Electron. Commun. Probab. 23 (2018), no. 29, 1-14. ELECTRONIC
https . //dOl . org/10 .1214/18-ECP130 COMMUNICATIONS

ISSN: 1083-589X in PROBABILITY

Discrete maximal regularity of an implicit Euler-Maruyama
scheme with non-uniform time discretisation for a class of
stochastic partial differential equations

Yoshihito Kazashi*

Abstract

An implicit Euler-Maruyama method with non-uniform step-size applied to a class of
stochastic partial differential equations is studied. A spectral method is used for the
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1 Introduction

Our interest in this paper lies in a discrete analogue of maximal regularity for a class
of stochastic partial differential equations (SPDEs) of parabolic type. In more detail,
with a positive self-adjoint generator —A with compact inverse densely defined on a
separable Hilbert space H, we consider the equation

{ dX(t) = AX(t)dt + B(t, X (t))dW(t), for t € (0,1] (1.1)

X(0) =¢,

where the mild solution X takes values in H. The assumption on B and the (-Wiener
process W will be discussed later. The aim of this paper is to show a property of a
prototypical discretisation to simulate the solution of such equations: we show a discrete
analogue of an estimate called maximal regularity (Corollary 4.6).

Maximal regularity is a fundamental concept in the theory of deterministic partial
differential equations (see, for example [2, 18, 21] and references therein). Similarly,
in the study of stochastic partial differential equations, the maximal regularity is an
important analysis tool [9, 8] as well as an active research area [27, 26, 5, 28]. In our
setting, the above equation (1.1) can be shown to satisfy the maximal regularity estimate
of the form

1 1
2 2 2
/0 E[HX(S)HD(AL+%)] ds < Hg”D(A"*’%) +/0 E||B(r7X(T))HLZ(HO’D(AL)) d?“, (1.2)
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where ¢ > 0 is a suitable parameter depending on the operator B, D(A“r%) is the domain
of the fractional power A*2 of Ain H, and £5(Hy, D(A")) is the space of Hilbert-Schmidt
operator from Hj, the Cameron-Martin space associated with @, to D(A"). More details
will be discussed later.

In recent years, the study of discrete analogues of the maximal regularity has been
attracting attention for deterministic partial differential equations [1, 4, 7, 13, 14, 15, 20];
to the best of the author’s knowledge, corresponding properties of numerical methods
for stochastic PDEs have not been addressed in the literature.

Maximal regularity of stochastic and deterministic equations are different in nature.
As we will see in (1.2), given a suitable smoothness of the initial data, the solution
is “one-half spatially smoother” than the range of the diffusion operator B(t,z). This
estimate is optimal, in that the solution cannot be spatially smoother in general (see
[17, Example 5.3]). To put it another way, as described in [9, Chapter 6], the regu-
larity one can obtain is the half of the corresponding regularity for the deterministic
case.

We focus on the case where the operator A and the covariance operator () share
the same eigensystems. This prototypical setting is partly motivated by applications
in environmental modelling and astrophysics, where covariance operators—of the ran-
dom fields [6, 22], and of the Wiener process for the stochastic heat equations [19, 3],
for example—the eigenspaces of which are the same as those of the Laplace oper-
ators play important roles. In simulations, it is desirable that discretisations users
employ inherit properties of the solution of the model considered. Our results show
the method we consider preserves a spatial regularity—maximal regularity—in a suit-
able sense.

As a spatial discretisation we consider the spectral-Galerkin method. The Wiener
process, which is assumed to admit a series representation, takes its value in an infinite-
dimensional space. In practice, we can simulate only finitely many of them. We approxi-
mate the Wiener process by truncation, i.e., we use a type of truncated Karhunen-Loéve
approximation.

Temporally, we consider the implicit Euler-Maruyama method with a non-uniform
time discretisation. The aforementioned approximation of the Wiener process introduces
one-dimensional Wiener processes multiplied by varying scalars—the eigenvalues of the
covariance operator. Motivated by this observation, we allow the discretisation of each
Wiener process to depend on these scalars. The algorithm we consider is first proposed
by Miller-Gronbach and Ritter [24, 23], for the stochastic heat equation on the unit
cube. In [24, 23], the resulting non-uniform scheme was shown to achieve an asymptotic
optimality under a suitable step size, which in general cannot be achieved by schemes
with uniform step-size.

The results we establish show that the non-uniform discretisation still preserves
maximal regularity in a suitable sense. The algorithm we consider includes the implicit
Euler-Maruyama method with the uniform time discretisation as a special case—the
case where one uses the same step size for all one-dimensional Wiener processes—even
though we, in general, lose the aforementioned optimality. As a consequence, we obtain
a discrete analogue of maximal regularity for the standard implicit Euler-Maruyama
method: the discretisation with the uniform step size.

The structure of this paper is as follows. Section 2 recalls some definitions and basic
results needed in this paper. Section 3 introduces the discretised scheme we consider.
Then, in Section 4 we show a discrete maximal regularity. Then, we conclude this paper
in Section 5.

ECP 23 (2018), paper 29. http://www.imstat.org/ecp/
Page 2/14


http://dx.doi.org/10.1214/18-ECP130
http://www.imstat.org/ecp/

Discrete maximal regularity of an Euler-Maruyama scheme

2 Setting

By H we denote a separable R-Hilbert space (H, (-,-), || - ||). Let —A: D(A)C H - H
be a self-adjoint, positive definite linear operator that is densely defined on H, with
compact inverse. Then, A is the generator of the Cy-semigroup (S(t))i>o := (eAt)tzo
acting on H that is analytic. Further, there exists a complete orthonormal system {/;}
for H such that —Ah; = \;h;, each eigenspace is of finite dimensional, and

D<A <A <o <A< e

and \; — oo as j — oo unless the compact inverse — A~ is finite rank. For simplicity, we
assume the dimension of each eigenspace is 1. Then, we have the spectral representation

o0
S(t)r = Ze*’\jt (x,hj)h; € H, for xz € H.
j=1
For r € R, let us define the domain D(A") of the fractional power A" of A by

D(A") = {1 €H

el pary = DN (@, hy)* < OO}-

Jj=1

We obtain a separable Hilbert space (D(A"), (-,-)pcar), || - Ip(ar)) by setting (-, -) p(ar) :=
(AT, A",

For more details for the set up above, see for example [12, 21, 25, 29].

Let (2,.%#,P) be a probability space equipped with a filtration satisfying the usual
conditions. By W: [0,1] x @ — H we denote the Q-Wiener process with a covariance
operator @ of the trace class. We assume that the Wiener process W is adapted to the
filtration. Further, we assume that the eigenfunctions h, of A is also eigenfunctions of @
with

Qhy = qehy,

such that Tr(Q) = Y_,2, (Qhs, he) = > joqr < oo. It is well-known that W taking values
in H can be characterised as

W(t) =Y VaBe(the as.,
(=1

where (5, are independent one-dimensional standard Brownian motions with the zero
initial condition realised on (Q2,.%,P) that are adapted to the underlying filtration, and
that the series converges in the Bochner space L*(Q; C([0, 1]; H)). The Q-Wiener process
takes values in H by construction. Here, since A and () are assumed to share the same
eigenfunctions, we can provide finer characterisations of the regularity.

Remark 2.1. Let r > 0 and ¢ € (0,1]. Then, >_,°,\3"q, < o if and only if W (t) € D(A"),
a.s. Indeed, we have ]E[||W(t)||f3(A,,,)] =1y, A" g
We introduce the Hilbert space Hy = Q'/ 2(H) equipped with the inner product

(hi,ha)y = (QY?h1,Q Y?hy) for hy,hs € H,

where Q2 := (QY?| yex(q/2))+ )t Ho — (ker(Q'/?))™ is the pseudo-inverse of Q'/2.

In the following, a < b means that a can be bounded by some constant times b
uniformly with respect to any parameters on which a and b may depend. Throughout
this paper, we assume the following.
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Assumption 2.2. We assume B: [0,1]x H — Lo(Hy, H) is B([0,1])@ B(H)/B(L2(Ho, H))-
measurable, where for a given normed space (Z',| - || 2-) the Borel c-algebra associated
with the norm topology is denoted by B(Z"). Further, let B satisfy

| B(t,u) — B(t,v)| 2o (k0,1) = lu—wv||, for tel0,1], u,vec H. (2.1)

Moreover, let . € [0,1/2] be given. We assume for any t € [0,1], u € D(A"*) we have
B(t,u) € Lo2(Hy, D(A")) and

[ B(t, u)ll c,(r0,D(a0)) 21+ [[ullpa). (2.2)

The condition (2.2) implies sup,c(o 17 [|B(¢,0)| 2, (m,,0(4+)) = 1. Thus, together with
(2.1) we see that Assumption 2.2 implies

1B(t, w)ll o (r1o,61) 2 Co(1+ |lull) < oo, (2.3)

fort € [0,1], u € H, with a constant C, > 0.
We recall the following existence result, which can be found in, for example, [9].

Theorem 2.3. Suppose that the mapping B satisfies Assumption 2.2 with some ¢ > 0.
Then, for § € H there exists an H-valued continuous process (X (t)).c[0,1] adapted to the
underlying filtration satisfying the usual conditions such that

X(t) _S(t)§+/0t S(t—s)B(s, X (s))dW(s), te[0,1] a.s. (2.4)

Moreover, this process is uniquely determined a.s., and it is called the mild solution
of (1.1). Further, for any p > 2 we have

sup E||X(#)]|P < 0. (2.5)
t€(0,1]

For more details, see for example [9, Sec. 7.1]. For the mild solution X, let
X(t) = _X;(t)hy, X;(t) = (X(t),hy).
j=1

Then, the processes X; = (X;(t)):e[o,1) satisfy the following bi-inifinite system of stochas-
tic differential equations:

{ AX;(t) = =N XAt + 300, /@ (B(t, X (t))he, hy) dBe(t)
X;(0) =(&hy), for jecNN.

Each process X; is given as

X;(t) =e N, hy)

+Z\/q7/0 e M=) (B(s, X (s))he, hy) dBe(s),
(=1

where the series in the second term is convergent in LQ(Q), due to (2.5) and Assumption
2.2.
We have the following spatial regularity result.

Proposition 2.4. Suppose that Assumption 2.2 is satisfied with some ¢ € [0,1/2], and
that the initial condition satisfies £ € D(A"). Then, we have the estimate

1 1
2
| B ey ds < lelboa + [ BIBEXOD Gy piay @ 26)
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Proof. 1td’s isometry yields
AZFUE(X;(5))? = exp(—2X;8) A2 (€, hy)?
S
* L"!‘l
+/ exp(—2X;(s — 7))\ E[|B* (r, X (1) A} 2 hy | 3, dr,
0

where B*(r, X(r)) denotes the adjoint operator of B(r, X (r)). Therefore, it holds that
1 20+l y | 2 2 \2 1 * 2y 12 ;
Jo BN X (s) Pl ds < A (€, hy)” + [y BIB*(r, X(r))\3*hyl|3;, dr, and thus summing
over j > 1 yields the desired result.
We note that for ¢ € [0, 1/2] the right hand side of (2.6) is finite. To see this, we first
note that (2.3) together with (2.5) implies

. 1
2
/0 E||X(5)||2D(A1/2)d5 < J&l? +/O EHB(T’X(T))HLz(HmH) dr < cc.

Thus, from (2.2) we have

1 1
/OEHB(?"X(T))H%Z(HD,D(A'«))drﬁ H‘/O E|| X (r)[ID(acy dr

1
< cb(1+/ E||X(r)||%(A1/2)dr> < o0,
0
for some constant ¢, > 0. O

Remark 2.5. We note that the solution is spatially one half smoother than the range of
B(t,z). This is in general optimal, in that the solution cannot be spatially smoother in
general ([17, Example 5.3]). For more details, see [17, 16] and references therein. For
recent developments of maximal regularity theory, see [27, 26].

3 Discretisation

This section introduces the scheme proposed by Miiller-Gronbach and Ritter [24, 23].
In this regard, let us first discretise the interval [0,1] with a uniform partition, i.e.,
we partition the interval with ¢; = i/n, for i = 0,1,2,...,n. For integers J,L € IN, an
It6-Galerkin approximation X (¢;) to (2.4) with the temporal discretisation being the
implicit Euler-Maruyama scheme with a uniform time discretisation is given by

J
XM () =S X (t)hy, for i=0,...,N, (3.1)
j=1

with coefficients (X (¢;), h;) defined by Y}I’L(O) = (¢, h;), and

- (02 (s

L
+ >V (Bltioa, X7 (tim1)hes by ) (Belts) - mm_l))).
{=1

Miiller-Gronbach and Ritter [24, 23] noted that the projected Q-Wiener processes
V@eBe = \/(Qhy, he)Be = (W (1), he) have varying variances depending on the index /. This
observation motivated them to use different step-sizes depending on ¢. Following them,
we evaluate the standard one-dimensional Wiener process 3, at each level / =1,..., L at
the corresponding n, € IN nodes

i .
0<tip<---<tp,e=1, where t;,=— for i=0,...,n,.
. Toe
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L
Then, the discretisation of the truncated ()-Wiener process Z\/ﬂﬁghg in general results

=1
in a non-uniform time discretisation:

O=1p<---<7ny:=1, where {To,...,TN} = U{to,g,...,tn[’g},

and tg, = 79 = 0 for all £ € IN. To write our scheme in the recursive form, we introduce
the following notations. Let

Ky={0€{0,1,....L} |7 € {to, - - s tupt} }
forn=0,...,N and we define s, o forn=1,...,Nand /=1,...,L by
Spl = maX{{tO,Zv cee 7tnz,£} N [OvT'fl)}'

We further introduce the following notation for the product of eigenvalues of the operator
(I - — — A)~!, which we use for the approximation of the semigroup generated by A.
For any 7,, < 7,,, we let

712

1
mj(vaTnz) = H 1+)\j( ) (3.2)

Ty — Ty—
v=m+1 v v 1)

with the convention [[, = 1. Note that s, ¢,t;_1¢ € {71,...,7n}. Then, forn=1,...,N,
the drift-implicit Euler-Maruyama scheme in the recursive form is given by,

)?f’L(Tn)ij(Tnth)<Xj’ T 1+Z\F< (s, X7 (3“))h€’h>

ZEK:n (3‘3)
X R (sn.0, Ty—1)(Be(my) — 5@(57771%)))-
Equivalently, the above can be written in the convolution form
R = o) (€0 4> S Ve (Bltiove: X" (ti1.0))he, by )
=1 711<t; ¢ <7y
X R (tio1,e, ) (Beltie) — Be(ti-1.0))- (3.4)
Then, we use
J A~
XL () Z STk (3.5)

forn=1,..., N as our approximate solution.
—J,L
We note that this scheme generalises the aforementioned approximation X "1 Wwith
) . . <J.L . . S .
the uniform time step asin (3.1): X 7 is nothing but X/ withny, = N for¢=1,..., L.

4 Discrete regularity estimate

First, let 2,2 := Y7, (x, h;) h; for € H. Further, by writing [[, = I we let

Jj=1
72 1 1
R(ry i A) =[] (I - ?A) , 4.1)
v=m+1 v v—1
ECP 23 (2018), paper 29. http://www.imstat.org/ecp/
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where the meaning of the product symbol is unambiguous due to the commutativity of
(I———A)""s.
Forje{l,...,J}andn € {1,...,N}, define

[R” o B(-, X" ())]" (7))

L
=y Y PyR(ti—1.0, 73 A)B(ti1.0, X (ti1.0))v/Gehe(Be(tie) — Be(ti1.0)).

=1 711<t; ¢<7y

(4.2)

For ¢ =0 and B(t;—1.4, X’J’L(ti,l,g)) = B(ti—1¢) the equation (4.2) is a discrete analogue
of the stochastic convolution. The Fourier coefficients of (4.2) are given by

(R o B(-, X"())E(r,) = <[RJ <>B(.7)A(J’L(.))]L(Tn),hj>

I
M=

Z mmj(ti71,277n)<B(ti71,f7)?J7L(z 1,0)he, b >(ﬁz(zz) Be(ti—1,e)),

l=1T71<t; ¢<Ty

for j € {1,...,J} and n € {1,...,N}. Then, noting that by the assumptions on A we
have ((I —AA)~1)* = (I —XA)~! for A € (0, 00), the Fourier coefficients of the discretised

solution are given by
~ S L
X (1) = Ry (70, 7) (& 1) + [RY 0 BC X)) (7).

For any r > 0 we have

E| X7 ()3 any ZAJ |98 (0, 7) (€, hj) +ZA2’E| [R? o B(, X7 ()] (m)]"
j=1
4.3)

Our first goal is to estimate the second term in the right hand side of (4.3). We see this
term as the stochastic integral of a representation of an elementary process.

Let Pyx := (x, h¢) hy for £ > 1, and let ¢ > 0 be the index from Assumption 2.2. For
v e{l,...,n}, we define an L5(Hy, H)-valued random variable (gb‘g’("))l,_l by

i P1R(50.0,70; A)B(sy.0, X (5,0)) P ifL €T, (4.4a)
(%,(n))y_l =

Om,—H iflg=,, (4.4b)

where
E,:={te{l,....L} |t e K, for some p € {v,...,n}}. (4.5)
We elaborate on the notation. First, note the following: for ¢ ¢ K,, v € {0,...,n}
if the index i’ € {1,...,n,} is such that s,, = t;y_1 then we have 7, < ¢ty 4. The
separate treatment (4.4b) corresponds to the construction of the algorithm: suppose
te{l,...,L}andi* € {1,...,n,} satisfy s, ¢ =t;-_1 ¢ and 7,, < t;~ ¢, then the evaluation

Be(ti= ¢) of the Brownian motion f, at ¢;- ¢ is not used to obtain )?f’L(Tn); only up to
Be(toe)s - -, Be(tiv—1,¢) are used.
Let us define the elementary process (I)Z’(") : Q% [0,7,] = L2(Hy, H) by

n

& (w,1) = 3 (67 o1 (@) Ly (0. (4.6)

v=1

Then, we have the following.
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Lemma 4.1. Let [R’ ¢ B(:, )?JvL(-))]f(-) be defined by (4.2) and let Assumption 2.2 hold

with « > 0. Then, forj =1...,J we have

[RJOB( XJL </ Z(I)J(W) dW ) >

Proof. Fixn € {1,...,N}. Let S, := Ky \ (U, v eq0,... p—13 Kn—p) for p,m € {1,..., N}
with ¢ < n, and let Sy := K,,. Then, we have

(R o B(. X)) (r,)

—ZZ@R (51,0 0) { Blsves X (50,00 hes iy ) (Belr) = Belr-1))

v= 1661&,

+szm (51,6 70) { B(ses X (50,00 By ) (Be(7) = Be(m1)

v=1/4e8,

£33 VA (s m) {Blsw £ s, by ) (Belr) — Belri)

v=1/(€eS,
D VAR (e m) (Blsre, X E(s1,0)hes by ) (Be(m) = Bel()).
LeS, 1
Further, we can rewrite the above as

[RJoB(~ XHE()] f(m)

—ZZZ(B S0,y XL (50,0)) Po(W (1) — W (T-1)), R(80.0, s A) P shj).

p=0v=1¢€S,,

By the assumptions on A we have ((I — MA)~1)* = (I — MA)~! for A € (0,00), and thus

n L
(R o B(, X7H())] ] () = <Z (szf""))ul) (W () - W<m>)7hj> :

=1 =1

By definition of the stochastic integral of elementary processes the statement follows. O

Using the previous result, we obtain the following estimate.

Proposition 4.2. Let Assumption 2.2 hold. Letn € {1,...,N}. Forp > 1, suppose that
the process defined by (4.4a)—(4.4Db) satisfies

E[z S @,

=1"¢=1

(1, — Tl,_l):| < 0. 4.7)
L2(Ho,D(AY))

Then, we have

n

£ H[R"<>B<~7)?“<~>>}L<Tn>\|2<m} SE[Z PR A

(1, — T,,1)} .

v=1p=1 Lo(Ho,D(A"))
(4.8)
Proof. For anyn € {1,...,N}, from Lemma 4.1 we have
B[J|[R” o B X)) () [ ar) [ZW < s Z@ O (s)aw (s), h > }
ECP 23 (2018), paper 29. http://www.imstat.org/ecp/
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It follows that

A

D(AL):|

e[ [ o
ﬁz(Ho,D(A )
n L 2
- ]E{Z Z(@f’(’”)y,l (1, — T,,l)} < o0,
v=11ly=1 Lo (Ho,D(A))

where in the first equality It6’s isometry, and in the last inequality the condition (4.7) is
used. Thus, the statement follows. O

We need the following estimate for the process (gb‘g’("))u_l as in (4.4a) and (4.4b) in
terms of the Hilbert-Schmidt norm.

Lemma 4.3. Suppose that Assumption 2.2 is satisfied. Fix an arbitrary integer n €
{1,...,N}. Then, for any v € {0,...,n}, we have

L
Z(d);(n))ufl Z (¢Z’(n))uf1

=1 L2(Ho,D(AY)) (eE, Lo(Ho,D(AY))
! 2 2 v J,L 2 2
< (Z S NI (310 7) 2| (Bl K (s00))Vathes by ) | ) ,
ez, j=1
where =, is defined by (4.5).
Proof. Note thatif / ¢ =,, then H( Yo— 1\fth = 0. Thus, noting that Z/hy =0

unless ¢ = ¢/, from the definition of (¢, ’("))V_l we have

L 2 L 2
J, J,
Z( g (n))u 1 - Z ( g/(n))yfl\/ q@’hf’
=1 Lo2(Ho,D(AY))  pr=1 D(AY)
2
=Y ’( 7Y u_1v/aehe
VeE, D(AY)

Fix{ € E,. Foranyn € {1,...,N} and v € {1,...,n} we have
(n)

(97 flehe

j=1

D(AY)

N 2
A <<@JR(SV,L Ty A)B(80,0, X" (80.0))v/Qehe, hj> ‘

IIM&

~ 2
X2 00, 7) 2| ( Blsv,es K7 (s00)) ahe, by ) |

Hence, the statement follows. O

The following lemma is important to show the maximal regularity estimate of the
same form as the continuous counterpart (2.6), studied in [9, Proposition 6.18] and [8].
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Lemma 4.4. Forany j > 1,/ >1,andi € {1,...,n,}, we have

Z |9%j(t171,e,7'n)|2(7'77 —Ty—1) < Ve
ti o<y <TN J

where R, (-, -) is defined by (3.2).
Proof. For 7, € {m,..., 7~} define a continuous interpolation S;(7,,,-): [0,1] — R of
R;(Tyo, ) by

N 1

Sj(Tyo, t) == H )
v=no+1 1 +)\j(t/\7'y _t/\Ty_l)

e [0,1]. (4.9)

Then, for ¢t € (1,—1,7,], n € {1,..., N}, we have
S (Tnos OLg (17,13 (8) = 8 (g 8) = R (T, ) 7,y 13 (1)-
Further, for/=1,...,Landi=1,...,ny, let
Ty 1= Ty (i,0) = tig
Then, we have

> 1Ri(ticre )P (1 — 1)

ti o <Tp<TN

/ ](ti—l,bS)|2H{(TU*1>TW]}(S) ds
Ty —1

n=n (M)

1
:/ |Sj(t171’[, )|2d8§/ |Sj(ti,1’g78)|2d8.

" ti—1,0

For t € [t._14,tx—1,) With k > i, the elementary inequality 1+(;_a) 1+(i_b) < 1+(i_a)
(0 <a<b<c)implies

1 1
(14 Ajo)e TN teo1)

Si(tic1,e,t) <

)

and therefore

1 e P
/ | (z 1,4, S |d572/ 11/; )| ds
ti—1,e te—1,0

ny

tr,e 1
< ds
Z )2r—2i /ﬁ e (LN (s —teo1,0))?

1 1 & 1
_Z < Z
)22 N+ 1/ (te = tu1,) = Aj e £ (14 2 )22

+ > 1, then —— o A ez < o, and otherwise (1 + %)2 < 4 and thus

Ifni k=1 (1+X; /n/)Q"“ 2 = )\ ’

1 & 1 1 1 4 2
Z < — 5 S — < —.
\j + ng (1+ SL)2-20 T g1 = 1/(1 4 22)2 20+ A /ne T A

Hence, we have <y <N 1R (tim1,0, )| (1) — T—1) < % as claimed. O
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We are ready to state our main result.

Theorem 4.5. Suppose Assumption 2.2 is satisfied with some ¢ € [0,1/2]. Then, we have

S8 |77 0 B 240 )|

DAt/ } (g — Tm-1)

. 2
’@JB(EA,K, XJ’L(tifl,l))@L\/q7hZHD(AL) (tie—ti—10)]-
=1 i=1

In particular; YJ’L defined as in (3.1) satisfies

2

SB[ (7 0 56X ()] @)

D(ATY/?) ] (ti - ti—l)

N
—J L 2
<25 E ng Bt . X", 9’ t—ti ).
= ; [ 7Bt X 0-1) P ﬁz(HO;D(A”)):|( 2

Proof. We first show that forn =1

v=1

., N, we have

L

Z(¢Z’(n))u71

{=1

2

(1 — Ty—1) | < 0. (4.10)
La2(Ho,D(AF/2Y)

In view of Lemma 4.3, we have

L 2
Z((ﬁl;’(m)v—l

o DA Ty_l)} = 7a-1)

1
|8 R ) ae ) [ = 7| 7= 7o)
2)9 3 oD SR A NURRNE

J=1=1n=17,<t; <7y

~ 2
(Blti1.6, Xt )Vathe by ) | (b = ti1.0)(ry - Tnn} .

X

(4.11)

Since Un 1 Ungtz,egrn {rp.tie} = U, Uti,ESTWSTN {7, ti ¢}, the right hand side of (4.11)
can be rewritten as

J L ng
E{ZZZ > N (i, Ty

j=14=1 i=1 ti,ZSTWSTN
~ 2
X ‘ <B(ti—1,e,X']’L(ti—l,e))\/?éhz, hj> ‘ (tie — tie1,0)(Ty — 7-77—1):|
J L ng R 9
=[S S (Bl Rk )|

j=14=1 i=1

X (tig —ticie) ) |mj(tz-1,4,Tn)|2(7,]—n71)} (4.12)

ti o<y <TN

From Lemma 4.4, (4.11) and (4.12), due to Assumption 2.2 we have (4.10)
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From (4.10), we note that Proposition 4.2 implies

2

ij[H (R o B(, X)) (7))

. } (T — Ty—1)
= D(A“TY/2)

i {i > 6

v=1"¢=

2

(1, — Tyl)} (Ty — Ty—1)-

£2(HU’D(A4,+1/2))
Therefore, again from Lemma 4.4 together with (4.11) and (4.12) we obtain

2

g:E{ H [RJ o B(, XJ’L('))]L(Tn)HD(ALﬂ/Z) } (Th — Ty—1)
<2E[ZZ§:)‘2L < i, X <ti17Z))\/(1?h€’hj>‘2<ti,€—ti1)5):|
j=14=1 i=1

(=1 i=1

0o Ny 9
=2E {ZZ ‘QJB i—1,0, X ’L(ti—l,e))QL\/@héHD(AL) (tie _ti—1,€>]-

When ny, = N forall ¢ € {1,...,L}, we have t; y — t;_10 =t; —t;—1 (i = 1,..., N). Thus,
repeating the same argument as above completes the proof. O

As a consequence of the previous result, given a suitable regularity of the initial
condition, the approximate solution has the spatial regularity “one-half smoother”—the
same as the continuous counterpart [9]—than the range of the operator B(¢, x)

Corollary 4.6. Suppose Assumption 2.2 is satisfied with some ¢ € [0,1/2], and let § €
D(A"). Then, we have

v )
(nz_:lE[||XJ’L(7'71)||§)(A'«+1/2)](Tn - Tn—l)) =128l pary

Nl=

(=1 i=1

oo nyg
( [ZZ ‘«@JB i 1(7 7L<ti71’g))f@[/\/q7th2D(AL) (ti,é _tz‘l,é):|>

In particular, X" defined as in (3.1) satisfies

(ZEHX SN —m));

N
<208l SB[ 20801 X )|
=1

Proof. From Lemma 4.4 we have

Nl=

t; —t;i_
Lo(Ho,D(A ))]( 1))

> E[IR(r0, 73 A) Zs€ll g2y ] (7 = 7p-1)

n=1

J N
N E[Z)\?H‘ (€ hy) ‘2 Z ’mj(TOan)f(Tn —7y-1)]
Jj=1 n=1
J
<2E[Y_A| (6. hy) 7).
j=1

Then, from (4.3) and Theorem 4.5 the first statement follows.

Letting n, = N for
¢ =1,..., L establishes the second statement.

O

ECP 23 (2018), paper 29. http://www.imstat.org/ecp/
Page 12/14


http://dx.doi.org/10.1214/18-ECP130
http://www.imstat.org/ecp/

Discrete maximal regularity of an Euler-Maruyama scheme

Remark 4.7. The results in this section can be generalised to non-uniform grids on each
level. Let 0 <t < --- < tp, ¢ = 1 be the temporal grids that satisfies the following:
Letting 6"* := max;—1, _n,{tir — ti—1,0}, O™ := min;—1,_n,{t;ix — ti—1,}, we have a
constant cqisc > 1 such that §;** /5?““ < cqisc holds. Then, the statement of Lemma 4.4

can be replaced by

2Cdisc
Z |mj(tifl,€»7'n)|2(7'n —Ty-1) < SV
J

ti e <Th<TN
and that of Theorem 4.5 by

SB[ |7 0 BC. 240 )|

n=1

] (Ty = Ty—1)

D(A"+1/2)

oo ng

< 2cqisc B [Z >

N 2
’«@JB(U—M,X'I’L(ti—u))e@m/@hzHD(AL) (tie —tic1e)]-
=1 i=1

5 Conclusion

In this paper, we considered an implicit Euler-Maruyama scheme for a class of
stochastic partial differential equations with a non-uniform time discretisation. For this
scheme, we showed that a discrete analogue of the maximal L?-regularity holds, which
has the same form as the maximal regularity of the original problem.
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