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ON PARTIAL-SUM PROCESSES OF ARMAX RESIDUALS
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We establish general and versatile results regarding the limit behavior of
the partial-sum process of ARMAX residuals. Illustrations include ARMA
with seasonal dummies, misspecified ARMAX models with autocorrelated
errors, nonlinear ARMAX models, ARMA with a structural break, a wide
range of ARMAX models with infinite-variance errors, weak GARCH mod-
els and the consistency of kernel estimation of the density of ARMAX errors.
Our results identify the limit distributions, and provide a general algorithm to
obtain pivot statistics for CUSUM tests.

1. Introduction. Autoregressive moving-average models with covariates
(ARMAX) is one of the most common model classes for at least three reasons.
First, it nests and combines the widely used linear regression model and ARMA
models, the backbone of traditional time-series analysis, for example, [13]. Sec-
ond, VARMAX models, which have met a renewed interest with the emergence of
“big data” through factor models, for example, [18], can be written as a system of
ARMAX models, for example, [9], Section 7.2.2. Third, a large class of nonlinear
models, for example, [23], Section 2, and state-space models [28], Theorem 1.2.1,
have an ARMAX representation from which they can be studied.

In many situations, estimation and inference in ARMAX models require the use
of residuals instead of the error terms, as the latter are unobservable. The present
paper provides weak assumptions that relate the partial-sum processes of error
terms and the partial-sum process of residuals, that is, UT (s) := 1

T

∑�T s�
t=1 ut and

ÛT (s) := 1
T

∑�T s�
t=1 ûT ,t for s ∈ [0,1], and where (ut ) and (ût ) are respectively er-

ror terms and residuals originating from fitting a univariate ARMAX model to a
time series of length T . Our main application is the identification of the limit be-
havior of CUSUM tests for structural breaks, that is, statistical functionals, such as
the supremum of the absolute value of a function, applied to σ̂−1

u

√
T ÛT or trans-

formations thereof, where σ̂u is a consistent estimator of the error terms’ standard
deviation. At least since Brown, Durbin and Evans [14], CUSUM tests have be-
come standard diagnostic tools in different areas, such as medical statistics, econo-
metrics and signal processing.
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The core results of the present paper are of the form sups∈[0,1] |
√

T [ÛT (s) −
UT (s)] + ζT (s)| = oP (1), where ζT corresponds to the asymptotic gap between
the scaled partial-sum process of the residuals

√
T ÛT and the scaled partial-sum

process of the errors
√

TUT . When ζT = 0, the CUSUM tests based on
√

T ÛT

have the same critical values as when observing the error terms directly. This is
shown to hold in Bai [2] in the case of an ARMA with a known zero-mean pa-
rameter, but it will not hold most of the time: Even the inclusion of a mean pa-
rameter in the ARMA model is sufficient to affect the behavior of

√
T ÛT , that

is, to make ζT nonzero. While known for some time in the basic linear regression
model, this was noticed by Lee [36] in the AR case, and it was later general-
ized to the ARMA case in Yu [55] and in Ghoudi and Rémillard [26]. A simple
illustration of this effect is the linear regression model with only a constant as
regressor, that is, Yt = μ + ut . Then the OLS estimator is the average, that is,
μ̂ = 1

T

∑T
t=1 Yt , so that ût − ut = (Yt − μ̂) − ut = μ − μ̂, which, in turn, implies

that ζT (1) = √
T [ÛT (1)−UT (1)] = √

T (μ− μ̂). By the central limit theorem, this
means that for s = 1, and thus a fortiori for the supremum over s, the asymptotic
gap ζT is a random element that does not go to zero asymptotically.

As the above illustration suggests, the identification of ζT , and the related ques-
tion of taking ζT into account when suggesting statistical tests, are practically im-
portant: Ignoring ζT will result in erroneous critical values for CUSUM tests and
most of the other inference procedures based on residuals. Our paper develops a
flexible calculus for identifying ζT in a large class of cases encountered in practice,
from simple cases such as ARMA with seasonal dummy variables, to more compli-
cated models. Once ζT is calculated, attention is given to identifying a transforma-
tion �̃ of σ̂−1

u

√
T ÛT which is s.t. (such that) sups∈[0,1] |�̃[ζT ](s)| = oP (1), yield-

ing sups∈[0,1] |
√

T [�̃[ÛT ](s) − �̃[UT ](s)]| = oP (1). Under weak conditions, we

therefore have process convergence σ̂−1
u

√
T �̃[ÛT ](s) L−−−→

T →∞ �̃[B](s) where B is

a Brownian motion, that is, a pivot process, hence enabling the statistician to apply
CUSUM tests for structural stability. We define the pivot transformation �̃, which
corresponds to a bounded linear operator, through an algorithm. A special case of
the transformation �̃ yields the scaled partial-sum process V̂T (s) = 1

T

∑�T s�
t=1 v̂T ,t

where v̂T ,t := ût − 1
T

∑T
j=1 ûj , not of residuals but of average-corrected residuals.

This transformation and its pivot properties were identified by Yu [55] in the case
of an ARMA, and it suffices when sups∈[0,1] |ζT (s) − sζT (1)| = oP (1), which is
not the case in more general ARMAX models.

In the present paper, we work with ARMAX models in a wide sense. In partic-
ular, the error terms need not be weak white noise, that is, zero-mean and constant
finite variance with zero autocorrelation. In this way, our results have direct im-
plications for a large class of models, such as ARMA-GARCH models where the
error term is not IID (independent and identically distributed), as well as nonlinear
models and state space models with ARMAX representation, where errors terms
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are often not IID nor martingale-difference processes, for example, [23], Section 2.
Following Bai [2, 4], Yu [55] and Ghoudi and Rémillard [26], we typically make
no assumption on the estimators of the ARMAX parameters other than they are
OP (T −1/2) away from their targets. Hence, almost all of our results hold irrespec-
tively of the estimation method chosen. In addition, motivated by practical consid-
eration and the latest development of estimation theory, our assumptions allow for
heteroskedasticity, for example, [9], Chapter 8, Assumption 8.1.1, autocorrelation
in the errors, for example, [33] and higher-order dependence, for example, [23],
feedback effect between the covariates and the dependent variable, for example,
[9], Chapter 8, page 155, nonlinear components in the covariates, infinite-variance
errors, for example, [39], seasonal dummies, and several wide classes of covariates
(e.g., integrable stationary and ergodic, e.g., [11], page 494, or fractional ARMA
[13], Definition 13.2.2). Finally, we are also able to analyze cases where the model
is misspecified, and where we are estimating least-false parameters. Our reliance
on elementary but general inequalities in the crux of our proofs rather than on
probabilistic sophistication explains the generality and versatility of our results.

1.1. Technical setup. We consider a univariate ARMAX processes (YT,t ) s.t.

�(B)(YT,t − μ) = λ′XT ,t−1 + �(B)ut ,(1.1)

where B denotes the lag operator, �(z) := 1 − φ1z − φ2z
2 − · · · − φpzp ,

�(z) := 1 + θ1z + θ2z
2 + · · · + θqz

q , λ := (λ1, λ2, . . . , λdλ)
′ ∈ Rdλ and XT ,t−1 :=

(XT,t−1,1, . . . ,XT,t−1,dλ)
′ is a triangular vector array of covariates. We assume

that, based on observations (YT,t ,XT ,t−1)
T
t=1, there exist OP (T − 1

2 )-consistent es-
timators μ̂, λ̂, (φ̂i)

p
i=0 and (θ̂j )

q
j=1 of μ, λ, (φi)

p
i=0 and (θj )

q
j=1, respectively.

When (ut ) has finite and constant variance, we denote it by σ 2
u .

Notice that since the covariates in XT ,t−1 are allowed to depend on T , this
dependence is transferred to YT,t , which therefore also depends on T . This allows
us to study covariates such as the dummy variable I {t ≤ T p}, that is, a change point
at the first pth fraction of the sample. This dependence is transferred to YT,t , but we
do not assume that ut depends on the sample-size for mathematical convenience,
although it should be possible to extend our results in that direction. When there is
no T -dependence, we drop the subscript.

The ARMAX residuals (ût )
T
t=−q+1 are then defined as follows. For t ∈ �1, T �,

ût := (YT,t − μ̂) −
p∑

i=1

φ̂i(YT ,t−i − μ̂) −
q∑

j=1

θ̂j ût−j − λ̂
′
XT ,t−1, and(1.2)
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for t ∈ Z−, ût = 0,1 where, for all (a, b) ∈ R2, �a, b� := [a, b] ∩ Z, and Z− :=� −
∞,0�. We also use the average-corrected error and the average-corrected residuals

vt,T := ut − 1

T

T∑
j=1

uj , and v̂t,T := ût − 1

T

T∑
j=1

ûj .(1.3)

Our main focus is on the following partial-sum processes:

ÛT (s) := 1

T

�T s�∑
t=1

ût , UT (s) := 1

T

�T s�∑
t=1

ut ,

V̂T (s) := 1

T

�T s�∑
t=1

v̂t,T , and VT (s) := 1

T

�T s�∑
t=1

vt,T ,

(1.4)

where for all a ∈ R, �a� := max{n ∈ Z : n ≤ a}. The present paper establishes
general limit theorems for partial-sums process of ARMAX residuals and trans-
formations thereof.

1.2. Related literature. While, to the best of our knowledge, the present paper
is the first to study partial-sum processes of residuals from full-blown ARMAX
models, it is related to many existing papers in addition to the already cited papers.
In particular, the present paper complements Andreou and Werker [1], Ghoudi and
Rémillard [26] and an extensive literature on partial-sum processes and empirical
processes of residuals of regression models, for example, [50], Section 4.6 and
references therein. Andreou and Werker [1] rely on Le Cam’s theory to develop
an elegant and general framework to analyze residual-based statistics. However,
their high-level assumptions cannot always be checked (many statistical models
cannot be expressed in terms of likelihood as the ULAN assumption requires) and
satisfied, for example, [39, 49], for counterexamples to the assumption on asymp-
totic normality. Ghoudi and Rémillard [26] derive the asymptotic limit of empirical
processes of ARMA residuals, which is a more general object than the partial-sum
process of residuals. However, Ghoudi and Rémillard [26] do not allow for covari-
ates, and they require IID square-integrable errors with a probability distribution
absolutely continuous w.r.t. (with respect to) the Lebesgue measure. Another ad-
vantage of the approach developed in the present paper w.r.t. [1] and [26] is that
the crux of our proofs is based on elementary inequalities, thereby gaining a high
degree of generality and versatility.

The literature on partial-sum processes and empirical processes of residuals
from regression models include results for autoregressive processes, for example,

1Following the existing literature, for example, [2], residuals with negative indexes are put to zero
because they cannot be deduced from the observable data (i.e., the Yt s and Xt s with positive indexes)
as in equation (1.2). However, this does not imply that the Yt s and Xt s with negative indexes are
assumed to be zero.
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[7, 12, 34] with long-memory errors, for example, [15] and time trends, for ex-
ample, [7, 40, 54]. Our main contribution with respect to this literature is to allow
for a MA (moving average) component in the process in equation (1.1). Inspection
of the proofs shows that tackling the MA component is one of the main technical
challenges of the present paper. Unlike this literature, for example, [20, 34, 53, 54],
the present paper does not tackle unit roots and polynomial time trend. However,
as a follow-up paper shows, the framework of the present paper can readily be ex-
tended to tackle these cases. The present paper is also indirectly related to papers
that derives consistency results for some specific functions of ARMAX residuals,
for example, [22, 51], and to the literature on CUSUM tests. Following MacNeill
[38], Ploberger and Krämer [44, 45] and others, but unlike a part of the literature
on CUSUM tests, for example, [14, 35], our CUSUM tests statistics are not based
on recursive residuals, but on the standard residuals from the whole sample. From
a practical point of view, the rationale for using standard residuals instead of re-
cursive residuals is that the former are readily computed, while the latter requires
repetitive computations, which can become numerically unstable, especially given
the nonlinear objective functions of full-blown ARMA and full-blown ARMAX
models. From a theoretical point of view, neither of the two types of residuals has
been shown to yield uniformly superior tests.

1.3. Organization of the paper. Besides this introductory section, our paper
has two sections: Core results, found in Section 2, which encompasses most stan-
dard cases of interest, and extensions, found in Section 3. Section 3 also introduces
a general algorithm to obtain pivot statistics for CUSUM tests. All asymptotic
statements of the present paper are understood as T → ∞, so the latter qualifica-
tion is omitted from the main text.

All proofs, and a list of abbreviations with their meaning are found in the Sup-
plementary Material [27], which consists of several appendices. Page numbers in
the Supplementary Material are prefixed by “S” so that “S1” is the first page in
[27]. Because our assumptions are very weak, most proofs consist of long cal-
culations to reach the point where low-level techniques, such as, say, the use of
subadditivity of probability measures, can be applied. We therefore build up a li-
brary of lemmas to simplify these calculations, and we also provide very detailed
proofs. The high level of detail in the proofs is motivated first by the desire for
transparency, and second in order to make our techniques easy to apply in further
research.

2. Core results and immediate applications.

2.1. Core assumptions and expansion of the ARMA part. As mentioned in the
Introduction, we consider ARMAX processes in a wide sense, that is, we consider
a process (Yt ) to be an ARMAX processes if it is a solution to an equation of the
form of equation (1.1) on page 3218. Thus, our assumptions, which are extensions
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or a weakening of the assumptions in the related papers [2, 4, 26, 55], allow us to
consider processes that are outside the traditional ARMAX framework where error
terms are usually IID or martingale differences. Assumption 1, which is standard,
requires the roots of �(·) and �(·) to be outside the unit circle.

ASSUMPTION 1 (Invertibility of lag polynomial). Let �(·) and �(·) be the
AR and MA polynomials of the ARMAX process (1.1) on page 3218. (a) All roots
of �(z) lie outside the unit circle of the complex plane. (b) All roots of �(z) lie
outside the unit circle of the complex plane.

For ARMA processes with IID errors, Assumption 1(a) and (b), respectively,
correspond to causality and invertibility, for example, [13], pages 83–89. Assump-
tion 1(a) allows us to solve equation (1.1) for YT,t . Assumption 1(a) is not a binding
assumption, as we can always incorporate the autoregressive part with roots inside
the unit circle of the complex plane among the covariates’ part. In a follow-up
paper, we tackle unit roots in this way. In contrast to Assumption 1(a), Assump-
tion 1(b) is crucial and binding. Assumption 1(b) ensures that errors (or alterna-
tively residuals) can be expressed in terms of observables (see Lemma 12 in Ap-
pendix B.1, page S11 of [27]). Under Assumption 1(b), we note that the process
Y̌t := �(B)−1�(B)ut is a so-called weak ARMA if (ut ) is weak white noise. We
will sometimes work with (Y̌t ) in the proofs, which in contrast to the ARMAX
process (Yt ), is unobservable.

The following Assumption 2 is mild: It requires the difference between the es-
timators of the ARMA parameters and the population ARMA parameters to be

OP (T − 1
2 ).

ASSUMPTION 2 (OP (T − 1
2 )-consistency of ARMA parameters). Define the

stacked parameters φ := (φ1, . . . , φp)′ and θ := (θ1, . . . , θq)
′. Let μ̂, φ̂, and θ̂ be

the respective estimators of μ, φ, and θ s.t. (a)
√

T (μ̂−μ) = OP (1); (b)
√

T (φ̂ −
φ) = OP (1); and (c)

√
T (θ̂ − θ) = OP (1).

Assumption 2 allows us to determine which terms survive asymptotically once
we multiply the difference between the partial-sum process of the residuals and
the partial-sum process of the errors by

√
T . Assumption 2 is weaker than

√
T -

asymptotic normality, which has been proved for ARMAX, for example, [9, 29].
Assumption 2 allows for faster rates of convergence such as the one that has been
established for ARMA with infinite-variance errors, for example, [39], page 310,
Theorem 2.2; see Section 3.1 on page 3231. Note that Assumption 2 rules out
any identification problem, because identifiability is a necessary condition for the
consistency of an estimator.
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REMARK 1. For ARMAX models with unknown lag order, Hannan and
Deistler [28], Chapter 5, give conditions under which certain model-selection cri-
teria are consistent. As noticed by Hannan and Quinn [30], page 191, and further
discussed in Pötscher [46], see especially his Lemma 1, with the caveat pointed
out in [37], this means that all asymptotic results based on the assumption that the
true model is known also hold when using consistent model-selection procedures.
This observation, of course, also applies to our results.

The following Assumption 3 is also mild, as we explain below.

ASSUMPTION 3 (Error term ut ). (a) For a constant εu > 0, supt∈Z E|ut |1+εu <

∞. (b) sups∈[0,1] | 1
T

∑�T s�
t=1 ut | = oP (1).

Assumption 3(a) ensures the existence of certain power series in B applied to
the error ut (Lemma 7(i) on page S4 of [27]). In the present paper, except when in-
dicated otherwise, we understand power series in B applied to a process in terms of
almost sure convergence: As we do not always require the existence of the second
moment, using the standard convergence in L2 (i.e., the space of square-integrable
random variables) is not possible. Assumption 3(a) also allows us to apply the
Phillips–Solo device [42]. The latter is a technique based on the Beveridge–Nelson
decomposition [8] that allows us to asymptotically reduce the study of partial-sums
of linear filters of a process to simply the partial-sums of the process, that is, it al-
lows us to factor out linear filters. See Lemma 9 on page S6 of [27] for a precise
statement of the versions of the Phillips–Solo device used in the present paper. By
the Phillips–Solo device [42], Assumption 3(b) ensures that the partial-sum aver-
age process of power series of the error vanishes asymptotically (Corollary 3 on
page S8 of [27]). Assumption 3(b) is weaker than the standard assumptions that
(ut )t∈Z is a square-integrable zero-mean IID process, or that it is at least a Lp-
bounded martingale difference with p > 2, for example, [2, 55]. Appendix B.6
(page S19) of [27] provides a catalogue of sufficient conditions. In particular, As-
sumption 3(b) allows for (unconditional and conditional) heteroscedasticity and
for autocorrelation or higher forms of time-dependence. Heteroscedasticity and
time-dependence in the errors are likely to occur. Many financial and economic
time series appear unconditionally heteroscedastic, for example, [48], and refer-
ences therein. Similarly, autocorrelation of the errors is often difficult to rule out,
for example, [33], and references therein, and ARMAX representations of nonlin-
ear models often yield errors that are neither IID nor martingales differences, for
example, [23]. Thus, as further illustrated below in some examples, the generality
of Assumption 3(b) is useful.

Lemma 1(i) shows that the “ARMA part” of the partial-sum processes can be
characterized without assumptions on the covariates. It is therefore the core lemma
we use in all upcoming results, under various assumptions on the covariates.
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LEMMA 1 (Fundamental lemma: expansion for ARMA part). Under Assump-
tions 1, 2 and 3, w.p.a.1 as T → ∞,

(i) sups∈[0,1] |
√

T [ÛT (s) − UT (s)] + s �(1)
�(1)

√
T (μ̂ − μ) − 1√

T

∑�T s�
t=1 �T,t | =

oP (1);
(ii) sups∈[0,1] |

√
T [V̂T (s) −VT (s)] − 1√

T

∑�T s�
t=1 [�T,t − �̄T ]| = oP (1),

where, denoting the lag coefficients in the inverse of the polynomial 1+∑q
j=1 θ̂j z

j

with (ψj (θ̂))∞j=0 (i.e., [∑∞
j=0 ψj(θ̂)zj ][1 + ∑q

j=1 θ̂j z
j ] = 1),

�T,t := −
t−1∑
j=0

ψj(θ̂)

{
(λ̂ − λ)′XT ,t−1−j

+
p∑

i=1

(φ̂i − φi)�(B)−1λ′XT ,t−1−i−j

}
.(2.1)

PROOF. See Appendix C.2 on page S28 of [27]. �

The inverse of the polynomial 1 + ∑q
j=1 θ̂j z

j (i.e., the power series∑∞
j=0 ψj(θ̂)zj ) exists w.p.a.1 (with probability approaching one) as T → ∞, so

that �T,t is well-defined (Proposition 9 on page S12 in Appendix B.4 of [27]).
Hereafter, we drop the qualification “w.p.a.1 as T → ∞” because all upcoming
results rest on Lemma 1. If there is no MA part in the model (i.e., θ = θ̂ = 0),
then ψ0(θ̂) = 1 and ψj(θ̂) = 0 for j ∈ �1,∞�, and �T,t simplifies to �T,t =
−(λ̂ − λ)′XT ,t−1 − ∑p

i=1(φ̂i − φi)�(B)−1λ′XT ,t−1−i . If there is no covariate
(i.e., λ = λ̂ = 0 and Xt−1 = 0 for all t ∈ Z), then, for all (t, T ) ∈ N2, �T,t = 0, and
thus Lemma 1(i) and Lemma 1(ii), respectively, imply Theorem 1 and Corollary 1
in [55] for k = 1 because sups∈[0,1] |s�(1)/�(1) − �T s�(1 − ∑p

i=1 φi)/[T (1 +∑q
j=1 θj )] | = o(1). If, for all (t, T ) ∈ N2, �T,t = 0 and μ̂ = μ = 0 (i.e., no co-

variates and no intercept), Lemma 1(i) implies the main result in [2], Theorem 1.
We therefore generalize the core results of these papers by showing that they also
hold under weaker conditions on the error term. See the discussion of Assump-
tion 3 and the discussion that follows it. This generalization is practically relevant,
as illustrated in the following examples.

EXAMPLE 1. To illustrate that heteroscedasticity and autocorrelation in the
error terms can easily arise within our assumptions, let us revisit the simple
model Yt = μ + ut from the Introduction. Assume (ut ) is a linear process ut =∑∞

j=0 αjεt−j where (εt ) is a zero-mean process with uncorrelated elements, but

where Var εt may depend on t . Moreover, assume supt∈Z Eε2
t < ∞ and that there

exist M > 0 and ρ ∈ ]0,1[ s.t., for all j ∈ �0,∞�, we have |αj | < Mρj . Then, for
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the representation Yt = μ + ut estimated with the OLS estimator μ̂ = 1
T

∑T
t=1 Yt ,

Assumptions 1–3 hold, as shown in Appendix C.3 on page S33 of [27].

EXAMPLE 2. An important class of models are ARMA models where (ut ) has
time varying volatility. A prominent example is ARMA-GARCH models, where
the error term follows a GARCH model. By definition, integrable GARCH pro-
cesses are martingale difference sequences, for example, [25], Definition 2.1(i).
Now, in Proposition 11 of [27] (page S23), we show that martingale differences
satisfy Assumption 3(b) under the standard assumption that they are uniformly
Lr -bounded with r > 1. Thus, Lemma 1 covers most ARMA-GARCH models.
In this way, Lemma 1 greatly generalizes Bai [2], Theorem 1, which applies to
ARMA-GARCH models only when the intercept is assumed to be zero, and hence
not estimated—not even indirectly through first subtracting the average of the ob-
servations, and which requires (ut ) to be at least uniformly Lr -bounded martin-
gale differences with r > 2 [2], assumption a.1’. The upcoming Theorem 1 further
generalizes this result to a large class of ARMAX-GARCH models, which, in par-
ticular, nests the ARCH regression model of Engle [19], Section 5.

EXAMPLE 3. A weak GARCH process is any process (εt ) s.t. (ε2
t ) is an

ARMA process of the form �(B)(Yt − μ) = �(B)ut where (ut ) is at least as-
sumed to be weak white noise (see Francq and Zakoïan [24], Section 2, where
additional technical assumptions are made). Weak GARCH processes generalize
the class of standard GARCH models and span several other interesting volatil-
ity models, including Markov-switching GARCH processes, stochastic volatility
models and aggregated GARCH processes [25], Section 4.2. For several of these
representation results to hold, it is essential that (ut ) is not restricted to be IID
or even martingale difference sequences. Previously known theory on partial-sum
processes of residuals therefore does not apply in this setting. Estimation theory for
weak GARCH processes is developed in Francq and Zakoïan [24], providing

√
T -

consistent estimators for the parameters. The analysis of partial-sum processes of
residuals and average-corrected residuals from weak GARCH models is a conse-
quence of Lemma 1, as long as the ARMA representation of (ε2

t ) fulfils Assump-
tions 1, 2 and 3. Assumptions 1 and 2 follow from [24]. Because (ut ) is assumed
to be weak white noise, Assumption 3 also holds (Lemma 18(a), Appendix B.6 on
page S19 of [27]).

The upcoming Section 2.2.2 shows that, under weak assumptions, we have

sups∈[0,1] |σ̂−1
u V̂T (s)| L−−−→

T →∞ sups∈[0,1] |B◦(s)| where B◦ is a Brownian bridge

process and σ̂u is the empirical standard deviation of the residuals. For weak
GARCH processes treated in Example 3, this appears to induce new tests for struc-
tural stability.
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2.2. Expansions for generic covariates. We here study the contribution of co-
variates to expansions of the partial-sum process in the most common cases en-
countered in practice, namely settings where λ̂ is

√
T -consistent.

2.2.1. Assumption and theorem. We now analyze the process s �→ 1√
T

×∑�T s�
t=1 �T,t . Lemma 1 (page 3223) shows that this process is central for under-

standing ARMAX residuals. We make the following assumptions.

ASSUMPTION 4 (Covariates XT ,t ). (a)
√

T (λ̂ − λ) = OP (1). (b) For a con-
stant εX > 0, for all l ∈ �1, dλ�, sup(T ,t)∈N×Z E|XT,t,l|1+εX < ∞. (c) sups∈[0,1] | 1

T
×∑�T s�

t=1 (XT ,t−1 − EXT ,t−1)| = oP (1). (d) For all i ∈ �1,p�, sups∈[0,1] |[ 1
T

×∑�T s�
t=1 EXT ,t−1−i] − s 1

T

∑T
t=1 EXT ,t−1−i | = o(1).

Assumption 4(a) requires OP (T − 1
2 )-consistency. As noted for the ARMA pa-

rameters, this allows for faster rate of convergence. Assumption 4(b) ensures the
a.s. (almost sure) finiteness of the infinite series �(B)−1Xt , �(B)−1XT ,t−1 and
�(B)−1�(B)−1XT ,t−1, and their expectation by an extended Minkowski inequal-
ity (Lemma 7 on page S4 in [27]). It also allows the application of the Phillips–
Solo device [42] on partial-sums of �(B)−1XT ,t−1 and �(B)−1�(B)−1XT ,t−1
(Lemma 9 on page S6 in [27]). Assumption 4(b) can be weakened into
sup(T ,t)∈N×Z E|XT,t,l| < ∞, but Assumptions 4(c) and (d) would then need to
be modified and extended.

Assumptions 4(a)–(c) reduce the study of the process s �→ 1√
T

∑�T s�
t=1 �T,t into

the study of the deterministic processes

L1,T (s) := 1

T

�T s�∑
t=1

�(B)−1
EXT ,t−1 and

(2.2)

L2,i,T (s) := 1

T

�T s�∑
t=1

�(B)−1�(B)−1
EXT ,t−1−i ,

where i ∈ �1,p�. Taken together Assumptions 4(c) and (d) are the counterparts
of Assumption 3(b) for the covariates: Assumption 4(d) places restrictions on
the term subtracted in Assumption 4(c). Appendices B.6 (page S19) and C.5
(page S38) in [27] show that Assumption 4(c) and (d) hold for most of the pro-
cesses considered in the time-series literature. By the Phillips–Solo device [42],
Assumptions 4(c) and (d) allow a further reduction of the processes in equation
(2.2).

THEOREM 1 (Expansion for generic covariates). Under Assumptions 1, 2, 3
and 4(a)–(c):
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(i) sups∈[0,1] | 1√
T

∑�T s�
t=1 �T,t − √

T (λ̂ − λ)′L1,T (s) − ∑p
i=1

√
T (φ̂i − φi)λ

′ ×
L2,i,T (s)| = oP (1) and hence sups∈[0,1] |

√
T [ÛT (s) −UT (s)] + s �(1)

�(1)

√
T (μ̂ −

μ) − √
T (λ̂ − λ)′L1,T (s) − ∑p

i=1

√
T (φ̂i − φi)λ

′L2,i,T (s)| = oP (1).
(ii) Under the additional Assumption 4(d):

(ii.a) sups∈[0,1] |L1,T (s) − s�(1)−1 1
T

∑T
t=1 EXT ,t−1| = o(1) and, for all

i ∈ �1,p�, sups∈[0,1] |L2,i,T (s) − s�(1)−1�(1)−1 1
T

∑T
t=1 EXT ,t−1−i | = o(1);

and
(ii.b)

√
T sups∈[0,1] |V̂T (s) −VT (s)| = oP (1).

PROOF. See Appendix C.4 on page S35 of [27]. �

Theorem 1(i), which does not assume Assumption 4(d), characterizes the
asymptotic difference ζT between the scaled residual partial-sum process and the
scaled error partial-sum process. Note that while the expansion does not depend
on θ̂ , the actual MA terms θ influence the functions L1,T and L2,i,T ; see equa-
tion (2.2). Theorem 1(ii) shows that Assumption 4(d) yields a simplification in the
analysis of the partial-sum process of average-corrected residuals. More precisely,
Theorem 1(ii.a), which relies on the Phillips–Solo device, simplifies the expression
of L1,T (·) and L2,i,T (·). Theorem 1(ii.b) provides an easy way to reach a pivot
statistic for CUSUM-type tests even when the covariates (XT ,t−1) have nonzero-
mean. In order to actually reach a pivot statistic in standard cases, σu needs to be
consistently estimated. This is treated in Section 2.2.2. We also generalize Theo-
rem 1(ii.b) in Section 3.4.

We end this section with an example verifying Theorem 1(i) in an elementary
case where—in contrast to the large classes of models we consider in the upcom-
ing subsections—Assumption 4(d) does not hold. The example also anticipates
various extensions of Theorem 1 given later in the paper, and will be revisited in
Sections 3.4 and 3.5.2.

EXAMPLE 4. Consider the model Yt = λI {t ≤ pT } + ut where 0 < p < 1 is
known and (ut ) is zero-mean IID with finite variance. Note that XT ,t depends
on T . Note also that Assumption 4(c) trivially holds since the covariate is deter-
ministic. However, Assumption 4(d) does not hold. Indeed, 1

T

∑�T s�
t=1 I {t ≤ pT } =

1
T

∑min(�T s�,�pT �)
t=1 1 = 1

T
min(�T s�, �pT �) = min(s,p) + o(1), and s 1

T

∑T
t=1 I {t ≤

pT } = sp + o(1) w.r.t. the uniform norm, hence their difference does not go to
zero.

By definition, we have ût = Yt − λ̂I {t ≤ pT } = (λ − λ̂)I {t ≤ pT } + ut , so√
T ÛT (s) = √

T (λ − λ̂) 1
T

∑�T s�
t=1 I {t ≤ pT } + √

TUT (s), which agrees with The-

orem 1(i) since L1,T (s) = 1
T

∑�T s�
t=1 I {t ≤ pT }. Following the above calculation,

we see that if
√

T (λ − λ̂) = OP (1), then
√

T ÛT (s) = min(s,p)
√

T (λ − λ̂) +
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√
TUT (s) + oP (1) uniformly. We have

√
T V̂T (s) = √

T ÛT (s) − s
√

T ÛT (1) +
oP (1) = √

TUT (s) − s
√

TVT (1) + min(s,p)
√

T (λ − λ̂) − s min(1,p)
√

T (λ −
λ̂) + oP (1) uniformly. Hence, average-correcting residuals does not lead to an
asymptotic pivot, that is, the nuisance term related to min(s,p)

√
T (λ − λ̂) is not

removed. In this special case, we could study
√

T (λ − λ̂) and derive the joint
process limit of

√
T ÛT . However, this limit would in general depend on further

nuisance parameters, and the joint process limit can be more challenging to derive
in more complex settings. As a special case of a general technique described in
Section 3.4, we see that

√
T ÛT (s) − [min(s,p)/p]√T ÛT (1) = min(s,p)

√
T (λ −

λ̂) + √
TUT (s) − [min(s,p)/min(1,p)][min(1,p)

√
T (λ − λ̂) + √

TUT (1)] +
oP (1) = √

TUT (s) − [min(s,p)/min(1,p)]√TUT (1) + oP (1). Thus, if σ̂u
P→

σu > 0, the functional central limit theorem and the continuous mapping theorem

imply that σ̂−1
u

√
T sups∈[0,1] |ÛT (s) − [min(s,p)/p]ÛT (1)| L→ sups∈[0,1] |B(s) −

[min(s,p)/min(1,p)]B(1)|, where B is a Brownian motion. This CUSUM test,
which to our knowledge is new, has critical values easily found via simula-
tion.

2.2.2. Consistency of empirical residual-based variance, and obtaining pivot
statistics. We here derive asymptotic pivot statistics from partial-sum processes.
This requires estimating σu, which is the first topic of this section. Because our
proofs immediately generalize to the multivariate case, we will here consider a
system of ARMAX models, and treat ARMAX residuals as a special case. We are
minimalistic in the introduced notation, as we will only work with the multivariate
case in the present section.

PROPOSITION 1 (Consistency of empirical variance). Suppose given a system
of d ARMAX models, each fulfilling Assumptions 1, 2, 3, 4(a). Denote the ith ele-
ment of the covariates in the j th ARMAX model with Xt−1,i,j , and the error terms
of the j th ARMAX model with ut,j . If, for all j ∈ �1, d�, supt∈Z E|ut,j |2 < ∞ and,
for all i ∈ �1, dλ�, supt∈Z EX2

t−1,i,j < ∞, then

�̂u,T = �u,T + oP (1),

where �u,T := 1
T

∑T
t=1 utu

′
t − ( 1

T

∑T
t=1 ut )(

1
T

∑T
t=1 ut )

′ denotes the empirical co-

variance matrix of the error ut := (u1,t , . . . , u1,t )
′ and �̂u,T := 1

T

∑T
t=1 ût û

′
t −

( 1
T

∑T
t=1 ût )(

1
T

∑T
t=1 ût )

′ the empirical covariance matrix of the residuals ût :=
(ût,1, . . . , ût,d)

′.

PROOF. See Appendix C.6.1 on page S40 of [27]. �

Proposition 1 combined with Theorem 1(ii) provides pivot CUSUM statis-
tics when used in conjunction with a statistical functional, such as the supre-
mum.
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COROLLARY 1 (Pivot statistic). Assume that the following conditions hold:

(a) �u,T = �u + oP (1).

(b) We have process convergence
√

T (U1,T (s), . . . ,Ud,T (s))′ L−−−→
T →∞

�
1/2
u (B1(s), . . . ,Bd(s))′, where B1, . . . ,Bd are independent Brownian motion

processes on [0,1], and �
1/2
u is the lower-triangular invertible Cholesky matrix

of �u.

Then, under the assumptions of Proposition 1 and Assumptions 4(b)–(d) for
each ARMAX model of the d-dimensional system, we have process conver-
gence

�̂
−1/2
u,T

√
T

(
V̂1,T (s), . . . , V̂d,T (s)

)′ L−−−→
T →∞

(
B◦

1 (s), . . . ,B◦
d (s)

)′
,

where B◦
1 , . . . ,B◦

d are independent Brownian bridge processes on [0,1].

PROOF. See Appendix C.6.2 on page S45 of [27]. �

Corollary 1 immediately implies the asymptotic distribution of various mul-
tivariate CUSUM-statistics, whose limit distribution is easily identifiable due to
the independence of the above Brownian bridge processes. For brevity, we do not
discuss this further. Condition (b) corresponds to a multivariate functional central
limit theorem, which has been proved in various settings, for example, [17, 42],
Section 27.7, when (ut ) has no autocorrelation. Condition (a) just requires the
usual empirical covariances to converge to the covariance. Such results have been
proved under mild assumptions, for example, [42], Theorems 3.7 and 3.16 and
Remark 3.9.

2.3. Examples and immediate applications. For simplicity, we consider dif-
ferent types of covariates separately. However, it is clear from the formula of �T,t ,
as well as Lemma 1 and Theorem 1 and their proofs, that by the triangle inequality,
we can jointly consider them (e.g., λXT,t−1 = λ1X

(1)
T ,t−1 +λ2X

(2)
T ,t−1 with (X

(1)
T ,t−1)

an L1 ergodic stationary process and where (X
(2)
T ,t−1) contains seasonal dummy

variables).

2.3.1. ARMA with seasonal dummies. Seasonality is present in many time se-
ries. One way to model seasonality is to introduce seasonal dummies. The fol-
lowing proposition shows how seasonal dummies affect partial-sum processes of
residuals. This is an example of practical importance, since many time series are
analyzed after being seasonally adjusted in this way. We see that the seasonal dum-
mies induce extra terms in the expansion for the partial sum of the residuals, which
vanish for average-corrected residuals.
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PROPOSITION 2 (Seasonal dummy). Let d = dλ + 1 and XT ,t−1 = (I {t ≡
1 (mod d)}, . . . , I {t ≡ d − 1 (mod d)})′, so that λ′XT ,t−1 = ∑d−1

k=1 λkI {t ≡ k

(mod d)} models a seasonal component. Then, under Assumptions 1, 2, 3 and
4(a):

(i) for all l ∈ �1, dλ�, sups∈[0,1] |L1,T ,l(s) − s �(1)−1

d
| = o(1),

sups∈[0,1] |L2,i,T ,l(s) − s �(1)−1�(1)−1

d
| = o(1) for all i ∈ �1,p�, where L1,T (s) =:

(L1,T ,1(s),L1,T ,2(s), . . . ,L1,T ,dλ(s))
′ and L2,i,T (s) =: (L2,i,T ,1(s),L2,i,T ,2(s),

. . . ,L2,i,T ,dλ(s))
′; and

(ii) the conclusions of Theorem 1 hold (i.e., Assumptions 4(b)–(d) hold).

PROOF. See Appendix C.6.3 on page S45 of [27]. �

2.3.2. ARMA with covariates whose expectations are constant. The follow-
ing Proposition 3 provides conditions that ensure the assumptions of Theorem 1
regarding the covariates (XT ,t−1) under common conditions.

PROPOSITION 3 (Covariates with constant expectations). Assume that
(XT ,t−1)t∈Z does not depend on T (i.e., for all (T , t) ∈ Z2, XT ,t−1 = Xt−1), and
satisfies one of the following conditions:

(a) (Xt−1)t∈Z is a strictly stationary and ergodic process.
(a′) For all t ∈ Z, EXt = EX0, and, for each k ∈ �1, dλ�, there exist a β ∈

]0,1[, so that supk∈N[(1 + k)β sup(i,j)∈�1,∞�2:|i−j |=k |Cov(Xi,k,Xj,k)|] < ∞.

Then, under Assumptions 1, 2, 3 and 4(a), (b), Theorem 1 holds (i.e., Assumptions
4(c)–(d) hold).

PROOF. See Appendix C.6.4 on page S46 of [27]. �

Conditions (a) and (a′) are weaker than the usual assumption in econometrics:
See Appendix B.6 in [27], in which Propositions 10 and 11 provide a catalogue of
sufficient conditions.

2.3.3. Simplifications of the limit processes for zero-mean covariates. In sev-
eral particular cases, a stream of results, which go back at least to [44], Theorem 1,
has shown that the scaled partial-sum process of residuals asymptotically behaves
as the scaled partial-sum process of average-corrected errors. The following Propo-
sition 4 provides general assumptions under which such results can be extended to
full-blown ARMAX models.

PROPOSITION 4 (Equivalence between residuals and average-corrected errors).
Define the polynomial estimator �̂(z) := 1 − φ̂1z − φ̂2z

2 − · · · − φ̂pzp . Assume
that:
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(a) EXT ,t = 0, for all (t, T ) ∈ Z × N;

(b) μ̂ = 1
T

∑T
t=1 YT,t − λ̂

′

�̂(1)

1
T

∑T
t=1 XT ,t + oP (T −1/2).

Then, under Assumptions 1, 2, 3, 4(a)–(c),

sup
s∈[0,1]

√
T

∣∣ÛT (s) −VT (s)
∣∣ = oP (1).

PROOF. See Appendix C.6.5 on page S46 of [27]. �

The proposition identifies conditions that imply that the limit processes of resid-
uals and average-corrected error terms are asymptotically equivalent. Assumption
(a) of Proposition 4 can be fulfilled through a reparameterization, for example,
[44], Assumption A.2, when EXT ,t does not depend on the sample size T . By
the Phillips–Solo device [42], Assumption (b) of Proposition 4 is connected to
the empirical average of the reduced form equation Yt − μ = �(B)−1λXT ,t−1 +
�(B)−1�(B)ut where the unobservable ARMA part �(B)−1�(B)ut is left out,
and where the unknown parameters are estimated. When there is no covariate (i.e.,
XT ,t = 0, for all (t, T ) ∈ Z × N), assumption (b) requires that μ̂ corresponds to

the average of (Yt ) modulo oP (T − 1
2 ). In this case, the common practice of average

adjusting data prior to analysis trivially implies assumption (b).

REMARK 2. Because this equivalence is somewhat counterintuitive, let us
check Proposition 4 in the linear regression model with only a constant as re-
gressor, that is, Yt = μ + ut . As recalled in the Introduction, in this case, the OLS
estimator is the average, that is, μ̂ = 1

T

∑T
t=1 Yt . Then ût = Yt − 1

T

∑T
t=1 Yt =

(μ + ut ) − 1
T

∑T
t=1(μ + ut ), so that ÛT (s) −VT (s) is not only oP (1) as stated by

Proposition 4, but is equal to zero.

The conclusion of Proposition 4 is contrary to what is expected from Bai [2],
where partial-sum processes of residuals are asymptotically first order equiva-
lent to partial-sum processes of error terms. The estimation of a mean parameter
changes the behavior of the partial-sum process of residuals in an abrupt manner.
Proposition 4 extends this observation from the pure ARMA case treated in Yu
[55] and Ghoudi and Rémillard [26], the AR case treated in Lee [36] and the linear
regression case in [43, 44]. Ploberger and Krämer [44] derive the weak process
limit of partial-sums of residuals when using the OLS in a linear regression prob-
lem under standard econometric assumptions. In their Theorem 1, see equation
(12) and (13) of [44], it is shown that sups∈[0,1]

√
T |ÛT (s) − VT (s)| = oP (1) (in

our notation). The stated conclusion of their Theorem 1 is a direct implication of
this uniform approximation. Hence their Theorem 1 is a special case of Proposi-
tion 4.
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3. Extensions and further applications.

3.1. ARMA with infinite-variance errors. Lemma 1 only assumes bounded
(1 + ε)-moment, and specifically does not assume finite variance. This means that
our results have implications for a wide range of ARMA models with infinite-
variance errors.

There are not many results for ARMAX models with infinite-variance errors,
but we mention Mikosch et al. [39], which works with ARMA models without in-
tercept nor covariates, and Klüppelberg and Mikosch [32] which extends Mikosch
et al. [39] to allow for model misspecification (the topic of Section 3.2) in the in-
finite variance case. In these papers, it is shown under IID conditions and under

Assumption 1, that there are estimators φ̂, θ̂ such that (T / logT )1/α(φ̂
′ − φ′, θ̂ ′ −

θ ′)′ = OP (1). Since α < 2, we have faster than
√

T -convergence, so Assump-
tion 2 holds. Note that Mikosch et al. [39] allows for 0 < α < 2, but that α ≤ 1 is
incompatible with Assumption 3(a) which our results require.

Assumption (a) of the following result assumes no covariates, but we allow
for an intercept term. While Mikosch et al. [39] assumes μ = 0, and their setting
can be regained by setting μ̂ = μ = 0, there seems to be no inference theory for
the case when μ is estimated. Even so, we include it and assume that it can be
estimated at the OP (T − 1

2 ) rate, since we see that the upcoming expansion of the
partial-sum process of ARMA residuals is here not influenced by nuisance terms
originating from the estimation of μ. Proposition 5 shows that the scaled difference
between the residual partial-sum process and the error partial-sum process even
goes to zero. This is a rare case where having an intercept term, or not, does not
affect our expansions, which is counter to the intuition built up by Proposition 4 in
the finite variance case. In the following proposition, all process convergences are
understood in D[0,1] using the J1 Skorokhod metric where D[0,1] denotes the
space of càdlàg functions on [0,1].

PROPOSITION 5 (ARMA with infinite-variance errors). Assume that the fol-
lowing two conditions hold:

(a) For all (T , t) ∈ N × Z, XT ,t−1 = 0.

(b) There is an α ∈ ]1,2[ such that T −1/α ∑�T s�
t=1 ut

L−−−→
T →∞ Y(s), where Y is

nondegenerate.

Under Assumptions 1, 2 and 3,

1

T
1
α

�T s�∑
t=1

ût = 1

T
1
α

�T s�∑
t=1

ut + oP (1)
L−−−→

T →∞ Y(s).

PROOF. See Appendix D.1 on page S48 of [27]. �
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Assumption (a) of Proposition 5 rules out covariates. Assumption (b) of Propo-
sition 5 corresponds to a functional version of equation (2.2) in [39]. Unlike the
Brownian motion, the limit process Y is not continuous, and we therefore use the
J1 Skorokhod topology; see Section 12 in Billingsley [10].

3.2. Misspecification. In this section, we investigate the situation in which one
fits an ARMAX model to the observations (Yt ,Xt−1)

T
t=1, although the process

(Yt ,Xt−1)
T
t=1 does not need to solve equation (1.1) (page 3218) for a process (ut )

that is IID or even weak white noise. Standard estimators then do not have their
usual interpretation, but usually converge toward least-false parameters; see, for
example, Dahlhaus et al. [16] and Klüppelberg and Mikosch [32].

Our core results also hold in such settings. The present section explores these
settings (i) by deriving the formula of the error term (ut ) for a given set of least-
false parameters (Lemma 2, page 3232), (ii) by providing assumptions directly
on the observables to verify our core assumptions (Proposition 6, page 3233) and
(iii) by deducing the limiting behavior of the partial sum process of average cor-
rected residuals when the data generating process is a linear process (Corollary 2,
page 3233). Note that in this section, we do not allow the covariates (Xt ) to de-
pend on T because this may lead to a dependence on T also for (ut ), which would
require an extension of our main results.

The following lemma shows that, under Assumption 1(b), for any process
(Yt ,Xt−1)t∈Z with bounded first absolute moments, there exists a process (ut )t∈Z
s.t. (Yt ,Xt−1, ut )t∈Z is an ARMAX process, which corresponds to equation (1.1)
on page 3218. Such a result parallels the fundamental econometric OLS assump-
tion for a linear regression model Yt = X′

tλ+ut given by E[Xtut ] = 0, which can
either be seen as an assumption on ut , or as a requirement for λ which defines the
error term ut using the observations; see, for example, [31], Section 2.9.

LEMMA 2 (ARMAX representation of arbitrary processes). Any process
(Yt ,Xt−1)t∈Z s.t. supt∈Z E|Yt | < ∞ and supt∈Z E|Xt−1| < ∞, where the Yt are
random scalars and the Xt−1 random vectors, defines an ARMAX process that
corresponds to equation (1.1) on page 3218 for

ut := �(B)−1[
�(B)(Yt − μ) − λ′Xt−1

]
, t ∈ Z,

where μ,λ,�(B) and �(B) are respectively any chosen scalar, vector of the same
dimension as (Xt−1) and lag polynomials (of finite order) s.t. �(B) is invertible.

PROOF. See Appendix D.2.1 on page S49 of [27]. �

In order to apply our results, we make assumptions on the observable processes,
which leads to conditions verifying Assumption 3. This is achieved under the as-
sumptions of the upcoming Proposition 6, which can be checked by the same ar-
guments that lead to Assumption 3. In view of Lemma 18 of [27] (Appendix B.6,



ON PARTIAL-SUM PROCESSES OF ARMAX RESIDUALS 3233

page S19), assumption (b) of Proposition 6 is weak, but it still rules out cases where
there is a global misspecification of the expectation structure: For example, if we
do not model a trend in the mean of a time series under consideration, assumption
(b) of Proposition 6 typically does not hold.

PROPOSITION 6 (Theorem 1 for misspecified ARMAX). Assume that:

(a) for a constant εY > 0, supt∈Z E|Yt |1+εY < ∞; and that

(b) sups∈[0,1] | 1
T

∑�T s�
t=1 [�(B)(Yt − μ) − λ′

E(Xt−1)]| = oP (1).

Under Assumption 1(b):

(i) if Assumptions 4(b) and (c) hold, then Assumption 3 holds for (ut ) as given
in Lemma 2; and

(ii) if Assumption 1(a), Assumption 2 and Assumption 4 hold, then Theorem 1
holds for (ut ) as given in Lemma 2.

PROOF. See Appendix D.2, page S49 of [27]. �

We now provide an illustration of the above results for a class of linear pro-
cesses.

COROLLARY 2. Let Yt − μ = ∑∞
j=0 αjεt−j where (εt ) is a zero-mean IID

sequence with finite nonzero variance, |αj | < Mρj with M ∈ R and ρ ∈ ]0,1[, for
all j ∈ N, and where there exists a j ∈ N s.t. |αj | > 0. If Assumptions 1 and 2 hold
for an ARMA representation �(B)(Yt −μ) = �(B)ut where �(B) and �(B) are
chosen finite lag polynomials, then we have process convergence

σ̂−1
u

√
T V̂T (s)

L−−−→
T →∞ τB◦(s) with τ := (

∑∞
j=0 ζ̌j )(

∑∞
j=0 αj )√

(
∑∞

j=0 ζ̌ 2
j )(

∑∞
j=0 α2

j )
,

where B◦ is a Brownian bridge on [0,1], σ̂ 2
u := ( 1

T

∑T
t=1 û2

t )− ( 1
T

∑T
t=1 ût )

2 (as in

the univariate version of Proposition 1 on page 3227), and where (ζ̌j ) are the lag
coefficients of �(B)−1�(B). Moreover, if the ARMA representation is correctly
specified (i.e., �(B)−1�(B) = ∑∞

j=0 αjB
j ), then τ = 1.

PROOF. See Appendix D.2.3 on page S51 of [27]. �

Comparison of Corollary 2 with Corollary 1 (page 3228) shows that the
misspecification only affects the asymptotic behavior of CUSUM-test statistics
through the factor τ , which therefore can be seen as a robustness measure.

EXAMPLE 5. Let us revisit the basic model Yt = μ + ut from Exam-
ple 1 (page 3223) under the additional assumptions of Corollary 2. This is an
ARMA(0,0) so that ζ̌j = I {j = 0}, giving τ = ∑∞

j=0 αj/
∑∞

j=0 α2
j .
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REMARK 3. Proposition 5 (page 3231) combined with Basrak and Krizmanić
[6] yields a counterpart of Corollary 2 for potentially misspecified ARMA models
with infinite-variance errors as in Klüppelberg and Mikosch [32].

3.3. Nonparametric density estimation of the errors. This section establishes
uniform consistency of nonparametric density estimation of the p.d.f. of ARMAX
errors. More precisely, under weak assumptions, the following theorem shows that
the p.d.f. of the errors can be estimated using standard kernel estimation with the
residuals in place of the unobserved errors.

THEOREM 2 (Kernel estimation). Let f (·) be a p.d.f. and fT (·) := 1
T hT

×∑T
t=1 K( ·−ut

hT
) be a kernel estimator of f s.t.:

(a) the bandwidth parameters (hT )T ∈Z are a sequence of nonzero real num-
bers s.t.

√
T h2

T → ∞, as T → ∞;
(b) the kernel K(·) is a Lipschitz-continuous function;
(c) supx∈R |fT (x) − f (x)| = oP (1).

Then, under Assumptions 1, 2, 3 and 4(a), (b),

sup
x∈R

∣∣f̂T (x) − f (x)
∣∣ = oP (1),

where f̂T (x) := 1
T hT

∑T
t=1 K(x−ût

hT
).

PROOF. See Appendix D.3 on page S54 of [27]. �

To the best of our knowledge, Theorem 2 is the first to establish consistency
of kernel estimation of errors from full-blown ARMAX models. Theorem 2 gen-
eralizes a result in Bai [2] and complements one of the main theorems in [47].
Under stronger assumptions, Bai [2], page 257, equation 30, proves the same re-
sult for ARMA processes with known zero-mean parameter. Robinson [47] proves
the same result for a wide class of zero-mean covariance-stationary processes with-
out covariates. In Robinson [47], Theorem 3, the assumptions are neither weaker
(e.g., they require finite second moment) nor stronger (e.g., less stringent condi-
tions on the rate of convergence to zero of the bandwidth parameter), but they are
more complicated, as pointed out in Bai [2], page 257. In Theorem 2, condition
(a) is stronger than the usual bandwidth assumptions, which require T hT → ∞ or
T h2

T → ∞ [41], equation 2.8, and equation 3.6, respectively, but condition (a) is

satisfied by usual “optimal” bandwidths, which are of order T − 1
5 [41], Lemma 4A,

equation 4.15 for r = 2. Condition (b) is also satisfied by the usual “optimal” ker-
nel,2 the Epanechnikov kernel [21], Section b, and other commonplace kernels

2We write “optimal” in quotation marks, because the traditional criterion of optimality for band-
width parameters and kernels is questionable, for example, [52], Chapter 1.



ON PARTIAL-SUM PROCESSES OF ARMAX RESIDUALS 3235

(e.g., Gaussian kernel): Their derivatives are bounded so that they are Lipschitz-
continuous by the mean-value theorem. Condition (c) corresponds to a standard
result in kernel estimation, which has been proved under general conditions [41],
Theorem 3A, equation 3.7. The proof of Theorem 2 easily follows from an in-
termediary result proved to establish the consistency of the empirical variance
(Proposition 1, page 3227). This indicates that the toolbox developed in the present
paper is useful beyond CUSUM tests.

3.4. Generalized average corrections. Theorem 1(ii.b) and Corollary 1 show
that under Assumption 4(d), the partial-sum process of average-corrected residuals
divided by σ̂ is an asymptotic pivot process under weak conditions. This enables
the statistician to perform CUSUM type tests in a large set of cases.

There are practically relevant examples where the assumptions of Theorem 1(i)
hold, but Assumption 4(d) does not, meaning we cannot use the simplification
provided by Theorem 1(ii). As we saw in Example 4, there may then be trans-
formations of the residual process which are asymptotic pivot processes. We here
develop a general framework which under weak additional assumptions leads to
asymptotic pivots under the conditions of Theorem 1(i), that is, we generalize The-
orem 1(ii.b).

For brevity, we only provide a single illustration, extending Example 4. Another
illustration is ARMA models with potentially a unit root and a polynomial time
trend. The details of this case is lengthy and complex, and is given in a follow-up
paper.

EXAMPLE 6 (Continuation of Example 4). Consider an ARMAX model with
XT ,t−1 = I {t ≤ pT }. We here assume that p is known. In the upcoming Sec-
tion 3.5.2 (page 3240), we show that the estimation of p does not substantially
affect the following discussion due to certain adaptivity properties.

We may use a slight extension of the Phillips–Solo device [42] (see Lemma 9
on page S6) and the calculations in Example 4 (page 3226) to get L1,T (s) =
�(1)−1 1

T

∑�T s�
t=1 I {t ≤ pT } + o(1) = �(1)−1 1

T

∑min(�T s�,�pT �)
t=1 + o(1) =

�(1)−1 min(s,p) + o(1) uniformly. Similarly, L2,i,T (s) = �(1)−1�(1)−1 ×
min(s,p) + o(1) uniformly. Under the conditions of Theorem 1(i), we see that
sups∈[0,1] |

√
T [ÛT (s) − UT (s)] + ζT (s)| = oP (1) where ζT (s) = s�(1)�(1)−1 ×√

T (μ̂ − μ) − �(1)−1 min(s,p)
√

T (λ̂ − λ) − λ�(1)−1�(1)−1 min(s,p) ×∑p
i=1

√
T (φ̂i − φi) is of the form ζT (s) = ∑2

j=1 bT,j gj (s), with g1(s) = s and
g2(s) = min(s,p), and where bT,1, bT ,2 are both OP (1) random variables.

Under general assumptions, Theorem 1(i) gives conditions for sups∈[0,1] |
√

T ×
[ÛT (s) − UT (s)] + ζT (s)| = oP (1) where ζT (s) = s[�(1)/�(1)]√T (μ̂ − μ) −
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√
T (λ̂ − λ)′L1,T (s) − ∑p

i=1

√
T (φ̂i − φi)λ

′L2,i,T (s), that is,

(3.1) ζT (s) =
n∑

j=1

bT,j gj (s),

in which (bT ,j )
n
j=1 are OP (1) random variables that are unknown and not possible

to estimate consistently, but where (gj )
n
j=1 are either known or can be consistently

estimated. Note that certain nuisance parameters may be included in (bT ,j )
n
j=1,

such as �(1)/�(1) in Example 6. However, in that example, g2(s) = min(s,p)

includes the nuisance parameter p, which cannot be absorbed in (bT ,j )
n
j=1, but has

to be estimated.
The central component of our proposed pivot transformation is the following

bounded linear operator. For any bounded function x : [0,1] �→ R and a number
a ∈ [0,1] s.t. x(a) �= 0, define the operator �̃[x, a] on functions with domain [0,1]
by

�̃[x, a]y(s) = y(s) − x(s)

x(a)
y(a).(3.2)

Notice that if ūT = OP (1) and x(s) = s then

√
TVT (s) = 1√

T

�T s�∑
t=1

(ut − ūT )

= 1√
T

�T s�∑
t=1

ut − √
T

�sT �
T

ūT

= √
TUT (s) − s

√
TUT (1) + oP (1)

= �̃[x,1]√TUT (s) + oP (1),

where the third equality follows from Lemma 25 of [27] (Appendix C.1, page S28).
The linear operator �̃[x, a] therefore generalizes the average-correction of Theo-
rem 1(ii.b) on page 3225.

We also define the compounded operator �̃[g(n)
n , an] with g

(n)
n := (g

(1)
1 , . . . ,

g
(n)
n ), an := (a1, . . . , an) ∈ [0,1]n and n ∈ N, through

�̃
[
g(n)

n , an

] := �̃
[
g

(1)
1 , a1

] ◦ �̃
[
g

(2)
2 , a2

] ◦ · · · ◦ �̃
[
g(n)

n , an

]
,(3.3)

where g
(k)
k is defined recursively through a starting set of functions g1(s), . . . ,

gn(s). The recursion is

g
(n)
j (s) = gj (s),

(3.4)

g
(n−k−1)
j (s) := g

(n−k)
j (s) − g

(n−k)
n−k (s)

g
(n−k)
n−k (an−k)

g
(n−k)
j (an−k)
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for k ∈ �0, n− 2� and j ∈ �1, n− k�. The following lemma shows that �̃[g(p)
p , ap]

is a transformation that has good properties and that cancels out the asymptotic
gap between

√
T ÛT and

√
TUT .

LEMMA 3 (Algorithm to reach a pivot statistic). Let (a1, a2, . . . , an) ∈ [0,1]n
be real numbers with n ∈ N. Let g1(s), g2(s) . . . , gn(s) be a set of known bounded
real-valued functions with domain [0,1] s.t., for all j ∈ �1, n�, g

(j)
j (aj ) �= 0 where

g
(j)
j are defined by recursion (3.4). Then, for any function f : [0,1] → R of the

form f (s) = ∑n
j=1 bjgj (s):

(i) �̃[g(n)
n , an]f (s) = 0; and

(ii) if, for all j ∈ �1, n�, sups∈[0,1] |gj (s)| < ∞, then �̃[g(n)
n , an] is a linear

bounded operator on any linear subspace of the space of real-valued functions
with domain [0,1], and thus it is continuous on the same linear subspace.

PROOF. See Appendix D.4.1 on page S55 of [27]. �

Lemma 3 requires two assumptions on the functions gj s. First, it requires them
to be bounded over [0,1], which is a condition that is trivially satisfied in our appli-
cations. Second, it requires that g

(j)
j (aj ) �= 0. This can be numerically checked, as

the bj s do not enter in the definition of the g
(j)
j s: See recursion (3.4) on page 3236.

In practice, choosing distinct aj ’s appears to be sufficient to satisfy this second as-
sumption.

We now apply Lemma 3. We assume uniformly consistent estimators (ĝj )
n
j=1

of (gj )
n
j=1 to be at hand.

THEOREM 3. Suppose sups∈[0,1] |
√

T [ÛT (s) − UT (s)] + ζT (s)| = oP (1) in
which ζT (s) = ∑n

j=1 bT,j gj (s) where bT,j = OP (1) for j = 1,2, . . . , n. Let
a1, . . . , an be constants fulfilling the conditions of Lemma 3 w.r.t. g1, . . . , gn.
Suppose there are functions (ĝj )

n
j=1 computed from data s.t. sups∈[0,1] |gj (s) −

ĝj (s)| = oP (1) for all j ∈ �1, n�. Letting ĝ
(n)
n be defined through the recursion of

eq. (3.4) starting with ĝ1, ĝ2, . . . , ĝn, the following holds:

(i) If
√

TUT = OP (1) w.r.t. the uniform norm, we have

sup
s∈[0,1]

∣∣�̃[
ĝ(n)

n , an

][√T ÛT ](s) − �̃
[
g(n)

n , an

][√TUT ](s)∣∣ = oP (1).

(ii) If also σ̂u = σu + oP (1) with σu > 0 and σ−1
u

√
TUT

L−−−→
T →∞ B for some

process B , we have process convergence

�̃
[
ĝ(n)

n , an

][
σ̂−1

u

√
T ÛT

]
(s)

L−−−→
T →∞ �̃

[
g(n)

n , an

][B](s).
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PROOF. See Appendix D.4.2 on page S58 of [27]. �

EXAMPLE 7. Continuing Example 6 from page 3235, we have ĝ1(s) :=
g1(s) = s and ĝ2(s) := min(s, p̂). In Appendix D.4.3 on page S60 of [27], we
show that sups∈[0,1] |ĝ2(s) − g2(s)| = oP (1) as long as p̂ = p+ oP (1), a weak as-
sumption, since we typically have T (p̂− p) = OP (1); see, for example, Bai [3, 5].
Hence, Theorem 3 can be applied, yielding a new type of CUSUM test.

REMARK 4. We note that the estimation of (gj )
n
j=1 is a simpler problem than

identifying critical values directly from the expansion of Theorem 1(i). Using this
expansion directly, one can typically show that σ̂−1

u

√
T ÛT converges weakly to a

zero-mean Gaussian process, whose covariance function depends on the functions
L1,T and L2,i,t of equation (2.2) as well as the asymptotic covariance matrix of√

T (σ−1
u

√
TUT , μ̂−μ, φ̂−φ, λ̂−λ). Hence, one would need to estimate a greater

number of nuisance parameters than when using Theorem 3.

3.5. Nonlinear ARMAX models. Consider the nonlinear ARMAX model

�(B)(Yt − μ) = λ′g(ZT,t ,γ 0) + �(B)ut ,(3.5)

where (ZT,t ) is an observable time series and γ �→ g(·,γ ) is a given function with
domain �. In such a model, which is a useful extension of linear ARMAX, for
example, [9], Section 7.4, pages 152–153, the definition of the residuals is such
that

(3.6) ũt =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(Yt − μ̂) −
p∑

i=1

φ̂1(Yt−i − μ̂) −
q∑

j=1

θ̂1ût−j − λ̂
′
X̂T ,t−1

for t ∈ �1, T �,

0 for t ∈ Z−,

where X̂T ,t−1 := g(ZT,t , γ̂ ). The only difference between the definition of (ût ) in
equation (1.2) on page 3218 and (ũt ) in equation (3.6) is that XT ,t−1 is replaced
with X̂T ,t−1. Thus, subtracting equation (1.2) to equation (3.6), and then summing
over t and multiplying by 1√

T
yields

√
T

[
ŨT (s) − ÛT (s)

] = λ̂
′ 1√

T

�T s�∑
t=1

[X̂T ,t−1 − XT ,t−1]

= λ̂
′ 1√

T

�T s�∑
t=1

[
g(ZT,t , γ̂ ) − g(ZT,t ,γ 0)

]
,(3.7)

where ŨT (s) := 1
T

∑�T s�
t=1 ũt . As the above equation relates ŨT (s) to ÛT (s) in

a simple manner, we can study the partial-sum residual process ŨT (s) through
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ÛT (s), for which Lemma 1 and Theorem 1 provide uniform approximations.
We here give two examples of this technique. One nonsmooth example, where
g(ZT,t ,γ 0) = I {t ≤ pT } for g(x,γ 0) = I {γ −1

0 ≤ x} with ZT,t = T/t and γ 0 = p,
and one smooth example, where γ �→ g(ZT,t ,γ ) is differentiable and ZT,t does
not depend on T .

3.5.1. Smooth nonlinear ARMAX models. In this section, we assume λ̂ =
λ = 1 and XT ,t−1 = g(Zt ,γ 0), where (Zt ) is an observable time series that does
not depend on T as in Bierens [9], Section 7.4, and our observations follow equa-
tion (3.5). Proposition 7 characterizes ζT , that is, the asymptotic gap between the
scaled partial-sum process of nonlinear ARMAX errors and its residual counter-
part.

PROPOSITION 7 (Smooth nonlinear ARMAX). Let (Yt ) and (Zt ) be two pro-
cesses that satisfy equation (3.5) where λ is known to be equal to one, that is,
λ̂ = λ = 1. Let the function g(·) in equation (3.5) and γ̂ , which denotes an estima-
tor of γ 0, be s.t. they satisfy the following assumptions:

(a)
√

T (γ̂ − γ 0) = OP (1).
(b) For each x, the function γ �→ g(x,γ ) is twice continuously differentiable

in a neighborhood Vγ 0
of γ 0, and, for all γ ∈ �, x �→ g(x,γ ) is measurable.

(c) There exists a vector G such that sups∈[0,1] | 1
T

∑�T s�
t=1

∂
∂γ g(Zt ,γ 0)− sG| =

oP (1).
(d) supt∈N E[supγ∈Vγ 0

| ∂2

∂γ ′∂γ g(Zt ,γ )|] < ∞.

Then:

(i) sups∈[0,1] |
√

T [ŨT (s) − ÛT (s)] + s
√

T (γ̂ − γ 0)G| = oP (1); and

(ii) under the additional Assumptions 1, 2, 3 and 4(a)–(c), sups∈[0,1] |
√

T ×
[ŨT (s) − UT (s)] + s �(1)

�(1)

√
T (μ̂ − μ) − ∑p

i=1

√
T (φ̂i − φi)L2,i,T (s) − s

√
T (γ̂ −

γ 0)G| = oP (1).

PROOF. See Appendix D.5 on page S60 of [27]. �

Proposition 7 shows that the asymptotic gap ζT between the scaled partial-
sum process of nonlinear ARMAX

√
TUT and its residual counterpart

√
T ŨT

has a structure similar to the linear case (i.e., Theorem 1(i) on page 3225). Writ-
ing ζT in the form of equation (3.1) (page 3236), the first term in ζT can be
written as bT,1g1(s) where bT,1 = b

(1)
T ,1 + b

(2)
T ,1 = OP (1), with g1(s) = s, b

(1)
T ,1 =

−√
T (γ̂ − γ 0)G and b

(2)
T ,1 = (�(1)/�(1))

√
T (μ̂ − μ). Thus, using Theorem 3

(page 3237), the pivot transformation is the same as if we knew γ 0, and thus ob-
served g(Zt ,γ 0). The assumptions of Proposition 7 are quite general, although
they could be weakened at the cost of more complex proofs. Primitive conditions
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for assumption (a) of Proposition 7 can be found in Bierens [9], page 164, Theo-
rem 8.2.4. Assumptions (b) and (d) of Proposition 7 are standard primitive condi-
tions to establish assumption (a), for example, [9], pages 166–167, Assumptions
8.2.1(b) and 8.2.4. Assumption (c) of Proposition 7 is slightly nonstandard, but
it is implied by the typical primitive conditions used to establish assumption (a).
In particular, if (Zt ) is strictly stationary and ergodic, and E| ∂

∂γ g(Zt ,γ 0)| < ∞
then assumption (c) holds with G = E[ ∂

∂γ g(Zt ,γ 0)] by the ergodic theorem and
a simple lemma from Nielsen and Sohkanen [40], Lemma 4.2. Note also that in
the latter case, if g(·) is linear and (Zt )t∈Z is zero-mean, G = 0, that is, there is
adaptivity in the trivial linear case.

3.5.2. Change points. In Examples 4 (page 3226) and 6 (page 3235), we
worked with an ARMAX model which included a change-point type covariate.
We here justify our claim that the estimation of the change-point does not affect
our results under weak conditions. Note that adaptivity with respect to the estima-
tion of the placement of the change-point also holds in related cases, such as in the
parameter estimation theory of Bai [3, 5], and so this result is expected.

We here have λ′ = λ, which is univariate, and XT ,t−1 = I {t ≤ pT } and
X̂T ,t−1 = I {t ≤ p̂T }. In the following Proposition 8, we assume that �p̂T � =
�pT � + oP (T

1
2 ). This assumption is considerably weaker than the expected T -

convergence of change point problems found in, for example, Bai [3, 5], that is, that
T (p̂−p) = OP (1) which implies that �p̂T � = �(p̂−p)T +pT � = �OP (1)+pT � =
�pT � + OP (1).

PROPOSITION 8 (ARMAX with estimated change-point). Let (Yt ) and (ZT,t )

be two processes that satisfy equation (3.5) s.t. g(ZT,t ,γ 0) = I {t ≤ pT } for γ 0 =
p. Define the residuals s.t. g(ZT,t , γ̂ ) = I {t ≤ p̂T } for γ̂ = p̂. If �p̂T � = �pT � +
oP (

√
T ), then:

(i) under Assumption 4(a), sups∈[0,1] |
√

T [ŨT (s) − ÛT (s)]| = oP (1); and

(ii) under the additional Assumptions 1, 2 and 3, sups∈[0,1] |
√

T [ŨT (s) −
UT (s)] + s �(1)

�(1)

√
T (μ̂ − μ) − �(1)−1 min(s,p)

√
T (λ̂ − λ) − �(1)−1�(1)−1 ×

min(s,p)
∑p

i=1

√
T (φ̂i − φi)| = oP (1).

PROOF. See Appendix D.5 on page S61 of [27]. �

In the setting of Proposition 8, a pivot transformation was identified in Exam-
ples 6 and 7.
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