote the trajectory of the tagged particle

(Xt)t≥0 on T d. Then
→
x converges almost surely to a unique boundary point x+∞ ∈ ∂T d.

Moreover, for any deterministic choice of ξ ∈ ∂T d, we have that x+∞ 6= ξ holds almost
surely.

Proof of Theorem 1.1. By Corollary 3.4, we almost surely have for all t ≥ 0 sufficiently
large that

|Xt| = 〈Xt〉+ 2|w| (3.6)

holds where w is the last common vertex of x+∞ and ξ. Since ξ was arbitrary, but fixed
at the beginning, we have that w is well defined and |w| is almost surely finite. Since |w|
does not depend on t, we obtain Theorem 1.1 from Proposition 3.3.

4 Diffusivity of the tagged particle

In order to prove Theorem 1.3, we show a central limit theorem for the process
(〈Xt〉)t≥0. Recall from (3.2) that (〈Xt〉)t≥0 can be decomposed into a martingale (Mt)t≥0
and a process

∫ t
0
ψ(ζs) ds. For p(.) and v taken from Section 1.2, we define

ψ̄(ζ) := ψ(ζ)− v =
∑
x∈V

p(|x|)〈x〉(ρ− ζ(x)) .

Our goal is to establish a similar decomposition for the process
∫ t
0
ψ̄(ζs) ds. Let L2(ν∗ρ)

denote the Hilbert space of square integrable functions with respect to ν∗ρ and scalar
product

〈f, g〉ν∗
ρ

:=

∫
fg dν∗ρ .
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Observe that the environment process (ζt)t≥0 with generator L of (2.3) is reversible with
respect to ν∗ρ for all ρ ∈ [0, 1]. For a function f ∈ L2(ν∗ρ) in the domain of L, we define its
‖.‖1-norm to be

‖f‖1 :=
√
〈f, (−L)f〉ν∗

ρ
.

Let H1 denote the respective Hilbert space generated by all local functions f of finite
‖.‖1-norm. We define its dual space H−1 to be the Hilbert space generated by all local
functions which have a finite norm with respect to

‖f‖−1 := inf

{
C ≥ 0:

∣∣∣∣∫ fg dν∗ρ

∣∣∣∣ ≤ C‖g‖1 for all local functions g

}
.

The following result was shown by Sethuraman et al. for the exclusion process on Zd

with d ≥ 3 and carries over to T d for d ≥ 3, see [10, Lemma 2.1].

Proposition 4.1. For d ≥ 3, we have that ψ̄ ∈ H−1 holds.

Note that their proof only uses transience of the simple random walk on the underlying
graph T d as well as the fact that ψ̄ is a bounded, local function of zero mean. The next
proposition is a special case of the celebrated theorem by Kipnis and Varadhan on
additive functionals of reversible Markov processes, see [2, Theorem 1.8].

Proposition 4.2. Assume that ψ̄ ∈ L2(ν∗ρ)∩H−1 has mean zero. Then
∫ t
0
ψ̄(ζs) ds can be

decomposed into a square integrable martingale (Nt)t≥0 with stationary increments and
a stochastic process (Rt)t≥0, i.e. ∫ t

0

ψ̄(ζs) ds = Nt +Rt

where (Rt)t≥0 satisfies lim
t→∞

t−1 · E
[
R2
t

]
= 0.

Proof of Theorem 1.3. A simple computation shows that the martingale (Mt)t≥0 satisfies
a CLT with non-degenerate limit variance, see [6, Proposition 4.19]. Combining Proposi-
tions 4.1 and 4.2, we can now apply a martingale central limit theorem to the process
(Mt +Nt)t≥0. To see that the limit variance of this process is non-degenerate, observe
that by Lemma 3.8 in [10], there exists a constant C > 0 such that∣∣∣∣∫ ψ̄g dν∗ρ

∣∣∣∣ ≤ C√Dex(g)

holds for all local functions g, where

Dex(g) :=
1

4

∫ ∑
x,y 6=o

p(x, y) [g(ηx,y)− g(η)]
2

dν∗ρ .

We then apply the same argument as used in the proof of Theorem 4.55 in [6]. Together
with (3.6), this yields Theorem 1.3.
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