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PREDICTION WHEN FITTING SIMPLE MODELS TO
HIGH-DIMENSIONAL DATA1

BY LUKAS STEINBERGER AND HANNES LEEB

Albert Ludwig University of Freiburg and University of Vienna

We study linear subset regression in the context of a high-dimensional
linear model. Consider y = ϑ + θ ′z + ε with univariate response y and a d-
vector of random regressors z, and a submodel where y is regressed on a set of
p explanatory variables that are given by x = M ′z, for some d ×p matrix M .
Here, “high-dimensional” means that the number d of available explanatory
variables in the overall model is much larger than the number p of variables in
the submodel. In this paper, we present Pinsker-type results for prediction of
y given x. In particular, we show that the mean squared prediction error of the
best linear predictor of y given x is close to the mean squared prediction error
of the corresponding Bayes predictor E[y‖x], provided only that p/ logd is
small. We also show that the mean squared prediction error of the (feasible)
least-squares predictor computed from n independent observations of (y, x)

is close to that of the Bayes predictor, provided only that both p/ logd and
p/n are small. Our results hold uniformly in the regression parameters and
over large collections of distributions for the design variables z.

1. Introduction. Fitting simple models to complex, high-dimensional data is
often motivated by the belief, or assumption, that the data does indeed admit a sim-
ple representation. Theoretical analyses of simple, or sparse, modeling methods,
in particular, typically rely on the assumption that the true data-generating process
can be described, or at least be closely approximated, by a simple model. In situ-
ations where the sample size is relatively small, however, it is often infeasible to
substantiate such beliefs or assumptions from data. For prediction, the results in
this paper justify searching for, and working with, parsimonious representations
without relying on the assumption that the “truth” is sparse or simple.

Given an overall linear regression model with d explanatory variables and a
submodel with p explanatory variables, we consider the best linear predictor for
the response given those explanatory variables that are “active” in the submodel,
and the corresponding Bayes predictor. We show that the best linear predictor is
comparable to the Bayes predictor in terms of relative mean squared prediction
error, irrespective of, that is, uniformly in, the regression parameters, provided
only that p/ logd is small. This statement moreover holds uniformly over a large
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collection of distributions for the explanatory variables and the error term in the
model. We also provide similar results for the case where the coefficients of the
best linear predictor are estimated from a data sample of size n, provided that both
p/ logd and p/n are small.

The best linear predictor in a possibly misspecified (sub) model and its coef-
ficients are well-studied objects in the statistics literature, certainly since Huber
(1967), and recently gained new popularity as witnessed by, for example, Abadie,
Imbens and Zheng (2014), Bachoc, Leeb and Pötscher (2015), Berk et al. (2013),
Brannath and Scharpenberg (2014), Buja et al. (2014), Greenshtein and Ritov
(2004), Leeb, Pötscher and Ewald (2015), Leeb (2008, 2009), Lee et al. (2016),
Taylor et al. (2014). Near equivalence of the best linear predictor and the Bayes
predictor, as we establish here, is related to the celebrated result of Pinsker (1980);
the relation of our result to Pinsker’s theorem will be discussed in detail later.
The present paper is based on the PhD thesis of Steinberger (2015). On a techni-
cal level, we expand and further analyze findings of Steinberger and Leeb (2018),
who in turn rely on Leeb (2013) and Hall and Li (1993) (see also [Diaconis and
Freedman (1984)] as well as [Dümbgen and Del Conte-Zerial (2013)]). We also
rely on results about extreme eigenvalues of large sample-covariance matrices by
Srivastava and Vershynin (2013).

The rest of the paper is organized as follows. In Section 2, we give an out-
line of our findings, put them in context with existing results, and discuss some
immediate consequences. A detailed description of our main results and assump-
tions is given in Section 3. In Section 4, we provide a high-level explanation of
the mechanisms that facilitate our results. Section 5 gives an explicit analysis of
the prediction problem in a simple low-dimensional setting, and Section 6 outlines
how our results can be used to deal with several potential candidate models. Lastly,
some additional remarks are collected in Section 7. All proofs are contained in the
Appendix.

2. Overview. Throughout, we consider the linear model

(1) y = ϑ + θ ′z + ε

with ϑ ∈ R and θ ∈ R
d for some d ∈ N. We assume that the error ε is indepen-

dent of z, with mean zero and finite variance; its distribution will be denoted by
L(ε). Moreover, we assume that the vector of regressors z has mean μ ∈ R

d and
positive definite variance/covariance matrix �. Our model assumptions are further
discussed in Remark 7.1. No additional restrictions will be placed on the regres-
sion coefficients ϑ and θ , on the moments μ and �, or on the error distribution
L(ε).

We do place some assumptions on the distribution of the explanatory variables.
First, we assume that z can be written as an affine transformation of independent
random variables (see also Remark 7.2). With this, we can represent z as

(2) z = μ + �1/2Rz̃
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for a vector z̃ with independent (but not necessarily identically distributed) com-
ponents so that E[z̃] = 0 and E[z̃z̃′] = Id , where �1/2 is the positive definite and
symmetric square root of �, and where R is an orthogonal matrix. Second, we as-
sume that z̃ has a Lebesgue density, which we denote by fz̃, with bounded marginal
densities and finite marginal moments of sufficiently high order; cf. Section 3 for
details.

The distribution of (y, z) in (1)–(2) is characterized by ϑ and θ , by L(ε), by
� and μ, by fz̃, and by R. For the expository discussion in this section, we keep
all these quantities fixed except for the regression coefficients ϑ ∈ R and θ ∈ R

p ,
and the orthogonal d × d matrix R. [We note that the model (1)–(2) also covers
situations where z contains lagged dependent variables; cf. Remark 7.3.]

Consider a submodel where y is regressed on x, with x given by x = M ′z for
some full-rank d × p matrix M with p < d . For example, M can be a selec-
tion matrix that picks out p components of the d-vector z. (See also Remark 3.5
and Remark 3.6, as well as Section 6 regarding several submodels.) Submodels
with regressors of the form x = M ′z also occur in principal component regression,
partial least squares, and certain sufficient dimension reduction methods. We are
particularly interested in situations where d is much larger than p, that is, p � d .

Our goal is to compare linear and nonlinear predictors of y given x. In particular,
we study the Bayes predictor E[y‖x] and the best linear predictor α + β ′x, where
α ∈R and β ∈ R

p minimize E[(y − (α+β ′x))2]. Note that both predictors depend
on the model parameters, although this dependence is not explicitly shown in the
notation. Their corresponding mean squared errors are

RN(θ,R) = E
[(

y −E[y‖x])2]
and

RL(θ) = E
[(

y − (
α + β ′x

))2]
.

It is elementary to verify that both RN and RL do not depend on ϑ , and that
RL equals ‖(Id − P�1/2M)�1/2θ‖2 + Var(ε), and hence does not depend on R,
where P· denotes the orthogonal projection onto the column space of the indicated
matrix. In particular, RL is minimized if �1/2θ is in the span of �1/2M , that is, if
θ = Mβ . Similar to Pinsker (1980), we study the risk ratio RN/RL. Note that we
always have Var(ε) ≤ RN ≤ RL ≤ Var(y), so that the risk ratio RN/RL is always
bounded by 1. In the degenerate case where RL = 0, and hence also RN = 0, we
set RN/RL = 1. To provide some context for our results, we next discuss two
conditions which guarantee that RN/RL = 1.

EXAMPLE 2.1. The Bayes predictor and the best linear predictor of y given
x coincide if θ satisfies θ ′z = β ′x almost surely, that is, if θ = Mβ (irrespective of
ϑ and of the distribution of z or z̃). In that case, θ is often called “sparse” if M is
a selection matrix, because then β and x are subvectors of θ and z, respectively,
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and the remaining d − p components of θ are equal to zero. Under such a sparsity
assumption, we have Var(ε) = RN = RL. For an overview of the well-developed
theory on sparse modeling, including methods for inference on the true regression
coefficients ϑ and θ , we refer to the monograph of Bühlmann and van de Geer
(2011). In situations where d exceeds the sample size, it is typically infeasible
to ascertain whether or not the true parameter vector θ is indeed sparse or, more
generally, whether or not θ = Mβ holds (for the given matrix M).

EXAMPLE 2.2. The Bayes predictor and the best linear predictor also coin-
cide (irrespective of ϑ and θ ) if our distributional assumptions on z are replaced
by the requirement that z is Gaussian or, more generally, by the requirement that
the law of z̃ is spherically symmetric. In that case, for any matrix A of appropriate
dimension, conditional means of the form E[z̃‖Az̃] are linear functions of the con-
ditioning variable, and hence E[y‖x] = α + β ′x. Under this assumption, we have
Var(ε) ≤ RN = RL, and the inequality is typically strict. This angle is further
developed in Leeb (2008, 2009), with a focus on prediction. [In fact, the class of
elliptically contoured distributions is characterized by the property that conditional
means are linear; cf. Eaton (1986).] But, similar to before, in situations where d

exceeds the sample size, it is often infeasible to judge if z is Gaussian or if the law
of z̃ is spherically symmetric.

The conditions discussed in the two preceding examples are satisfied by a rel-
atively small subclass of all data-generating processes as in (1)–(2), namely by
those with θ satisfying θ = Mβ , and by those with z̃ being spherically symmetric,
respectively. We here show that the mean squared errors of the Bayes predictor and
the best linear predictor, that is, RN and RL, are close to each other, uniformly in
θ and uniformly over a “large” collection of design distributions of the form (2),
provided only that p/ logd is small. To express this more formally, write Od for
the collection of all orthogonal d × d matrices, and write νd for the uniform dis-
tribution on Od (i.e., νd is the normalized Haar measure on the orthogonal group
Od ). Our results entail that there exists a (measurable) set U ⊆Od , so that both

(3) sup
R∈U

sup
θ∈Rd

1 − RN(θ,R)

RL(θ)
= O

((
p

logd

)5/6)

and

(4) νd(U) = 1 + O
(
d

− 1
12 (1−c

p
logd

))
hold, where the constant c as well as the constants implicit in the O-terms depend
only on the univariate marginal densities of fz̃; see Theorem 3.1(i) for the detailed,
and stronger, formal statement. In Theorem 3.4, we also provide a similar result
for the case where α and β are replaced by estimators, that is, where the infeasible
best linear predictor is replaced by the feasible ordinary least-squares predictor.
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The result in (3)–(4) is nonstandard in the sense that it does not explicitly char-
acterize the set of data-generating processes for which RN/RL is close to one,
that is, it does not explicitly describe the set U. The set U in (3)–(4) depends on
the distribution of z̃ in a complicated way, and our method of proof does not deliver
a simple explicit characterization of this set. We can, however, control the size of U
through (4). In contrast, the conditions that guarantee that RN/RL = 1 discussed
in Examples 2.1 and 2.2, namely sparsity and spherical symmetry, are simple to
characterize, but the collection of data-generating processes meeting these condi-
tions is comparatively small. Furthermore, even if an explicit characterization of
U were available, it would typically be of little use in statistical practice in sit-
uations where d exceeds the sample size, as it is then difficult to judge whether
or not the data were generated by a model as in (1)–(2) with R ∈ U. More im-
portantly, however, we can characterize the size of U with (4). In particular, U is
guaranteed to be large provided only that p/ logd is sufficiently small. See also
Section 5 for a detailed analysis of RN(θ,R)/RL(θ), and hence also of U, in a
simple low-dimensional setting.

Although technically different, our results are similar, in spirit, to those of
Pinsker (1980), in the sense that they exhibit a certain equivalence of linear and
nonlinear methods in high-dimensional inference problems. See Remark 3.2 for a
more detailed discussion of the similarities and differences of our results compared
to Pinsker (1980). Moreover, a phenomenon qualitatively related to our findings
is studied by El Karoui (2010) in the context of principal components analysis
(PCA), who showed that, for high-dimensional observations following classical
random matrix models, nonlinear versions of PCA using kernel matrices essen-
tially perform a standard linear PCA. Our present results add another piece to this
picture of linear methods performing comparable to nonlinear methods in certain
high-dimensional settings.

We stress that our results cover the relative size of RN and RL, but neither the
absolute size of either quantity nor their absolute difference: If the upper bound in
(3) is small and R ∈ U, then the linear predictor α + β ′x is close to best possible
in the class of all predictors of y given x; but this does not restrict the absolute
performance of any of these predictors. For example, θ may be such that the best
linear predictor given x is constant in x, in which case RL equals Var(y), and
RN/Var(y) is close to 1 if R ∈ U and the upper bound in (3) is small. On the
other extreme, both RL and RN equal Var(ε) if θ = Mβ . The usefulness of x for
predicting y depends on θ , that is, on a parameter that can not be estimated in
situations where d exceeds the sample size and the parameter space is R

d . Nev-
ertheless, given that one is committed to using x to predict y, our results justify
focusing on linear predictors, provided that p/ logd is small. This also prompts
the question for model selection procedures. In Section 6, we show how our re-
sults can be used to handle several submodels, and we briefly sketch how a model
selection procedure can then be used to select one of them, for example, based
on estimated predictive performance. A more comprehensive treatment of model
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selection in this context, however, poses a number of challenges that are beyond
the scope of this paper.

3. Main results. Throughout, we consider the model (1)–(2), such that the
error ε has mean zero, finite variance, and is independent of z. For the vector z̃

with independent components in (2), we will assume that its Lebesgue density fz̃

belongs to one of the classes Fd,k(D,E) that are defined in the next paragraph.
The distribution of (y, z) is characterized by the regression coefficients ϑ ∈ R

and θ ∈ R
d ; by the error distribution L(ε) with mean zero and finite variance; by

μ ∈ R
d ; by the symmetric positive definite d × d matrix �; by the density fz̃; and

by the orthogonal d × d matrix R.
For fixed k ∈ N and positive finite constants D and E, write Fd,k(D,E) for the

class of all Lebesgue densities on R
d that are products of univariate densities, so

that each such marginal density is bounded by D from above, and so that each
univariate marginal density has mean zero, variance one and absolute moments of
order up to k bounded from above by E. In the results that follow, we will assume
that fz̃ belongs to Fd,k(D,E) for appropriate constants d , k, D and E.

Consider a submodel where y is regressed on x, with x given by x = M ′z for
some full-rank d × p matrix M with p < d . We first compare two (infeasible)
predictors that are functions of x, namely the Bayes predictor E[y‖x] and the best
linear predictor α + β ′x, where α ∈ R and β ∈ R

p minimize E[(y − (α + β ′x))2].
Recall that their respective mean squared errors are

RN = RN

(
M,θ,L(ε),�,fz̃,R

)= E
[(

y −E[y‖x])2]
and

RL =RL

(
M,θ,L(ε),�,fz̃

)= E
[(

y − (
α + β ′x

))2]
.

In the preceding display, the expressions in the middle stress that the risks depend
on M because x = M ′z; on θ ∈ R

d ; on the distribution of ε through Var(ε); on the
positive definite d × d matrix �; and on the density fz̃ of z̃; moreover, RN also
depends on the matrix R ∈ Od . It is elementary to verify that RN and RL [and also
RN(x) and RL(x), which follow] do not depend on the mean parameters ϑ and
μ. Similarly, we also consider the corresponding conditional risks given x, that is,

RN(x) = RN

(
M,θ,L(ε),�,fz̃,R|x)= E

[(
y −E

[
y‖x])2‖x]

and

RL(x) = RL

(
M,θ,L(ε),�,fz̃,R|x)= E

[(
y − (

α + β ′x
))2‖x].

The distributions of the random variables in the preceding two displays depend
on M , θ , the distribution of ε through Var(ε), �, fz̃ and on R. Also note that
RN ≤ RL and RN(x) ≤ RL(x), almost surely, by construction. We adopt the
convention that the ratios RN/RL and RN(x)/RL(x) are set equal to 1 whenever
the respective denominator vanishes. Thus, these ratios are well defined and do not
exceed 1.
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THEOREM 3.1. Fix positive integers p and d with p < d , and finite constants
D ≥ 1 and E ≥ 1:

(i) For each full-rank d × p matrix M , each symmetric positive definite d × d

matrix �, and each fz̃ ∈ Fd,12(D,E), there exists a Borel set U = U(M,�,fz̃) ⊆
Od that depends only on M , � and fz̃, such that

sup
M

sup
θ,L(ε),�

sup
fz̃∈Fd,12(D,E)

sup
R∈U

1 − RN

RL

≤ K1

(
p

logd

)5/6

and such that

sup
M

sup
�

sup
fz̃∈Fd,12(D,E)

νd

(
U

c)≤ L1d
− 1

12 (1−c1
p

logd
)
.

(ii) For each full-rank d × p matrix M , each symmetric positive definite d × d

matrix �, and each fz̃ ∈ Fd,20(D,E), there exists a Borel set V = V(M,�,fz̃) ⊆
Od that depends only on M , � and fz̃, such that

sup
M

sup
θ,L(ε),�

sup
fz̃∈Fd,20(D,E)

sup
R∈V

P

(
1 − RN(x)

RL(x)
> t

)

≤ √
2d− 1

12 t−
1
2 + K2

p

logd

holds for each t > 0 and such that

sup
M

sup
�

sup
fz̃∈Fd,20(D,E)

νd

(
V

c)≤ L2d
− 1

20 (1−c2
p

logd
)
.

(iii) The sets U and V in parts (i) and (ii) satisfy U(M,�,fz̃) = R0U(M0, Id,

fz̃) and V(M,�,fz̃) = R0V(M0, Id, fz̃), where M0 consists of the first p columns
of Id , and R0 is any orthogonal matrix whose first p columns are a basis for the
column span of �1/2M . Furthermore, both U and V are right-equivariant in the
sense that U(M,�,fRz̃) = U(M,�,fz̃)R and V(M,�,fRz̃) = V(M,�,fz̃)R,
for every R ∈ Od .

In the displays of part (i) and (ii), K1 = K1(D,E), K2 = K2(D) and Li = Li(E),
ci = ci(D), for i = 1,2, are positive and finite constants that depend only on the
indicated quantities, and suprema are taken over all full-rank d × p matrices M ,
over θ ∈ R

d , over L(ε) so that ε has zero mean and finite variance, and over all
symmetric positive definite d × d matrices �, when indicated.

REMARK 3.2 (Regarding Pinsker’s Theorem). Qualitatively, Theorem 3.1
tells a similar story as the classical linear minimax result of Pinsker (1980) in-
sofar as linear procedures are shown to be almost best possible, in a certain
sense, when the dimension of the parameter space is large. Pinsker’s original con-
tribution was to compare the linear and the overall minimax risk of estimation
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in the Gaussian sequence model over 	2 ellipsoids in the low-noise limit. His
results also imply the asymptotic equivalence of the linear and nonlinear min-
imax risk of estimation in the Gaussian location model N (θ, σ 2Id), over balls
�d(c) := {θ ∈ R

d : ‖θ‖2 ≤ dc}, as d → ∞ [cf. Beran and Dümbgen (1998)]. De-
spite the qualitative similarity between our results and Pinsker’s, there are some
fundamental differences: First and foremost, Pinsker’s results crucially rely on
Gaussianity whereas the main feature of our results is that they hold in many
non-Gaussian situations (and become trivial in the Gaussian case). Second, while
Pinsker studied the worst case risk, Theorem 3.1 provides bounds for the relative
prediction risk that hold uniformly over the indicated parameters. [In our setting,
a worst-case comparison of predictors does not make sense because risks are un-
bounded. Moreover, even if bounded risks are imposed, one can always choose
parameters such that x and θ ′z are independent, and thus Var(y) = RL = RN ;
cf. Remark 7.5 for details.] Third, we here study the prediction problem in linear
regression rather than the estimation of a location parameter. Lastly, Pinsker con-
sidered parameter spaces of finite diameter, whereas our parameter space for the
regression parameter θ is all of Rd .

REMARK 3.3 (Regarding tightness of bounds). Because the bounds in Theo-
rem 3.1 hold uniformly over a large class of data-generating processes, it can occur
that said bounds are very conservative for a specific data-generating process. The
bounds in Theorem 3.1 are the best possible that our current technique of proof
delivers. But detailed inspection of the proofs of results in Steinberger and Leeb
(2018), which we rely on, suggests that our bounds are not tight. Tighter bounds
can be obtained under appropriately stronger assumptions [see, e.g., Section 3.2
in Steinberger and Leeb (2018)] or possibly by an altogether different method of
proof. Further results in that direction are currently work in progress.

The predictors considered so far are infeasible. Consider now a sample
(yi, xi)

n
i=1 of n independent observations that are distributed as, and independent

from, (y, x). We study the feasible linear predictor α̂n + β̂ ′
nx, where α̂n and β̂n

are the ordinary least-squares estimators for α and β , respectively, obtained by
regressing Y = (y1, . . . , yn)

′ on X = (x1, . . . , xn)
′ (including an intercept). The

corresponding prediction risk is

ROLS(X,Y ) = ROLS
(
M,θ,L(ε),�,fz̃,R|X,Y

)
= E

[(
y − (

α̂n + β̂ ′
nx
))2‖X,Y

]
and the corresponding conditional prediction risk given x is

ROLS(X,Y, x) = ROLS
(
M,θ,L(ε),�,fz̃,R|X,Y,x

)
= E

[(
y − (

α̂n + β̂ ′
nx
))2‖X,Y,x

]
.
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Similar to before, it is easy to see that the distributions of ROLS(X,Y ) and
ROLS(X,Y, x) do not depend on ϑ and μ (cf. Lemma A.1). Moreover, since
RN ≤ ROLS(X,Y ), almost surely, it makes sense to impose the convention that
RN/ROLS(X,Y ) = 1 whenever the denominator is equal to zero, and similarly,
because of RN(x) ≤ ROLS(X,Y, x), almost surely, the same convention is used
for the ratio RN(x)/ROLS(X,Y, x).

THEOREM 3.4. Fix positive integers n, p and d with p < d , and finite con-
stants D ≥ 1 and E ≥ 1. There exists a finite positive constant L0 = L0(E) that
depends only on E, such that for n > L0p, the following statements hold true:

(i) For the same Borel set U = U(M,�,fz̃) ⊆ Od as in Theorem 3.1(i), and
for every t > 0, we have

sup
M

sup
θ,L(ε),�

sup
fz̃∈Fd,12(D,E)

sup
R∈U

P

(
1 − RN

ROLS(X,Y )
> t

)

≤
(

p

n

)1/3
L3(t) +

(
p

logd

)5/6
2K1/t.

(ii) For the same Borel set, V = V(M,�,fz̃) ⊆ Od as in Theorem 3.1(ii), and
for every t > 0, we have

sup
M

sup
θ,L(ε),�

sup
fz̃∈Fd,20(D,E)

sup
R∈V

P

(
1 − RN(x)

ROLS(X,Y, x)
> t

)

≤
(

p

n

)1/3
L4(t) + p

logd
K3(t).

In the preceding displays, the constant K1 = K1(D,E) is the same as in Theo-
rem 3.1(i), K3(t) = K3(D, t) and Lj(t) = Lj(E, t), for j = 3,4, depend only on
the indicated quantities and suprema are taken over all full-rank d × p matrices
M , over θ ∈ R

d , over L(ε) so that ε has zero mean and finite variance, and over
all symmetric positive definite d × d matrices �.

Theorem 3.4 provides a comparison of the least-squares predictor of y given
x with the corresponding Bayes predictor, which is infeasible, and the results are
similar to Theorem 3.1: Provided that p/n and p/ logd are both small, the risk
of the feasible predictor is close to that of the infeasible one, uniformly over large
portions of the parameter space. Note that the upper bounds in Theorem 3.4 cannot
be expected to be small in statistically more challenging scenarii where p/n is not
close to zero, because then the absolute estimation errors |α̂n − α| and ‖β̂n −
β‖ are not small in probability; such scenarii will be studied elsewhere. Also,
Theorem 3.4 should be compared to the results of Greenshtein and Ritov (2004),
who, in essence, show that the best sparse linear predictor and a (sparse) predictor
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based on the LASSO estimator are comparable, in terms of prediction risk, without
requiring that the true model is sparse. In other words, no sufficiently sparse linear
procedure can significantly outperform the LASSO. Our results suggest that this
LASSO predictor can perform almost as well as the Bayes predictor in certain
situations, thereby suggesting that no other sparse procedure (linear or not) can
significantly outperform the LASSO in terms of relative mean squared prediction
error.

REMARK 3.5. In order to use our results, the vector z in (2), that is, the vector
of all explanatory variables, need not be observed in its entirety; only observa-
tions of y and x = M ′z (or of i.i.d. copies thereof) are needed. Also in practice,
potentially influential explanatory variables may go unobserved.

REMARK 3.6. In all our results, we have assumed that p < d . In the case
where p = d , Theorem 3.1 is trivial because the Bayes predictor and the best linear
predictor coincide in that case, and a statement similar to Theorem 3.4 holds in
view of uniform consistency of the ordinary least-squares predictor α̂ + β̂ ′x for
the Bayes predictor E[y‖x].

REMARK 3.7. All the constants K1,K2,K3, L0,L1,L2,L3,L4 and c1, c2
in Theorems 3.1 and 3.4 can be obtained explicitly upon detailed inspection of
the proofs. Moreover, some of the constants appearing in Theorems 3.1 and 3.4
also depend on the threshold t , but our upper bounds do not necessarily vanish as
t → ∞. Note, however, that all tail probabilities under consideration are trivially
bounded by zero whenever t ≥ 1.

4. Outline of proof. Consider the setup of Section 2. It is easy to see that
the risks RL and RN do not depend on the mean parameters ϑ and μ, and
hence we set them both equal to zero throughout this section. This, in partic-
ular, implies that α = 0. A standard computation yields the value of β , that is,
β = (M ′�M)−1M ′�θ , and thus

y − β ′x = θ ′�1/2(Id − P�1/2M)Rz̃ + ε.

Set v := (Id −P�1/2M)�1/2θ ∈ R
d so that y −β ′x = v′Rz̃+ ε. With this, we have

E[y‖x] − β ′x = v′RE[z̃‖x] and RL = E[(y − β ′x)2] = ‖v‖2 + Var(ε). We arrive
at

1 − RN

RL

= E[(E[y‖x] − β ′x)2]
E[(y − β ′x)2]

= E

[(
v′√

‖v‖2 + Var(ε)
RE

[
z̃‖B ′z̃

])2]
,
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where B := R′�1/2M(M ′�M)−1/2 ∈ R
d×p . Indeed, the first equality follows by

expanding the squares and noting that E[yE[y‖x]] = E[E[y‖x]2] and E[yβ ′x] =
E[E[y‖x]β ′x], and the second equality holds in view of the equalities involving v

derived earlier and because conditioning on B ′z̃ = (M ′�M)−1/2x is equivalent to
conditioning on x.

The dependence of the vector v and the matrix B on the model M and the
parameters θ and � is simple to describe. In particular, v = 0 if, and only if,
θ ∈ spanM , that is, iff the model M is correct, in which case RN = RL. In con-
trast, the dependence of E[z̃‖B ′z̃] on B and on the density fz̃ does not admit a
similarly simple description. Our strategy here is to use Cauchy–Schwarz to ob-
tain the bound∣∣∣∣ v′√

‖v‖2 + Var(ε)
RE

[
z̃‖B ′z̃

]∣∣∣∣=
∣∣∣∣ v′√

‖v‖2 + Var(ε)
R
(
E
[
z̃‖B ′z̃

]− BB ′z̃
)∣∣∣∣

≤ ∥∥E[z̃‖B ′z̃
]− BB ′z̃

∥∥.
Next, we use a result of Steinberger and Leeb (2018), namely a bound of the

form

sup
B∈G

P
(∥∥E[z̃‖B ′z̃

]− BB ′z̃
∥∥> t

)≤ 1

t
d−1/12 + 4γ1

p

logd
,

which holds for a collection G of d × p matrices with orthonormal columns. For
the size of G, as measured by the uniform distribution on all such matrices, that is,
by the normalized Haar measure νd,p on the Stiefel manifold of dimensions d and
p, Steinberger and Leeb (2018) establish a bound of the form

νd,p

(
G

c)≤ κ1d
−(1−12γ1

p
logd

)/12
.

We are interested in matrices B of a specific form, namely

B = R′�1/2M
(
M ′�M

)−1/2
.

Therefore, we set U := {R ∈ Od : R′�1/2M(M ′�M)−1/2 ∈ G} and show that
νd(U) = νd,p(G). Apart from several technical details, this is the basic argument
underlying Theorem 3.1(i). The proofs of Theorem 3.1(ii) and of Theorem 3.4 fol-
low the same basic outline but require some nontrivial additional considerations to
deal, among other issues, with estimation errors.

REMARK 4.1 (E[y‖x] is linear in x on average w.r.t. R). Recall that the
Bayes predictor E[y‖x] depends on R. Consider the model (1)–(2) as before,
but now with R taken as random and, in particular, uniformly distributed on Od ,
independently of all other quantities. Expectations under this model with random
R will be denoted by E[·]. For random R, the Bayes predictor that we have consid-
ered so far can be written as E[y‖x,R]. Clearly, for a fixed value of R, the function
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E[y‖x,R] is typically nonlinear in x. Integrating out R, that is, taking the average
with respect to the conditional distribution of R given x, we obtain E[y‖x]. But
E[y‖x] is linear in x, because the distribution of Rz̃ is spherically symmetric. In
view of this, it is not surprising that E[y‖x,R] is close to a linear function in x for
some R’s. Theorem 3.1(i) shows that the size of the collection of such R’s can be
controlled through p/ logd .

REMARK 4.2 (A crucial change of perspective). In Steinberger and Leeb
(2018), for a fixed distribution of the design variables z, the existence of a “large”
collection of candidate models M is proved, which all have the property that the
conditional moment E[z‖M ′z] is almost linear in M ′z, provided that d � p. Here,
on the other hand, we fix a candidate model M of interest and exhibit a “large”
collection of design distributions for z, for which the conditional mean is almost
linear. This has several important advantages. First, it seems to better reflect sta-
tistical practice, where usually a certain candidate model of interest, or a whole
collection of such candidate models, is fixed a priori. Second, it allows a more
elegant treatment of general covariance matrices � of the design z, whereas the
analogous discussion in the framework of Steinberger and Leeb (2018) is much
more involved (cf. Section 3.3 in that reference). Finally, and most importantly,
it facilitates the consideration of several candidate models of potentially different
dimensions, by a simple union bound argument (cf. Section 6).

5. Explicit analysis of a simple setting. Consider a uniformly distributed
random vector z̃ = (z̃1, z̃2)

′
∼ Unif[−√

3,
√

3]2, so d = 2 here, and E[z̃] = 0,
E[z̃z̃′] = I2. For p = 1, the matrix B ∈ R

d×p = R
2 is just a two-dimensional unit

vector, and we write b := B = (b1, b2)
′ ∈ S1 to emphasize this fact. Due to sym-

metry of the uniform distribution on the square, it suffices to consider b on a 45◦
segment of the unit circle, and we chose the one between the horizontal axis and
the first main diagonal, that is, b ∈ S1 is such that b1 ≥ b2 > 0. For such b, we
consider the conditional mean and standard deviation curves only on the support
of the distribution of b′z̃, that is, x ∈ [−√

3(b1 + b2),
√

3(b1 + b2)]. Again, due to
symmetry, it actually suffices to consider x ≥ 0. It is straight forward but somewhat
tedious to show that

fb′z̃(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2
√

3b1
if |x| ≤ √

3(b1 − b2),

√
3(b1 − b2) − |x|

12b1b2
if |x| ∈ [√

3(b1 − b2),
√

3(b1 + b2)
]
,



1420 L. STEINBERGER AND H. LEEB

E
[
z̃‖b′z̃ = x

]=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
x/b1

0

)
if x ∈ [

0,
√

3(b1 − b2)
]
,⎛

⎜⎜⎜⎝
x + √

3(b1 − b2)

2b1
x − √

3(b1 − b2)

2b2

⎞
⎟⎟⎟⎠ if x ∈ [√

3(b1 − b2),
√

3(b1 + b2)
]
,

and

√
Var

[
c′z̃‖b′z̃ = x

]=

⎧⎪⎪⎨
⎪⎪⎩

1/b1 if x ∈ [
0,

√
3(b1 − b2)

]
,

√
3(b1 + b2) − x

2
√

3b1b2
if x ∈ [√

3(b1 − b2),
√

3(b1 + b2)
]

almost surely, where c ∈ R
2 is one of the two unit vectors orthogonal to b. In

Figure 1, we show continuous versions of the conditional expectation curve x �→
E[z̃‖b′z̃ = x] (dashed lines) and the conditional standard deviation function x �→√

Var[c′z̃‖b′z̃ = x] (dash dotted lines) as functions of x ∈ R, for different values
of b. The standard deviation function is superimposed in the plots with a coordinate
system whose x-axis is given by the one-dimensional subspace spanned by b.

By inspection of Figure 1, the equations presented in the preceding paragraph
are geometrically quite obvious. We also nicely see the nonlinearity of the con-
ditional mean and the nonconstancy of the conditional variance. In fact, the only
choices for b such that both linearity and constancy holds, are those where b is
parallel to one of the coordinate axes (d). Linearity of the conditional mean is ex-
actly satisfied also if b is parallel to one of the two main diagonals (a). From the
two other panels (b) and (c), at least for the conditional expectation, we also see
that approximate linearity will hold for a much larger collection of directions b.
The deviation from the linear function x �→ xb becomes even uniformly small as
b approaches a main diagonal (b), and the deviation also gets small if b is almost
parallel to one of the coordinate axes (c), at least if the deviation is measured in an
L2 sense with respect to the distribution of b′z̃.

Given the explicit formulae for the conditional moments, we can also compute
the risk ratio RN/RL. For simplicity, we consider only the worst case in terms
of error variance Var(ε), that is, Var(ε) = 0, and we assume that the model M

is not correct, that is, v �= 0 (where v has been defined in Section 4). Therefore,
c := R′v/‖v‖ = R′(Id − P�1/2M)�1/2θ/‖v‖ is a unit vector that is orthogonal
to b = R′�1/2M(M ′�M)−1/2. By the variance decomposition formula, we may
compute RN/RL as

E
[(
E
[
c′z̃‖b′z̃

])2]= 1 −E
[
Var

[
c′z̃‖b′z̃

]]
,

and, using the formula for the density of b′z̃ and the conditional variance above,
one easily arrives at the expression

RN

RL

= b1 − b2/2

b3
1

,
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FIG. 1. Conditional expectation curves x �→ E[z̃|b′z̃ = x] (dashed lines) and superimposed con-
ditional standard deviation function x �→ √

Var[c′z̃|b′z̃ = x] (dash dotted lines) for the bivariate
uniform distribution z̃ ∼ Unif[−√

3,
√

3]2, c′b = 0 and different values for b ∈ S1.

where b = (b1, b2)
′ ∈ S1 is considered only in the range b1 ≥ b2 > 0, as above.

Using symmetry, we obtain the general formula for the risk ratio

RN

RL

= max(|b1|, |b2|) − min(|b1|, |b2|)/2

max(|b1|, |b2|)3 .
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To visualize this function in dependence on the original model parameters R, �

and M , we fix M = (1,0)′ and parameterize R as

R(α) =
(

cos(α) − sin(α)

sin(α) cos(α)

)
and � as �(ρ) =

(
1 ρ

ρ 1

)
,

so that

�(ρ)1/2 = 1√
2

⎛
⎜⎜⎝

√
1 +

√
1 − ρ2 sign(ρ)

√
1 −

√
1 − ρ2

sign(ρ)

√
1 −

√
1 − ρ2

√
1 +

√
1 − ρ2

⎞
⎟⎟⎠ .

If ρ ∈ [−1,1] is fixed and α runs from 0 to 2π , then b = b(α,ρ) = R(α)�1/2(ρ)M

runs around the unit circle in counter clockwise direction starting at �1/2(ρ)M .
Note that b(α,0) = (cos(α), sin(α))′. The top panel of Figure 2 shows the risk
ratio as a function of α on the domain α ∈ [0, π] and for ρ = 0. Clearly, a nonzero
value of ρ simply shifts the whole plot by a certain amount. The other four panels
of Figure 2 show the risk ratio as a function of ρ ∈ [0,1] for four fixed values of α,
namely, α1 = 0, α2 = π/5, α3 = 9π/20, α4 = 3π/5. Note that for fixed α, b(α,ρ)

runs through a 45◦ segment of the unit circle in counter clockwise direction as
ρ runs through [0,1]. There are four such segments indicated in the top panel of
Figure 2, corresponding to α1, . . . , α4, each of which is bordered by two vertical
dashed lines that are conjoined by a horizontal dotted line. The four lower panels
in Figure 2 correspond to the four indicated segments in the top panel.

We conclude that in the present case the risk ratio never drops below 0.92.
Moreover, it is not possible to identify a set of values for ρ such that the risk ratio
is always close to one irrespective of α. Indeed, whether or not a certain amount of
correlation between the components of z leads to a high or a low risk ratio depends,
in a fundamental way, on the geometry of the distribution of z, that is, on the value
of α. Finally, note that this simple example cannot provide any insight into the
dependence of the risk ratio on dimension, which is, of course, the main point of
the general theory developed in this paper.

6. Regarding several submodels and model selection. Our results can eas-
ily be adapted to cover more than one submodel, that is, more than one matrix M .
Fix m ∈ N and for i = 1, . . . ,m, let Mi be a full-rank d × pi matrix with pi < d .
Then Theorem 3.1(i) entails that

max
1≤i≤m

1 − RN(Mi, θ,L(ε),�,fz̃,R)

RL(Mi, θ,L(ε),�,fz̃)
≤ K1

(
max1≤i≤m pi

logd

)5/6

provided only that R ∈⋂m
i=1 U(Mi,�,fz̃), and the union bound gives

νd

((
m⋂

i=1

U(Mi,�,fz̃)

)c)
≤ L1

m∑
i=1

d
− 1

12 (1−c1
pi

logd
) ≤ mL1d

− 1
12 (1−c1

max1≤i≤m pi
logd

);
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FIG. 2. Top panel: Risk ratio RN/RL as a function of the angle α ∈ [0,π ] that governs the rota-
tion R(α) of the design z = R(α)z̃. Lower panels: Risk ratio RN/RL as a function of the correlation
coefficient ρ ∈ [0,1] of the design z = �(ρ)1/2R(α)z̃, for different values of α.

see also Remark 7.4. These upper bounds hold uniformly over the Mi ’s and over θ ,
L(ε), � and fz̃ ∈ Fd,12(D,E) as in Theorem 3.1(i). Similar considerations apply,
mutatis mutandis, to the results in Theorem 3.1(ii) and Theorem 3.4. The (crude)
union bound used in the preceding display limits the number of models, that is, m,
for which the upper bound is small for fixed maxi pi and d; see also Remark 3.3.

These considerations also suggest that our results are useful for selecting a
model from a set of candidates M = {Mi : i ≤ m}. For convenience, write RL(M),
RN(M) and ROLS(M|X,Y ) for the risk of the best linear predictor, the Bayes
predictor and the ordinary least squares predictor, respectively, corresponding to
model M ∈ M, as introduced prior to Theorems 3.1 and 3.4, and recall that
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ROLS(M|X,Y ) is a random quantity depending on the data X and Y . In Leeb
(2009), candidate models are evaluated in terms of ROLS(M|X,Y ). However,
since this quantity depends on unknown parameters, it has to be estimated, for
example, by some type of cross-validation procedure, say, R̂OLS(M|X,Y ). If this
estimation is successful in the sense that

sup
M∈M

∣∣∣∣1 − R̂OLS(M|X,Y )

ROLS(M|X,Y )

∣∣∣∣≈ 0,

with high probability, then Theorem 3.4(i) can be used to show that R̂OLS(M|X,Y )

actually even estimates RN(M) uniformly over M, provided that R ∈⋂m
i=1 U(Mi,

�,fz̃), that maxi pi/n and maxi pi/ logd are small, and that the cardinality of M
is not too large. Consequently, if these conditions are satisfied, then the feasible
model selector M̂ = argminM∈MR̂OLS(M|X,Y ) mimics the infeasible best can-
didate model M∗ = argminM∈MRN(M).

7. Additional remarks.

REMARK 7.1. (i) The linear model (1) is widely used in statistical theory
and practice. It is also the natural starting point for investigating high-dimensional
problems. The vast majority of the high-dimensional regression literature restricts
model (1) further, for example, by imposing conditions on the sparsity or on the
decay of the coefficients of the regression parameter θ and/or conditions on the
covariance matrix �. Here, we abstain from any such restrictions and argue that
simple linear submodels are still useful in many nonsparse situations.

(ii) Some parameters in (1) might seem superfluous at first glance. For example,
the mean of y is ϑ + θ ′μ, so one might be tempted to absorb ϑ into θ ′μ or vice
versa. But it is easy to see that if the first two (joint) moments of y and z are to be
unrestricted, then the free parameters ϑ , θ , Var(ε), μ and � are required.

(iii) The assumption of a true high-dimensional linear model is essential for the
theoretical results of the present article. If the true model is nonlinear in the re-
gressors z, then possibly other, nonlinear, approximations for the Bayes predictor
E[y‖x] can be established.2 However, the usefulness of such alternative approxi-
mations will be limited by the size of the class of true regression functions under
consideration. Take, for instance, the extreme case where the true data generating
model is given by y = f (z) + ε, where f : Rd → R is unrestricted, that is, arbi-
trary, except for the requirement that f (z) is square-integrable. Here, the Bayes
predictor g(M ′z) := E[y‖M ′z] is unrestricted, that is, arbitrary, except for the re-
quirement that g(M ′z) is square-integrable. In this model, one can not relate the
Bayes predictor E[y‖M ′z] to a linear function in M ′z, not even approximately.

2For example, Theorem 2.1(ii) of Steinberger and Leeb (2018) suggests that if the true regression
function is a quadratic polynomial in z, then also the Bayes predictor E[y‖x] will be approximately
quadratic in x = M ′z, if p/ logd is small.
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REMARK 7.2. Note that the results of Steinberger and Leeb (2018), that we
rely on, also allow for distributions of the random d-vector z̃ that exhibit some
dependence among the components. An extension of the present results in that
direction will be considered elsewhere.

REMARK 7.3. Consider an autoregressive process of order q of the form
yt = ∑q

j=1 ρjyt−j + εt , 1 ≤ t ≤ T , with nonrandom starting values y0 = · · · =
y−q+1 = 0, say, and uncorrelated innovations εt with mean zero and variance
σ 2 > 0. Suppose we want to predict the value of yT based on p lagged variables
(yj1, . . . , yjp), 1 ≤ jk ≤ T − 1. Is the risk of the best linear predictor

∑p
k=1 βkyjk

,
say, here also comparable to the risk of the Bayes predictor E[yT ‖yj1, . . . , yjp ]?
In this context, our results can be used under the additional assumption that the
innovations are linear functions of independent random variables. With this, we
can write the innovations as (ε1, . . . , εT )′ = σ 2Rz̃ for a T -vector z̃ whose compo-
nents are independent with mean zero and variance one, and for some orthogonal
matrix R. The model equation for yT can be brought into the form (1)–(2) by
expanding the response as yT = ∑T

i=1 αiεi , where the coefficients αi depend on
T and on the ρj ’s. The last equation is of the form (1)–(2) with y = yT , ϑ = 0,
θ = (α1, . . . , αT )′, z = (ε1, . . . , εT )′, ε = 0, � = σ 2IT and d = T . And with these
conventions, also any set of lagged dependent variables, that is, any subvector of
(y1, . . . , yT −1)

′, can be written as M ′z for an appropriate matrix M that depends
on which components are retained in the subvector, and which also depends on the
ρj ’s. We note that, in this case, the vector z is typically not observable; see also
Remark 3.5. We also note that the matrix M corresponding to a submodel here de-
pends on unknown parameters. Our results can still be used in this setting, because
they are uniform in M ; cf. Remark 7.4. We also point out that the formulation of
the autoregressive process considered above differs from the classical formulation
of time series analysis only insofar as we here assume also that the innovations are
linear functions of independent random variables instead of merely being white
noise.

REMARK 7.4. In the first display in Theorem 3.1(i), the order in which the
suprema are taken is irrelevant except for the supremum over R ∈ U, which must
be taken after the suprema over M , � and fz̃. This is because U = U(M,�,fz̃)

depends on the indicated quantities. Similar considerations also apply to Theo-
rem 3.1(ii) and to the results in Theorem 3.4.

REMARK 7.5. Consider the relation (2), with a fixed choice of μ, � and fz̃.
Then, for any full-rank d × p matrix M with p < d , one can always choose R so
that the Bayes predictor of any linear function of z given x = M ′z is linear in x.
(The statement is trivial if p = d .) Moreover, for any such M , for the correspond-
ing R as before, and for any s ≥ 0, one can furthermore choose θ ∈R

d so that θ ′z is
independent of x = M ′z and so that Var(θ ′z) = s2. [Indeed, set M̃ = �1/2M and
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M̄ = M̃(M̃ ′M̃)−1/2, so that M̄ ′M̄ = Ip , and write x = M ′μ + (M̃ ′M̃)1/2M̄ ′Rz̃.
Now choose a d × (d − p) matrix N̄ such that R := (M̄ : N̄) ∈ Od . For this R,
the regressor vector x is given by a regular affine transformation of the first p

components of z̃. Thus, conditioning on x is equivalent to conditioning on the first
p components of z̃, which, by independence of the components of z̃, implies the
claim about the Bayes predictor. For the second claim, set θ = �−1/2N̄vs, where
v denotes some unit vector in R

d−p . It immediately follows that θ ′z = sv′N̄ ′Rz̃ is
a function of the last d − p components of z̃ and hence independent of x. And we
have Var(θ ′z) = s2, as desired.]

APPENDIX: PROOFS OF SECTION 3

Throughout the Appendix, we consider independent and identically distributed
(i.i.d.) pairs (y, z), (yi, zi)

n
i=1 following the model (1)–(2) of Section 2 and we set

x = M ′z, xi = M ′zi , i = 1, . . . , n, for some full rank d × p matrix M with p ≤
min(d, n − 1). We abbreviate �x := Cov[x] = M ′�M , μx := E[x] = M ′μ, M̃ :=
�1/2M , θ̃ := �1/2θ , Ek := sup‖w‖≤1 E[|w′z̃|k], ξ := y − α − β ′x, σ 2 := E[ξ2],
and � := (ξ1, . . . , ξn)

′ := Y − Uγ , where U = [ι : X], Y = (y1, . . . , yn)
′, X =

[x1, . . . , xn]′, ι = (1, . . . ,1)′ ∈R
n and γ = (α,β ′)′ ∈R

p+1 are the coefficients that
minimize (a, b) �→ E[(y − (a + b′x))2]. Moreover, we will study the OLS estima-
tor γ̂n = (α̂n, β̂

′
n)

′ = (U ′U)−1U ′Y . Finally, in Section 3, we have introduced the
prediction risks RL = E[(y − (α+β ′x))2] = σ 2, RL(x) = E[(y − (α+β ′x))2‖x],
RN = E[(y − E[y‖x])2], RN(x) = E[(y − E[y‖x])2‖x], ROLS(X,Y ) = E[(y −
(α̂n + β̂ ′

nx))2‖X,Y ] and ROLS(X,Y, x) = E[(y − (α̂n + β̂ ′
nx))2‖X,Y,x].

As a preliminary consideration for the entire Appendix, we recall that the best
linear predictor for y based on x is given by

α + β ′x = E[y] + Cov
[
y, x′]Cov[x]−1(x −E[x])

= ϑ + θ ′μ + θ ′�M
(
M ′�M

)−1
M ′�1/2Rz̃

= ϑ + θ ′μ + θ̃ ′P
M̃

Rz̃,

and thus ξ = y −α −β ′x = θ̃ ′(Id −P
M̃

)Rz̃+ ε, and the corresponding linear pre-
diction risks are given by RL = ‖(Id − P

M̃
)θ̃‖2 + Var[ε] and RL(x) = θ̃ ′(Id −

P
M̃

)RE[z̃z̃′‖x]R′(Id − P
M̃

)θ̃ + Var[ε]. Moreover, it is easy to see that RN =
E[(θ̃ ′Rz̃ − E[θ̃ ′Rz̃‖x])2] + Var[ε] and RN(x) = E[(θ̃ ′Rz̃ − E[θ̃ ′Rz̃‖x])2‖x] +
Var[ε].

A.1. Auxiliary results.

LEMMA A.1. The distributions of RL, RL(x), RN , RN(x), ROLS(X,Y ) and
ROLS(X,Y, x) do not depend on ϑ and μ.
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PROOF. Of course the distributions of RL and RN are degenerate. The claim
about the distributions of the linear and nonlinear prediction risks follows immedi-
ately from the preliminary consideration and the fact that conditioning on a random
variable and on the corresponding centered random variable is equivalent. For the
OLS risks, recall that

y − α̂n − β̂ ′
nx = y − ι′Y

n
− Y ′(In − Pι)X

[
X′(In − Pι)X

]−1
(
x − X′ι

n

)
,

the distribution of which does not depend on the mean parameters ϑ and μ. �

LEMMA A.2. If RL > 0, then

P

(∣∣∣∣RL(x)

RL

− 1
∣∣∣∣> t

)

≤ P
(∥∥E[z̃z̃′‖B ′

0z̃
]− (

Id − B0B
′
0 + B0B

′
0z̃z̃

′B0B
′
0
)∥∥> t

)
,

for every t > 0, where B0 = R′M̃(M̃ ′M̃)−1/2.

PROOF. Simply observe that∣∣RL(x) −RL

∣∣
= ∣∣θ̃ ′(Id − P

M̃
)RE

[
z̃z̃′‖x]R′(Id − P

M̃
)θ̃

− θ̃ ′(Id − P
M̃

)RR′(Id − P
M̃

)θ̃
∣∣

= ∣∣θ̃ ′(Id − P
M̃

)R
[
E
[
z̃z̃′‖M ′μ + M̃ ′Rz̃

]
− (

Id − B0B
′
0 + B0B

′
0z̃z̃

′B0B
′
0
)]

R′(Id − P
M̃

)θ̃
∣∣

≤ ∥∥(Id − P
M̃

)θ̃
∥∥2∥∥E[z̃z̃′‖B ′

0z̃
]− (

Id − B0B
′
0 + B0B

′
0z̃z̃

′B0B
′
0
)∥∥,

and RL = ‖(Id − P
M̃

)θ̃‖2 + Var[ε]. �

LEMMA A.3. The following holds true:

(i) For every v ∈ R
p and k ∈ N, we have

E
[∣∣v′�−1/2

x xξ
∣∣k]≤ 4k−1(‖v‖k + ∣∣v′�−1/2

x μx

∣∣k)
× (∥∥(Id − P

M̃
)θ̃
∥∥k +E

[|ε|k])E2k.

(ii) E[‖�−1/2
x X′�/n‖2] ≤ p

n
4(1 + ‖�−1/2

x μx‖2/p)σ 2E4.

PROOF. For (i), write ξ = y−α−β ′x = θ̃ ′(Id −P
M̃

)Rz̃+ε and v′�−1/2
x xξ =

v′�−1/2
x (x − μx)ξ + v′�−1/2

x μxξ . Now, using the triangle inequality and the ele-
mentary inequality (a + b)k ≤ 2k−1(ak + bk), for a, b ≥ 0, k ≥ 1, we obtain

E
[∣∣v′�−1/2

x xξ
∣∣k]≤ 2k−1(

E
[∣∣v′�−1/2

x M̃ ′Rz̃ξ
∣∣k]+ ∣∣v′�−1/2

x μx

∣∣kE[|ξ |k]).



1428 L. STEINBERGER AND H. LEEB

Note that since 1 ≤ E2k by Jensen’s inequality, we have Ek ≤ E2k in view of Lya-
punov’s inequality. For the first expectation on the right-hand side of the previous
display, using the Cauchy–Schwarz inequality, we find that

E
[∣∣v′�−1/2

x M̃ ′Rz̃ξ
∣∣k]

≤ 2k−1(
E
[∣∣v′�−1/2

x M̃ ′Rz̃θ̃ ′(Id − P
M̃

)Rz̃
∣∣k]+E

[∣∣v′�−1/2
x M̃ ′Rz̃ε

∣∣k])
≤ 2k−1(∥∥R′M̃�−1/2

x v
∥∥k∥∥R′(Id − P

M̃
)θ̃
∥∥k

E2k

+ ∥∥R′M̃�−1/2
x v

∥∥k
E
[|ε|k]Ek

)
≤ 2k−1‖v‖k(∥∥(Id − P

M̃
)θ̃
∥∥k +E

[|ε|k])E2k,

where we have used that R′M̃�
−1/2
x = R′M̃(M̃ ′RR′M̃)−1/2 has orthonormal

columns, and thus ‖R′M̃�
−1/2
x v‖ = ‖v‖. Similarly, we get

E
[|ξ |k]≤ 2k−1(∥∥(Id − P

M̃
)θ̃
∥∥k +E

[|ε|k])E2k,

and thus we obtain the final bound

E
[∣∣v′�−1/2

x xξ
∣∣k]

≤ 22(k−1)(‖v‖k + ∣∣v′�−1/2
x μx

∣∣k)(∥∥(Id − P
M̃

)θ̃
∥∥k +E

[|ε|k])E2k.

For part (ii), note that the xiξi are i.i.d. with mean E[xiξi] = 0, let ej ∈ R
p

denote the j th element of the standard basis in R
p and apply part (i) with k = 2,

v = ej and j = 1, . . . , p, to get

E
[∥∥�−1/2

x X′�/n
∥∥2]

= 1

n2

n∑
i,l=1

E
[(

�−1/2
x xiξi

)′(
�−1/2

x xlξl

)]

= 1

n

p∑
j=1

E
[∣∣e′

j�
−1/2
x x1ξ1

∣∣2]

≤ 1

n

p∑
j=1

4
(
1 + ∣∣e′

j�
−1/2
x μx

∣∣2)(∥∥(Id − P
M̃

)θ̃
∥∥2 +E

[
ε2])E4

= p

n
4
(
1 + ∥∥�−1/2

x μx

∥∥2
/p
)
σ 2E4,

where we have used the abbreviation σ 2 = ‖(Id − P
M̃

)θ̃‖2 + Var[ε]. This com-
pletes the proof of the lemma. �

LEMMA A.4. Suppose that σ 2 > 0 and that the standardized regressors z̃

satisfy the following regularity condition: There exist positive and finite constants
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C,η, such that for every orthogonal projection matrix P in R
d and every t >

C rankP , one has P(‖P z̃‖2 > t) ≤ Ct−1−η.3 Then there exists a positive finite
constant C0 = C0(C,η), such that if n > C0p, we have

P
(∥∥�1/2

x (β̂n − β)
∥∥/σ > t

)≤ C1

(
p

n

) 1
2

η
1+η + 64E4

t2

p

n
+ 8

t

√
p

n
,(5)

and

P
(|α̂n − α|/σ > t

)

≤ 2C1

(
p

n

) 1
2

η
1+η

+ 24
(

1

nt2 +
(

1

nt2

)1/3
+
(

p

nt2

)1/2)(
1 + ∥∥�−1/2

x μx

∥∥2)√
E4,

(6)

for all t > 0. Here, the constants C0 and C1 are given by C0 = 512(48C)2+2/η(6+
6/η)1+4/η and C1 = 4(C0 ∨ 1)η/(2+2η). (This result continues to hold for general
z̃ with E[z̃] = 0, E[z̃z̃′] = Id , that has a Lebesgue density and that satisfies the
additional tail condition of the lemma. No independence of components is needed.)

PROOF. We begin with a few preliminary considerations. First, note that since
the design matrix X has a Lebesgue density and p < n, we have P(detU ′U =
0) = 0, so the OLS estimator γ̂n exists and is unique, almost surely. Next, recall
� = (ξ1, . . . , ξn)

′ = Y − Uγ and use the Frish–Waugh–Lovell theorem to obtain(
α̂n − α

β̂n − β

)
= γ̂n − γ = (

U ′U
)−1

U ′�

=
[

ι′(In − PX)�/ι′(In − PX)ι[
X′(In − Pι)X

]−1
X′(In − Pι)�

]
.

(7)

We also use the abbreviations x̄i = �
−1/2
x xi , X̄ = X�

−1/2
x , μx̄ = E[x̄1] =

�
−1/2
x μx , and �̂x̄ = X̄′(In − Pι)X̄/n.
Now, to establish the statement in (5), the estimation error of β can be written

as β̂n − β = �
−1/2
x [X̄′(In − Pι)X̄/n]−1X̄′(In − Pι)�/n. Together with the repre-

sentation ξi = θ̃ ′(Id − P
M̃

)Rz̃i + εi , it is apparent that the distribution of β̂n − β

does not depend on μ ∈ R
d , which is why we may restrict to the case μ = 0, for

this part. This also entails that μx = 0 = μx̄ . We bound the scaled estimation error
as follows:∥∥�1/2

x (β̂n − β)
∥∥/σ ≤ ∥∥�̂−1

x̄

∥∥(∥∥X̄′�/n
∥∥/σ + ∥∥X̄′ι/n

∥∥∣∣ι′�/n
∣∣/σ ).(8)

3This is the condition (SR) of Srivastava and Vershynin (2013), Theorem 1.1.
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The term ‖X̄′�/n‖/σ is treated by Lemma A.3(ii) and Markov’s inequality, which
yields P(‖X̄′�/n‖/σ > t) ≤ t−24E4p/n. For the second term in parentheses, us-
ing the fact that the rows of X̄ are i.i.d. with mean zero and covariance matrix
Ip and that the (ξi)

n
i=1 are also i.i.d. with mean zero and variance σ 2, a standard

argument involving Markov’s inequality shows that

P
(∥∥X̄′ι/n

∥∥∣∣ι′�/n
∣∣/σ > t

)≤ P
(∥∥X̄′ι/n

∥∥> δ
)+ P

(∣∣ι′�/n
∣∣/σ > t/δ

)
≤ δ−2p/n + δ2t−2/n,

for all t, δ > 0. Optimizing the upper bound over δ > 0, we obtain for every t > 0,

P
(∥∥X̄′ι/n

∥∥∣∣ι′�/n
∣∣/σ > t

)≤ 2

t

√
p

n
.

For the inverse sample covariance term, we get, for δ > 1,

P
(∥∥�̂−1

x̄

∥∥> δ
)= P

(
λmin(�̂x̄) < 1/δ

)≤ P
(∣∣λmin(�̂x̄) − 1

∣∣> (δ − 1)/δ
)

≤ P
(‖�̂x̄ − Ip‖ > (δ − 1)/δ

)

≤ δ

δ − 1

(
E

[∥∥∥∥∥1

n

n∑
i=1

x̄i x̄
′
i − Ip

∥∥∥∥∥
]

+E

[∥∥∥∥∥1

n

n∑
i=1

x̄i

∥∥∥∥∥
2])

= δ

δ − 1

(
E

[∥∥∥∥∥1

n

n∑
i=1

x̄i x̄
′
i − Ip

∥∥∥∥∥
]

+ p

n

)
.

The remaining expectation can be bounded using Theorem 1.1 of Srivastava and
Vershynin (2013). To apply this result, we have to verify the (SR) condition in
that reference for the standardized regressor x̄1. Recall that μ = 0 and thus x̄1 =
�

−1/2
x M ′�1/2Rz̃1 = (M̃ ′M̃)−1/2M̃ ′Rz̃1, since M̃ ′M̃ = M ′�M = �x . Fix a pro-

jection matrix P in R
p and observe that ‖P x̄1‖2 = ‖M̃(M̃ ′M̃)−1/2P(M̃ ′M̃)−1/2 ×

M̃ ′Rz̃1‖2, where M̃(M̃ ′M̃)−1/2P(M̃ ′M̃)−1/2M̃ ′ is a projection matrix in R
d of

the same rank as P . Invoking our assumption on the distribution of z̃1, and noting
that this assumption is invariant under orthogonal transformations of z̃1, estab-
lishes the validity of the (SR) condition. Thus, Theorem 1.1 of Srivastava and

Vershynin (2013) applies with ε = (C0p/n)
1
2

η
1+η provided that p/n < 1/C0 [so

that ε ∈ (0,1)], and we obtain

P
(∥∥�̂−1

x̄

∥∥> δ
)≤ δ

δ − 1

([
C0

p

n

] 1
2

η
1+η + p

n

)

≤ 2δ

δ − 1

(
(C0 ∨ 1)

p

n

) 1
2

η
1+η

.

(9)
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Here, C0 := 512(48C)2+2/η(6 + 6/η)1+4/η. Returning to (8), we arrive at

P
(∥∥�1/2

x (β̂n − β)
∥∥/σ > t

)≤ P
(‖�̂−1

x̄ ‖ > 2
)+ P

(∥∥X̄′�/n
∥∥/σ > t/4

)
+ P

(∥∥X̄′ι/n
∥∥∣∣ι′�/n

∣∣/σ > t/4
)

≤ 4
(
(C0 ∨ 1)

p

n

) 1
2

η
1+η + 64E4

t2

p

n
+ 8

t

√
p

n
,

which completes the proof of (5), upon defining C1 = 4(C0 ∨ 1)η/(2+2η).
For the inequality in (6), we first note that the distribution of the estimation error

α̂n −α does depend on the mean parameter μ ∈ R
d which is generally unrestricted.

Next, we use the Sherman–Morrison formula to rewrite
1

n
ι′(In − PX)ι = 1

n
ι′(In − PX̄)ι

= 1 − ι′X̄
n

(
�̂x̄ + X̄′ιι′X̄/n2)−1 X̄′ι

n

= 1 −
ι′X̄
n

�̂−1
x̄

X̄′ι
n

1 + ι′X̄
n

�̂−1
x̄

X̄′ι
n

= 1

1 + ι′X̄
n

�̂−1
x̄

X̄′ι
n

,

and similarly,

1

n
ι′(In − PX)� = ι′�

n
−

ι′X̄
n

�̂−1
x̄

X̄′�
n

1 + ι′X̄
n

�̂−1
x̄

X̄′ι
n

,

to arrive at

α̂n − α =
1
n
ι′(In − PX)�

1
n
ι′(In − PX)ι

= ι′�
n

(
1 + ι′X̄

n
�̂−1

x̄

X̄′ι
n

)
− ι′X̄

n
�̂−1

x̄

X̄′�
n

,

and, in turn, at the bound

|α̂n − α| ≤
∣∣∣∣ ι

′�
n

∣∣∣∣+ ∥∥�̂−1
x̄

∥∥∥∥∥∥X̄′ι
n

∥∥∥∥2∣∣∣∣ ι
′�
n

∣∣∣∣+ ∥∥�̂−1
x̄

∥∥∥∥∥∥X̄′ι
n

∥∥∥∥
∥∥∥∥X̄′�

n

∥∥∥∥.
Next, since E[‖X̄′ι/n‖2] = p/n + ‖μx̄‖2, we have for t, δ > 0,

P

(∥∥∥∥X̄′ι
n

∥∥∥∥2∣∣∣∣ ι
′�
n

∣∣∣∣/σ > t

)
≤ P

(∣∣∣∣ ι
′�
n

∣∣∣∣/σ > t/δ

)
+ P

(∥∥∥∥X̄′ι
n

∥∥∥∥2
> δ

)

≤ δ2

t2

1

n
+ p/n + ‖μx̄‖2

δ
,

and this upper bound is minimized at δ0 = (nt2[p/n + ‖μx̄‖2]/2)1/3, which leads
to the optimized bound

P

(∥∥∥∥X̄′ι
n

∥∥∥∥2∣∣∣∣ ι
′�
n

∣∣∣∣/σ > t

)
≤
(

1

nt2

)1/3(
1 + ‖μx̄‖2)2/3(4−1/3 + 21/3).(10)
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Similarly, using Lemma A.3(ii), we obtain

P

(∥∥∥∥X̄′ι
n

∥∥∥∥
∥∥∥∥X̄′�

n

∥∥∥∥/σ > t

)
≤ P

(∥∥∥∥X̄′�
n

∥∥∥∥/σ > t/δ

)
+ P

(∥∥∥∥X̄′ι
n

∥∥∥∥> δ

)

≤ δ2

t2

p

n
4
(
1 + ‖μx̄‖2/p

)
E4 + p/n + ‖μx̄‖2

δ2 ,

for t, δ > 0. Optimizing this over δ > 0 is easy and yields the bound

P

(∥∥∥∥X̄′ι
n

∥∥∥∥
∥∥∥∥X̄′�

n

∥∥∥∥/σ > t

)
≤ 2

t

√(
p

n
+ ‖μx̄‖2

)
p

n
4
(
1 + ‖μx̄‖2/p

)
E4

≤ 4

t

√
p

n

(
1 + ‖μx̄‖2)√E4.

(11)

Now we return to the scaled absolute estimation error and combine (9), (10) and
(11) to get

P
(|α̂n − α|/σ > t

)
≤ P

(∣∣ι′�/n
∣∣/σ > t/3

)+ P

(∥∥�̂−1
x̄

∥∥∥∥∥∥X̄′ι
n

∥∥∥∥2∣∣∣∣ ι
′�
n

∣∣∣∣/σ > t/3
)

+ P

(∥∥�̂−1
x̄

∥∥∥∥∥∥X̄′ι
n

∥∥∥∥
∥∥∥∥X̄′�

n

∥∥∥∥/σ > t/3
)

≤ 9

t2

1

n
+ P

(∥∥∥∥X̄′ι
n

∥∥∥∥2∣∣∣∣ ι
′�
n

∣∣∣∣/σ > t/6
)

+ P

(∥∥∥∥X̄′ι
n

∥∥∥∥
∥∥∥∥X̄′�

n

∥∥∥∥/σ > t/6
)

+ 2P
(∥∥�̂−1

x̄

∥∥> 2
)

≤ 9

t2

1

n
+
(

36

nt2

)1/3(
1 + ‖μx̄‖2)2/3(4−1/3 + 21/3)

+ 24

t

√
p

n

(
1 + ‖μx̄‖2)√E4 + 8

(
(C0 ∨ 1)

p

n

) 1
2

η
1+η

≤ 2C1

(
p

n

) 1
2

η
1+η + 24

(
1

nt2 +
(

1

nt2

)1/3
+
(

p

nt2

)1/2)(
1 + ‖μx̄‖2)√E4,

which concludes the proof. �

A.2. Proof of Theorems 3.1 and 3.4. The proof of Theorem 3.1(i) is based
on Theorem 2.1(i) of Steinberger and Leeb (2018) with Z = z̃ and τ = 1/2. Note
that if fz̃ ∈ Fd,12(D,E), then the assumptions of that result are satisfied [cf.
Steinberger and Leeb (2018), Example 3.1], and we obtain existence of a Borel
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subset G1 = G1(fz̃) ⊆ Vd,p of the Stiefel manifold Vd,p of order d × p, that de-
pends on the density fz̃, such that for all t > 0,

sup
B∈G1

P
(∥∥E[z̃‖B ′z̃

]− BB ′z̃
∥∥> t

)≤ 1

t
d−1/12 + 4γ1

p

logd
,(12)

and

νd,p

(
G

c
1
)≤ κ1d

−(1−12γ1
p

logd
)/12

,(13)

where νd,p denotes the uniform distribution on the Stiefel manifold. Here, the
constant γ1 = γ1(D) depends only on D, and the constant κ1 = κ1(E) depends
only on E. Moreover, it is easy to see from (12) [cf. also Theorem 2.1(iii) of
Steinberger and Leeb (2018)] that the set G1 is right-invariant under the action of
Op and that it is left-equivariant in the sense that G1(fRz̃) = RG1(fz̃), for every
R ∈ Od . For any full rank d × p matrix M , any symmetric positive definite d × d

matrix � and fz̃ ∈ Fd,12(D,E), we define the set

U := U(M,�,fz̃) := {
R ∈ Od : R′�1/2M

(
M ′�M

)−1/2 ∈ G1(fz̃)
}
.

From the properties of G1 mentioned above, it is easy to deduce the claim of
Theorem 3.1(iii) about the set U. Now take a random matrix U that is uniformly
distributed on Od and another random matrix V that is uniformly distributed on
Op , such that U and V are independent, and note that by right-invariance of G1,

νd(U) = P
(
U�1/2M

(
M ′�M

)−1/2 ∈ G1
)

= P
(
U�1/2M

(
M ′�M

)−1/2
V ∈ G1

)
= νd,p(G1),

because �1/2M(M ′�M)−1/2 ∈ Vd,p and νd,p is characterized by left and right
invariance under the appropriate orthogonal groups. This establishes the desired
bound on νd(Uc), upon choosing L1 = κ1 and c1 = 12γ1.

For the statement about the ratio of RN and RL, we first note that it is no
restriction to consider only parameter configurations such that RL > 0, because
otherwise RN = RL = 0 and 1 − RN/RL = 0 by convention, so that the de-
sired inequality is trivially true on this portion of the parameter space. Moreover,
it suffices to consider M , � and fz̃ ∈ Fd,12(D,E) such that U(M,�,fz̃) �= ∅,
because, by convention, sup∅ = −∞. Now fix M , θ , L(ε), �, fz̃ ∈ Fd,12(D,E)

and R ∈ U(M,�,fz̃) as above, write

1 −RN/RL = (RL −RN)/RL

= E
[(
E[y‖x] − (

α + β ′x
))2

/RL

]
,
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where the second equality is easy to verify, and define �1 := (E[y‖x] − (α +
β ′x))/

√
RL. Fix δ > 0 and a, b ≥ 1 such that 1/a + 1/b = 1, and use Hölder’s

inequality to obtain the bound

E
[
�2

1
]= E

[
�2

11{|�1|>δ}
]+E

[
�2

11{|�1|≤δ}
]

≤ (
E
[
�2a

1
])1/a(

P
(|�1| > δ

))1/b + δ2.

In view of the preliminary considerations of the Appendix, RL = ‖(Id −
P�1/2M)�1/2θ‖2 + Var[ε] > 0 and

�1 = E
[
θ ′�1/2(Id − P�1/2M)Rz̃/

√
RL‖x],

and thus, for v = R′(Id − P�1/2M)�1/2θ/
√
RL, E[�2a

1 ] ≤ E[|v′z̃|2a] ≤ E2a , in
view of ‖v‖ ≤ 1. Because fz̃ ∈ Fd,12(D,E) and R ∈U(M,�,fz̃), we have B0 :=
R′�1/2M(M ′�M)−1/2 ∈G1(fz̃), and thus inequality (12) entails that

P
(|�1| > δ

)≤ P
(∣∣v′(

E
[
z̃‖B ′

0z̃
]− B0B

′
0z̃
)∣∣> δ

)
≤ 1

δ
d−1/12 + 4γ1

p

logd
.(14)

Altogether, we obtain the upper bound

E
[
�2

1
]≤ E

1/a
2a

(
d−1/12δ−1 + 4γ1

p

logd

)1/b

+ δ2.

We cannot analytically optimize this upper bound in δ. But clearly, the dominating
term in this bound is (p/ logd)1/b, and we cannot hope to improve the rate as
p/ logd → 0 beyond this. So we choose δ such that δ2 = c(p/ logd)1/b for some
c > 0. This also entails that

d−1/12δ−1 = c−1/2 p

logd

(
logd

pd
2b

12(2b+1)

) 2b+1
2b ≤ c−1/2 p

logd
K0(b),

where K0(b) := max{(d−b/(12b+6) logd)1+1/(2b), d ≥ 2} depends only on b.
Hence, substituting δ, we arrive at the upper bound

E
[
�2

1
]≤ [

E
1/a
2a

(
c−1/2K0(b) + 4γ1

)1/b + c
]( p

logd

)1/b

.

Choosing b > 1 as small as possible optimizes the rate, while a > 1 should be cho-
sen small enough to guarantee that E2a is still bounded. Using Rosenthal’s inequal-
ity [Rosenthal (1970), Theorem 3], we get that E2a is bounded by maxj E[|e′

j z̃|2a]
times a constant C(a) > 0 that depends only on a, and where ej is the j th element
of the standard basis in R

d . Under the twelfth moment bound that we get from
fz̃ ∈ Fd,12(D,E), we may thus take a = 6 and b = 6/5, and set

K1 := K1(D,E) := inf
c>0

[(
EC(6)

)1/6(
c−1/2K0(6/5) + 4γ1(D)

)5/6 + c
]
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to obtain the desired result.
To establish part (ii), we first construct the set V in a similar way as above,

using Theorem 2.1(ii) of Steinberger and Leeb (2018) (see also Example 3.1 in
that reference), again, with Z = z̃ and τ = 1/2. In particular, if fz̃ ∈ Fd,20(D,E),
then there exists a Borel set G2 ⊆ Vd,p of the Stiefel manifold, such that (12) holds
with G2 replacing G1, because Fd,20(D,E) ⊆ Fd,12(D,E3/5), such that

sup
B∈G2

P
(∥∥E[z̃z̃′‖B ′z̃

]− (
Id − BB ′ + BB ′z̃z̃′BB ′)∥∥> t

)

≤ 1

t
d−1/20 + 4γ2

p

logd
,

(15)

for every t > 0, and such that

νd,p

(
G

c
2
)≤ κ2d

−(1−20γ2
p

logd
)/20

,(16)

where the constant γ2 = γ2(D) depends only on D, and the constant κ2 = κ2(E)

depends only on E. For any full rank d × p matrix M , any symmetric positive
definite d × d matrix � and fz̃ ∈ Fd,20(D,E), we define the set

V := V(M,�,fz̃) := {
R ∈ Od : R′�1/2M

(
M ′�M

)−1/2 ∈ G2(fz̃)
}
,

and the same argument as above, involving right-invariance and left-equivariance
of G2, establishes the bound on νd(Vc) claimed by part (ii), and the properties of
V claimed by part (iii) of Theorem 3.1.

By analogous arguments as in part (i), using also the convention that RN(x)/

RL(x) = 1 if RL(x) = 0, it suffices to consider parameter choices M , � and
fz̃ ∈ Fd,20(D,E), such that V(M,�,fz̃) �= ∅ and we may restrict to the event
where RL(x) > 0. If for a given parameter configuration the probability of the
event {RL(x) > 0} is equal to zero, then the desired upper bound is trivially true
on this portion of the parameter space and it remains to consider those parameters
for which P(RL(x) > 0) > 0. On this part of the parameter space, we hence also
have RL = E[RL(x)] > 0. Therefore, we may consider

1 −RN(x)/RL(x) = (
RL(x) −RN(x)

)
/RL(x) = �2

1
RL

RL(x)
,

and conclude that for t > 0:

P
(
1 −RN(x)/RL(x) > t,RL(x) > 0

)
≤ P

(
�2

1 > t/2
)+ P

( RL

RL(x)
> 2,RL(x) > 0

)

≤ √
2d−1/12t−1/2 + 4γ1

p

logd
+ P

(∣∣∣∣RL(x)

RL

− 1
∣∣∣∣> 1/2

)
.
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To bound the probability on the last line of the previous display, recall that be-
cause of R ∈ V(M,�,fz̃), we have B0 = R′�1/2M(M ′�M)−1/2 ∈ G2(fz̃), and
use Lemma A.2. Therefore, (15) entails that

P

(∣∣∣∣RL(x)

RL

− 1
∣∣∣∣> 1/2

)
≤ 2d−1/20 + 4γ2

p

logd
,

and the proof of Theorem 3.1(ii) is completed upon appropriately choosing the
constant K2 = K2(D).

Next, we prove Theorem 3.4. The constant L0(E) will be chosen at the end of
the proof of part (ii) of that theorem. For the proof of Theorem 3.4(i), we take the
set U as above and note that because of Lemma A.1, we may set ϑ = 0 and μ = 0.
By our conventions, it suffices to consider the event H1 = {ROLS(X,Y ) > 0}. If
P(H1) = 0, then the result is trivially true, so we need to consider only parameters
for which P(H1) > 0. Note that for such a choice of parameters we must also have
RL > 0, because otherwise 0 = RL = E[ξ2], which implies that ξ = ξi = 0, a.s.,
and thus γ̂n = γ , a.s., so that ROLS(X,Y ) = E[(y − (1, x′)γ̂n)

2‖X,Y ] = RL = 0,
a.s., which means that P(H1) = 0. Now, on H1, we get

1 − RN

ROLS(X,Y )
= 1 − RN

RL

RL

ROLS(X,Y )
.

We may therefore rewrite and bound the expression of interest on the event H1 as

1 − RN

ROLS(X,Y )
= 1 − RN

RL

+ RN

RL

(
1 − RL

ROLS(X,Y )

)

≤ 1 − RN

RL

+ ROLS(X,Y ) −RL

ROLS(X,Y )

≤ 1 − RN

RL

+ ROLS(X,Y ) −RL

RL

,

because RN ≤ RL ≤ ROLS(X,Y ). Using the notation introduced at the beginning
of the Appendix, it is easy to see that

ROLS(X,Y ) = E
[(

ξ + α − α̂n + (β − β̂n)
′x
)2‖X,Y

]
= RL +E

[(
α − α̂n + (β − β̂n)

′x
)2‖X,Y

]
= RL + (α̂n − α)2 + ∥∥�1/2

x (β̂n − β)
∥∥2

> 0,

because the residual ξ = y − (α + β ′x) of orthogonal projection onto the space
of linear functions in x is orthogonal on everything in that space and because
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E[x‖X,Y ] = E[x] = M ′μ = 0. Together, since σ 2 = RL and R ∈ U, we get

P

(
1 − RN

ROLS(X,Y )
> t

)

≤ P

(
1 − RN

RL

> t/2
)

+ P

(ROLS(X,Y ) −RL

σ 2 > t/2
)

≤ 2

t
K1

(
p

logd

)5/6

+ P
(
(α̂n − α)2/σ 2 + ∥∥�1/2

x (β̂n − β)
∥∥2

/σ 2 > t/2
)

≤ 2

t
K1

(
p

logd

)5/6
+ P

(|α̂n − α|/σ >
√

t/2
)

+ P
(∥∥�1/2

x (β̂n − β)
∥∥/σ >

√
t/2

)

(17)

in view of Theorem 3.1(i), where the constant K1 = K1(D,E) depends only on
D and E. In order to apply Lemma A.4, we have to verify its assumptions. But
this is carried out in Section 1.5 of Srivastava and Vershynin (2013). In particular,
since fz̃ ∈ Fd,12(D,E), the discussion in that reference shows that there exists a
constant C̄ = C̄(E) that depends only on the moment bound E > 0, such that for
every projection matrix P in R

d and every t > C̄ rankP ,

P
(‖P z̃‖ > t

)≤ C̄t−3.

So we may apply Lemma A.4 with η = 2. Thus, if n/p > C̄0 := 512(48C̄)393 and
for C̄1 = C̄1(E) := 4(C̄0 ∨ 1)1/3, we have

P
(∥∥�1/2

x (β̂n − β)
∥∥/σ > t

)≤ C̄1

(
p

n

) 1
2

η
1+η + 64E4

t2

p

n
+ 8

t

√
p

n

≤
(

p

n

)1/3
E4

(
C̄1 + 64

t2 + 8

t

)
.

Moreover, we also have

P
(|α̂n − α|/σ > t

)

≤ 2C̄1

(
p

n

) 1
2

η
1+η

+ 24
(

1

nt2 +
(

1

nt2

)1/3
+
(

p

nt2

)1/2)(
1 + ∥∥�−1/2

x μx

∥∥2)√
E4

≤
(

p

n

)1/3
E4

(
2C̄1 + 24

t2 + 24

t2/3 + 24

t

)
,
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because μx = M ′μ = 0. Finally, returning to (17), we get

P

(
1 − RN

ROLS(X,Y )
> t

)
≤
(

p

logd

)5/6
K1

2

t
+
(

p

n

)1/3
E4L̃3,

where L̃3 = L̃3(E, t) depends only on E and t . Noting that E4 can be upper
bounded by a constant that depends only on E, in view of Rosenthal’s inequal-
ity [Rosenthal (1970), Theorem 3], completes the proof of Theorem 3.4(i).

The set V in Theorem 3.4(ii) is the same as above. Next, in view of Lemma A.1,
it is no restriction to set ϑ = 0 and μ = 0. For the statement about the OLS
risk ROLS(X,Y, x), we note that by our conventions for division by zero, it suf-
fices to consider the event H2 := {ROLS(X,Y, x) > 0}. Thus, we only need to
consider parameter configurations for which P(H2) > 0. For such a choice of
parameters, we also have RL > 0, because otherwise 0 = RL = E[ξ2], which
implies that ξ = ξi = 0, a.s., and thus γ̂n = γ , a.s., so that ROLS(X,Y, x) =
E[(y − (1, x′)γ̂n)

2‖X,Y,x] = E[ξ2‖x] = 0, a.s., and we have ruled out this case
already. Now, on H2, we get

1 − RN(x)

ROLS(X,Y, x)
= 1 − RN(x)

RL(x)

RL(x)

ROLS(X,Y, x)
,

because if RL(x) = 0, then RN(x) = 0, and by convention, RN(x)/RL(x) = 1,
and both expressions in the display above are equal to 1. We may therefore rewrite
and bound the expression of interest on the event H2 as

1 − RN(x)

ROLS(X,Y, x)
=
∣∣∣∣1 − RN(x)

RL(x)
+ RN(x)

RL(x)

(
1 − RL(x)

ROLS(X,Y, x)

)∣∣∣∣
≤ 1 − RN(x)

RL(x)
+
∣∣∣∣ROLS(X,Y, x) −RL(x)

ROLS(X,Y, x)

∣∣∣∣.
Using the notation introduced at the beginning of the Appendix, it is easy to see
that

ROLS(X,Y, x) = E
[(

ξ + α − α̂n + (β − β̂n)
′x
)2‖X,Y,x

]
= RL(x) + 2E[ξ‖x](α − α̂n

+ (β − β̂n)
′x
)+ (

α − α̂n + (β − β̂n)
′x
)2

=: RL(x) + �2.

Together we get, for R ∈ V,

P

(
1 − RN(x)

ROLS(X,Y, x)
> t

)

≤ P

(
1 − RN(x)

RL(x)
> t/2

)
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+ P

(∣∣∣∣ROLS(X,Y, x) −RL(x)

ROLS(X,Y, x)

∣∣∣∣> t/2,H2

)

≤ 2d− 1
12 t−

1
2 + K2

p

logd(18)

+ P
(|�2|/σ 2 > t/4

)+ P
(∣∣RL(x) + �2

∣∣/σ 2 ≤ 1/2
)

≤ 2d− 1
12 t−

1
2 + K2

p

logd
+ P

(|�2|/σ 2 > t/4
)+ P

(|�2|/σ 2 ≥ 1/4
)

+ P

(∣∣∣∣1 − RL(x)

RL

∣∣∣∣> 1/4
)
,

in view of Theorem 3.1(ii), and where we have used the reverse triangle inequality
to get 1 − |RL(x) + �2|/σ 2 ≤ |1 − RL(x)/σ 2| + |�2/σ

2|. The constant K2 =
K2(D) depends only on D. Since we again have B0 = R′�1/2M(M ′�M)−1/2 ∈
G2(fz̃), as in the proof of Theorem 3.1(ii), Lemma A.2 and (15) yield

P

(∣∣∣∣RL(x)

RL

− 1
∣∣∣∣> 1/4

)
≤ 4d−1/20 + 4γ2

p

logd
.

It remains to study the tail probabilities of |�2|/σ 2,

P
(|�2|/σ 2 > t

)
≤ P

(
2
∣∣E[ξ‖x](α − α̂n + (β − β̂n)

′x
)∣∣/σ 2 > t/2

)
+ P

(∣∣(α − α̂n + (β − β̂n)
′x
)∣∣2/σ 2 > t/2

)
≤ P

(∣∣α − α̂n + (β − β̂n)
′x
∣∣/σ > t

)
+ P

(∣∣E[ξ‖x]∣∣/σ > 1/4
)

+ P
(∣∣(α − α̂n + (β − β̂n)

′x
)∣∣2/σ 2 > t/2

)
≤ P

(|α − α̂n|/σ > t/2
)+ P

(∣∣(β − β̂n)
′x
∣∣/σ > t/2

)
+ P

(|�1| > 1/4
)

+ P
(|α − α̂n|/σ > t1/2/23/2)+ P

(∣∣(β − β̂n)
′x
∣∣/σ > t1/2/23/2).

To bound the tails of |(β̂n − β)′x|/σ , we use the conditional Markov inequality to
get

P
(∣∣(β̂n − β)′x

∣∣/σ > t
)= E

[
P
(∣∣(β̂n − β)′�1/2

x �−1/2
x x

∣∣2 > t2σ 2‖β̂n

)]
≤ E

[(
1

t2σ 2

∥∥�1/2
x (β̂n − β)

∥∥2
)

∧ 1
]
.
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Splitting the integral in the part where the integrand is greater than some arbitrary
δ > 0 and where it is not greater than δ, using boundedness by 1, we obtain

E

[(
1

t2σ 2

∥∥�1/2
x (β̂n − β)

∥∥2
)

∧ 1
]

≤ P
(∥∥�1/2

x (β̂n − β)
∥∥2

/σ 2 > δt2)+ δ.

We have already verified the assumptions of Lemma A.4 in the case where fz̃ ∈
Fd,12(D,E). By an analogous argument, using the fact that now fz̃ ∈ Fd,20(D,E),
there exists a constant C̃ = C̃(E) that depends only on the moment bound E > 0,
such that for every projection matrix P in R

d and every t > C̃ rankP ,

P
(‖P z̃‖ > t

)≤ C̃t−5.

So we may apply Lemma A.4 with η = 4. Thus, if n/p > C̃0 := 512(48C̃)5/2(15/

2)2, we have

P
(∣∣(β̂n − β)′x

∣∣/σ > t
)

≤ C̃1

(
p

n

) 1
2

η
1+η + 64E4

δt2

p

n
+ 8

t
√

δ

√
p

n
+ δ

≤ C̃1

(
p

n

)2/5
+ 64E4

t2

(
p

n

)1/2
+ 8

t

(
p

n

)3/4
+
(

p

n

)1/2

≤
(

p

n

)2/5
E4

(
C̃1 + 1 + 64

t2 + 8

t

)
,

with δ = √
p/n and where C̃1 = C̃1(E) = 4(C̃0 ∨ 1)2/5. Moreover, we also have

P
(|α̂n − α|/σ > t

)

≤ 2C̃1

(
p

n

) 1
2

η
1+η

+ 24
(

1

nt2 +
(

1

nt2

)1/3
+
(

p

nt2

)1/2)(
1 + ∥∥�−1/2

x μx

∥∥2)√
E4

≤
(

p

n

)1/3
E4

(
2C̃1 + 24

t2 + 24

t2/3 + 24

t

)
,

because μx = M ′μ = 0. Since (12) still holds with G2 replacing G1, we can use
(14) and put the previous two tail bounds together to arrive at

P
(|�2|/σ 2 > t

)≤
(

p

n

)1/3
E4C2 + 4d−1/12 + 4γ1

p

logd
,
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where C2 = C2(C̃1(E), t) is a positive finite constant that depends only on E and
t > 0 and γ1 = γ1(D) depends only on D. Finally, returning to (18), we get

P

(
1 − RN(x)

ROLS(X,Y, x)
> t

)

≤ (
2t−1/2 + 12

)
d−1/20 + (K2 + 4γ2 + 8γ1)

p

logd
+
(

p

n

)1/3
E4C3

≤
(

p

n

)1/3
E4C3 + p

logd
C4,

where C3 = C3(E, t) depends only on E and t , and C4 = C4(D, t) depends only
on D and t . As above, we finally note that E4 can be upper bounded by a con-
stant that depends only on E, in view of Rosenthal’s inequality [Rosenthal (1970),
Theorem 3]. Choosing L0 = L0(E) = max{C̄0(E), C̃0(E)} completes the proof of
Theorem 3.4. �
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