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Abstract

We study the genealogy of an exactly solvable population model withN particles on the
real line, which evolves according to a discrete-time branching process with selection.
At each time step, every particle gives birth to children around a times its current
position, where a > 0 is a parameter of the model. Then, the N rightmost newborn
children are selected to form the next generation. We show that the genealogy of the
process converges toward a Beta coalescent as N → ∞. The process we consider can
be seen as a toy model version of a continuous-time branching process with selection,
in which particles move according to independent Ornstein–Uhlenbeck processes. The
parameter a is akin to the pulling strength of the Ornstein–Uhlenbeck process.
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1 Introduction

A branching–selection particle system is a Markov process of particles on the real
line that evolves through the repeated application of the two following steps:

Branching step: each particle currently alive in the process independently gives birth
to children according to a point process whose law might depend on the position of
the particle.

Selection step: some of the newborn children are selected to form the next generation
and reproduce at the next branching step, while the other particles are “discarded”
from the process.

From a biological perspective, such models can be thought of as toy models for the
competition between individuals in a population evolving in an environment with limited
resources: natural selection. In this sense, the positions of particles (also seen as
individuals) may be interpreted as their fitness: individuals with large fitness have more
propensity to reproduce and transfer their genetic advantage to their offspring.
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Exactly solvable Ornstein–Uhlenbeck type branching process with selection

The prototypical example of such systems is the so-called N -branching random walk,
which was introduced by Brunet and Derrida in [11]. It consists of a discrete-time random
process where particles reproduce independently of each other, making children around
their current position. Then, only the N rightmost children are selected to survive and
reproduce in the next branching step. Based on numerical simulations and the analysis
of solvable models (see [11, 10]), it has been predicted that many branching random
walks with similar selection procedures satisfy universal properties. For example, it
is expected that the cloud of particles travels at a deterministic speed vN that should
satisfy

vN − v∞ =
−χ

(logN + 3 log logN + o(log logN))2
, (1.1)

where χ is an explicit constant depending on the reproduction law. Moreover, the
genealogical tree of the process, seen as a discrete-time coalescent, is expected to
converge towards the so-called Bolthausen–Sznitman coalescent [9]. We refer to [8] for
further details about coalescent processes and an overview of the subject.

Some of the above conjectures have been partially verified. Bérard and Gouéré [5]
proved that the speed of the cloud of particles satisfies vN − v∞ ∼ −χ

(logN)2 as N →∞ for
many branching random walks, in accordance with (1.1). This result has been extended
to branching random walks with different integrability conditions in [6, 15, 20] and to
other related models in [12, 21, 22]. Other results, such as the hydrodynamic limit of
the shape of the front of a branching random walk with selection were obtained. It
was proved in [17, 16] that the empirical measure of a continuous-time N -branching
random walk converges toward the solution of an integro-differential equation with a
free boundary condition.

Questions concerning the genealogy of branching random walks with selection appear
to be more difficult to study and have been so far verified only for specific models:
the branching Brownian motion with absorption and some exactly solvable branching-
selection particle systems. It has been proved in [7] that the genealogy of particles
in a branching Brownian motion with quasi-critical absorption (starting from a proper
initial distribution) converges toward the Bolthausen–Sznitman coalescent. To the
best of our knowledge, this is the only natural example of branching-selection particle
system for which the conjecture from [11] on the genealogy has been proved. A key
property allowing the mathematical treatment of the model is the branching property:
in a branching Brownian motion with absorption, particles behave independently after
splitting. This is not the case for N -branching random walks as the progeny of particles
ahead in the front determines the selection of the leftmost particles.

Other examples for which above conjecture has been verified consist in models where
the system becomes exactly solvable [10, 13, 14]. This is in particular the case for the
so-called exponential model [10]: it consists in a discrete-time N -branching random
walk where particles reproduce according to independent Poisson point processes with
intensity e−xdx. Observe that in this model each individual branches into infinitely many
offspring, which is not a “natural” assumption for a biological model. As observed in [10],
a useful property of the exponential model is that the relative positions of particles at
any given generation form a family of i.i.d. point processes with an explicit distribution.
Moreover, the law of the genealogical relation between two consecutive generations
depends only on the relative positions of the parents in the older generation. Relying
on this property, the authors in [10] obtained the asymptotic behavior of the average
coalescent time of k individuals, which turns out to be consistent with the convergence
of the genealogical trees toward a Bolthausen–Sznitman coalescent. In [14], we studied
a generalized version of the exponential model, where particles are randomly sampled
to constitute the next generation. In the model we consider, individuals reproduce as
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Exactly solvable Ornstein–Uhlenbeck type branching process with selection

in the exponential model but instead of keeping the rightmost offspring, we sample
(without replacement) N children, choosing an individual at position x with probability
proportional to eβx, where β > 1 is a constant tuning the intensity of the selection.
One may recover the exponential model by taking β →∞. We show that for all values
of β > 1, including the exponential model (β = ∞), the limiting coalescent is the
Bolthausen–Sznitman, which strengthens the conjectures from [10].

The above behavior contrasts with classical results about the convergence of the
genealogical trees in “neutral” population models, such as Wright–Fisher and Moran
models [18, 29]. In these models, the particles in a generation “choose” their parent
at random from the previous generation, regardless of their fitness. It is well known
that the genealogy of individuals in such cases is governed by the so-called Kingman
coalescent [19]. Hence, a natural question is to find branching–selection particle systems
that interpolate between the neutral selection case (Kingman) and the N -branching
random walk (Bolthausen–Sznitman).

In this paper we study a solvable branching–selection particle system, whose limiting
genealogy interpolates between the Kingman and the Bolthausen–Sznitman coalescents.
We consider another variant of the exponential model, in which particles are subjected to
a pulling force attracting them to 0. LetN ∈ N denote the size of the population and a > 0

be a parameter governing the intensity of the attractive force. The process is defined
as follows: it starts with N particles scattered on the real line. At each discrete time n,
every particle gives birth to children whose positions are determined by independent
Poisson point processes centered around a times their current position. In other words,
the offspring of an individual located at x ∈ R are positioned according to a Poisson point
process with intensity eax−ydy. We then select the N rightmost newborn individuals
to form the next generation of the process. We call this process the (N, a)-exponential
model.

When a < 1, the pulling force can be interpreted as modeling regression to the
mean, which is a natural biological phenomenon. Broadly speaking, the regression to
the mean is the observation that individuals with an exceptionally large fitness typically
have descendants with a better than average fitness, but not as large as their parent. A
famous example of regression to the mean was reported by Pearson and Lee [23], who
observed that when a father is taller than average, his son is also likely to be taller than
average, but not as tall as his father.

For what follows in the paper, we denote by XN
n (1) > XN

n (2) > · · · > XN
n (N) the

positions of particles alive at generation n ∈ N, ranked in decreasing order1. For
1 ≤ i, j ≤ n, we write ANn (i) = j if the particle at position XN

n−1(j) has given birth to
the particle at position XN

n (i). We study in this paper the (N, a)-exponential model as
N →∞ for a fixed. Therefore, we shall only display the dependence on N , omitting the
dependence on a. Next, we introduce very quickly the coalescent processes and the
associated notion of convergence we will be using in this article. We refer to the book of
Berestycki [8] for a detailed account. In particular, we refer to Examples 1–3 (p66) for
the precise definitions of the Kingman, Bolthausen–Sznitman and Beta coalescents. In
Section 1.1 of the referred book, the topology we use in for our results is introduced.

We encode the genealogical tree of the (N, a)-exponential model via the ancestral
partition process, which is a process in the space of partitions of N. We fix a time horizon
T ∈ N, and for 1 ≤ k ≤ T , we denote by Π

(N,T )
k the partition such that i and j belong to

the same block if and only if the particles at positions XT (i) and XT (j) share a common
ancestor at time T − k. It is a consequence of Lemma 2.1 that for any n ∈ N, the law of

1Note that we assume here that two different particles are always in different positions. By definition of
the process, this is necessarily the case for n ≥ 1, and it will become clear after Lemma 2.1 that the starting
position plays no role in the law of the process after time 1.
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(Π
(N,T )
k , k ≤ n) does not depend on T > n. Thus, we denote by (ΠN

k , k ≥ 0) the partition
process having the same finite-dimensional distributions as Π(N,T ), for T large enough.

As we shall see in Theorem 1.1, the N → ∞ scaling limit of this partition process
is a Λ-coalescent. This process was introduced by Pitman [24] and Sagitov [26] and
it is constructed as follows. With Λ a finite measure on [0, 1], the Λ-coalescent is a
continuous-time Markov process Π taking values in the set of partitions of N which
satisfies the property that we now describe. For all N ∈ N, its restriction to {1, . . . , N}
is Markov chain such that if at time t ≥ 0 there are b blocks in total, then any k blocks
merge into a single one at rate

λb,k =

∫
xk−2(1− x)b−kΛ(dx).

An important class of Λ coalescent processes is the Beta(2− α, α) coalescent, which
forms a one parameter family parametrized by α ∈ [0, 2]. They are defined by the
measure

Λ(dx) =
1

Γ(α)Γ(2− α)
x1−α(1− x)α−1dx.

Such a family appears in the context of Galton–Watson trees [27] interpolating between
the Kingman and the Bolthausen–Sznitman coalescent. Precisely, for α = 2 (Λ(dx) = δ0)
the process is the Kingman coalescent, in which every pair of block merges at rate
one. When α = 1 (Λ is the uniform measure in [0, 1]), it corresponds to the Bolthausen–
Sznitman coalescent.

Let (aN ) ∈ RN+ such that limN→∞ aN =∞ and (ΠN
t , t ≥ 0)N∈N be a family of discrete

time partition processes. We say that (ΠN
baN tc, t ≥ 0) converges in law toward a Λ-

coalescent if for every k ∈ N, the restrictions to {1, . . . k} of the finite-dimensional
distributions of (ΠN

baN tc, t ≥ 0) converge toward those of (Πt, t ≥ 0). The main result
of this paper is the following theorem about the convergence in law of the ancestral
partition process associated with the (N, a)-exponential model.

Theorem 1.1. As N →∞, we have:

a) If 0 < a < 1/2, then (ΠN
btNc, t ≥ 0) converges in law to the Kingman coalescent.

b) If a = 1/2, then (ΠN
btN/ logNc, t ≥ 0) converges in law to the Kingman coalescent.

c) If 1/2 < a < 1, then (ΠN

btN(1−a)/ac, t ≥ 0) converges in law to the Beta(2 − a−1, a−1)-

coalescent.

d) If a = 1, then (ΠN
bt logNc, t ≥ 0) converges in law to the Bolthausen–Sznitman coales-

cent.

e) If a > 1, then ΠN converges in law toward a discrete-time coalescent.

To the best of our knowledge, the (N, a)-exponential model is the first mathemati-
cal model of natural selection with limiting genealogical tree other than Kingman or
Bolthausen-Sznitman. However, the fact that there are no overlapping generations and
that every individual gives birth to a very large number of children is not satisfying
as a true biological model. We point out in Section 3 a link between this exponential
model and a more natural branching-selection particle system, in which particles move
according to i.i.d. Ornstein-Uhlenbeck processes and branch at rate 1.

In view of the above result, a = 1 and a = 1/2 mark phase transitions in the behavior
of the genealogy of the process. We also show that a similar transition happens in the
dynamical evolution of particles at a = 1. Indeed, as long as a < 1, the cloud of particles
remains within finite distance from 0. Whereas for a = 1, we proved in [14] that it drifts
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toward ∞ at positive speed. Finally, one can easily show that when a > 1 the cloud
moves away from 0 at an exponential rate. For a < 1, we have the following more precise
estimates:

Proposition 1.2. Let a ∈ (0, 1) and assume that supN∈NE
(∣∣∣log

∑N
j=1 eaX

N
n (j)

∣∣∣) < ∞,

then

lim
N→∞

lim
n→∞

E(XN
n (1))−logN = γ− log(1− a)

1− a
and lim

N→∞
lim
n→∞

E(XN
n (N)) = − log(1− a)

1− a
,

where γ is the Euler–Mascheroni constant.

Proposition 1.2 shows that the cloud of particles in the (N, a)-exponential model is
roughly of size logN , which is typical in many branching selection particle systems.
The proofs of both Proposition 1.2 and Theorem 1.1 rely on the observation that the
distribution of the children at time n + 1 is a Poisson point process with exponential
intensity around the position of a unique fictitious particle. This construction was
introduced in [10] and further developed in [14].

Outline of the paper: In the next section, we prove the two main results of the
paper, namely, Theorem 1.1 and Proposition 1.2. In Section 3, we define the branching
Ornstein–Uhlenbeck processes with selection and discuss its relationship with the (N, a)-
exponential model.

2 Proofs of main results

We start with a mathematical construction of the (N, a)-exponential model. Let
(Pn,j , (n, j) ∈ N2) be an infinite array of i.i.d. copies of a Poisson point processes with
intensity measure e−xdx and recall that XN

0 (1) > XN
0 (2) > · · · > XN

0 (N) denote the
ranked positions of the particles at time 0, which we shall assume distinct for the sake of
simplicity. We construct the process in such a way that the children of the ith rightmost
individual at time n, which is at position XN

n (i), are positioned according to the point
process Pn+1,i, shifted by aXn(i). Then, we select the N rightmost children to form the
(n+ 1)th generation. In other words, for each n ∈ N and i ≤ N , we have that

i) XN
n+1(i) is the ith largest atom of the point process

∑N
j=1

∑
p∈Pn+1,j

δaXNn (j)+p,

ii) ANn+1(i) is the (a.s. unique) integer j ≤ N such that XN
n+1(i)− aXN

n (j) ∈ Pn+1,j .

By standard properties of Poisson point processes, the (N, a)-exponential model is
well defined for all n ∈ N and the law of (XN

n+1(k), k ≤ N) is the same as the law of the
N largest points in a Poisson point process centered at

XN
n (eq) := log

 N∑
j=1

eaX
N
n (j)

 . (2.1)

Therefore, one may think of XN
n (eq) as the “equivalent” position of the front, that is,

a fictitious particle that generates the entire front in generation n + 1 as a Poisson
point process around its position. In the next lemma we prove the above claim and
characterize the (conditional) law of ANn (·).

Lemma 2.1. The point processes
(∑N

j=1 δXNn+1(j)−XNn (eq), n ∈ N
)

are i.i.d. with common

distribution given by the N rightmost points in a Poisson point process with intensity
measure e−xdx. Moreover, let H := σ

(
XN
n (j), j ≤ N,n ∈ N

)
and k1, . . . , kN ∈ ZN+ such
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that k1 + . . .+ kN = N , then

P
(
ANn+1(j) = kj ; 1 ≤ j ≤ N

∣∣H) =

N∏
j=1

θn(kj), where θn(k) :=
eaX

N
n (k)∑N

i=1 eaX
N
n (i)

. (2.2)

Proof. This result is obtained with a reasoning similar to [14, Proposition 1.3 and Lemma
1.6]. Therefore we only outline the main parts of the proof and omit some technical
details.

First, using the superposition property of Poisson point processes, we obtain that

N∑
j=1

∑
p∈Pn+1,j

δaXNn (j)+p
(d)
=
∑
p∈P

δXNn (eq)+p,

where P is an independent Poisson point process with intensity measure e−xdx.
Next, we note that for all i, j, n ∈ N

P
(
ANn+1(j) = i

∣∣H ) = P
(
XN
n+1(j)− aXN

n (i) ∈ Pn+1,i

∣∣H )
=

e−(XNn+1(j)−aXNn (i))∑N
k=1 e−(XNn+1(j)−aXNn (k))

=
eaX

N
n (i)∑N

k=1 eaX
N
n (k)

.

Moreover, the ANn+1(j)’s are (conditionally) independent, which concludes the proof.

By Lemma 2.1, the following recursion equation

XN
n+1(eq)− aXN

n (eq) = log

 N∑
j=1

ea(XNn+1(j)−XNn (eq))

 (d)
= log

 N∑
j=1

eap(j)

 (2.3)

holds in distribution, where
(
p(j), j ∈ N

)
are the ranked atoms of a Poisson point process

with intensity measure e−xdx. This allows us to construct a bi-infinite (stationary) version
of (XN

n , A
N
n , n ≥ 0), that we now introduce. Let (ξj , j ∈ N) denote an i.i.d. sequence of

random variables with the same law as ξ := X1(eq)− aX0(eq), then

XN
n (eq)

(d)
=

n−1∑
j=0

ajξn−j + anX0(eq). (2.4)

Since E(ξ1) <∞, one can easily check that XN
n (eq) converges in distribution to Y∞ :=∑

n≥0 a
nξn as n→∞, which satisfies the distributional equation Y∞

(d)
= aY∞ + ξ.

Hence, we can construct a probability space with i.i.d. Poisson point processes
(Pn, n ∈ Z) with intensity e−xdx, and a process (Yn, n ∈ Z), such that Yn has same law
as Y∞ for all n ∈ Z and

Yn+1 = aYn + log

 N∑
j=1

eapn+1(j)

 a.s. ∀n ∈ Z,

where (pn(j), j ∈ N) are the atoms of Pn ranked in decreasing order. We then set for
n ∈ Z and j ≤ N ,

X̄N
n (j) = aYn−1 + pn(j),

and conditionally on (X̄N
n , n ∈ Z) we construct ((ĀNn (j), j ≤ N), n ∈ N) as independent

random vectors whose (conditional on X̄N
n ) probability satisfy (2.2).

The process (X̄N
n , Ā

N
n , n ∈ Z) is a stationary version of the (N, a)-exponential model.

It is straightforward to check that it satisfies the same transition probabilities as the

ECP 23 (2018), paper 98.
Page 6/13

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP197
http://www.imstat.org/ecp/


Exactly solvable Ornstein–Uhlenbeck type branching process with selection

original process. Thanks to this construction, we can define without ambiguity the
genealogy of the (N, a)-exponential model for all n ∈ Z. We rely on this construction to
prove Theorem 1.1.

We first observe that in the bi-infinite version (X̄N , ĀN ) of the (N, a)-exponential
model, the family (ĀNn , n ∈ Z) is i.i.d. We can then use the ĀN ’s to reconstruct the
ancestral partition process of the process as follows: for every n ∈ N, we say that i and j
belong to the same block of ΠN

n if

ĀN−n(ĀN−(n−1)(. . . Ā
N
−1(i))) = ĀN−n(ĀN−(n−1)(. . . Ā

N
−1(j))).

This allows us to express the law of ΠN in terms of population dynamics with independent
generations. Precisely, let

θNn (j) =
eaX̄

N
n (j)∑N

k=1 eaX̄
N
n (k)

=
ea(X̄Nn (j)−aYn−1)∑N
k=1 ea(X̄Nn (k)−aYn−1)

=
eapn−1(j)∑N
k=1 eapn−1(k)

.

Then conditionally on (θNn (j), n ∈ Z, j ≤ N), each individual at generation −n ≤ 0

chooses its parent at generation −n− 1 independently at random, selecting the parent
j with probability θN−n−1(j). This process is often called a Cannings model, defined
by a multinomial distribution with N independent trials and probabilities outcomes
(θN−n(j), j ≤ N) (see [8, Section 2.2.3] for a definition of such processes).

Thanks to this observation, we now prove Theorem 1.1.

Proof of Theorem 1.1. Thinking of ΠN as the ancestral partition process of a Cannings
model, Lemma 2.1 together with [14, Proposition 4.2] yields

{θN1 (i), i ≤ N} :=

{
eaX̄

N
−1(i)∑N

k=1 eaX̄
N
−1(k)

, i ≤ N

}
(d)
=

{
eaEi∑N
k=1 eaEk

, i ≤ N

}
,

where (Ej , j ∈ N) i.i.d. exponential random variables with mean 1. Moreover, for any
y ≥ 1, we have P(eaEj ≥ y) = y−1/a. Therefore, applying [13, Theorem 1.2], we conclude
the proof of Theorem 1.1.

We now focus on the dynamical behavior of the cloud of particles in the (N, a)-
exponential model and prove Proposition 1.2. In this case, we are interested in the
behavior of the process as time goes to infinity. We shall therefore consider the original
particles system XN , instead of its bi-infinite version X̄N .

Proof of Proposition 1.2. Using Lemma 2.1, we observe that

XN
n+1(1)−XN

n (eq)
(d)
= p(1) and XN

n+1(N)−XN
n (eq)

(d)
= p(N), (2.5)

where p(1) > p(2) > . . . are the ranked atoms in a Poisson point process with intensity
e−xdx. At the same time, the elements in the sequence (e−p(j), j ≥ 1) are distributed
according to the (ranked) atoms in a homogeneous Poisson point process in [0,∞) and
hence e−p(j) is Gamma(j,1) distributed. In particular, the above yields

E (p(j)) = E
(
− log(e−p(j))

)
=

1

Γ(j)

∫ ∞
0

(− log t)tj−1e−tdt =
Γ′(j)

Γ(j)
=: ψ(j),

where ψ(N) := Γ′(N)/Γ(N) is the digamma function, which satisfies ψ(N) = logN +

O(N−1) as N →∞. Using the above with j = 1 and j = N in (2.5), we get

E(XN
n+1(1)) = E(XN

n (eq))+γ and E(XN
n+1(N)) = E(XN

n (eq))−log(N)+O(N−1). (2.6)
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It is therefore enough to compute the asymptotic behavior of E(XN
n (eq)) as n→∞ then

N →∞ to conclude the proof.
For what follows in the proof, we shall assume that a < 1 and E(XN

0 (eq)) <∞. Thus,
taking the expected value in (2.4), one gets

E(XN
n (eq)) = anE(XN

0 (eq)) +
1− an

1− a
E(ξ1), yielding lim

n→∞
E(XN

n (eq)) =
1

1− a
E(ξ1).

(2.7)
It remains therefore to compute E(ξ1). For this purpose, we will first compute the
Laplace transform L(λ) of ξ1, then recover its mean via E(ξ1) = −(logL)′(0).

By [14, Proposition 4.2], we remark that

eξ1 =

N∑
j=1

eap(j)
(d)
= eaZn

N∑
j=1

eaEj ,

where (Ej , j ≥ 1) are i.i.d. exponential random variables with parameter 1 and ZN is an

independent random variable whose distribution has density (N !)−1e−(N+1)x−e−x with
respect to the Lebesgue measure. Therefore, we have

L(λ) := E
(
e−λξ1

)
= E


 N∑
j=1

eaEj

−λ
E

(
e−λaZN

)
.

By direct computations, we obtain E
(
e−λaZN

)
= Γ(N + 1 + aλ)/Γ(N + 1) and

E


 N∑
j=1

eaEj

−λ
 =

1

Γ(λ)

∫ ∞
0

tλ−1E
(

e−t
∑N
j=1 eaEj

)
dt =

1

Γ(λ)

∫ ∞
0

tλ−1I(t)Ndt, (2.8)

where I(t) is the function defined by

I(t) := E
(

e−te
aE1
)

=

∫ ∞
0

e−xe−te
ax

dx =
t1/a

a

∫ ∞
t

u−(1+1/a)e−udu.

Making the change of variable t = x/N in the right-hand side of (2.8) one obtains

E


 N∑
j=1

eaEj

−λ
 =

1

Nλ

∫ ∞
0

I(x/N)N
xλ−1dx

Γ(λ)
=:

JN (λ)

Nλ
,

where JN (λ) is a C∞ function such that JN (0) = 1. Collecting all pieces, we obtain that
L(λ) = JN (λ)Γ(N+aλ+1)

NλΓ(N+1)
, which yields

E (ξ1) = − (logL)
′
(0) = logN − aψ(N + 1)− J ′N (0), (2.9)

where we recall that ψ is the digamma function and (log JN )′(0) =
J′N (0)
JN (0) = J ′N (0).

To compute J ′N (0), we will take the λ→ 0 limit of

JN (λ)− 1

λ
=

1

λΓ(λ)

∫ ∞
0

xλ−1(I(x/N)N−e−x)dx =
1

Γ(λ+ 1)

∫ ∞
0

xλ−1(I(x/N)N−e−x)dx.

(2.10)
By definition, etI(t) ∈ [0, 1] for all t ∈ R+ which implies that

ex
∣∣xλ−1(I(x/N)N − e−x)

∣∣ ≤ xλ−1
∣∣∣(ex/NI(x/N)

)N − 1
∣∣∣ ≤ 1, (2.11)
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for all x ≥ 1 and λ ∈ (0, 1). On the other hand, we observe that for all t ∈ (0, 1], we have

I(t) =
t1/a

a

(∫ ∞
t

u−(1+1/a)(1− u)du+

∫ ∞
t

u−(1+1/a)(e−u − 1 + u)du

)
=
t1/a

a

(
at−1/a +

t1−1/a

1− 1/a
+

∫ ∞
t

u−(1+1/a)(e−u − 1 + u)du

)
= 1− t

1− a
+O(tb) as t→ 0,

for some b > 1. Indeed, we have t1/a
∫∞

1
u−(1+1/a)(e−u− 1 + u)du = O(t1/a) as t→ 0, and

relying on the fact that (e−u − 1 + u) = O(u2) for all u ≤ 1 one gets

t1/a
∫ 1

t

u−(1+1/a)(e−u − 1 + u)du =


O(t1/a) if a > 1/2;

O(t1/a) log t if a = 1/2;

O(t2) if a < 1/2.

As a result, we obtain |I(x/N)N − e−x| ≤ a
a−1x + C

(
xb

Nb−1 + x2
)

for all x ≤ 1, where

C > 0 is a constant not depending on N . Thus, one can find a (possibly larger) constant
C̃ > 0 such that ∣∣xλ−1(I(x/N)N − e−x)

∣∣ ≤ C̃, for all x < 1. (2.12)

Thanks to (2.11) and (2.12), we can apply dominated convergence in (2.10), to obtain

J ′N (0) = lim
λ→0

JN (λ)− 1

λ
=

∫ ∞
0

x−1(I(x/N)N − e−x)dx.

Now, we plug the above in (2.9) and use the fact that limN→∞ ψ(N + 1)− logN = 0

to get

E(ξ1) = (1− a) logN +

∫ ∞
0

x−1(e−x − I(x/N)N )dx+ o(1) as N →∞. (2.13)

Finally, we notice that I(x/N)N tends to e−
x

1−a as N →∞. Therefore, we can rely again
on (2.11) and (2.12), to apply dominated convergence thereby obtaining

lim
N→∞

∫ ∞
0

x−1(e−x − I(x/N)N )dx =

∫ ∞
0

x−1(e−x − e−
x

1−a )dx

=

∫ ∞
0

∫ 1
1−a

1

e−uxdudx =

∫ 1
1−a

1

du

u
= − log(1− a),

which, in view of (2.6), (2.7) and (2.13), concludes the proof.

3 Branching Ornstein–Uhlenbeck process with selection

In this section, we draw a parallel between branching Ornstein–Uhlenbeck processes
with selection and the (N, a)-exponential model. We then rely on Theorem 1.1 to con-
jecture the asymptotic behavior of the genealogy of the branching Ornstein–Uhlenbeck
process with selection [1]. We first recall that an Ornstein–Uhlenbeck process is a
continuous-time diffusion that solves the stochastic differential equation:

dXt = −µXtdt+ σdWt, (3.1)

where µ ≥ 0 is the pulling strength of the process, σ > 0 is the diffusion coefficient and
W is a standard Brownian motion. Recall that an Ornstein–Uhlenbeck process X with
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pulling strength µ and starting position x can be constructed with a Wiener process W
through the following transformation:

Xt = e−µt
(
x+W e2µt−1

2µ

)
, t ≥ 0. (3.2)

The branching Ornstein–Uhlenbeck process with parameters β, µ, σ is a continuous-
time branching process, in which particles move independently according to Ornstein–
Uhlenbeck processes with pulling strength µ and diffusion σ, and branch at rate β. More
precisely, it starts at time 0 with a unique particle at 0, which evolves according to (3.1).
After an independent exponential random time of parameter β, it splits into two children,
which then start evolving independently in the same way. Up to a space-time linear
transform, we may assume without loss of generality that β = σ = 1. To the best of our
knowledge, there are not many rigorous results about this branching process. Adamczak
and Miłoś [1, 2] study the behavior of particles in the bulk and show that a CLT type
result holds when the pulling strength is strong, whereas a different asymptotic holds
in the weak pulling strength case. Nevertheless, the behavior of extreme particles and
their genealogy is still an open question. We also mention the work of Shi [28], where
he introduces branching Ornstein–Uhlenbeck type processes with potentially infinite
branching rate.

In evolutionary biology, Ornstein–Uhlenbeck processes may be used to model genetic
drift [25]. Thus, branching Ornstein–Uhlenbeck processes are natural candidates to
model the evolution of fitnesses in a population. In order to introduce natural selection,
we modify the above model in the following way. Let N ∈ N denote the total size of
the population. If at a given time a new particle is born which would bring the total
population size to N + 1, then the leftmost particle is immediately killed. We call this
process the (N,µ)-branching Ornstein–Uhlenbeck process, or (N,µ)-BOU for short.

We believe there exists a close connection between the (N, γ(logN)−2)-BOU and the
(N, a)-exponential model. In both processes, particles are subjected to a pulling strength
that depends linearly on their position. Such a connection extends the one described
in [10, Section IV] when there is no attractive force (a = 1), which corresponds to the
N -branching Brownian motion case (γ = 0). We now explain this connection in more
detail. For what follows we set µN = γ(logN)−2 for a fixed γ > 0.

We first study the behavior of a (N,µN )-BOU on a time scale of order logN . It
corresponds to the typical time in which a particle would have N descendants in the
process without selection. In view of (3.2), Xt does not feel the effects of the attractive
force on this time scale. That is, its evolution resembles the one of a Brownian motion.
Using an argument similar to [5, Proposition 1], we deduce that the size of the cloud of
particles in the (N,µN )-BOU should typically be of order logN . As a result, the coupling
technique developed in [21, Section 4] should allow us to compare the (N,µN )-BOU with
an Ornstein–Uhlenbeck process in which particles going below a certain barrier are
killed. The barrier is chosen such that the number of particles lying above it is typically
of order N .

We now study the process on the time scale (logN)2. On this time scale, particles
feel effects of the attractive force. By (3.2), their final position is multiplied by a factor,
when compared to the underlying branching Brownian motion. Hence, the branching
Ornstein–Uhlenbeck with a killing barrier should behave as a branching Brownian motion
with the same killing barrier, with final positions multiplied by a fixed constant.

Next, we recall that the extremal process of a branching Brownian motion (the point
process describing the position of the particles close to the maximal displacement)
converges toward a decorated Poisson point process [4, 3]. It is well known that this
limiting point process can be decomposed according to the genealogy of the particles:
each decoration corresponds to a family of closely related particles that has followed the
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same trajectory. This trajectory asymptotically behaves like a Brownian excursion. Now,
if we consider the process killed by a barrier at depth of order logN , only a proportion of
such particles will survive at time (logN)2. Asymptotically, those correspond to Brownian
excursions that stay below a certain barrier.

Summing up, we expect that at time (logN)2 each particle in a (N,µN )-BOU gives
birth to descendants, whose positions are given by independent decorated Poisson point
processes, centered around cγ times their starting position. Here, cγ ∈ (0, 1] is a constant
depending on γ. Therefore, (logN)2 units of time in the (N,µN )-BOU would correspond
to one time step of the (N, cγ)-exponential model. This was already the case in [10],
where (logN) units of time of the (N, 1)-exponential model were in correspondence with
(logN)3 units of times for the N -branching random walk. This leads to the following
conjecture.

Conjecture 3.1. For all γ > 0, there exists dγ ∈ [0, 1] such that
(
ΠN

bNdγ `(N)tc, t ≥ 0
)

converges in law toward a Beta(1− dγ , 1 + dγ)-coalescent as N →∞, where ` is a slowly
varying function.

Roughly speaking, the above conjecture states that a branching Ornstein–Uhlenbeck
process with pulling strength γ(logN)−2 and selection of the N rightmost individuals
can be associated with the (N, (dγ + 1)−1)-exponential model.

We ran a few simulations that reinforce the above heuristics. We considered discrete-
time/space branching–selection particles systems which mimic branching Ornstein–
Uhlenbeck processes with selection. The results are displayed in Figure 1. We observe
that when the pulling strength has the order (logN)−2, then the average coalescent
time of two individuals chosen uniformly at random seems to grow polynomially with N .
Heuristics suggest that the function ` in the above conjecture should be `(N) = c(logN)2,
but the (arguably limited) simulations are more consistent with a constant function ` ≡ c.

Average
coalescent time

Number of individuals
100 500 1000
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4 γ = 1
♦ γ = 0.5
× γ = 0.2
4 γ = 0.1

×
×
×
×
×
×
×
×
×
×
×

44
4
4
4
4
4
4
4
4
4

♦♦
♦
♦
♦
♦
♦
♦ ♦

♦ ♦

××
× ×

× × ×
× × ×

×

44 4
4 4 4 4

4 4 4 4

Figure 1: Average age of the most recent common ancestor of two individuals sampled
at random.
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