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Abstract. Present day bio-medical research is pointing towards the fact that
cognizance of gene–environment interactions along with genetic interactions
may help prevent or detain the onset of many complex diseases like cardio-
vascular disease, cancer, type2 diabetes, autism or asthma by adjustments to
lifestyle.

In this regard, we propose a Bayesian semiparametric model to detect
not only the roles of genes and their interactions, but also the possible in-
fluence of environmental variables on the genes in case-control studies. Our
model also accounts for the unknown number of genetic sub-populations via
finite mixtures composed of Dirichlet processes. An effective parallel com-
puting methodology, developed by us harnesses the power of parallel process-
ing technology to increase the efficiencies of our conditionally independent
Gibbs sampling and Transformation based MCMC (TMCMC) methods.

Applications of our model and methods to simulation studies with bio-
logically realistic genotype datasets and a real, case-control based genotype
dataset on early onset of myocardial infarction (MI) have yielded quite in-
teresting results beside providing some insights into the differential effect of
gender on MI.

1 Introduction

Although many people tend to classify the cause of a disease as either genetic or environmen-
tal, only a few diseases like Huntington’s Disease (HD) or GM2 gangliosidosis have so far
been identified as purely genetic disorders. As indicated by many epidemiological studies, a
different effect of a genotype is often observed on disease risk in persons with different en-
vironmental exposures (see Mapp (2003), Khouri (2005)). Also there may be multiple genes
which interact with each other to cause a disease only when an environmental factor passes
a given threshold, implying thereby that presence of a risk allele may not be exposing all
individuals to the same risk.

Hunter (2005) and Mather and Caligary (1976), point out that estimation of only the sepa-
rate contributions of genes and environment to a disease, ignoring their interactions, will lead
to incorrect estimation of the proportion of the disease (the “population attributable fraction”)
that is explained by the genes, the environment, and their joint effect.

Study of gene–environment interaction is important to the field of pharmacogenetics also,
since the efficacy and side-effects of some medications can vary depending on an individ-
ual’s genotype (see Scott (2011)). Hence, extensive study of gene–environment interactions
through sophisticated statistical modelling is necessary to devise new methods of disease
prevention, detection and intervention.

Gene–environment interaction is often conceptualized as genetic control of sensitivity
to different environments (Purcell (2002)). According to Mather and Caligary (1976) (see
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also Ottman (2010)) gene–environment interaction is defined as “a different effect of an en-
vironmental exposure on disease risk in persons with different genotypes”. As genes are
the fundamental units of change in an environmental response system, in order to model
the gene–environment interaction effectively, it is important to understand the mechanism
through which genes and environment interact together to bring about a physiological change
in an individual. An environmental exposure could trigger a physiological change in a num-
ber of ways. Exposure to certain environmental stimuli may directly or indirectly alter the
epigenome of an individual, which is a network of chemical compounds surrounding DNA
that modify the genome without altering the DNA sequences and have a role in determining
which genes are active in a particular cell. Exposure to mutagens like high doses of x-ray
or nuclear radiation, smoking etc. can enter into the body through tissues and directly in-
terfere with the DNA sequence or replication mechanism. Some environmental stimuli may
affect DNA indirectly by altering transcription factors and hence changing the expressions of
certain genes. Many gene–gene interactions have been shown to be started by some environ-
mental exposure. For example, excessive alcohol intake has been shown to suppress TACE
gene, which then activates less MTHFR, resulting in reduced folate metabolism, causing de-
pression.

Although the study of gene–environment interaction has become essential to the under-
standing of the aetiology of almost every disease, very little success has so far been achieved
in this field. This want of success may be attributed to many causes like inadequacy of mod-
els incorporating the complex mechanism through which genes and environment may affect
a disease risk (Wang, Elston and Zhu (2010)). Indeed, given the complexity involved in the
gene–environment interactions, no simple linear or additive relationship alone can model the
relationship effectively. According to Wright, Carothers and Campbell (2002) and Wang, El-
ston and Zhu (2010), although statistical definition of gene environment interaction may lack
clear biological interpretations, quantification of biological interaction should be based on
statistical concepts of interaction. Furthermore, inadequacy of data regarding environmental
exposure of individuals and stratified population structure are also important factors imped-
ing success of the existing methods in this field. Association tests based on a pooled set of
genetically diverse sub-populations (i.e., having differences in allele frequencies across sub-
populations) may result in extremely inflated rates of false positives (see Bhattacharjee et al.
(2010)).

The above discussion points towards the fact that the widely-used log-linear models (see,
for example, Mukherjee et al. (2008, 2010, 2012), Mukherjee and Chatterjee (2008), Sanchez,
Kang and Mukherjee (2012), Ahn et al. (2013), Ko et al. (2013)) are perhaps not quite ade-
quate for modeling complex gene–gene and gene–environment interactions. Moreover, such
models consider quite restrictive and ad-hoc association structures for simplifying compu-
tation and only attempt to test whether or not the interaction is present without being able
to quantify the strength of the interaction. Uncertainty regarding unknown number of sub-
populations are also not generally accounted for in the existing interaction models.

Our Bayesian hierarchical mixture model framework is aimed at incorporating all the
aforementioned desirable mechanisms through which gene–environment interaction, along
with the isolated effects of genes and their interactions may affect an individual’s risk of
being affected by a disease, taking into account the fact that the underlying population may
be stratified in nature. Since the number of sub-populations is not usually known, one must
coherently and carefully account for the uncertainty associated with the unknown number of
sub-populations. An additional feature of our model is learning about the number of under-
lying genetic sub-populations.

Because of dependence on environmental variables, our Bayesian semiparametric model
comprises Dirichlet process (henceforth, DP) finite mixture models even at the individual



Bayesian semiparametric gene–environment and gene–gene interactions 73

subject level, in addition to genetic and case-control status. The mixtures share a complex
dependence structure between themselves through suitable hierarchical matrix-normal distri-
butions, suitably taking account of the dependence induced by the environmental variable.
To detect the roles of genes, environment, gene–gene and gene–environment interactions,
we extend the gene–gene interaction model and the associated Bayesian hypotheses testing
methods of Bhattacharya and Bhattacharya (2016) (henceforth, BB), and for the purpose of
computation we develop a powerful parallel Markov chain Monte Carlo (MCMC) algorithm
which exploits the conditional independence structures inherent in our Bayesian model, and
combines the efficiencies of our Gibbs sampling method associated with the mixtures and
Transformation based MCMC (TMCMC) of Dutta and Bhattacharya (2014). It is to be noted
that parallel computation in statistics is not very rare nowadays. In contexts different from
ours, promising parallelisable MCMC algorithms are making their appearances in the recent
times; see Martino, Elvira and Camps-Valls (2018), Martino et al. (2016), Chen et al. (2016),
Jacob, Robert and Smith (2011), Calderhead (2014) and Brockwell (2006). These works aim
to improve the performance, save computational cost of Gibbs samplers and to parallelize the
Metropolis-Hastings technique under various setups.

The rest of our paper is structured as follows. We introduce our proposed Bayesian semi-
parametric gene–environment interaction model in Section 2. In Section 3, we extend the
Bayesian hypothesis testing procedures proposed in BB to learn about the roles of genes, en-
vironmental variables and their interactions in case-control studies. In Section 4, we demon-
strate the validity of our model and methods with successful applications to five biologically
realistic simulated data sets associated with five different set-ups. We also analysed a case-
control type myocardial infarction data set obtained from dbGap with our model and methods,
the results of which we report and discuss in detail in Section 5. As we point out, our results
broadly agree with and in some cases contrast the existing results on this data set. Finally,
we summarize our work with concluding remarks in Section 6. Further details are provided
in the supplement (Bhattacharya and Bhattacharya (2020)), whose sections and figures have
the prefix “S-” when referred to in this paper. The main notations, abbreviations and their
explanations associated with our work are summarized in Table 1.

2 A new Bayesian semiparametric model for gene–gene and gene–environment
interactions

2.1 Case-control genotype data

We first notify the statistical reader that each cell of the human body consists of 23 pairs of
chromosomes; one chromosome from each pair is inherited from the mother and the other
from the father. Now, for s = 1,2 denoting the two chromosomes inherited from mother and
father, let xs

ijkr = 1/0 indicate respectively, the presence and absence of the minor allele at
r th locus of the j th gene for the ith individual belonging to the kth group of case/control,
where k = 0,1, with k = 1 denoting case; i = 1, . . . ,Nk; r = 1, . . . ,Lj and j = 1, . . . , J ;
let N = N0 + N1. Here minor allele refers to the second most common allele occurring in a
given population.

Let Ei denote a set of environmental variables associated with the ith individual. In what
follows, we model this case-control genotype data, along with the information on the en-
vironmental variables using our Bayesian semiparametric model, described in the next few
sections.
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Table 1 Notations and their explanations

Notation Explanation

xs
ijkr Indicates the presence/absence of minor allele for ith individual, j th

gene, kth case/control status at the rth locus, where s = 1,2 indicates the
two chromosomes; i = 1, . . . ,Nk indicates the individuals; j = 1, . . . , J

denotes the J genes; k = 1/0 stands for case/control; r = 1, . . . ,Lj

denotes the Lj loci corresponding to the j th gene.

xijkr = (x1
ijkr , x

2
ijkr ) represents the genotype of the ith individual, j th gene,

belonging to the kth group of case/control at the rth locus.

Xijk = (xijk1,xijk2, . . . ,xijkLj
) denotes the genotype information at all the

Lj loci of the ith individual’s j th gene of the kth case/control group.

Ei Set of environmental variables associated with the ith individual.

pmijkr Denotes the minor allele frequency related to the mth subpopulation, ith
individual, j th gene, kth case/control group at the rth locus.

pmijk = (pmijk1,pmijk2, . . . , pmijkLj
) denotes the vector of minor allele

frequencies corresponding to the mth subpopulation at the Lj loci of the
ith individual’s j th gene belonging to the kth group of case/control.

πmijk The unknown probability of the mth mixture component, where
m = 1, . . . ,M; M is the maximum possible number of subpopulations.

zijk Allocation variables such that P [zijk = m] = πmijk .

DP(αijkG0,ijk) Stands for Dirichlet process with expected probability measure G0,ijk

having precision parameter αijk .

B(ν1ijkr , ν2ijkr ) Stands for Beta distribution with non-negative parameters ν1ijkr , ν2ijkr .

D(α1ijk, . . . , αM0,ijk) Dirichlet distribution with non-negative parameters α1ijk, . . . , αM0,ijk .

Np(μ,�) Stands for p-dimensional (p > 1) multivariate normal disributtion with
mean vector μ and variance—covariance matrix �.

N(μ,σ 2) Stands for univariate normal distribution with mean μ and variance σ 2.

G(α,β) Stands for gamma distribution with non-negative parameters α and β.

2.2 Modeling genotypic sub-populations with mixture models driven by Dirichlet
processes

Let xijkr = (x1
ijkr , x

2
ijkr ) represent the genotype of ith individual, j th gene, belonging to the

kth group of case/control at the r th locus, and let Xijk = (xijk1,xijk2, . . . ,xijkLj
) denote the

genotype information at all the Lj loci of ith individual’s j th gene of the kth group. Also, let
pmijkr stand for the minor allele frequency related to the mth subpopulation, ith individual,
j th gene, kth case/control group at the r th locus. Note that minor allele frequency is the
frequency at which the second most common allele occurs in a given population.

We assume that for every triplet (i, j, k), Xijk have the mixture distribution

[Xijk] =
M∑

m=1

πmijk

Lj∏

r=1

f (xijkr |pmijkr ), (2.1)

where f (·|pmijkr ) is the Bernoulli mass function given by

f (xijkr |pmijkr) = {pmijkr}x1
ijkr+x2

ijkr {1 − pmijkr}2−(x1
ijkr+x2

ijkr ), (2.2)

and M denotes the maximum number of mixture components possible, with πmijk being the
(unknown) probability of the mth mixture component.

Allocation variables zijk , with probability distribution

[zijk = m] = πmijk, (2.3)
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for i = 1, . . . ,Nk and m = 1, . . . ,M , allow representation of (2.1) as

[Xijk|zijk] =
Lj∏

r=1

f (xijkr |pzijkijkr ). (2.4)

Following Majumdar et al. (2013), BB, we set πmijk = 1/M , for m = 1, . . . ,M , and for all
(i, j, k).

Letting pmijk = (pmijk1,pmijk2, . . . , pmijkLj
) denote the vector of minor allele frequen-

cies corresponding to the mth subpopulation at the Lj loci of the ith individual’s j th gene
belonging to the kth group of case/control. We next assume that

p1ijk,p2ijk, . . . ,pMijk

iid∼ Gijk; (2.5)

Gijk ∼ DP(αijkG0,ijk), (2.6)

where DP(αijkG0,ijk) stands for Dirichlet process with expected probability measure G0,ijk

having precision parameter αijk . We specify the base probability measure G0,ijk as follows:
for m = 1, . . . ,M and r = 1, . . . ,Lj ,

pmijkr
iid∼ B(ν1ijkr , ν2ijkr ), (2.7)

under G0,ijk . Coincidences among P Mijk = {p1ijk,p2ijk, . . . ,pMijk}, which occur with pos-
itive probability, is the property of the DP based mixture models that we exploit to learn about
the actual number of mixture components.

The associated Polya urn distribution of P Mijk can be derived by marginalizing over Gijk :
[
pmijk|P Mijk \ {pmijk}

] ∼ αijk

αijk + M − 1
G0,ijk(pmijk)

+ 1

αijk + M − 1

M∑

m′ �=m=1

δpm′ijk
(pmijk),

(2.8)

where δpm′ijk
(·) denotes point mass at pm′ijk . This scheme is useful for constructing an effi-

cient Gibbs sampling strategy for simulating the mixtures conditional on the other parameters,
embedded in a parallel MCMC strategy that we devise, bypassing the infinite-dimensional
random measure Gijk .

Coincidences among the mixture components associate the triplets (i, j, k) to different
mixtures with varying number of components. Indeed, the genotype distributions of any two
individuals i and i ′ arising from a given sub-population with the same gene indexed by j but
with different case-control status, are likely to be different, so that (i, j, k = 0) and (i ′, j, k =
1) may correspond to different mixtures. Also, for any two genes indexed by j and j ′, (i, j, k)

and (i, j ′, k) may correspond to different mixtures because of differences in the distribution
of genotypes of genes j and j ′ for the ith individual. Furthermore, for any two individuals
indexed by i and i ′, (i, j, k) and (i′, j, k) are likely to be associated with different mixtures
because the genotype distribution of the j th gene may be affected by different environmental
exposures Ei and Ei′ . Thus, it seems that the DP based mixtures realistically take account of
the various genotypic sub-populations and the number of such sub-populations the data arise
from.

The above ideas are similar in essence to those in BB, but note that in their case, since the
environmental effect Ei is not considered, the mixtures were with respect to (j, k) only, not
with respect to (i, j, k) as in our current scenario influenced by Ei .

Following BB, we set M , the maximum possible number of sub-populations to be 30 and
αijk = 10 in our applications. These choices are not affected by the presence of environmental
variables, and performed adequately in our Bayesian analyses.
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We remark that when the population structure is accurately known, then the situation is
rendered a special case of our DP formulation. To clarify, first let us suppose that the true
number of mixture components, say, M0,ijk , are known. In that case, we shall set M = M0,ijk

and let αijk → ∞, so that the DP tends to point mass on G0,ijk . In practice, we shall sim-
ply assume that p1ijk,p2ijk, . . . ,pM0,ijk

iid∼ G0,ijk . Thus, the representation (2.1) reduces
to an M0,ijk-component parametric mixture, where the parameters independently follow
the above G0,ijk distribution. Here, rather than setting πmijk = 1/M , we shall assume that
(π1ijk, . . . , πM0,ijk) ∼ D(α1ijk, . . . , αM0,ijk), a Dirichlet distribution with non-negative pa-
rameters α1ijk, . . . , αM0,ijk . As is usual, we may consider a non-informative Dirichlet prior
by setting αmijk = 1, for m = 1, . . . ,M0,ijk . The rest of our model remains the same as before.
Since gene–gene and gene–environment interaction effects are modeled via the parameters of
G0,ijk , reduction of the Bayesian nonparametric mixture model to Bayesian parametric mix-
ture model does not compromise with the interaction effects. The same is true when not only
the number of components, but even the population stratification is explicitly known. Indeed,
in such case the allocation variables zijk are known, so that the probability πmijk on the right-
hand side of (2.3) is either 0 or 1. In other words, the mixture representation (2.1) reduces to
a single-component distribution with the associated parameter vector pzijkijk ∼ G0,ijk . The
above scenarios clearly leads to great reduction in computational complexity. Unfortunately,
in practice usually the population structure is unknown and hence we recommend the DP
based mixture model in general.

We conclude this section on DP based mixture modeling by drawing attention to a different
style of learning population structure which proceeds by modeling the allocation variables by
DP with discrete base measure; see De Iorio, Favaro and Teh (2015) and the references therein
for the details.

2.3 Modeling the complex gene–gene and gene–environment dependence structure
with appropriate modeling of the parameters of G0,ijk

We specify the dependence structure between the genes and the environment by primarily
seeing to it that the environment may act upon gene–gene interaction without affecting the
marginal distributions of the genotypes of the individual genes. However, we also take into
account the fact that in some cases the environmental variables may cause changes in the
distributions of the genotypes. Modelling the parameters of the expected probability measure
G0,ijk through a relevant hierarchical matrix-normal prior helps us incorporate the complex
G × E, G × G and also the SNP × SNP effects appropriately.

2.3.1 Modeling the parameters of G0,ijk . We model ν1ijkr and ν2ijkr , for each loci r =
1, . . . ,Lj , in j th gene, of every individual i, having case or control status k, that is for every
(i, j, k), as the following:

ν1ijkr = exp
(
ujr + λijk + μjk + β ′

jkEi

); (2.9)

ν2ijkr = exp
(
vjr + λijk + μjk + β ′

jkEi

)
. (2.10)

In the above, for fixed k, ujr + λijk + μjk can be interpreted as the total additive effect of
the r th SNP of the j th gene of the ith individual, where ujr is the effect of the r th locus of
the j th gene, λijk is the effect of the j th gene of the ith individual and μjk is the effect of
the j th gene. Allowing ujr to be different from vjr ensures that the mean of pmijkr under
G0,ijk depends upon the r th SNP of the j th gene. The complex dependence structure that
may exist between the SNPs within a gene and between the genes has been incorporated in
our model by the parameters ujr , vjr and λijk , μjk respectively (see BB for details). Here
Ei is the d-dimensional vector of continuous environmental variables for the ith individual.
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The model can be easily extended to include categorical environmental variables along with
the continuous ones.

Note that, non-null βjk indicates significant marginal effect of the environmental variable
E on the j th gene. In Section 2.3.2, we introduce a modeling strategy that accounts for the
complex phenomenon through which gene–gene interaction gets modified under the environ-
mental effect, even though the marginal effects of the genes remain unchanged.

2.3.2 Matrix normal prior for λijk’s. Let λ = (λ1, . . . ,λJ ), where λj = (λ1j0, . . . , λn0j0,

λ1j1, . . . , λn1j1), for j = 1, . . . , J . Note that λijk is shared by every locus of the j th gene of
the individual indexed by (i, k).

We consider the following model for λ:

λ ∼ NJ (ξ ,A ⊗ �̃), (2.11)

where A is the J × J left covariance matrix, indicating gene–gene interaction in the absence
of environmental effect, and �̃ = � + φE is the right covariance matrix under the effect of
the environmental variable E. Here φ ≥ 0, � is some positive definite matrix, and the (i, j)th
element of the positive definite matrix E , associated with the environmental variable E, is
given by

Eij = exp
(−b‖Ei − Ej‖2)

, (2.12)

where b > 0 is a smoothness parameter.
Note that φ = 0 indicates absence of environmental effects on gene–gene interaction. It is

quite important to observe that, because of the above Gaussian assumption, even for non-zero
φ, which points towards indirect effect of environmental factors on the epigenome, triggering
genetic interactions, the marginal genotypic distributions associated with the J genes of our
model remain unaffected by E.

For convenience, we represent the JN -dimensional vector λ as a J × N matrix �, which
has the following probability density function:

π(�) = exp[− tr{�̃−1
(� − ξ)T A−1(� − ξ)}]

(2π)J |A|N |�|J . (2.13)

It follows that

�col,k ∼NJ

(
ξ col,k, σ̃kkA

)
, (2.14)

where �col,k and ξ col,k are the kth columns of � and ξ , respectively. The covariance matrix
between �col,k1 and �col,k2 is given by

cov
(
�col,k1,�col,k2

) = σ̃k1k2A, (2.15)

where σ̃k1k2 denotes the (k1, k2)th element of �̃. Also,

�row,j ∼ NN

(
ξ row,j , ajj �̃

)
, (2.16)

where �row,j and ξ row,j are the j th rows of � and ξ , respectively. Further,

cov
(
�row,j1,�row,j2

) = aj1j2�̃. (2.17)

In our applications, following BB, we choose ξ = 0.
To summarize, the matrix-normal prior imposes a dependence structure between the genes

through the gene–gene interaction matrix A, and �̃ features the direct or indirect effect of the
environmental factors, on the epigenome of the individuals. The randomness associated with
the matrix-normal prior on � incorporates dependence between the SNPs within a gene.

Further discussion regarding the effect of environmental variables on gene–gene interac-
tion is provided in Section S-1 of the supplement.
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2.3.3 Priors for ujr and vjr . We follow BB in setting, for j = 1, . . . , J , ujr ′ = ur ′ and
vjr ′ = vr ′ for r ′ = 1, . . . ,L, where L = max{Lj ; j = 1, . . . , J }, and assuming for r ′ =
1, . . . ,L,

ur ′
iid∼ N(0,1); (2.18)

vr ′
iid∼ N(0,1). (2.19)

See BB for the details regarding the choice of ujr and vjr .

2.3.4 Priors on μjk , βjk , A, �, b and φ. We put the following hierarchical priors on
μ = (μjk; j = 1, . . . , J ;k = 0,1) and β = (β
;
 = 1, . . . ,D), where β
 = (β
jk; j =
1, . . . , J ;k = 0,1):

μ ∼ N2J (0,Aα ⊗ �α); (2.20)

β


iid∼ N2J (0,Aβ ⊗ �β); 
 = 1, . . . ,D. (2.21)

For priors on Aα , Aβ , �α and �β , we first consider their respective Cholesky decomposi-
tions: Aα = CαC′

α , Aβ = CβC′
β , �α = DβD′

β and �β = DβD′
β . We assume that the di-

agonal elements of the above Cholesky factors are identically and independently distributed
as G(0.01,0.01), that is, gamma distribution with mean 1 and variance 100. We assume the
non-zero off-diagonal elements of the Cholesky factors to be identically and independently
distributed as N(0,102).

Using the same Cholesky decomposition idea, we assume that the off-diagonal elements of
the Cholesky factors of A and � to be identically and independently distributed as N(0,102),
and the diagonal elements to be identically and independently distributed as G(0.01,0.01).

We put log-normal priors on b and φ, so that both log(b) and log(φ) are normally dis-
tributed with mean zero and variance 100.

Recall that the mixtures associated with gene j ∈ {1, . . . , J }, and individual i ∈ {1, . . . ,Nk}
and case-control status k ∈ {0,1}, are conditionally independent of each other, given the in-
teraction parameters. This allows us to update the mixture components in separate parallel
processors, conditionally on the interaction parameters. Once the mixture components are
updated, we update the interaction parameters using a specialized form of TMCMC, in a sin-
gle processor. A schematic representation of our model and the parallel processing algorithm
is provided in Figure 1. Details of our parallel processing algorithm are provided in Section
S-2 of the supplement.

3 Detection of the roles of environment, genes and their interactions in
case-control studies

3.1 Formulation of appropriate Bayesian hypothesis testing procedures

In order to investigate if genes have any effect on case-control, we first define

h0j (·) = 1

M

M∑

m=1

Lj∏

r=1

f
(·|pr

mi0jk=0
); (3.1)

h1j (·) = 1

M

M∑

m=1

Lj∏

r=1

f
(·|pr

mi1jk=1
)
, (3.2)



Bayesian semiparametric gene–environment and gene–gene interactions 79

Figure 1 Schematic diagram for our model and parallel processing idea: The arrows in the diagram represent
dependence between the variables. The ranks of the processors updating the sets of parameters in parallel using
Gibbs sampling are also shown. Once the other parameters are updated in parallel, the interaction parameters
are updated using TMCMC by the processor with rank zero.

where, for k = 0,1, ik is the index such that P Mikjk = {p1ikjk,p2ikjk, . . . ,pMikjk} is some
measure of central tendency of {P Mijk = {p1ijk,p2ijk, . . . ,pMijk}; i = 1, . . . ,Nk}. Appro-
priate measures of central tendency, based on clusterings, is discussed in Section 3.2, with
details in Section S-3.

Thus, h0j and h1j are the mixture distributions of the genotype of gene j associated with
control and case, respectively, with 1/M being the component-wise mixing probabilities (re-
call from Section 2.2 that we had set πmijk = 1/M for all m, i, j , k). If gene j is not respon-
sible for the case control status, then we must have h0j = h1j , else, h0j �= h1j . Formally, to
ascertain if the J genes under consideration have any effect on the case-control status, it is
pertinent to test

H01 : h0j = h1j ; j = 1, . . . , J, (3.3)

versus

H11 : not H01. (3.4)

To investigate the effects of environment and gene–gene interactions we shall also test, for

 = 1, . . . ,D; j = 1, . . . , J , and k = 0,1:

H02 : β
jk = 0 versus H12 : β
jk �= 0, (3.5)

and

H03 : φ = 0 versus H13 : φ �= 0. (3.6)

The cases that can possibly arise and the respective conclusions are the following:
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• If max1≤j≤J d(h0j , h1j ) is significantly small with high posterior probability, then H01 is
to be accepted. If h0j and h1j are not significantly different, then it is plausible to conclude
that the j th gene is not marginally significant in the case-control study.

• Suppose that H01 is accepted (so that genes have no significant role) and that β
jk is sig-
nificant, at least for some 
, j and k, but φ is insignificant. This may be interpreted as
the environmental variable E having some altering effect on the j th gene, that doesn’t af-
fect the disease status. If φ turns out to be significant, then this would additionally imply
that the environmental variable E influences gene–gene interaction, but not in a way that
causes the disease.

• If H01 is rejected, indicating that the genes have significant roles to play in causing the
disease, but none of the β
jk or φ turn out to be significant, then only genes, not E, are
responsible for causing the disease. In that case, the disease may be thought to be of purely
genetic in nature.

• Suppose H01 is rejected, β
j0 and β
j1 turn out to be significant, but that H0
j : β
j0 = β
j1
is accepted.Then although E is insignificant with respect to the marginal effect of gene j ,
it affects the disease status by triggering gene–gene interaction in some genes if φ turns
out to be significant.

• If H01 is rejected, β
jk is significant for some 
, j , k, and φ is insignificant, then the
presence of E has altering effect on some genes, which, in turn, cause the disease. In this
case, since φ is insignificant, E does not seem to influence gene–gene interaction.

• If H01 is rejected, β
jk is insignificant for all 
, j , k, but φ is significant, then significant
effect of E on altering the marginal effect of genes is to be ruled out, and one may conclude
that the underlying cause of the disease is gene–gene interaction, which has been adversely
affected by the environmental variable.

• If H01 is rejected, β
jk is significant for some 
, j , k, and φ is also significant, then the
environmental variable has possibly significantly affected both the marginal and also gene–
gene interaction adversely to cause the disease.

3.2 Hypothesis testing based on clustering modes

For k = 0,1, let ik denote the index of the “central” clusterings of P Mijk = {p1ijk,p2ijk, . . . ,

pMijk}, i = 1, . . . ,Nk . The concept of central clustering has been introduced by
Mukhopadhyay, Bhattacharya and Dihidar (2011). Significant divergence between the two
clusterings of P Mi0jk=0 = {p1i0jk=0,p2i0jk=0, . . . ,pMi0jk=0} and P Mi1jk=1 = {p1i1jk=1,

p2i1jk=1, . . . ,pMi1jk=1}, for j = 1, . . . , J . clearly indicates that the j th gene is marginally
significant. Once i0 and i1 are determined, we shall consider the clustering distance between
P Mi0jk=0 and P Mi1jk=1, denoted by d̂(P Mi0jk=0,P Mi1jk=1), as a suitable measure of di-
vergence. We shall be particularly interested in

d∗ = max
1≤j≤J

d̂(P Mi0jk=0,P Mi1jk=1). (3.7)

In Section S-3 of the supplement we include a brief discussion of the aforementioned method-
ology.

BB point out that although significantly large divergence between clusterings indicate re-
jection of the null hypothesis, insignificant clustering distance need not necessarily provide
strong enough evidence in favour of the null. In other words, even if the clustering distance is
insignificant, it is important to check if the parameter vectors being compared are significantly
different. In this regard, BB propose an appropriate divergence measure based on Euclidean
distances of the logit transformations of the minor allele frequencies. The necessary ideas in
our current context are discussed in Section S-3.1 of the supplement. In our case, in order

to compute the Euclidean distance, we first compute the averages p̄mijk = ∑Lj

r=1 pm,ijkr/Lj ,
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then consider their logit transformations logit(p̄mijk) = log{p̄mijk/(1 − p̄mijk)}. Then, we
compute the Euclidean distance between the vectors

logit(P̄ Mi0jk=0) = {
logit(p̄1i0jk=0), logit(p̄2i0jk=0), . . . , logit(p̄Mi0jk=0)

}

and

logit(P̄ Mi1jk=1) = {
logit(p̄1i1jk=1), logit(p̄2i1jk=1), . . . , logit(p̄Mi1jk=1)

}
.

We denote the Euclidean distance associated with the j th gene by

dE,j = dE,j

(
logit(P̄ Mi0jk=0), logit(P̄ Mi1jk=1)

)
,

and denote max1≤j≤J dE,j by d∗
E .

3.3 Formal Bayesian hypothesis testing procedure integrating the above developments

In our problem, we need to test the following for reasonably small choices of ε’s:

H0,d∗ : d∗ < εd∗ versus H1,d∗ : d∗ ≥ εd∗; (3.8)

H0,d∗
E

: d∗
E < εd∗

E
versus H1,d∗

E
: d∗

E ≥ εd∗
E
; (3.9)

H0,β
jk
: |β
jk| < ε
jk versus H1,β
jk

: |β
jk| ≥ ε
jk,

for 
 = 1, . . . ,D; j = 1, . . . , J ;k = 0,1; (3.10)

H0,φ : φ < εφ versus H1,φ : φ ≥ εφ. (3.11)

If H0 is rejected in (3.8) or in (3.9), we could also test if the j th gene is influen-
tial by testing, for j = 1, . . . , J , H0,d̂j

: d̂j < ε
d̂j

versus H1,d̂j
: d̂j ≥ ε

d̂j
, where d̂j =

d̂(P Mi0jk=0,P Mi1jk=0); we could also test H0,dE,j
: dE,j < εdE,j

versus H1,dE,j
: dE,j ≥

εdE,j
.

To test if gene–gene interactions are significant, one may test, following BB, H0,j,j∗ :
|Ajj∗ | < εAjj∗ versus H1,j,j∗ : |Ajj∗ | ≥ εAjj∗ , for j∗ �= j , Ajj∗ being the (j, j∗)th element
of A. If H1,j,j∗ is accepted for some (or many) j∗ �= j , then this would indicate significant
interaction between the j∗th and the j th genes.

As argued in BB, here also it is easily seen that our testing procedure is equivalent to
Bayesian multiple testing procedures that minimize the Bayes risk of additive “0-1” and “0-
1-c” loss functions (see BB for the details; see also Berger (1985)). Since it is well-known
that Bayesian multiple testing methods automatically provide multiplicity control through the
inherent hierarchy (see, for example, Scott and Berger (2010)), separate error control is not
necessary. A brief, schematic representation of the hierarchy of the hypothesis tests is shown
in Figure 2.

Our choices of the ε’s are based on the idea of null model introduced in BB. In a nutshell,
we first specify an appropriate null model, which, for example, is the same model as ours but
with A and �̃ set to identity matrices to reflect the null hypotheses of “no interaction” and the
same mixture distributions under cases and controls for each gene for no genetic effect. From
the null model thus specified, we then generate case-control genotype data and fit our general
Bayesian model to this “null data” and set ε to be the 55th percentile of the relevant posterior
distribution. The rationale and details of this procedure are provided in BB (particularly in
Section S-7 of their supplement).
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Figure 2 Schematic diagram for our Bayesian testing idea.

4 Simulation studies

For simulation studies, we first generate biologically realistic genotype data sets under strat-
ified population with known G × G and G × E set ups from the GENS2 software of Pinelli
et al. (2012). We consider simulation studies in 5 different true model set-ups with two
genes, one environmental variable and 5 sub-populations: (a) presence of gene–gene and
gene–environment interaction, (b) absence of genetic or environmental effect, (c) absence
of genetic and gene–gene interaction effects but presence of environmental effect, (d) pres-
ence of genetic and gene–gene interaction effects but absence of environmental effect, and
(e) independent and additive genetic and environmental effects.

As we demonstrate, our model and methodologies successfully identify the marginal ef-
fects of the genes, along with the G × G and G × E, and the number of sub-populations. Here
we briefly summarize the results of our experiments while the details are provided in Section
S-4 of the supplement.

In case (a), both the clustering and the Euclidean metric suggest significant effects of
both the genes. Significant interaction between the two genes is also suggested by our test
regarding A12. In the true, data-generating model, although the environmental variable ex-
erts significant marginal effect on the genes, it does not influence gene–gene interaction. In
keeping with this, our test on φ led to acceptance of the null hypothesis of no significance.
Significance marginal effect of the environmental variable on gene 1 is borne out by the test
on β
jk’s, as β111 turned out to be significant.

In case (b) there is no gene–gene or gene-environmental interaction effect. As elucidated
in Section S-4.2, the test based on the Euclidean metric, which turned out to be more appro-
priate than the clustering metric in this case, rightly indicated insignificance of the genetic
effects. This of course leads to the conclusion that the environmental variable can not have
any negative impact on the genes to trigger the disease. However, our Bayesian nonparamet-
ric model can not be used to test if the environmental variable directly affects the case-control
status, without affecting the genes; see Section S-4.2 for the explanation. Hence, given that
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genetic effects are absent, we used the logistic regression to test the same, and obtained clear
acceptance of the null hypothesis of no significance of the environmental variable. In other
words, our results are in accordance with the true scenario.

Case (c) is a continuation of case (b) with the true model dictating the effect of the envi-
ronmental variable on case-control, although no genetic effects are present. The test based on
logistic regression suggested no environmental effect on gene–gene interaction. Thus, setting
φ = 0 in our Bayesian nonparametric model, we tested for the effects of the genes, obtaining
results that clearly suggested insignificance of the genetic effects. The tests with β
jk demon-
strated no environmental effect on the individual genes. However, the best logistic regression
model based on the Akaike Information Criterion (AIC) consists of the environmental vari-
able. On the basis of this and the result that all the genes insignificant, we conclude that the
environmental variable is the only factor responsible for the case-control status. Thus, our
results are consistent with the true scenario.

In case (d), our prescribed tests easily identified that the genetic effects and the gene–gene
interaction are significant, and that the environmental variable has no effect on the individual
genes or gene–gene interaction. We used test based on logistic regression as before to reach
the conclusion that the environmental effect has no effect the case-control outcome.

In the final simulation study case (e), note that our Bayesian model does not support the as-
sumption of additive genetic and environmental effects and hence is not expected to perform
well under this case. Resorting eventually to logistic model, we obtained the AIC-based best
model that consists of the additive marginal effects of the first gene and the environmental
variable, along with an additive intercept. This is broadly in keeping with the data-generating
mechanism. We find that with respect to our Bayesian model the additive effect has been
wholly transformed into the environmental effect, and that the environmental variable is much
more influential compared to the genes in the sense of directly affecting case-control status
without affecting the genes.

Note that it is very important to identify the so-called disease predisposing loci (DPL),
which are the SNPs that are responsible for influencing the risk of the disease. In cases (a),
(d) and (e), where genes play significant roles, the DPL for both the genes have been identified
with precision by our model and methods, in spite of the highly complex dependent structure
induced by the gene–gene and gene–environment interactions. Furthermore, in all the cases
(a)–(e), the true number of sub-populations are correctly identified. Thus, our model and
methods perform quite encouragingly.

5 Application of our model and methodologies to a real, case-control dataset on
myocardial infarction

MI (more commonly, heart attack), has been subjected to much investigation for detecting the
underlying genetic causes, the possible environmental factors and their interactions. Appli-
cation of our ideas to a case-control genotype dataset on early-onset of myocardial infarction
(MI) from MI Gen study, obtained from the dbGaP database (http://www.ncbi.nlm.nih.gov/
gap), led to some interesting insights into gene–environment and gene–gene interactions on
incorporating sex as the environmental factor.

5.1 Data description

The MI Gen data obtained from dbGaP broadly represents a mixture of four sub-populations:
Caucasian, Han Chinese, Japanese and Yoruban. For our analysis, we considered a set of
SNPs that are found to be individually associated with different cardiovascular end points

http://www.ncbi.nlm.nih.gov/gap
http://www.ncbi.nlm.nih.gov/gap
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like LDL cholesterol, smoking, blood pressure, body mass etc. in various GWA studies pub-
lished in NHGRI catalogue and augmented this set further with another set of SNPs found
to be marginally associated with MI in the MIGen study (see Lucas et al. (2012)). Our study
also includes SNPs that are reported to be associated with MI in various other studies; see
Erdmann, Linsel-Nitschke and Schunkert (2010), Qi et al. (2011) and Wang et al. (2004). In
all, we obtained 271 SNPs. Unfortunately, only 33 of them turned out to be common to the
SNPs of our original MI dataset on genotypes, which has been mapped on to the genes using
the Ensembl human genome database. However, we included in our study all the SNPs asso-
ciated with the genes containing the 33 common SNPs. Specifically, our study involves the
genotypic information on 32 genes covering 1251 loci, including the 33 previously identified
loci for 200 individuals. We chose this relatively small number of individuals to ensure com-
putational feasibility. However, even this data set, along with our model and prior, yielded
results that are not only compatible with, but also complement the results established in the
literature.

Categorization of the case-control genotype data into the four sub-populations, each of
which are likely to represent several further and rather varied sub-populations genetically,
implies that the maximum number of mixture components must be fixed at some value much
higher than 4. As before, we set M = 30 and αjk = 10 for every (j, k), to facilitate data-
driven inference.

We chose a similar set-up for the null model. That is, we chose the same number of genes
and the same number of loci for each gene, the same number of cases and controls, the same
value M = 30, but αjk = 1.5 for every (j, k), as in our simulation studies. We use the same
priors as in the real data set-up except that we set A and � to be identity matrices to ensure
that the genetic interaction is not present and set the same mixture distribution under cases
and controls for each gene to ensure the absence of genetic effects.

5.2 Remarks on incorporation of the sex variable in our model

In our case, Ei = Ei , a one-dimensional binary variable, where Ei = 1 if the ith individual
is male and Ei = 0 if female. Hence, βjk = βjk is a scalar quantity. In (2.9) and (2.10) we
considered the environmental variable to be continuous, but remarked that the model can be
easily extended to include categorical variables. Indeed, in this case the exponentials of (2.9)
and (2.10) can be thought of as binary regressions with sex as the covariate.

As regards Eij of (2.12), we first consider a0 + a1Ei as a binary regression, and then write

Eij = exp
(−∥∥(a0 + a1Ei) − (a0 + a1Ej)

∥∥2) = exp
[−a2

1(Ei − Ej)
2]

, (5.1)

with b = a2
1 being the smoothness parameter. Observe that for the same sex, Eij = 1 while

for different sex, Eij = exp(−b) < 1.

5.3 Remarks on model implementation

We first obtain the number of parameters to be updated by TMCMC in our case; other un-
knowns associated with the mixtures, to be updated using Gibbs steps in parallel. Note that
in our case, the interaction matrix A is of order 32 × 32 = 1024, and the associated Cholesky
decomposition then consists of 33 × 16 = 528 parameters. Also, λ is a NJ = 200 × 2 = 400-
dimensional random vector and � is of order N ×N = 200×200, so that its Cholesky decom-
position consists of 201 × 100 = 20100 parameters. Furthermore, {(ur , vr) : r = 1, . . . ,L},
where L = 207, consists of 2 × 207 = 414 parameters, μ and β consist of 64 parameters
each, and there are two more parameters b and φ. So, in all, there are 21,572 parameters to
be updated simultaneously in a single block using TMCMC.



Bayesian semiparametric gene–environment and gene–gene interactions 85

We implemented our parallel MCMC algorithm detailed in S-2 of the supplement
on a VMware consisting of 50 double-threaded, 64-bit physical cores, each running at
2493.990 MHz. In spite of the large number of parameters associated with the interaction
part, our mixture of additive and additive-multiplicative TMCMC still ensured reasonable
performance.

Our parallel MCMC algorithm takes about 11 days to yield 100,000 iterations in our afore-
mentioned VMware machine. We discard the first 50,000 iterations as burn-in. Informal con-
vergence diagnostics such as trace plots exhibited adequate mixing properties of our parallel
algorithm.

5.4 Results of the real data analysis

5.4.1 Effect of the sex variable. It turned out that εφ = 1.043069 and P(φ < εφ|Data) ≈
1, so that φ is clearly insignificant, indicating no differential effect of sex on the genetic
interactions. The posterior probabilities P(|β1j1 −β1j0| < ε|Data) are shown in Figure 3. As
before, ε is the 55th percentile of the posterior distribution of |β1j1 − β1j0| under the null
model. Under the 0-1 loss function, the above posterior probability exceeding 0.5 indicates
significant environmental effect on the j th gene. From the figure it is interesting to note
that there is significant differential effect due to sex on the marginal effects of several genes
although sex does not affect the genetic interactions significantly.

5.4.2 Influence of genes and gene–gene interactions on MI based on our study. Our
Bayesian hypotheses testing using the clustering metric yielded P(d∗ < ε1|Data) ≈ 0.35202
while that with the Euclidean distance we obtained P(d∗

E < ε2|Data) ≈ 0.51078. In other
words, it seems rather debatable whether or not the genes have significant overall effect on
MI. This is in sharp contrast with the results obtained by BB where both clustering metric
and Euclidean distance confirmed significant overall genetic influence on MI. However, both
the posterior probabilities are substantially large, practically indicating that the genes are not
very significant.

As far as testing of significance of the individual genes are concerned, it turned out that
under the clustering metric, except genes SMARCA4, RBMS1, COL4A1, RP11-306G20.1,
MRAS, SLC22A1, CDKAL1, PCSK9, ADAMTS9-AS2, and AP006216.5, the rest turned out
to be significant, while with respect to the Euclidean metric the only insignificant genes are
AP006216.10, CELSR2, MRAS, PCSK9, OR4A48P and BUD13. The posterior probabilities
of the null hypotheses (of no significant genetic influence) are shown in Figure S-6 of the sup-
plement. The figure reveals that the posterior probabilities of no significant genetic influence,

Figure 3 Index plots of posterior probabilities of no environmental effect with respect to |β1j0 − β1j1| < ε, for
j = 1, . . . ,32.
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although generally did not cross 0.5, are not adequately small to reflect very strong evidence
against the null hypotheses. This is consistent with the result on overall genetic significance
that we obtained.

The actual gene–gene correlations based on medians of the posterior covariances, are
shown in Figure S-7 of the supplement. The color intensities correspond to the absolute val-
ues of the correlations. Consistent with the figure, all the tests on interaction turned out to
support the hypotheses of no interaction.

Thus, individual genes have impact on MI but not gene–gene interactions. Moreover, the
relatively weak evidences against the null suggest that external factors, in our case sex, may
be playing a bigger role in explaining case-control with respect to MI. As such, given our data
set of size 200 with 77 cases, the empirical conditional probability of a male given case is
0.3766234, while the empirical conditional probability of a male given control is 0.504065,
indicating that with respect to our data, females seem to be more at risk compared to males.
Coherency of Bayesian models in general is instrumental in reflecting this information in our
inference in the way of downplaying the genes, suggesting at the same time that the only
external factor, namely, sex, must have more important effect.

A detailed investigation of the DPL detected by our model and methods, and the role of
SNP-SNP interactions behind such DPL, is carried out in Section S-5 of the supplement, and
a discussion on the posterior distribution of the number of distinct mixture components is
provided in Section S-6 of the supplement.

5.5 Discussion of our Bayesian methods and GWAS in light of our findings

Our results of Bayesian analysis of the MI data set demonstrate that sex plays more signifi-
cant role than the genes in triggering the disease, and in particular, do not support gene–gene
interaction. In these regards, our results significantly differ from those obtained by BB, who
do not consider the sex variable in their model. Since as per our inference sex seems to be
far more influential compared to the genes with respect to MI, there is internal consistency
of our more general gene–gene and gene–environment interaction model with the gene–gene
interaction model of BB. It is important to note that Lucas et al. (2012) analyzed the same
MI dataset using logistic regression and reached the same conclusion as ours that there is no
significant gene–gene interaction. Since two completely different methods of analyses are in
such strong agreement, it is pertinent to presume that the data contains enough information
on the lack of gene–gene interaction. However, as we demonstrated, SNP-SNP correlations
have important roles to play in determining the DPL. These are responsible for suppression
of the SNPs considered influential in the literature by implicit induction of negative corre-
lations between Euclidean distances between cases and controls for the associated SNPs.
Thus, even though the genes did not turn out to be as significant, it is clear that sophisticated
nonparametric modeling of gene–gene and SNP-SNP interactions is of utmost importance.

Finally, since in GWA studies are usually conducted by testing one SNP at a time, it is
important to clarify if the same is permissible with our Bayesian nonparametric model while
accounting for gene–gene and gene–environment interactions. We assert that this is indeed
the case. To elucidate, observe that our method of DPL detection, which uses the Euclidean
distance between SNP-wise case and control, can be easily formalized to create a SNP-wise
Bayesian hypothesis testing problem, the null hypothesis being that the SNP-wise Euclidean
distance is below some sufficiently small threshold. The Bayesian testing procedure is akin
to the distance based testing approach discussed in Section 3.3.

6 Summary and conclusion

In this paper, we have extended the Bayesian semiparametric gene–gene interaction model
of BB to realistically include the case of gene–environment interactions. Careful attention
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has been paid to the fact that in the absence of mutation, the environmental variable does
not affect the marginal genotypic distributions, in spite of influencing gene–gene interac-
tion. Needless to mention, our model considers dependence between SNPs as well to account
for LD effects, in addition to gene–gene, gene–environment and dependencies between in-
dividuals. Besides, our model, via DP, facilitates learning about the number of genotypic
sub-populations associated with the individuals and the genes, while accounting for the envi-
ronmental effect at the same time.

We extend the Bayesian hypotheses testing methods introduced in BB to enable test for
significances of marginal genetic and environmental effects, gene–gene interactions, effect
of environment on gene–gene interaction and mutational effect. The basis for our tests are
extensions of the clustering metric based tests proposed by BB to account for the environ-
mental variables, in conjunction with the tests based on Euclidean metric. We recommended
careful application of our tests based on the clustering metric, followed by re-confirmation
with respect to the Euclidean metric.

On the Bayesian computational side, we propose a powerful parallel processing algo-
rithm that takes advantage of the conditional independence structures built within our model
through the DP based mixture framework for parallelisation, and is complemented by the
efficiency of TTMCMC, which updates the interaction parameters within a single processor.

We validate our model and methodologies with applications to biologically realistic
datasets generated from under 5 different set-ups characterized by different combinations and
structures associated with gene–gene and gene–environment interactions. Adequate perfor-
mance of our model and methods are demonstrated in every situation. Additionally, our ideas
correctly captured the true number of genetic sub-populations in each case, and attempted to
capture the DPL adequately even in the face of highly complex dependence structures.

We apply our model and methods to the MI Gen data set also studied by BB and because
of inclusion of the sex variable, succeeded in obtaining results that are quite compatible with
those reported in the literature. Although the gene–gene interactions turned out to be insignif-
icant, the SNP-SNP correlations associated with case-control Euclidean distances facilitated
understanding the mismatch of our DPL with those reported in the literature as having signif-
icant impact on MI. Interestingly, our Bayesian approach allowed us obtain insightful results
even with a sample consisting of only 200 individuals, showing the importance of building
sophisticated models and prior structures, and efficient computational methods and technolo-
gies.
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Supplementary Material

Supplement to “Effects of gene–environment and gene–gene interactions in case-control
studies: A novel Bayesian semiparametric approach” (DOI: 10.1214/18-BJPS413SUPP;
.pdf). In Section S-1 we provide further discussion regarding the effects of environment on
gene-gene interactions. In Section S-2 we detail a parallel MCMC algorithm for implement-
ing our Bayesian model, and in Section S-3 we include a discussion of clustering metric,
clustering mode and Euclidean distance based divergence measures. We present the details
of our simulation studies in Section S-4 and in Section S-5 we explain at length the roles of
the disease predisposing loci detected by our Bayesian analysis of the real, myocardial in-
farction data. With respect to the real data, we present and analyze the posterior distributions
of the number of distinct components in Section S-6.
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