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Community identification in a network is an important problem in fields
such as social science, neuroscience and genetics. Over the past decade,
stochastic block models (SBMs) have emerged as a popular statistical frame-
work for this problem. However, SBMs have an important limitation in that
they are suited only for networks with unweighted edges; in various scientific
applications, disregarding the edge weights may result in a loss of valuable
information. We study a weighted generalization of the SBM, in which ob-
servations are collected in the form of a weighted adjacency matrix and the
weight of each edge is generated independently from an unknown probabil-
ity density determined by the community membership of its endpoints. We
characterize the optimal rate of misclustering error of the weighted SBM in
terms of the Renyi divergence of order 1/2 between the weight distributions of
within-community and between-community edges, substantially generalizing
existing results for unweighted SBMs. Furthermore, we present a computa-
tionally tractable algorithm based on discretization that achieves the optimal
error rate. Our method is adaptive in the sense that the algorithm, without
assuming knowledge of the weight densities, performs as well as the best
algorithm that knows the weight densities.

1. Introduction. The recent explosion of network datasets has created a need for new
statistical methodology [13, 16, 24, 33]. One active area of research with diverse scientific
applications pertains to community detection and estimation, where observations take the
form of edges between nodes in a graph, and the goal is to partition the nodes into disjoint
groups based on their relative connectivity [14, 21, 29, 35, 36, 39].

A standard model assumption in community recovery problems is that—conditioned on
the community labels of the nodes of the graph—each edge is generated independently ac-
cording to a distribution governed solely by the community labels of its endpoints. This is the
setting of the stochastic block model (SBM) [23]. Community recovery may also be viewed
as estimating the latent cluster memberships of the nodes a random graph generated by an
SBM. The last decade has seen great progress on this problem, beginning with the seminal
conjecture of Decelle et al. [12] (see, e.g., the survey paper by Abbe [1]). Various algorithms
for community recovery have been devised with guaranteed optimality properties, measured
in terms of correlated recovery [28, 30, 32], exact recovery [3–5] and minimum misclustering
error rate [15, 42].

However, an important shortcoming of SBMs is that all edges are assumed to be binary. In
contrast, the edges appearing in many real-world networks possess weights reflecting a diver-
sity of strengths or characteristics [10, 34]: Edges in social or cellular networks may quantify
the frequency of interactions between pairs of individuals [9, 38]. Similarly, edges in gene
co-expression networks are assigned weights corresponding to the correlation between ex-
pression levels of pairs of genes [43]; and in brain networks, edge weights may indicate the
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level of neuronal activity between corresponding regions in the brain [37]. Although an un-
weighted adjacency matrix could be constructed by disregarding the edge weight data, this
might result in a loss of valuable information that could be used to recover hidden communi-
ties.

This motivates the weighted stochastic block model, which we study in this paper. Each
edge is generated from a Bernoulli(p) or Bernoulli(q) distribution, depending on whether
its endpoints lie in the same community, and then each edge is assigned an edge weight
generated from one of two arbitrary densities, p(·) or q(·). We study the problem of commu-
nity estimation based on observations of the edge weights in the network, without assuming
knowledge of p, q , p(·) or q(·). Since p(·) and q(·) are allowed to be continuous, our model
strictly generalizes the discrete labeled SBMs considered in previous literature [22, 25, 27],
as well as the censored SBM [2, 17, 18].

We emphasize key differences between the weighted SBM framework and the setting of
other clustering problems involving continuous edge weights [7, 20]. First, we do not assume
that between-cluster edges tend to have heavier weights than within-cluster edges (e.g., in
mean-separation models). Such an assumption is critical to many algorithms for weighted
networks, since it allows existing algorithms for unweighted SBMs, such as spectral cluster-
ing, to be applied in relatively straightforward ways. In contrast, the algorithms in this paper
allow us to exploit other potential differences in p(·) and q(·), such as differences in variance
or shape. This is crucial to achieve optimal performance. Second, our setting is nonparamet-
ric in the sense that the densities p(·) and q(·) may be arbitrary and are only required to
satisfy mild regularity conditions, whereas previous approaches generally assume that p(·)
and q(·) belong to a specific parametric family. Nonparametric density estimation is itself a
difficult problem, made even more difficult in the case of weighted SBMs, since we do not
know a priori which edge weights have been drawn from which densities.

Our main theoretical contribution is to characterize the optimal rate of misclustering error
in the weighted SBM. On one side, we derive an information-theoretic lower bound for the
performance of any community recovery algorithm for the weighted SBM. Our lower bound
applies to all parameters in the parameter space (thus is not minimax) and all algorithms
that produce the same output on isomorphic networks—a property that we call permutation
equivariance. On the other side, we present a computationally tractable algorithm with a
rate of convergence that matches the lower bound. Our results show that the optimal rate for
community estimation in a weighted SBM is governed by the Renyi divergence of order 1

2
between two mixed distributions, capturing the discrepancy between the edge probabilities
and edge weight densities for between-community and within-community connections. This
provides a natural but highly nontrivial generalization of the results in Zhang and Zhou [42]
and Gao et al. [15], which show that the optimal rate of the unweighted SBM is characterized
by the Renyi divergence of order 1

2 between two Bernoulli distributions corresponding only
to edge probabilities.

Remarkably, our rate-optimal algorithm is fully adaptive and does not require prior knowl-
edge of p(·) and q(·). Thus, even in cases where the densities belong to a parametric family,
it is possible—without making any parametric assumptions—to obtain the same optimal rate
as if one imposes the true parametric form. This is in sharp contrast to most nonparametric
estimation problems in statistics, where nonparametric methods usually lead to a slower rate
of convergence than parametric methods if a specific parametric form is known. The appar-
ent discrepancy is explained by the simply stated observation that in weighted SBMs, one
does not need to estimate edge densities well in order to recover communities to desirable
accuracy. This intuition is also reflected in the work of Abbe and Sandon [5] for the exact
recovery problem and Gao et al. [15] for the unweighted SBM. Our proposed recovery algo-
rithm hinges on a careful discretization technique: When the edge weights are bounded, we
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discretize the distribution via a uniformly spaced binning to convert the weighted SBM into
an instance of a labeled SBM, where each edge possesses a label from a discrete set with
finite (but divergent) cardinality; we then perform community recovery in the labeled SBM
by extending a coarse-to-fine clustering algorithm that computes an initialization through
spectral clustering [11, 26] and then performs refinement through nodewise likelihood maxi-
mization [15]. When the edge weights are unbounded, we reduce the problem to the bounded
case by first applying an appropriate transformation to the edge weight distributions.

The remainder of our paper is organized as follows: Section 2 introduces the mathematical
framework of the weighted SBM, defines the community recovery problem, and formalizes
the notion of permutation equivariance. Section 3 provides an informal summary of our re-
sults, later formalized in Section 5. Section 4 outlines our proposed community estimation
algorithm. The key technical components of our proofs are highlighted in Section 6, and
Section 7 reports the results of various simulations.

Notation. For a positive integer n, we write [n] to denote the set {1, . . . , n} and Sn to denote
the set of permutations of [n]. For two real numbers a and b, we write a ∨ b to denote
max(a, b) and write a ∧ b to denote min(a, b).

2. Model and problem formulation. We begin with a formal definition of the homoge-
neous weighted SBM and a description of the community recovery problem.

2.1. Weighted stochastic block model. Let n denote the number of nodes in the network
and let K ≥ 2 denote the number of communities. A clustering σ is a function [n] → [K].
For each node u ∈ [n], we refer to σ(u) as the cluster of node u.

DEFINITION 2.1. For a positive number β ≥ 1, we define C(β,K) as the set of clus-
terings with minimum cluster size is at least n

βK
, that is, σ ∈ C(β,K) if and only if

|σ−1(k)| ≥ n
βK

for all k ∈ [K]. We refer to β as the cluster-imbalance constant.

We first define the homogeneous unweighted SBM, which is characterized by the follow-
ing distribution over adjacency matrices A ∈ {0,1}n×n.

DEFINITION 2.2 (Homogeneous unweighted SBM). Let σ0 ∈ C(β,K) and p,q ∈ [0,1].
We say that a random binary-valued matrix A has the distribution SBM(σ0,p, q) if for all
u < v, the entries of A are generated independently according to

Auv ∼
{

Ber(p) if σ0(u) = σ0(v),

Ber(q) if σ0(u) �= σ0(v).

Thus, the parameters p and q correspond to the within-cluster and between-cluster edge
probabilities. The more general heterogenous unweighted SBM is characterized by a matrix
P ∈ R

K×K of probabilities instead of two scalars p and q , and edges are generated indepen-
dently according to Auv ∼ Ber(Pσ0(u),σ0(v)).

A homogeneous weighted SBM is parametrized by σ0 ∈ C(β,K), the edge absence prob-
abilities P0 and Q0, and the edge weight probability densities p(·) and q(·) supported on
S ⊂ R, where S may be [0,1], [0,∞), or R. The weighted SBM is then characterized by a
distribution over symmetric matrices A ∈ Sn×n in the following manner.

DEFINITION 2.3 (Homogeneous weighted SBM). Let σ0 ∈ C(β,K). A random real-
valued matrix A has the distribution WSBM(σ0, (P0,p), (Q0, q)) if for all u < v,

Auv ∼
{
P0δ0(·) + (1 − P0)p(·) if σ0(u) = σ0(v),

Q0δ0(·) + (1 − Q0)q(·) if σ0(u) �= σ0(v),
(1)
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where P0δ0(·) + (1 − P0)p(·) denotes a probability distribution whose singular part (with
respect to the Lebesgue measure) is a point mass at 0 with probability P0 and whose con-
tinuous part has (1 − P0)p(·) as its Radon–Nikodym derivative with respect to the Lebesgue
measure; and Q0δ0(·) + (1 − Q0)q(·) is defined analogously.

Note that if p(·) and q(·) are Dirac delta masses at 1, the weighted SBM reduces to the
unweighted version. We make a few additional remarks about the definition of the weighted
SBM. First, we observe that E(A) may not exhibit the familiar block structure found in un-
weighted SBMs, since our model includes the case where (P0,p(·)) and (Q0, q(·)) have the
same mean. Second, our definition treats an edge with weight 0 as a missing edge, but it is
straightforward to distinguish the two notions by defining P and Q as probability measures
over S ∩ {∗}, where the symbol ∗ denotes a missing edge. Lastly, it is possible to generalize
the weighted SBM to a weighted and labeled SBM with the model

Auv ∼
{
P if σ0(u) = σ0(v),

Q if σ0(u) �= σ0(v),

where P and Q are general probability distributions over S (and the labels correspond to a
discrete part). The theory derived in this paper extends in a straightforward fashion to the
cases where the discrete portion of P and Q has finite support.

2.2. Community estimation. Given an observation A ∈ Sn×n generated from a weighted
SBM, the goal of community estimation is to recover the true cluster membership structure
σ0. We assume throughout our paper that the number of clusters K is known.

We evaluate the performance of a community recovery algorithm in terms of its miscluster-
ing error. For a clustering algorithm σ̂ , let σ̂ (A) : [n] → [K] denote the clustering produced
by σ̂ when provided with the input A. We have the following definition.

DEFINITION 2.4. We define the misclustering error to be

l
(
σ̂ (A), σ0

) := min
π∈SK

1

n
dH

(
π ◦ σ̂ (A), σ0

)
,

where dH (·, ·) denotes the Hamming distance. The risk of σ̂ is defined as R(σ̂ , σ0) :=
El(σ̂ (A), σ0), where the expectation is taken with respect to both the random network A

and any potential randomness in the algorithm σ̂ .

The goal of this paper is to characterize the minimal achievable risk for community recov-
ery on the weighted SBM in terms of the parameters (n,β,K, (P0,p), (Q0, q)).

2.3. Permutation equivariance. Since the cluster structure in a network does not depend
on how the nodes are labeled, it is natural to focus on estimation algorithms that output
equivalent clusterings when provided with isomorphic inputs. We formalize this property in
the following definition.

DEFINITION 2.5. For an n × n matrix A and a permutation π ∈ Sn, let πA denote the
n × n matrix such that Auv = [πA]π(u),π(v). Let σ̂ be a deterministic clustering algorithm.
Then σ̂ is permutation equivariant if, for any A and any π ∈ Sn,

τ ◦ σ̂ (πA) ◦ π = σ̂ (A) for some τ ∈ SK.(2)
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Note that σ̂ (πA) by itself is not equivalent to σ̂ (A), since the nodes in πA are labeled with
respect to the permutation π . It is straightforward to extend Definition 2.5 to randomized
algorithms by requiring condition (2) to hold almost everywhere in the probability space
that underlies the algorithmic randomness. Permutation equivariance is a natural property
satisfied by all the clustering algorithms studied in literature except algorithms that leverage
extra side information in addition to the given network. In Section 5.2, we study permutation
equivariance in detail and provide some properties of permutation equivariant estimators.

3. Overview of main results. The difficulty of community recovery depends on the
extent to which (P0,p) and (Q0, q) are different; it is clearly impossible to have a consistent
clustering algorithm if (P0,p) and (Q0, q) are equal. We show in this paper that a natural
measure of discrepancy between (P0,p) and (Q0, q)) which governs the optimal rate of
convergence is the Renyi divergence of order 1

2 .
Given any probability distributions P and Q that are absolutely continuous with respect

to each other, the Renyi divergence of order 1
2 is defined as I (P,Q) := −2 log

∫
( dP
dQ

)1/2 dQ.
For our setting, the Renyi divergence takes the special form

I
(
(P0,p), (Q0, q)

) = −2 log
(√

P0Q0 +
∫ √

(1 − P0)(1 − Q0)p(x)q(x) dx

)
.

If I ((P0,p), (Q0, q)) is bounded above by a universal constant, the Renyi divergence is of
the same order as the Hellinger distance (cf. Lemma H.2):

I
(
(P0,p), (Q0, q)

)
� (

√
P0 − √

Q0)
2 +

∫
S

(√
(1 − P0)p(x) −

√
(1 − Q0)q(x)

)2
dx

= (
√

P0 − √
Q0)

2 + (
√

1 − P0 − √
1 − Q0)

2

+ √
(1 − P0)(1 − Q0)

∫
S

(√
p(x) −

√
q(x)

)2
dx.

Thus, we can think of I ((P0,p), (Q0, q)) as having two components, the first of which cap-
tures the divergence between the edge presence probabilities (and also appears in the analysis
of unweighted SBMs), and the second of which captures the divergence between the edge
weight densities.

The presence of the second term illustrates how the weighted SBM behaves quite differ-
ently from its unweighted counterpart—in particular, dense networks may be interesting in a
weighted setting. For example, even if the weighted network is completely dense in the sense
that 1 − P0 = 1 − Q0 = 1, a nonzero signal I may still exist if p(·) and q(·) are sufficiently
different. Our results apply simultaneously to dense and sparse settings; it is important to note
that dense weighted networks arise in real-world settings, such as gene co-expression data.

We now provide an informal overview of our main results.

THEOREM (Informal statement). Let A be generated from a weighted SBM. Under regu-
larity conditions on ((P0,p), (Q0, q)), any permutation equivariant estimator σ̂ satisfies the
lower bound

El
(
σ̂ (A), σ0

) ≥ exp
(
−(

1 + o(1)
) n

βK
I
(
(P0,p), (Q0, q)

))
.

THEOREM (Informal statement). Under regularity conditions on the parameters ((P0,

p), (Q0, q)), there exists a permutation equivariant algorithm σ̂ achieving the following mis-
clustering error rate:

lim
n→∞P

(
l
(
σ̂ (A), σ0

) ≤ exp
(
−(

1 + o(1)
) n

βK
I
(
(P0,p), (Q0, q)

)))
= 1.
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Furthermore, if nI
βK logn

≤ 1, we have

El
(
σ̂ (A), σ0

) ≤ exp
(
−(

1 + o(1)
) nI

βK

)
.

Taken together, the theorems imply that in the regime where nI
βK logn

≤ 1, the optimal risk is

tightly characterized by the quantity exp(−(1 + o(1)) nI
βK

). On the other hand, if nI
βK logn

> 1,

we have exp(−(1 + o(1)) nI
βK

) < 1
n

for large enough n, so limn→∞ P(l(σ̂ (A), σ0) = 0) → 1

(since l(σ̂ (A), σ0) < 1
n

implies l(σ̂ (A), σ0) = 0). Thus, the regime where nI
βK logn

> 1 is in
some sense an easier problem, since we can guarantee perfect recovery with high probability.

3.1. Relation to previous work. Our result generalizes the work of Zhang and Zhou [42],
which establishes the minimax rate of

exp
(
−(

1 + o(1)
) n

βK
I
(
Ber(p),Ber(q)

))

for the unweighted SBM, where

I
(
Ber(p),Ber(q)

) = −2 log
(√

pq +
√

(1 − p)(1 − q)
)
.

The optimal algorithm proposed in Zhang and Zhou [42] is intractable, but a computationally
feasible version was developed by Gao et al. [15]; the latter algorithm is a building block for
the estimation algorithm proposed in this paper.

Our result should also be viewed in comparison to Yun and Proutiere [41], who studied
the optimal risk for the heterogenous labeled SBM with finitely many labels, with respect
to a prior on the cluster assignment σ0. They characterize the optimal rate under a notion of
divergence that reduces to the Renyi divergence of order 1

2 between two discrete distributions
over a fixed finite number of labels in the homogeneous setting (cf. Lemma G.2). Since the
discussion is somewhat technical, we provide a more detailed comparison of our work to the
results of Yun and Proutiere in Section 6.1.

Jog and Loh [25] proposed a similar weighted block model and show the exact recovery
threshold to be dependent on the Renyi divergence. They focus on the setting where the distri-
butions are discrete and known, whereas we consider continuous densities that are unknown.
Aicher et al. [6] introduced a version of a weighted SBM that is a special case of the setting
discussed in this paper, where the densities P and Q in equation (1) are drawn from a known
exponential family. Notably, the definition of Aicher et al. [6] cannot incorporate sparsity.
The weighted SBM considered in Hajek et al. [19] is also similar to the one we propose in
our paper, except it only involves a single hidden community and assumes knowledge of the
distributions P and Q. Weighted networks have also received some attention in the physics
community [8, 34], and various ad hoc methods have been proposed; since theoretical prop-
erties are generally unknown, we do not explore these connections in our paper.

Other notions of recovery. A closely related problem is that of finding the exact recovery
threshold. We say that the unweighted SBM has an exact recovery threshold if a function
θ(p, q,n,K,β,σ0) exists such that exact recovery is asymptotically almost always impossi-
ble if θ < 1, and almost always possible if θ > 1. For the homogeneous unweighted SBM,
Abbe et al. [3] show that when β = 1,K = 2,1 − P0 = a logn

n
, and 1 − Q0 = b logn

n
, for some

constants a and b, the exact recovery threshold is
√

a −√
b. This result was later generalized

to multiple communities with heterogenous edge probabilities in Abbe and Sandon [4], where
a notion of CH-divergence was shown to characterize the threshold for exact recovery. A no-
tion of weak recovery, corresponding to a detection threshold, has also been considered [28,
31].
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4. Estimation algorithm. A natural approach to community estimation is to first esti-
mate the edge weight densities p(·) and q(·), but this is hindered by the fact that we do not
know whether an edge weight observation originates from p(·) or q(·). An alternative ap-
proach of applying spectral clustering directly to the weighted adjacency matrix A will also
be ineffective if (P0,p) and (Q0, q) have the same mean, so E(A) does not exhibit any clus-
ter structure. A third idea is to output the clustering that maximizes the Kolmogorov–Smirnov
distance (or another nonparametric two-sample test statistic) between the empirical CDFs of
within-cluster edge weights and between-cluster edge weights. This idea, though feasible, is
computationally intractable, since it involves searching over all possible clusterings. Our ap-
proach is appreciably different from the methods suggested above, and consists of combining
the idea of discretization from nonparametric density estimation with clustering techniques
for unweighted SBMs.

4.1. Outline of algorithm. We begin by describing the main components of our algo-
rithm. The key ideas are to convert the edge weights into a finite set of labels by discretiza-
tion, and then cluster nodes on the labeled network. Our algorithm is summarized pictorially
in Figure 1.

(1) Transformation and discretization. We take a weighted adjacency matrix A and ap-
ply an invertible transformation function � : S → [0,1] (recall S is the support of the edge
weights and can be [0,1], [0,∞) or R) on the nonzero edges to obtain a matrix �(A) with
weights in [0,1]. Next, we divide the interval [0,1] into L equally-spaced subintervals and
replace the entries of �(A) with categorical labels in [L]. We denote the labeled adjacency
matrix by AL.

(2) Add noise. We perform the following process on every edge of the labeled graph,
independently of other edges: With probability 1 − δ where δ = 2(L+1)

n
, keep an edge as it is,

and with probability δ, replace the edge label with a new label drawn uniformly from the set
of labels. We continue to denote the modified adjacency matrix as AL.

(3) Initialization parts 1 and 2. For each label l, we create a sub-network by including
only edges of label l. We then perform spectral clustering on all subnetworks, and output the
label l∗ that induces the maximally separated spectral clustering. Let Al∗ be the adjacency
matrix for label l∗. For each u ∈ {1, . . . , n}, we perform spectral clustering on Al∗ \{u}, which
denotes the adjacency matrix with vertex u removed. We output n clusterings σ̃1, . . . , σ̃n.

(4) Refinement and consensus. From each σ̃u, we generate a clustering σ̂u on {1,2, . . . , n}
that retains the assignments specified by σ̃u for {1,2, . . . , n} \ {u}, and assigns σ̂u(u) by
maximizing the likelihood taking into account only the neighborhood of u. We then align the
cluster assignments made in the previous step.

4.2. Transformation and discretization. In the transformation step, we apply an invert-
ible CDF � : S → [0,1] as the transformation function on all the edge weights, so that each
entry of �(A) lies in [0,1]. In the discretization step, we divide the interval [0,1] into L

equally-spaced bins of the form [al, bl], where a1 = 0, bL = 1, and bl − al = 1
L

. An edge

FIG. 1. Pipeline for our proposed algorithm.



190 M. XU, V. JOG AND P.-L. LOH

Algorithm 1 Transformation and discretization
Input: A weighted network A, a positive integer L and an invertible function � : S → [0,1]
Output: A labeled network AL with L labels

Divide [0,1] into L equally-spaced bins, labeled bin1, . . . ,binL

for every edge (u, v) such that Auv �= 0 do
Let l be the bin in which �(Auv) falls
Assign the edge (u, v) the label l in the labeled network AL

end for

is assigned the label l if the weight of that edge lies in bin l. These steps are sumarized in
Algorithm 1.

4.3. Add noise. For technical reasons, we inject noise into the network as a form of reg-
ularization. As detailed in the proof of Proposition 6.1 in Appendix A, deliberately forming
a noisy version of the graph barely affects the separation between the distributions of the
within-community and between-community edge labels, but has the desirable effect of en-
suring that all edge labels occur with probability at least 2

n
. This property is crucial to our

analysis in subsequent steps of the algorithm. In the description of Algorithm 2, we treat the
label 0 (i.e., an empty edge) as a separate label, so we have a network with L + 1 labels.

4.4. Initialization. The initialization procedure takes as input a network with edges la-
beled {0,1, . . . ,L}. The goal of the initialization procedure is to create a rough clustering
σ̃ that is consistent but not necessarily optimal. As outlined in Algorithm 3, the rough clus-
tering is based on a single label l∗, selected based on the maximum value of the estimated
Renyi divergence between within-community and between-community distributions for the
unweighted SBMs based on individual labels.

For technical reasons, we actually create n separate rough clusterings {σ̃u}u=1,...,n, where
each σ̃u : [n − 1] → [K] is a clustering of a network of n − 1 nodes with u removed. The
clusterings {σ̃u} will later be combined into a single clustering algorithm. In practice, it is
sufficient to create a single rough clustering (see Remark 4.2 below).

REMARK 4.1. The initialization procedure that we propose is based on choosing a single
best label l∗ and deriving an initial clustering from the unweighted network associated with
l∗. This is sufficient in theory, but a better initial clustering may be gained in practice by
aggregating information from all labels. Such an aggregation must, however, be performed
with care, so that uninformative labels do not dilute the information content of the informative
labels.

Algorithm 2 Add noise
Input: A labeled network AL with L + 1 labels
Output: A labeled network AL with L + 1 labels

for every edge (u, v) do
With probability 1 − 2(L+1)

n
, do nothing

With probability 2(L+1)
n

, replace the edge label with a label drawn uniformly at random
from {0,1,2, . . . ,L}
end for
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Algorithm 3 Initialization
Input: A labeled network AL with L labels
Output: A set of clusterings {σ̃u}u=1,...,n, where σ̃u is a clustering on {1,2, . . . , n} \ {u}

1: Separate AL into L networks {Al}l=1,...,L, where Al,uv = 1 if AL,uv = l and Al,uv = 0
otherwise � Stage 1

2: for each label l do
3: Perform SPECTRAL CLUSTERING (Algorithm 4) with τ = 40Kd̄ and μ = 4β , where

d̄ = 1
n

∑n
u=1 du is the average degree, to obtain σ̃l

4: Estimate P̂l =
∑

u�=v:σ̃l (u)=σ̃l (v)(Al)uv

|{u�=v:σ̃l (u)=σ̃l (v)}| and Q̂l =
∑

u�=v:σ̃l (u)�=σ̃l (v)(Al)uv

|{u�=v:σ̃l (u) �=σ̃l (v)}|
5: Compute Îl ← (P̂l−Q̂l)

2

P̂l∨Q̂l

6: end for
7: Choose l∗ = arg maxl Îl

8: for each node u do � Stage 2
9: Create network Al∗ \ {u} by removing node u from Al∗

10: Perform SPECTRAL CLUSTERING (with the same parameter setting as stage 1) on
Al∗ \ {u} to obtain σ̃u

11: end for
12: Output the set of clusterings {σ̃u}u=1,...,n

SPECTRAL CLUSTERING. Note that Algorithm 3 involves several applications of SPEC-
TRAL CLUSTERING. We describe the spectral clustering algorithm used as a subroutine in
Algorithm 4 below. Importantly, note that we may always choose the parameter μ sufficiently
large such that Algorithm 4 generates a set S with |S| = K .

4.5. Refinement and consensus. These steps, as outlined in Algorithm 5, parallel Gao et
al. [15]. In the refinement step, we use the set of initial clusterings {σ̃u}u=1,...,n to generate
a more accurate clustering for the labeled network by locally maximizing an approximate
log-likelihood for each node u. The consensus step resolves any cluster label inconsistencies
present after the refinement stage.

REMARK 4.2. In our simulation studies, we find that it is sufficient to output a single clus-
tering σ̃ on the whole of Al∗ in the initialization stage. In the refinement stage, we simply esti-

mate {P̂l, Q̂l}l∈{0,...,L} based on σ̃ , assign σ̂ (u) = arg maxk∈[K]
∑

v:σ̃ (v)=k,v �=u

∑L
l=0 log P̂l

Q̂l
×

1(Auv = l), and then output σ̂ directly. We also note that one could in practice use a dis-
cretization level for the refinement stage that is different from that of the initialization stage
(see discussions in Section 6).

5. Optimal misclustering error. We analyze the rate of convergence of the estimation
algorithm from Section 4 in Section 5.1. In Section 5.2, we provide a matching information-
theoretic lower bound. In both sections, we let P denote the set of probability distributions
on S whose singular part is a point mass at 0.

5.1. Upper bound. We begin by stating a condition on the function �.

DEFINITION 5.1. Let S be [0,1], R, or R+. We say that � : S → [0,1] is a transforma-
tion function if it is a differentiable bijection and φ := �′ satisfies |φ′(x)

φ(x)
| < ∞.
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Algorithm 4 SPECTRAL CLUSTERING

Input: An unweighted network A with columns {Au}, trim threshold τ , number of
communities K and tuning parameter μ

Output: A clustering σ

1: For each node u with degree du ≥ τ , set Au = 0 and (A�)u = 0 to obtain Tτ (A)

2: Compute Â := arg min
Ã:rank(Ã)≤K

‖Ã − Tτ (A)‖2 by SVD
3: For each node u, index the other nodes by v(1), . . . , v(n−1) such that

‖Âu − Âv(1)
‖2 ≤ ‖Âu − Âv(2)

‖2 ≤ · · · ≤ ‖Âu − Âv(n−1)
‖2,

and define

D(u) := ‖Âu − Âv(�n/μK�)‖2

4: Initialize S ← 0
5: Select node u1 := arg minu D(u) and add u1 to S as S[1]
6: for i = 2, . . . ,K do
7: Among all u such that |D(u)| ≤ (1 − 1

μK
)-quantile{D(v) : v ∈ [n]}, select

ui = arg max
u

min
v∈{S[1],...,S[i−1]} ‖Âu − Âv‖2

8: Add ui to S as S[i]
9: end for

10: for u = 1, . . . , n do
11: Assign σ(u) = arg mini ‖Âu − ÂS[i]‖2
12: end for

Algorithm 5 Refinement
Input: A labeled network AL and a set of clusterings {σ̃u}u=1,...,n, where σ̃u is a clustering
on the set {1,2, . . . , n} \ {u}, for each u

Output: A clustering σ̂ over the whole network
1: for each node u do
2: Estimate {P̂l, Q̂l}l=0,...,L from σ̃u

3: Let σ̂u : [n] → [K], where σ̂u(v) = σ̃u(v) for all v �= u and

σ̂u(u) = arg max
k∈[K]

∑
v:σ̃u(v)=k,v �=u

L∑
l=0

log
P̂l

Q̂l

1(Auv = l)

4: end for
5: Let σ̂ (1) = σ̂1(1) � Consensus Stage
6: for each node u �= 1 do

σ̂ (u) = arg max
k∈[K]

∣∣{v : σ̂1(v) = k
} ∩ {

v : σ̂u(v) = σ̂u(u)
}∣∣

7: end for
8: Output σ̂
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For S = [0,1], we always take � to be the identity. For S = R or [0,∞), we choose the
function � so that all moments exist and φ has a subexponential tail. The specific choice of
� is not crucial, and we will use the following definitions:

φ(x) = e1−√
x+1

4
if S = [0,∞), φ(x) = e1−√|x|+1

8
if S = R.(3)

These expressions are similar to a generalized normal density, modified so that |φ′(x)
φ(x)

| is
bounded. It is easy to verify that �(x) = ∫ x

0 φ(t) dt (resp., �(x) = ∫ x
−∞ φ(t) dt) is a valid

transformation function. We let �{·} denote the probability measure induced by �.
We describe our regularity conditions by defining an appropriate subset of P2. For

C ∈ [1,∞), c1, c2 ∈ int(S), r > 2, and t ∈ (2/r,1), we define G�,C,c1,c2,r,t ⊂ P2 such that
((P0,p), (Q0, q)) ∈ G�,C,c1,c2,r,t if and only if:

A0 We have 1
C

≤ 1−P0
1−Q0

≤ C and 1
C

≤ P0
Q0

≤ C.
A1 For all x in the interior of S, we have 0 < p(x), q(x) ≤ Cφ(x).
A2 There exists a quasi-convex function g : S → [0,∞) such that g(x) ≥ | log p(x)

q(x)
| and∫

S g(x)rφ(x) dx ≤ C.
A3 Denoting α2 := ∫

S(
√

p(x) − √
q(x))2 dx and γ (x) := p(x)−q(x)

α
, we have∫

S

(
γ (x)

p(x) + q(x)

)r(
p(x) + q(x)

)
dx ≤ C.

A4 There exists a quasi-convex function h : S → [0,∞) such that

h(x) ≥ 1

φ(x)
max

{∣∣∣∣ γ (x)

p(x) + q(x)

∣∣∣∣
∣∣∣∣ γ ′(x)

p(x) + q(x)

∣∣∣∣
∣∣∣∣q

′(x)

q(x)

∣∣∣∣,
∣∣∣∣p

′(x)

p(x)

∣∣∣∣
}

and
∫
S |h(x)|tφ(x) dx ≤ C.

A5 We have1

(logp)′(x), (logq)′(x) ≥ (logφ)′(x) for all x < c1 and

(logp)′(x), (logq)′(x) ≤ (logφ)′(x) for all x > c2.

The above conditions depend on the choice of �, but it generally suffices to choose � such
that its derivative φ is a heavy-tailed density where all moments exist. In particular, we show
in Section 5.1.3 that choosing � according to equation (3) allows G� to encompass Gaussian,
Laplace and other broad classes of densities. We also provide an intuitive discussion of the
regularity conditions in Section 5.1.1 below.

We now state our upper bound. For a given ((P0,p), (Q0, q)) ∈ P2 and clustering σ0, let
A ∼ WSBM(σ0, (P0,p), (Q0, q)).

THEOREM 5.1. Let σ0 ∈ C(β,K). Let C ≥ 1, c1, c2 ∈ int(S), r > 2, and t ∈ (2/r,1), and
let � be a transformation function. Define G� := G�,C,c1,c2,r,t . Let {In, I

′
n}n∈N be arbitrary

sequences such that In → 0 and nI ′
n → ∞. Let Ln be a sequence such that nI ′

n

Ln exp(L
2/r
n )

→
∞. Let σ̂�,Ln be the algorithm described in Section 4 with transformation function � and
discretization level Ln. Then there exists a sequence of real numbers ζn → 0 such that

lim
n→∞ sup

((P0,p),(Q0,q))∈G�:
I ′
n≤I ((P0,p),(Q0,q))≤In

P(P0,p),
(Q0,q)

{
l
(
σ̂�,Ln(A), σ0

)

≤ exp
(
−(1 − ζn)

n

βK
I
(
(P0,p), (Q0, q)

))}
= 1.

1If S = [0,∞) and g is nondecreasing, we only need (logp)′(x), (logq)′(x) ≤ (logφ)′(x) for all x > c2.
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Furthermore, if nIn

βK logn
≤ 1, we have

sup
((P0,p),(Q0,q))∈G�:

I ′
n≤I ((P0,p),(Q0,q))≤In

E(P0,p),(Q0,q)

[
l
(
σ̂�,Ln(A), σ0

)]

× exp
(
(1 − ζn)

n

βK
I
(
(P0,p), (Q0, q)

)) ≤ 1.

We relegate the full proof of Theorem 5.1 to Appendix D.1, but we provide a proof
overview in Section 6. Since Theorem 5.1 involves many technical details, we first make
a few high-level remarks to illustrate its implications.

REMARK 5.1. It is important to observe that the supremum over G� appears after
the limit. Thus, an equivalent way to understand the theorem is to think of a sequence
((P0,n,pn), (Q0,n, qn)), each term of which is a member of G�. If I ((P0,n,pn), (Q0,n, qn))

is o(1) but ω(Ln exp(L
2/r
n )n−1), Theorem 5.1 states that P{l(σ̂ (A), σ0) ≤ exp(−(1 +

o(1)) n
βK

I ((P0,n,pn), (Q0,n, qn)))} → 1. Theorem 5.1 thus applies to the so-called sparse
setting where P0,Q0 → 1. In particular, suppose there are constants a, b > 0 such that
P0,n = 1 − a logn

n
and Q0 = 1 − b logn

n
. Then Theorem 5.1 states that perfect recovery is

achievable if (
√

a −√
b)2 +√

ab
∫
S(

√
pn(x)−√

qn(x))2 dx > βK ; this generalizes the pre-
viously known result that perfect recovery for unweighted SBMs when p = 1 − a logn

n
and

q = 1 − b logn
n

is possible if (
√

a − √
b)2 > βK .

REMARK 5.2. The assumption that there exist sequences In → 0 and I ′
n = ω(1/n)

such that I ′
n ≤ I ((P0,p), (Q0, q)) ≤ In is very mild. As shown by our information-theoretic

lower bound (cf. Section 5.2), estimation consistency is impossible if a sequence I ′
n =

ω(1/n) such that I ((P0,p), (Q0, q)) ≥ I ′
n does not exist. Moreover, we observe that if

I ((P0,p), (Q0, q)) > βK
logn

n
, then P(l(σ̂ (A), σ0) = 0) → 1, and we are able to perfectly

recover the clustering with high probability. Since the estimation problem is intrinsically eas-
ier when I ((P0,p), (Q0, q)) is larger, we expect the same perfect recovery guarantee to hold
in the case when I ((P0,p), (Q0, q)) is positively bounded away from 0.

REMARK 5.3. Since nI ′
n → ∞, it is always possible to choose a sequence Ln → ∞

satisfying the conditions of the theorem. Note that Ln must grow very slowly to satisfy the

condition that nI ′
n

Ln exp(L
2/r
n )

→ ∞; indeed, our simulation studies (cf. Section 7) confirm that we

should choose the discretization level to be very small in order to achieve good performance.
We note that Ln has a second-order effect on the rate and appears in the ζn term.

5.1.1. Additional discussion of the conditions. It is crucial to note that our algorithm does
not require prior knowledge of the form of p(·) and q(·); the same algorithm and guarantees
apply so long as ((P0,p), (Q0, q)) ∈ G�,C,c1,c2,r,t for some universal constants C,c1, c2, r

and t . To aid the reader, we now provide a brief, nontechnical interpretation of the regularity
conditions described above.

Condition A1 is simple; the last part states that φ must have a tail at least as heavy as that of
p(·) and q(·). Condition A2 requires that the likelihood ratio be integrable. It is analogous to
a bounded likelihood ratio condition, but much weaker; we add a mild quasi-convexity con-
straint for technical reasons related to the analysis of binning. In condition A3, the function
γ (·) is of constant order in the sense that

∫
S(

γ (x)
p(x)+q(x)

)r (p(x)+q(x)) dx ≤ C. Requirements
on γ (·) translate into convergence statements on |p − q|: For instance, an L∞-bound on
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γ implies almost uniform convergence (with respect to �) of |p − q| to 0. The integrability
condition we impose on γ (·) in condition A3 is analogous to an L∞-bound, but much weaker.

Condition A4 controls the smoothness of the derivatives of logp(·) and logq(·). Condi-
tion A5 is a mild shape constraint on p(·) and q(·). When S = R, this condition essentially
requires p(·) and q(·) to be monotonically increasing in x for x → −∞, and decreasing in x

for x → ∞.

5.1.2. Examples for S = [0,1]. When S = [0,1], we can always take � to be the
identity—we do not need a transformation, but we keep the same notation in order to present
our results in a unified manner. The simplest example of G� that satisfies conditions A1–A5
is when, for all ((P0,p), (Q0, q)) ∈ G�, the densities p(·) and q(·) are bounded above and
below by strictly positive universal constants, and when the function x �→ p(x)−q(x)

α
and its

derivative are bounded by universal constants.

5.1.3. Examples for S = R or [0,∞). We begin with a proposition that characterizes
conditions A1–A5 in the setting where p(·) = efθ1 (·) and q(·) = efθ0 (·), for some parametrized
family {fθ }θ∈�. This result allows us to generate several large classes of examples.

PROPOSITION 5.1. Let C∗∗ ∈ [1,∞), c1, c2 ∈ S, r > 2, and t ∈ (2/r,1/2). Let � ⊂ R
d

be compact and suppose diam(�) < 1 ∧ 1
2C∗∗2 . Let {fθ }θ∈� be a collection of functions such

that efθ (·) is a density and:

B1 For all θ ∈ � and all x ∈ S, we have 0 < efθ (x) ≤ C∗φ(x).
B2 We have infθ∈� λmin(

∫
S 2∇fθ (x)(∇fθ(x))�φ(x) dx) ≥ C∗−1 and

supθ∈�

∫
S λmax(H(fθ )(x))2φ(x) dx ≤ C∗.

B3 There exists a quasi-convex function g∗ : S → [0,∞) such that g∗(x) ≥
supθ ‖∇fθ(x)‖2 and

∫
S g∗(x)rφ(x) dx ≤ C∗.

B4 There exists a quasi-convex function h∗ : S → [0,∞) such that

h∗(x) ≥ 1

φ(x)
max

{
sup
θ∈�

∥∥∇fθ(x)
∥∥

2, sup
θ∈�

∥∥∇f ′
θ (x)

∥∥
2, sup

θ∈�

∣∣f ′
θ (x)

∣∣}

and
∫
S h∗(x)2tφ(x) dx ≤ C∗.

B5 For all x ≤ c1, we have infθ∈� f ′
θ (x) ≥ (logφ)′(x), and for all x ≥ c2, we have

supθ∈� f ′
θ (x) ≤ (logφ)′(x).2

Then there exists C ∈ [1,∞) such that for any θ1, θ2 ∈ � and any P0,Q0 ∈ [0,1] such that
1
C

≤ P0
Q0

,
1−P0
1−Q0

≤ C, we have ((P0, e
fθ1 ), (Q0, e

fθ2 )) ∈ G�,C,c1,c2,r,t .

In all the examples below, we take � to be the transformation function defined in equa-
tion (3). The proofs of all statements in the examples are provided in Section E.2.

EXAMPLE 5.1 (Location-scale family over R). Let f : R → R be a continuously differ-
entiable function such that

∫ ∞
−∞ ef (x) dx = 1. Suppose:

(a) |f (k)(x)| is bounded for some k ≥ 2, and
(b) there exist c,M > 0 such that f ′(x) > M for x < −c and f ′(x) < −M for x > c.

For any μ ∈ R and σ > 0, define fμ,σ (x) := f (
x−μ

σ
) − logσ .

Then there exists Cμ > 0 and cσ > 1 such that, with � := [−Cμ,Cμ] × [ 1
cσ

, cσ ], the
family {fμ,σ }(μ,σ )∈� satisfies conditions B1–B5 in Proposition 5.1 with respect to φ defined

2If S = [0,∞) and g∗ is nondecreasing, we only need supθ∈� f ′
θ (x) ≤ (logφ)′(x) for all x ≥ c2.
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in equation (3), and some universal constants C∗∗, c1, c2, r , and t . As a direct consequence
of Proposition 5.1, for some universal constant C > 0, if we fix any ((μ1, σ1), (μ0, σ0)) ∈ �2

and define

p(x) = 1

σ1
exp

(
f

(
x − μ1

σ1

))
and q(x) = 1

σ0
exp

(
f

(
x − μ0

σ0

))
,(4)

then ((P0,p), (Q0, q)) ∈ G�,C,c1,c2,r,t for any P0,Q0 ∈ [0,1] that satisfy condition A0.
These assumptions on f are satisfied for Gaussian location-scale families, where the base

density is the standard Gaussian density with f (x) = −x2 − 1
2 log 2π , and Laplace location-

scale families, where the base density is the standard Laplace density with f (x) = −|x| −
log 2.

EXAMPLE 5.2 (Scale family over [0,∞)). Let f : [0,∞) →R be a continuously differ-
entiable function such that

∫ ∞
0 ef (x) dx = 1. Suppose:

(a) |f (k)(x)| is bounded for some k ≥ 2, and
(b) there exist c,M > 0 such that f ′(x) < −M for x > c.

For any σ > 0, define fσ (x) := f ( x
σ
) − logσ .

Then there exists cσ > 1 such that, with � := [ 1
cσ

, cσ ], the family {fσ }σ∈� satisfies condi-
tions B1–B5 in Proposition 5.1 with respect to φ defined in equation (3), and some universal
constants C∗∗, c1, c2, r and t . As a direct consequence of Proposition 5.1, for some universal
constant C > 0, if we fix any (σ1, σ0) ∈ �2 and define

p(x) = 1

σ1
exp

(
f

(
x

σ1

))
and q(x) = 1

σ0
exp

(
f

(
x

σ0

))
,

then ((P0,p), (Q0, q)) ∈ G�,C,c1,c2,r,t for any P0,Q0 ∈ [0,1] that satisfy condition A0.
These assumptions on f are satisfied for exponential scale families, where the base density

is the standard exponential density with f (x) = −x.

Proposition 5.1 also applies to the family of Gamma distributions (see Proposition E.3
in the Appendix [40]). In practice, edge weights are often discrete integers, such as counts.
Although Theorem 5.1 does not apply directly to such cases, our analysis is relevant to some
instances of SBMs with discrete edge weights. In Appendix F, we discuss a crude way to
handle count-valued edge weights, with particular attention toward Poisson-distributed edge
weights.

5.2. Lower bound. Our information-theoretic lower bound applies to any permutation
equivariant estimators (Definition 2.5). Before stating the result, we define an appropriate
subset of P2 to capture the conditions we need on ((P0,p), (Q0, q)). Let C∗ ∈ [1,∞), and
let G∗

C∗ ⊂P2 be such that ((P0,p), (Q0, q)) ∈ G∗ if and only if

A0∗ 1
C∗ ≤ P0

Q0
≤ C∗, and

A1∗ ∫
S(p(x) + q(x))| log p(x)

q(x)
|2 dx ≤ C∗ ∫

S(p(x)1/2 − q(x)1/2)2 dx.

Condition A1∗ is similar to A2 and A3 in the definition of the set of regular distribu-
tions G�,C,c1,c2,r,t that appears in the upper bound (Theorem 5.1). In fact, if

∫
S(p1/2(x) −

q1/2(x))2 dx is bounded away from 0, then there exists C∗ such that A1∗ is equivalent to A2.
Thus, although G∗

C∗ is in general not a superset of G�,C,c1,c2,r,t , the set G∗
C∗ ∩G�,C,c1,c2,r,t con-

tains important and interesting examples. For instance, any family that satisfies the conditions
of Proposition 5.1 belongs to the intersection, as is verified in the proof (cf. Appendix E).
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THEOREM 5.2. Let C∗ ≥ 1 and let σ0 : [n] → [K] be a clustering such that one cluster is
of size n

βK
and another is of size n

βK
+ 1. Let I ′

n be any sequence such that nI ′
n → ∞, and let

C = 2 log 2. Then there exists ζn → 0 and c′ > 0 such that, for any permutation equivariant
algorithm σ̂ ,

inf
((P0,p),(Q0,q))∈G∗

C∗
I ′
n≤I ((P0,p),(Q0,q))≤C

E(P0,p)
(Q0,q)

[
�
(
σ̂ (A), σ0

)]

× exp
(

n

βK
I
(
(P0,p), (Q0, q)

)
(1 + ζn)

)
≥ c′.

Furthermore, for any c > 0, there exists c′ > 0 such that for any permutation equivariant
algorithm σ̂ ,

inf
((P0,p),(Q0,q))∈G∗

C∗
I ((P0,p),(Q0,q))≤c/n

E(P0,p)
(Q0,q)

[
�
(
σ̂ (A), σ0

)] ≥ c′.

Theorem 5.2 shows that if nIn → ∞, the misclustering risk of any permutation equivariant
algorithm is at least exp(−(1 + o(1))

nI ((P0,p),(Q0,q))
βK

). If nI ((P0,p), (Q0, q)) = O(1), no
permutation equivariant algorithm is consistent.

REMARK 5.4. Rather than being a minimax lower bound that applies to the worst case,
Theorem 5.2 applies to any parameter ((P0, q), (Q0q)) ∈ G∗

C∗ ; we thus have an infimum
over the parameter space rather than a supremum. This is possible because the permutation
equivariance condition excludes the trivial case where σ̂ = σ0.

The full proof of Theorem 5.2 is provided in Appendix G. The proof borrows elements
from Yun and Proutiere [41] and Zhang and Zhou [42]. One key difference is that The-
orem 5.2 holds for any parameters in the parameter space, rather than adopting a mini-
max framework, as in Zhang and Zhou [42], or assuming a prior on σ0, as in Yun and
Proutiere [41].

5.3. Adaptivity. Let Fp.e.
n be the class of permutation equivariant clustering algorithm on

networks with n nodes. Theorems 5.1 and 5.2 directly imply the following corollary, which
sharply characterizes the optimal performance of Fp.e.

n .

COROLLARY 5.1. Let σ0 : [n] → [K], and suppose one cluster is of size n
βK

and another
is of size n

βK
+ 1. Let C∗,C ≥ 1, c1, c2 > 0, r > 0, and t ∈ (2/r,1), and let � be a transfor-

mation function. Write G� := G�,C,c1,c2,r,t , G∗ := G∗
C∗ and � := {β,K,C∗,C, c1, c2, r, t,�}.

Let ((P0,n,pn), (Q0,n, qn)) ∈ G� ∩ G∗ for every n ∈ N.

(i) If lim supn I ((P0,n,pn), (Q0,n, qn))
n

βK logn
≤ 1, there exists ζn → 0, depending only

on �, such that

inf
σ̂∈Fp.e.

n

E(P0,n,pn)

(Q0,n,qn)

[
l
(
σ̂ (A), σ0

)]

= exp
(
−nI ((P0,n,pn), (Q0,n, qn))

βK
(1 + ζn)

)
.

(ii) If lim infn I ((P0,n,pn), (Q0,n, qn))
n

βK logn
> 1, there exists ζn → 0, depending only

on �, such that infσ̂∈Fp.e.
n

P(P0,n,pn),(Q0,n,qn)(l(σ̂ (A), σ0) > 0) ≤ ζn.
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(iii) If there exists c > 0 such that lim supn I ((P0,n,pn), (Q0,n, qn))n < c, there exists
c′ > 0 such that

lim inf
n→∞ inf

σ̂∈Fp.e.
n

E(P0,n,pn),(Q0,n,qn)

[
l
(
σ̂ (A), σ0

)]
> c′.

The algorithm σ̂ described in Section 4.1 with discretization level Ln diverging sufficiently
slowly achieves the optimal rate in part (i) and (ii) for any ((P0,n,pn), (Q0,n, qn)) ∈ G� ∩G∗.
Thus, σ̂ adapts to the edge probabilities P0,n and Q0,n and the edge weight densities pn and
qn: Although σ̂ has no knowledge of the parameters ((P0,n,pn), (Q0,n, qn)), it achieves the
same optimal rate as if ((P0,n,pn), (Q0,n, qn)) were known.

In particular, this implies that one does not have to pay a price for taking the non-
parametric approach. This seemingly counterintuitive phenomenon arises because the cost
of discretization is reflected in the lower-order ζn term in the exponent. As an illustra-
tive example, suppose 1 − P0,n = 1 − Q0,n = a

logn
n

for some a > 0, and the densities pn

and qn are of N(μ1, σ
2
1 ) and N(μ0, σ

2
0 ), respectively. Then In = (1 + o(1))

a logn
n

θ , where

θ = 2(1−
√

2σ 2
1 σ 2

0
σ 2

1 +σ 2
0
e
− 1

4
(μ1−μ0)2

σ2
1 +σ2

0 ), and the optimal rate is n
−(1+o(1)) 2θ

βK , which is attained by the

nonparametric discretization estimator σ̂ .
Similarly, if 1 − P0,n = 1 − Q0,n = a logn

n
and the densities pn and qn are Exp(λ1) and

Exp(λ0), respectively, then In = (1 + o(1))
logn

n
θ ′, where θ ′ = 2(1 −

√
λ1λ0

λ1+λ0
). The optimal

rate n
−(1+o(1)) 2θ ′

βK is again achieved by the nonparametric discretization estimator σ̂ .

6. Proof sketch: Recovery algorithm. A large portion of the Appendix is devoted to
proving that our recovery algorithm succeeds and achieves the optimal error rates. We provide
an outline of the proofs here.

We divide our argument into propositions that focus on successive stages of our algorithm.
A birds-eye view of our method reveals that it contains two major components: (1) convert
a weighted network into a labeled network, and then (2) run a community recovery algo-
rithm on the labeled network. The first component involves two steps, transformation and
discretization. Step (1) comprises the red and green steps in Figure 2 and outputs an adja-
cency matrix with discrete edge weights. Step (2) is denoted in blue.

In our algorithm, we use a single discretization level L throughout for ease of presenta-
tion. In practice, one could use different discretization levels for the initialization stage and
for the refinement stage. By comparing Proposition 6.1, Proposition 6.2 and Theorem 5.1,
we can see that the bias introduced by discretization is a second-order effect compared to
the variance, which is why the discretization level should be small in both stages. The dis-
cretization level for the initialization stage can, however, be chosen to be larger than that of
the refinement stage, because the initialization stage aims to produce a consistent estimator

FIG. 2. Analysis of the right-most blue region is contained in Section 6.1, of the middle green region in Sec-
tion 6.2, and of the red region in Section 6.3.
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rather than an optimal one, and can thus tolerate greater variance. More precisely, the theo-

retical requirements on discretization for the initialization stage are L → ∞ and nI ′
n

L
→ ∞,

whereas the requirements for the refinement stage are L → ∞ and nI ′
n

LeLr/2 → ∞ (note that I ′
n

is defined in Theorem 5.1); L is required to be of smaller order to control the ratio Pl

Ql
of the

discretized probabilities.

6.1. Analysis of community recovery on a labeled network. We first examine the sec-
ond component of our algorithm, which is a subroutine (right-most region in Figure 1) for
recovering communities in a network where the edges have discrete labels l = 1, . . . ,Ln.
The following proposition characterizes the rate of convergence of the output of the subrou-
tine, where within-community edges are assigned edge labels with probabilities {Pl}, and
between-community edges are assigned edge labels according to {Ql}. For convenience, if
an edge does not exist between u and v, we assign the label 0 to Auv , so P0 and Q0 are the
edge absence probabilities.

Formally, for L ∈ N, define PL := {(P0, . . . ,PL) ∈ [0,1]L+1 : ∑L
l=1 Pl = 1}. For a clus-

tering σ0 : [n] → [K] and ({Pl}, {Ql}) ∈ P2
L, we define a labeled stochastic block model

LSBM(σ0, {Pl}, {Ql}) as a distribution on {0, . . . ,L}n×n such that if A ∼ LSBM(σ0, {Pl},
{Ql}), then for any u, v ∈ [n] such that u > v,

Auv ∼
{{Pl} if σ0(u) = σ0(v),

{Ql} if σ0(u) �= σ0(v).

For ρ > 1, let GL,ρ ⊂ P2
L be such that ({Pl}, {Ql}) ∈ GL,ρ if and only if 1

ρ
≤ Pl

Ql
≤ ρ for all

l = 0, . . . ,L. For a pair ({Pl}, {Ql}) ∈ PL, we define I ({Pl}, {Ql}) := −2 log
∑L

l=0
√

PlQl .
In the next proposition, for a given clustering σ0 and ({Pl}, {Ql}) ∈ P2

L, we let the random
network A have the distribution LSBM(σ0, {Pl}, {Ql}).

PROPOSITION 6.1. Let σ0 ∈ C(β,K). Let {In, I
′
n, ρn,Ln}n∈N be any sequences such that

In → 0, ρn ≥ 2, Ln ≥ 1, and nI ′
n

(Ln+1)ρ2
n logρn

→ ∞. Then there exists a sequence ζn → 0 such

that

lim
n→∞ sup

({Pl},{Ql})∈GLn,ρn

I ′
n≤I ({Pl},{Ql})≤In

P({Pl},{Ql})
(
l
(
σ̂ (A), σ0

)

≤ exp
(
−(1 − ζn)

n

βK
I
({Pl}, {Ql})

))
= 1.

Furthermore, if nIn

βK logn
≤ 1, then

sup
({Pl},{Ql})∈GLn,ρn

I ′
n≤I ({Pl},{Ql})≤In

E
[
l
(
σ̂ (A), σ0

)]
exp

(
(1 − ζn)

n

βK
I
({Pl}, {Ql})

)
≤ 1.

REMARK 6.1. This result resembles that of Yun and Proutiere [41], who also study an
SBM where the edges carry discrete labels. They state their results using a seemingly differ-
ent divergence, but it coincides with the Renyi divergence when specialized to our setting (cf.
Lemma G.2). Proposition 6.1 differs critically from Yun and Proutiere [41] in two respects,
however. First, they hold the number of labels Ln to be fixed and assume that the bound ρn

on the probability ratio Pl,n

Ql,n
is fixed, whereas we allow both Ln and ρn to diverge. Second,

they assume that
∑Ln

l=1(Pl,n −Ql,n)
2 is sufficiently large when compared to maxl=1,...,Ln Pl,n,
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whereas we do not make any assumptions of this form. These generalizations are crucial in
analyzing the weighted SBM, since in order to achieve consistency for continuous distribu-
tions, the discretization level Ln and the bound ρn must increase with n.

6.2. Discretization of the Renyi divergence. We now analyze the discretization step of
the algorithm (green box in Figure 1). The input to this step is the weighted network �(A)

in which all the edge weights are in [0,1]. We use p̃(z) and q̃(z) for z ∈ [0,1] to denote the
densities of the transformed edge weights; the next section shows the relationship between
p̃(z) and p(x) and q̃(z) and q(x). The discretization step of the algorithm divides [0,1] into
Ln uniform bins, denoted by [al, bl], for 1 ≤ l ≤ Ln. The output is a network ALn , where
each edge is assigned label l = 1, . . . ,Ln with probability either

Pl := (1 − P0)

∫ bl

al

p̃(z) dz or Ql := (1 − Q0)

∫ bl

al

q̃(z) dz.(5)

A missing edge is assigned the label 0. It is easy to show that discretization always leads to a
loss of information; that is, I ({Pl}, {Ql}) ≤ I ((P0, p̃), (Q0, q̃)).

Let P̃ denote the set of probability distributions on [0,1] whose singular part is a point
mass at 0. Let C̃ ∈ (0,∞), c̃1, c̃2 ∈ (0,1/2), r > 2, and t > 0, and define the set G̃

C̃,c̃1,c̃2,r,t
⊂

P̃2 such that ((P0, p̃), (Q0, q̃)) ∈ G̃ if and only if the following hold:

C0 We have 1
C̃

≤ 1−P0
1−Q0

≤ C̃ and 1
C̃

≤ P0
Q0

≤ C̃.

C1 For all z ∈ (0,1), we have 0 < p̃(z), q̃(z) ≤ C̃.
C2 There exists a quasi-convex function g̃ : [0,1] → [0,∞) such that g̃(z) ≥ | log p̃(z)

q̃(z)
|

and
∫ 1

0 g̃(z)r dz ≤ C̃.

C3 Denoting α̃ := {∫ 1
0 (

√
p̃(z) − √

q̃(z))2 dz}1/2 and γ̃ (z) := p̃(z)−q̃(z)
α̃

, we have∫ 1

0

{
γ̃ (z)

p̃(z) + q̃(z)

}r(
p̃(z) + q̃(z)

)
dz ≤ C̃.

C4 There exists a quasi-convex function h̃ : [0,1] → [0,∞) such that

h̃(z) ≥ max
{∣∣∣∣ γ̃ (z)

p̃(z) + q̃(z)

∣∣∣∣,
∣∣∣∣ p̃

′(z)
p̃(z)

∣∣∣∣,
∣∣∣∣ q̃

′(z)
q̃(z)

∣∣∣∣,
∣∣∣∣ γ̃ ′(z)
p̃(z) + q̃(z)

∣∣∣∣
}

and
∫ 1

0 h̃(z)t dz < C̃.
C5 We have p̃′(z), q̃ ′(z) ≥ 0 for all z < c̃1, and p̃′(z), q̃ ′(z) ≤ 0 for all z > 1 − c̃2.3

PROPOSITION 6.2. Let C̃ ∈ (0,∞), c̃1, c̃2 ∈ (0,1/2), r > 2 and t > 0. For any
((P0, p̃), (Q0, q̃)) ∈ G̃

C̃,c̃1,c̃2,r,t
, for any L ∈ N such that L ≥ c̃−1

1 ∨ c̃−1
2 , and for {Pl,Ql}

defined in equation (5), we have
1

2C̃ exp((2C̃L)1/r )
≤ Pl

Ql

≤ 2C̃ exp
(
(2C̃L)1/r ),

for all l ∈ {0, . . .L}. Furthermore,

lim
L→∞ sup

((P0,p̃),(Q0,q̃))∈G̃
C̃,c̃1,c̃2,r,t

∣∣∣∣1 − I ({Pl}, {Ql})
I ((P0, p̃), (Q0, q̃))

∣∣∣∣ = 0.

We prove Proposition 6.2 in Appendix C.

6.3. Analysis of the transformation function. Proposition 6.2 considers densities sup-
ported on [0,1]. In conjunction with Proposition 6.1, this suffices to obtain Theorem 5.1,

3If g̃ is nondecreasing, we need only p̃′(z), q̃ ′(z) ≤ 0 for all z > 1 − c′
2.
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because the densities of the transformed edge weights are compactly supported and, impor-
tantly, the Renyi divergence is invariant with respect to the transformation function �.

To be precise, let p(·) and q(·) denote probability densities on S, and for X ∼ p and Y ∼ q ,

let p̃(·) and q̃(·) denote the densities of �(X) and �(Y). We then have p̃(z) = p(�−1(z))

φ(�−1(z))
and

q̃(z) = q(�−1(z))

φ(�−1(z))
for z ∈ [0,1]. Therefore, via the change of variable z = �−1(x), we have

∫
S

√
p(x)q(x) dx =

∫ 1

0

√
p̃(z)q̃(z) dz and

I
(
(P0,p), (Q0, q)

) = I
(
(P0, p̃), (Q0, q̃)

)
.

7. Simulation studies. We start with a toy example that illustrates the intuition behind
our discretization-based algorithm. In this example, we have n = 1000 nodes, K = 2 clusters
and P0 = Q0 = 0.5. We also set p(·) and q(·) as the normal density N(0,1.32 + 1) and mix-
ture of normals 1

2N(−1.3,1) + 1
2N(1.3,1), respectively. Observe that

∫
R

x dP = ∫
R

x dQ =
0 and

∫
R

x2 dP = ∫
R

x2 dQ = 1
2(1.32 + 1). The true clustering σ0 maps the first 500 nodes to

cluster 1 and the rest to cluster 2.
In Figure 3(a), we generate a random weighted network A and display the adjacency matrix

without randomly permuting the rows and columns. It is difficult to discern the block structure
because (P0,p) and (Q0, q) have equal mean and variance. In Figures 3(b), 3(c) and 3(d),
we discretize A using the transformation �(x) = ∫ x

−∞ 1
4e−|t |/2 dt and L = 3 bins and show

the discretized networks A1,A2 and A3; recall that A1 is a binary adjacency matrix, where
A1

uv = 1 if Auv �= 0 and φ(Auv) ∈ [0,1/3), and A1
uv = 0 otherwise, and likewise for A2 and

A3. We observe that the block structure is clearly distinguishable in A2 because the densities
p(·) and q(·) differ most around the origin; the block structure is somewhat visible in A1

and A3, but to a lesser extent. These figures illustrate why the discretization and initialization
stages are useful.

In Figure 4(a), we test how the performance of our algorithm scales with the network size
n. We use the same setting as our first simulation, except we let n ∈ {400,600,800, . . . ,2000}
and Ln = �0.4(log(logn))4�. For each value of n, we perform 100 trials, where we generate

FIG. 3. Effect of discretization on a weighted network.
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FIG. 4. Misclustering errors in simulation experiments.

a random network A, perform our clustering algorithm, and calculate the misclustering error.
The misclustering errors are averaged across the 100 random trials; the aggregated medians
are shown, with deviations, in Figure 4(a). In Figure 4(a), we observe the same threshold be-
havior that arises in the unweighted setting: the misclustering error is around 0.5—equivalent
to random guessing—for small n, and drops sharply to 0 as the value of n passes a threshold
(around n = 1000 in this case). We note that for this and our next simulation study, we use a
simplified version of our algorithm as described in Remark 4.2; we observed no difference in
performance between the full version and the simplified version of the algorithm.

In Figure 4(b), we study the sensitivity of our algorithm to the choice of discretization
level L. We let K = 3, n = 2100, P0 = 0.3 and Q0 = 0.27, and let p(·) be the density of
N(0.3,0.82), and q(·) be the density of N(0,1). We let L ∈ {1,2,3, . . . ,12,13} and, for
each setting of L, we perform 100 random trials in which we generate a random network A,
perform our clustering algorithm, and calculate the misclustering error. The results are shown
in Figure 4(b); the error for L = 1, in which we discard the edge weights, exceeds 0.56 and
is thus omitted from the plot. We observe that the algorithm performs best when L is chosen
to be small, though not too small, as is suggested by our theoretical analysis.

In Figure 5(a), we compare our approach against treating a weighted network as an un-
weighted one by discarding the edge weights. In this setting, we let n = 1500, P0 = 0.3,Q0 =
0.23 and K = 3. We choose q(·) as the density of N(0,1) and p(·) as the density of N(μ,1)

where we let μ ∈ {0,0.05,0.1,0.15,0.2,0.25}. We perform 100 trials and aggregate the re-
sult in Figure 5(a). In red, we plot the misclustering error incurred by our WSBM clustering
algorithm with L = 5; in blue, we plot the misclustering error incurred by ignoring the edge
weights entirely and treating the network as an unweighted one. As we expect, when μ is
close to 0, the edge weights are uninformative and it is better to ignore the edge weights. As
μ increases, however, the advantage of using the weights become significant.

FIG. 5. Comparison against naive approaches.
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In Figure 5(b), we compare our algorithm against clustering an unweighted network
formed by optimally thresholding the edge weights. We let K = 3, P0 = 0.3 and Q0 = 0.27,
and let p(·) be the density of N(0.3,0.8) and q(·) be the density of N(0,1). For τ ∈ R, we
define the thresholded network Aτ ∈ {0,1}n×n as Aτ,uv = 1 if Auv �= 0 and Auv ≥ τ , and
Aτ,uv = 0 if Auv = 0 or if Auv < τ . For each τ ∈ {−2,−1.8,−1.6, . . . ,1.6,1.8,2.0}, we
form Aτ , extract the cluster, and compute the misclustering error. We then report the lowest
misclustering error among all Aτ for τ ∈ {−2,−1.8,−1.6, . . . ,1.6,1.8,2.0} as the red line
in Figure 5(b); this approach is of course impossible to implement in practice, and we use it
only for the purpose of comparison. The turquoise line is the misclustering error incurred by
our algorithm, using Ln = �0.4(log(logn))4�.
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SUPPLEMENTARY MATERIAL

Supplement to “Optimal rates for community estimation in the weighted stochastic
block model” (DOI: 10.1214/18-AOS1797SUPP; .pdf). We provide detailed proofs of the
theorems and propositions in the main paper.

REFERENCES

[1] ABBE, E. (2017). Community detection and stochastic block models: Recent developments. J. Mach. Learn.
Res. 18 Paper No. 177, 86. MR3827065

[2] ABBE, E., BANDEIRA, A. S., BRACHER, A. and SINGER, A. (2014). Decoding binary node labels from
censored edge measurements: Phase transition and efficient recovery. IEEE Trans. Netw. Sci. Eng. 1
10–22. MR3349181 https://doi.org/10.1109/TNSE.2014.2368716

[3] ABBE, E., BANDEIRA, A. S. and HALL, G. (2016). Exact recovery in the stochastic block model. IEEE
Trans. Inform. Theory 62 471–487. MR3447993 https://doi.org/10.1109/TIT.2015.2490670

[4] ABBE, E. and SANDON, C. (2015). Community detection in general stochastic block models: Fundamental
limits and efficient algorithms for recovery. In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science—FOCS 2015 670–688. IEEE Computer Soc., Los Alamitos, CA. MR3473334

[5] ABBE, E. and SANDON, C. (2015). Recovering communities in the general stochastic block model without
knowing the parameters. In Advances in Neural Information Processing Systems 676–684.

[6] AICHER, C., JACOBS, A. Z. and CLAUSET, A. (2015). Learning latent block structure in weighted net-
works. J. Complex Netw. 3 221–248. MR3365464 https://doi.org/10.1093/comnet/cnu026

[7] BALAKRISHNAN, S., XU, M., KRISHNAMURTHY, A. and SINGH, A. (2011). Noise thresholds for spectral
clustering. In Advances in Neural Information Processing Systems 954–962.

[8] BARRAT, A., BARTHELEMY, M., PASTOR-SATORRAS, R. and VESPIGNANI, A. (2004). The architecture
of complex weighted networks. Proc. Natl. Acad. Sci. USA 101 3747–3752.

[9] BLONDEL, V. D., GUILLAUME, J.-L., LAMBIOTTE, R. and LEFEBVRE, E. (2008). Fast unfolding of
communities in large networks. J. Stat. Mech. Theory Exp. 10.

[10] BOCCALETTI, S., LATORA, V., MORENO, Y., CHAVEZ, M. and HWANG, D.-U. (2006). Complex net-
works: Structure and dynamics. Phys. Rep. 424 175–308. MR2193621 https://doi.org/10.1016/j.
physrep.2005.10.009

[11] CHIN, P., RAO, A. and VU, V. (2015). Stochastic block model and community detection in sparse graphs:
A spectral algorithm with optimal rate of recovery. In Proceedings of the 28th Conference on Learning
Theory 391–423.

[12] DECELLE, A., KRZAKALA, F., MOORE, C. and ZDEBOROVÁ, L. (2011). Asymptotic analysis of the
stochastic block model for modular networks and its algorithmic applications. Phys. Rev. E 84.

[13] EASLEY, D. and KLEINBERG, J. (2010). Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge Univ. Press, Cambridge. MR2677125 https://doi.org/10.1017/
CBO9780511761942

[14] FIENBERG, S. E., MEYER, M. M. and WASSERMAN, S. S. (1985). Statistical analysis of multiple socio-
metric relations. J. Amer. Statist. Assoc. 80 51–67.

https://doi.org/10.1214/18-AOS1797SUPP
http://www.ams.org/mathscinet-getitem?mr=3827065
http://www.ams.org/mathscinet-getitem?mr=3349181
https://doi.org/10.1109/TNSE.2014.2368716
http://www.ams.org/mathscinet-getitem?mr=3447993
https://doi.org/10.1109/TIT.2015.2490670
http://www.ams.org/mathscinet-getitem?mr=3473334
http://www.ams.org/mathscinet-getitem?mr=3365464
https://doi.org/10.1093/comnet/cnu026
http://www.ams.org/mathscinet-getitem?mr=2193621
https://doi.org/10.1016/j.physrep.2005.10.009
http://www.ams.org/mathscinet-getitem?mr=2677125
https://doi.org/10.1017/CBO9780511761942
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1017/CBO9780511761942


204 M. XU, V. JOG AND P.-L. LOH

[15] GAO, C., MA, Z., ZHANG, A. Y. and ZHOU, H. H. (2017). Achieving optimal misclassification proportion
in stochastic block models. J. Mach. Learn. Res. 18 Paper No. 60, 45. MR3687603

[16] GOLDENBERG, A., ZHENG, A. X., FIENBERG, S. E. and AIROLDI, E. M. (2010). A survey of statistical
network models. Found. Trends Mach. Learn. 2 129–233.

[17] HAJEK, B., WU, Y. and XU, J. (2016). Achieving exact cluster recovery threshold via semidefinite pro-
gramming. IEEE Trans. Inform. Theory 62 2788–2797. MR3493879 https://doi.org/10.1109/TIT.2016.
2546280

[18] HAJEK, B., WU, Y. and XU, J. (2016). Achieving exact cluster recovery threshold via semidefinite pro-
gramming: Extensions. IEEE Trans. Inform. Theory 62 5918–5937. MR3552431 https://doi.org/10.
1109/TIT.2016.2594812

[19] HAJEK, B., WU, Y. and XU, J. (2017). Information limits for recovering a hidden community. IEEE Trans.
Inform. Theory 63 4729–4745. MR3683533 https://doi.org/10.1109/TIT.2017.2653804

[20] HAJEK, B., WU, Y. and XU, J. (2017). Submatrix localization via message passing. J. Mach. Learn. Res.
18 Paper No. 186, 52. MR3827074

[21] HARTUV, E. and SHAMIR, R. (2000). A clustering algorithm based on graph connectivity. Inform. Process.
Lett. 76 175–181. MR1807676 https://doi.org/10.1016/S0020-0190(00)00142-3

[22] HEIMLICHER, S., LELARGE, M. and MASSOULIÉ, L. (2012). Community detection in the labelled stochas-
tic block model. Preprint. Available at arXiv:1209.2910.

[23] HOLLAND, P. W., LASKEY, K. B. and LEINHARDT, S. (1983). Stochastic blockmodels: First steps. Soc.
Netw. 5 109–137. MR0718088 https://doi.org/10.1016/0378-8733(83)90021-7

[24] JACKSON, M. O. (2008). Social and Economic Networks. Princeton Univ. Press, Princeton, NJ. MR2435744
[25] JOG, V. and LOH, P. (2015). Information-theoretic bounds for exact recovery in weighted stochastic block

models using the Renyi divergence. Preprint. Available at arXiv:1509.06418.
[26] LEI, J. and RINALDO, A. (2015). Consistency of spectral clustering in stochastic block models. Ann. Statist.

43 215–237. MR3285605 https://doi.org/10.1214/14-AOS1274
[27] LELARGE, M., MASSOULIÉ, L. and XU, J. (2015). Reconstruction in the labelled stochastic block model.

IEEE Trans. Netw. Sci. Eng. 2 152–163. MR3453283 https://doi.org/10.1109/TNSE.2015.2490580
[28] MASSOULIÉ, L. (2014). Community detection thresholds and the weak Ramanujan property. In STOC’14—

Proceedings of the 2014 ACM Symposium on Theory of Computing 694–703. ACM, New York.
MR3238997

[29] MCSHERRY, F. (2001). Spectral partitioning of random graphs. In 42nd IEEE Symposium on Founda-
tions of Computer Science (las Vegas, NV, 2001) 529–537. IEEE Computer Soc., Los Alamitos, CA.
MR1948742

[30] MOSSEL, E., NEEMAN, J. and SLY, A. (2012). Stochastic block models and reconstruction. Preprint. Avail-
able at arXiv:1202.1499.

[31] MOSSEL, E., NEEMAN, J. and SLY, A. (2014). Consistency thresholds for binary symmetric block models.
Preprint. Available at arXiv:1407.1591.

[32] MOSSEL, E., NEEMAN, J. and SLY, A. (2018). A proof of the block model threshold conjecture. Combina-
torica 38 665–708. MR3876880 https://doi.org/10.1007/s00493-016-3238-8

[33] NEWMAN, M., BARABÁSI, A.-L. and WATTS, D. J., eds. (2006). The Structure and Dynamics of Networks.
Princeton Studies in Complexity. Princeton Univ. Press, Princeton, NJ. MR2352222

[34] NEWMAN, M. E. J. (2004). Analysis of weighted networks. Phys. Rev. E 70.
[35] NEWMAN, M. E. J. and GIRVAN, M. (2004). Finding and evaluating community structure in networks.

Phys. Rev. E 69.
[36] PRITCHARD, J. K., STEPHENS, M. and DONNELLY, P. (2000). Inference of population structure using

multilocus genotype data. Genetics 155 945–959.
[37] RUBINOV, M. and SPORNS, O. (2010). Complex network measures of brain connectivity: Uses and inter-

pretations. NeuroImage 52 1059–1069.
[38] SADE, D. S. (1972). Sociometrics of Macaca mulatta: I. Linkages and cliques in grooming matrices. Folia

Primatologica 18 196–223.
[39] SHI, J. and MALIK, J. (2000). Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach.

Intell. 888–905.
[40] XU, M., JOG, V. and LOH, P.-L (2020). Supplement to “Optimal rates for community estimation in the

weighted stochastic block model.” https://doi.org/10.1214/18-AOS1797SUPP.
[41] YUN, S. and PROUTIERE, A. (2016). Optimal cluster recovery in the labeled stochastic block model. In

Advances in Neural Information Processing Systems 965–973.
[42] ZHANG, A. Y. and ZHOU, H. H. (2016). Minimax rates of community detection in stochastic block models.

Ann. Statist. 44 2252–2280. MR3546450 https://doi.org/10.1214/15-AOS1428
[43] ZHANG, B. and HORVATH, S. (2005). A general framework for weighted gene co-expression network anal-

ysis. Stat. Appl. Genet. Mol. Biol. 4 Art. 17, 45. MR2170433 https://doi.org/10.2202/1544-6115.1128

http://www.ams.org/mathscinet-getitem?mr=3687603
http://www.ams.org/mathscinet-getitem?mr=3493879
https://doi.org/10.1109/TIT.2016.2546280
http://www.ams.org/mathscinet-getitem?mr=3552431
https://doi.org/10.1109/TIT.2016.2594812
http://www.ams.org/mathscinet-getitem?mr=3683533
https://doi.org/10.1109/TIT.2017.2653804
http://www.ams.org/mathscinet-getitem?mr=3827074
http://www.ams.org/mathscinet-getitem?mr=1807676
https://doi.org/10.1016/S0020-0190(00)00142-3
http://arxiv.org/abs/arXiv:1209.2910
http://www.ams.org/mathscinet-getitem?mr=0718088
https://doi.org/10.1016/0378-8733(83)90021-7
http://www.ams.org/mathscinet-getitem?mr=2435744
http://arxiv.org/abs/arXiv:1509.06418
http://www.ams.org/mathscinet-getitem?mr=3285605
https://doi.org/10.1214/14-AOS1274
http://www.ams.org/mathscinet-getitem?mr=3453283
https://doi.org/10.1109/TNSE.2015.2490580
http://www.ams.org/mathscinet-getitem?mr=3238997
http://www.ams.org/mathscinet-getitem?mr=1948742
http://arxiv.org/abs/arXiv:1202.1499
http://arxiv.org/abs/arXiv:1407.1591
http://www.ams.org/mathscinet-getitem?mr=3876880
https://doi.org/10.1007/s00493-016-3238-8
http://www.ams.org/mathscinet-getitem?mr=2352222
https://doi.org/10.1214/18-AOS1797SUPP
http://www.ams.org/mathscinet-getitem?mr=3546450
https://doi.org/10.1214/15-AOS1428
http://www.ams.org/mathscinet-getitem?mr=2170433
https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.1109/TIT.2016.2546280
https://doi.org/10.1109/TIT.2016.2594812

	Introduction
	Notation

	Model and problem formulation
	Weighted stochastic block model
	Community estimation
	Permutation equivariance

	Overview of main results
	Relation to previous work
	Other notions of recovery


	Estimation algorithm
	Outline of algorithm
	Transformation and discretization
	Add noise
	Initialization
	Spectral clustering

	Reﬁnement and consensus

	Optimal misclustering error
	Upper bound
	Additional discussion of the conditions
	Examples for S=[0,1]
	Examples for S=R or [0,8)

	Lower bound
	Adaptivity

	Proof sketch: Recovery algorithm
	Analysis of community recovery on a labeled network
	Discretization of the Renyi divergence
	Analysis of the transformation function

	Simulation studies
	Acknowledgments
	Supplementary Material
	References

