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METRIC GLUING OF BROWNIAN AND
√

8/3-LIOUVILLE
QUANTUM GRAVITY SURFACES
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In a recent series of works, Miller and Sheffield constructed a metric on√
8/3-Liouville quantum gravity (LQG) under which

√
8/3-LQG surfaces

(e.g., the LQG sphere, wedge, cone and disk) are isometric to their Brownian
surface counterparts (e.g., the Brownian map, half-plane, plane and disk).

We identify the metric gluings of certain collections of independent
√

8/3-
LQG surfaces with boundaries identified together according to LQG length
along their boundaries. Our results imply in particular that the metric gluing
of two independent instances of the Brownian half-plane along their positive
boundaries is isometric to a certain LQG wedge decorated by an independent
chordal SLE8/3 curve. If one identifies the two sides of the boundary of a
single Brownian half-plane, one obtains a certain LQG cone decorated by an
independent whole-plane SLE8/3. If one identifies the entire boundaries of
two Brownian half-planes, one obtains a different LQG cone and the interface
between them is a two-sided variant of whole-plane SLE8/3.

Combined with another work of the authors, the present work identi-
fies the scaling limit of self-avoiding walk on random quadrangulations with
SLE8/3 on

√
8/3-LQG.

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2304
1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2304
1.2. Metric gluing of Brownian half-planes . . . . . . . . . . . . . . . . . . . . . . . . . . 2306
1.3. Background on SLE and LQG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2309

1.3.1. Schramm–Loewner evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2309
1.3.2. Liouville quantum gravity surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 2309

1.4. Metric gluing of general quantum wedges . . . . . . . . . . . . . . . . . . . . . . . . . 2312
1.5. Basic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2316
1.6. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2317

2. Metric space preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2317
2.1. Basic definitions for metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2317
2.2. Remarks on metric gluing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2318

Gluing along a simple curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2319

Received October 2016; revised July 2018.
1Supported by the U.S. Department of Defense via an NDSEG fellowship.
2Supported by the Poincaré chair at the Institut Henri Poincaré.
MSC2010 subject classifications. 60D05, 60J67.
Key words and phrases. Metric gluing, Schramm–Loewner evolution, Brownian surfaces, Liou-

ville quantum gravity.

2303

http://www.imstat.org/aop/
https://doi.org/10.1214/18-AOP1309
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


2304 E. GWYNNE AND J. MILLER

Gluing interface collapses to a single point . . . . . . . . . . . . . . . . . . . . . . . . 2320
2.3. The

√
8/3-LQG metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2321

2.3.1. The metric on a quantum sphere . . . . . . . . . . . . . . . . . . . . . . . . . . 2322
2.3.2. Metrics on general

√
8/3-LQG surfaces . . . . . . . . . . . . . . . . . . . . . . 2323

3. The Brownian disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2327
3.1. Brownian disk definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2327
3.2. Area, length and distance estimates for the Brownian disk . . . . . . . . . . . . . . . . 2328

4. Metric gluing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2336
4.1. LQG geodesics cannot hit the boundary . . . . . . . . . . . . . . . . . . . . . . . . . . 2336
4.2. Metric gluing of two quantum wedges . . . . . . . . . . . . . . . . . . . . . . . . . . . 2340
4.3. Metric gluing in the peanosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2349

Appendix A: Estimate for quantum diameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 2351
Appendix B: Upper bound for the probability that SLEκ (ρ) hits a point . . . . . . . . . . . . . 2354
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2355
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2355

1. Introduction.

1.1. Overview. For γ ∈ (0,2), a Liouville quantum gravity (LQG) surface is
(formally) a random Riemann surface parameterized by a domain D ⊂ C whose
Riemannian metric tensor is eγh(z) dx ⊗ dy, where h is some variant of the Gaus-
sian free field (GFF) on D and dx ⊗ dy denotes the Euclidean metric tensor.
Liouville quantum gravity surfaces are conjectured to arise as the scaling limits
of various random planar map models; the case γ = √

8/3 corresponds to uni-
formly random planar maps, and other values of γ are obtained by weighting by
the partition function of an appropriate statistical mechanics model (see [14, 18,
48] for examples of such statistical mechanics models). This has so far been shown
to be the case for γ = √

8/3 with respect to the Gromov–Hausdorff topology in
the works [22, 26] and [28–32] and for all γ ∈ (0,2) in the so-called peanosphere
sense in [14, 18, 48] and [11].

Since h is only a distribution (i.e., generalized function) and does not have well-
defined pointwise values, this object does not make rigorous sense. However, it was
shown by Duplantier and Sheffield [12] that one can rigorously define the volume
measure associated with an LQG surface. More specifically, there is a measure μh

on D, called the γ -LQG measure, which is the a.s. limit of regularized versions
of eγh(z) dz, where dz is the Euclidean volume form. One can similarly define the
γ -LQG length measure νh on certain curves in D, including ∂D and Schramm’s
[42] SLEκ -type curves for κ = γ 2 [47].

In the recent works [28–32], Miller and Sheffield showed that in the special
case when γ = √

8/3, an LQG surface is equipped with a natural metric (distance
function) dh, so can be interpreted as a random metric space. We will review the
construction of dh in Section 2.3.

In this paper, we will be interested in several particular types of
√

8/3-LQG sur-
faces which are defined in [11]. These include quantum spheres, which are finite-
volume LQG surfaces (i.e., the total mass of the

√
8/3-LQG measure μh is finite)
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parameterized by the Riemann sphere C ∪ {∞}; quantum disks, which are finite-
volume LQG surfaces with boundary; quantum cones, which are infinite-volume
LQG surfaces homeomorphic to C; and quantum wedges, which are infinite-
volume LQG surfaces with infinite boundary. We will review the definitions of
these particular types of quantum surfaces in Section 1.3.2 below.

The Brownian map [22, 26] is a continuum random metric space which arises
as the scaling limit of uniform random planar maps, and which is constructed us-
ing a continuum analog of the Schaeffer bijection [41]. We refer to the surveys
[23, 25] for more details about this object. One can also define Brownian surfaces
with other topologies, such as the Brownian half-plane, which is the scaling limit
of the uniform infinite half-planar quadrangulations [1, 16]; the Brownian plane
[9], which is the scaling limit of the uniform infinite planar quadrangulation; and
the Brownian disk [4], which is the scaling limit of finite quadrangulations with
boundary. It is shown in [31], Corollary 1.5 (or [16], Proposition 1.10, in the half-
plane case) that each of these Brownian surfaces is isometric to a certain special√

8/3-LQG surface, that is, one can couple the two random metric spaces in such
a way that there a.s. exists an isometry between them. It is shown in [32] that in
fact the

√
8/3-LQG structure is a measurable function of the Brownian surface

structure and it follows from the construction in [29, 31] that the converse holds.
In particular:

• The Brownian map is isometric to the quantum sphere;
• The Brownian disk is isometric to the quantum disk;
• The Brownian plane is isometric to the

√
8/3- (weight-4/3) quantum cone;

• The Brownian half-plane is isometric to the
√

8/3- (weight-2) quantum wedge.

Furthermore, the isometries are such that the
√

8/3-LQG area measure is pushed
forward to the natural volume measure on the corresponding Brownian surface and
(in the case of the disk or half-plane) the

√
8/3-LQG boundary length measure is

pushed forward to the natural boundary length measure on the Brownian disk or
half-plane. That is, the spaces are equivalent as metric measure spaces. Hence the
construction of the

√
8/3-LQG metric in [28–32] can be interpreted as:

• Endowing the Brownian map, half-plane, plane and disk with a canonical con-
formal structure and

• Constructing many additional random metric spaces (corresponding to other
LQG surfaces) which locally look like Brownian surfaces.

The goal of this paper is to study metric space quotients (also known as met-
ric gluings) of

√
8/3-LQG surfaces, equivalently Brownian surfaces, glued along

their boundaries according to quantum length. The results described in [11], Sec-
tion 1.2 (see also [47]) show that one can conformally glue various types of quan-
tum surfaces along their boundaries according to quantum length to obtain dif-
ferent quantum surfaces. In each case, the interface between the glued surfaces is
an SLEκ -type curve with κ ∈ {γ 2,16/γ 2} (so κ ∈ {8/3,6} when γ = √

8/3). We
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will show that in the case when the interface is a simple curve (so κ = 8/3), this
conformal gluing is the same as the metric gluing. In other words, the

√
8/3-LQG

metric on the glued surface is the metric quotient of the
√

8/3-LQG metrics on the
surfaces being glued. See Sections 1.2 and 1.4 for precise statements. We empha-
size that we will be considering metric gluings along rough, fractal curves and in
general such gluings are not well behaved. See Section 2.2 for a discussion of the
difficulties involved in proving metric gluing statements of the sort we consider
here.

In light of the aforementioned relationship between
√

8/3-LQG surfaces and
Brownian surfaces, our results translate into results for Brownian surfaces. In par-
ticular, our results imply that each of the Brownian map and the Brownian plane
are metric space quotients of countably many independent Brownian disks glued
together along their boundaries (Theorems 1.7 and 1.8); and that when one met-
rically glues together two independent Brownian surfaces, the resulting surface
locally looks like a Brownian surface (even at points along the gluing interface).
To our knowledge, it is not known how to derive either of these facts directly from
the Brownian surface literature. Hence this work can be viewed as an application
of

√
8/3-LQG to the theory of Brownian surfaces. However, our proofs will also

make use of certain facts about Brownian surfaces which are not obvious directly
from the

√
8/3-LQG perspective (in particular the estimates for the Brownian disk

contained in Section 3.2).
The results of this paper also have applications to scaling limits of random quad-

rangulations decorated by a self-avoiding walk. Indeed, it is known that gluing to-
gether two uniformly random quadrangulations with simple boundary along their
boundaries according to boundary length (or gluing two boundary arcs of a single
uniformly random quadrangulation with simple boundary to each other according
to boundary length) produces a uniformly random pair consisting of a quadrangu-
lation decorated by a self-avoiding walk. See [3], Section 8.2 (which builds on [5,
6]), for the case of finite quadrangulations with simple boundary and [7], Part III,
[8] for the case of the uniform infinite half-planar quadrangulation with simple
boundary (UIHPQS). The results of the present work combined with [15, 16] im-
ply that the scaling limit of a uniform infinite planar or half-planar quadrangulation
decorated by a self-avoiding walk is an appropriate

√
8/3-LQG surface decorated

by an SLE8/3-type curve. See Figure 1 for a schematic diagram of how the dif-
ferent works of the authors fit together with the existing literature to deduce this
result.

1.2. Metric gluing of Brownian half-planes. Here we state several special
cases of our main results which describe the curve-decorated metric spaces ob-
tained by gluing together Brownian half-planes [1, 16] along their boundaries
according to the natural length measure as certain quantum wedges or quantum
cones—particular types of

√
8/3-LQG surfaces whose definition is reviewed in

Section 1.3.2—equipped with their
√

8/3-LQG metric and decorated by SLE8/3
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FIG. 1. A chart of the different components which serve as input into the proof that self-avoiding
walk on random quadrangulations converges to SLE8/3 on

√
8/3-LQG. The present article cor-

responds to the blue box and implies that the embedding into C via so-called QLE(8/3,0) of the
metric gluing of a pair of Brownian half-planes to each other along their boundary or a single Brow-
nian half-plane to itself along its boundary is described by

√
8/3-LQG where the interface is an

SLE8/3-type path.

curves (which correspond to the gluing interfaces). We note that a quantum wedge
(resp., cone) can be parameterized by the half-plane (resp., whole plane). See Fig-
ure 2 for an illustration of the theorem statements in this section.

The general versions of our main results, which describe the metric gluings of
general quantum wedges, are stated in Section 1.4 below. The results in this section
follow from these general statements and the fact that the Brownian half-plane is
the same as the

√
8/3- (weight-2) quantum wedge.

We first consider two independent Brownian half-planes glued along “half” of
their boundaries, which corresponds to the left panel of Figure 2.

THEOREM 1.1. Suppose that we have two independent instances of the Brow-
nian half-plane. Then the metric quotient obtained by gluing the two surfaces to-
gether according to boundary length on their positive boundaries is isometric to
the

√
8/3-LQG metric space associated with a weight-4 quantum wedge. More-
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FIG. 2. Left: Illustration of Theorem 1.1 (the picture in Theorem 1.5 in the case when
w−,w+ ≥ 4/3 is qualitatively the same). Gluing together two independent Brownian half-planes
(green and blue) along their positive boundary rays produces a weight-4 quantum wedge decorated
by a chordal SLE8/3 curve. Middle: Illustration of Theorem 1.2 (the picture in Theorem 1.6 is qual-
itatively the same). Gluing two complementary boundary rays of a Brownian half-plane produces a
weight-2 quantum cone decorated by a whole-plane SLE8/3. Right: Illustration of Theorem 1.3. Two
weight-2 quantum wedges (Brownian half-planes) are glued together along their whole boundaries
according to quantum length to obtain a weight-4 quantum cone. The gluing interface is a pair of
nonintersecting SLE8/3-type curves.

over, the interface between the two Brownian half-plane instances is a chordal
SLE8/3 curve on this weight-4 quantum wedge, sampled independently from the
wedge.

We note that one can make sense of a chordal SLE8/3 curve on a quantum wedge
since the latter has a canonical conformal structure (i.e., a canonical embedding
into H, modulo scaling). One particular implication of Theorem 1.1, which is not
at all clear from the definition of the Brownian half-plane, is that the interface be-
tween the two Brownian half-planes (i.e., the image of the two glued boundary rays
under the quotient map) is a simple curve. See Section 2.2 for further discussion
of this.

We next state an analog of Theorem 1.1 when we glue the two boundary rays of
a single Brownian half-plane to itself, to get a quantum surface with the topology
of the plane (Figure 2, middle panel).

THEOREM 1.2. The metric space obtained by gluing the positive and nega-
tive boundaries of an instance of the Brownian half-plane together according to
boundary length is isometric to the

√
8/3-LQG metric space associated with a

weight-2 quantum cone and the interface is a whole-plane SLE8/3 curve on this
weight-2 quantum cone, sampled independently from the cone.

Finally, we consider two independent Brownian half-planes glued together
along their whole boundaries, which is illustrated in the right panel of Figure 2.



METRIC GLUING OF BROWNIAN AND
√

8/3-LQG SURFACES 2309

In this case, the description of the gluing interface is slightly more complicated
and involves whole-plane SLEκ(ρ) curves, which are defined in [35].

THEOREM 1.3. Suppose that we have two independent instances of the Brow-
nian half-plane. Then the metric quotient obtained by gluing the two surfaces to-
gether according to boundary length is isometric to the

√
8/3-LQG metric space

associated with a weight-4 quantum cone. Moreover, the interface between the
two Brownian half-plane instances is an SLE8/3-type curve independent from the
weight-4 quantum cone, which can be sampled as follows. First, sample a whole-
plane SLE8/3(2) curve η1 from 0 to ∞; then, conditional on η1, sample a chordal
SLE8/3 curve η2 from 0 to ∞ in C \ η1.

We remark that the interface in Theorem 1.3 can also be described by a pair
of GFF flow lines [33, 35]. Theorem 1.3 is deduced from Theorem 1.1 and Theo-
rem 1.6, in a manner described in Section 1.4.

1.3. Background on SLE and LQG. Before we state the general versions of
our main results, we give a brief review of some definitions related to SLE and
LQG which are needed for the statements.

1.3.1. Schramm–Loewner evolution. Let κ > 0 (here we will only need the
case κ = 8/3) and let ρ = (ρ1, . . . , ρn) be a finite vector of weights. Also let
D ⊂ C be a simply connected domain and let x, y, z1, . . . , zn ∈ D∪∂D. A chordal
SLEκ(ρ) from x to y in D is a variant of chordal SLEκ from x to y in D which
has additional force points at z1, . . . , zn of weights ρ1, . . . , ρn, respectively. It is
a conformally invariant process which satisfies the so-called domain Markov pro-
cess where one has to keep track of the extra marked points. Chordal SLEκ(ρ) pro-
cesses were first introduced in [19], Section 8.3. See also [44] and [33], Section 2.2.
In this paper, we will primarily be interested in chordal SLEκ(ρL;ρR) with two
force points of weight ρL and ρR located immediately to the left and right of the
starting point, respectively. Such a process is well defined provided ρL,ρR > −2
[33], Section 2.2. We also recall the definition of whole-plane SLEκ(ρ) for ρ > −2
[35], Section 2.1.

1.3.2. Liouville quantum gravity surfaces. In this subsection, we will give a
brief review of Liouville quantum gravity (LQG) surfaces, as introduced in [11,
12, 47]. Such surfaces are defined for all γ ∈ (0,2), but in this paper we will
consider only the case when γ = √

8/3, since this is the only case for which an
LQG surface has a rigorously defined metric space structure (which we will review
in Section 2.3).

A
√

8/3-LQG surface is an equivalence class of pairs (D,h), where D ⊂ C is
an open set and h is some variant of the Gaussian free field (GFF) [33, 35, 43,
46, 47] on D. Two pairs (D,h) and (D̃, h̃) are declared to be equivalent (meaning
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that they represent two different parameterizations of the same surface) if there is
a conformal map φ : D̃ → D such that

(1) h̃ = h ◦ φ + Q log
∣∣φ′∣∣ where Q = 2

γ
+ γ

2
=

√
3

2
+

√
2

3
.

The particular choice of distribution h is referred to as the embedding of the quan-
tum surface (into D). One can also define quantum surfaces with k ∈ N marked
points in D ∪ ∂D (with points in ∂D viewed as prime ends) by requiring the map
φ in (1) to take the marked points of one surface to the corresponding marked
points of the other. In this paper, we will often work with domains whose bound-
ary is a simple curve, which means that a prime end is the same as a boundary
point. But, we will sometimes work with domains for which this is not the case
(e.g., a Jordan domain cut by a segment of a simple curve).

It is shown in [12] that a
√

8/3-LQG surface has a natural area measure μh,
which is a limit of regularized versions of e

√
8/3h dz, where dz denotes Lebesgue

measure on D. Furthermore, there is a natural length measure νh which is defined
on certain curves in D, including ∂D (viewed as a collection of prime ends) and
SLE8/3-type curves which are independent from h [47], and which is a limit of
regularized versions of e

√
8/3h/2|dz|, where |dz| is the Euclidean length element.

The measures μh and νh are invariant under transformations of the form (1) (see
[12], Proposition 2.1, and its length measure analog). In the case of νh, we recall
here that a conformal map between simply connected domains induces a bijection
between prime ends on their boundaries [37].

In this paper, we will be interested in several specific types of
√

8/3-LQG sur-
faces which are defined and studied in [11]. Let Q be as in (1). For α ≤ Q, an
α-quantum wedge is a doubly marked quantum surface (H, h,0,∞) which can be
obtained from a free-boundary GFF on H plus −α log | · | by “zooming in near
0” so as to fix the additive constant in a canonical way. See [11], Section 4.2, for
a precise definition. Quantum wedges in the case when α ≤ Q are called thick
wedges because they describe surfaces homeomorphic to H.

The quantum wedge for α = √
8/3 (which is isometric to the Brownian half-

plane when equipped with its LQG metric) is special since a GFF-type distribution
has a −√

8/3 log | · | singularity at a point sampled uniformly from its
√

8/3-LQG
boundary length measure [12], Section 6. This means that a

√
8/3-quantum wedge

describes the local behavior of a
√

8/3-LQG surface near a quantum typical point
on its boundary. This is analogous to the statement that the Brownian half-plane
describes the local behavior of a quantum disk at a typical point of its boundary
(see, e.g., [16], Proposition 4.2).

For α ∈ (Q,Q + √
2/3), an α-quantum wedge is an ordered Poissonian collec-

tion of doubly marked quantum surfaces, each with the topology of the disk (the
two marked points correspond to the points ±∞ in the infinite strip in [11], Sec-
tion 4.5). The individual surfaces are called beads of the quantum wedge. One can
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also consider a single bead of an α-quantum wedge conditioned on its quantum
area and/or its left and right quantum boundary lengths. See [11], Section 4.4, for
more details. Quantum wedges in the case when α ∈ (Q,Q + √

2/3) are called
thin wedges (because they are not homeomorphic to H).

It is sometimes convenient to parameterize the set of quantum wedges by a
different parameter w, called the weight, which is given by

(2) w=
√

8

3

(√
2

3
+ Q − α

)
> 0.

The case α = √
8/3 corresponds to w = 2. The reason why the weight parameter is

convenient is that it is additive under the gluing and cutting operations for quantum
wedges and quantum cones studied in [11].

For α < Q, an α-quantum cone, defined in [11], Definition 4.10, is a dou-
bly marked quantum surface (C, h,0,∞) obtained from a whole-plane GFF plus
−α log | · | by “zooming in near 0” (so as to fix the additive constant in a canonical
way) in a similar manner to how a thick wedge is obtained from a free-boundary
GFF with a log singularity. The weight of an α-quantum cone is given by

(3) w = 2

√
8

3
(Q − α).

As in the quantum wedge case, the quantum cone for α = √
8/3 (w= 4/3), which

is isometric to the Brownian plane when equipped with its LQG metric, is special
since it describes the local behavior of a

√
8/3-LQG surface at a typical point with

respect to its LQG area measure.
A quantum sphere is a finite-volume quantum surface (C, h) defined in [11],

Definition 4.21, which is often taken to have fixed quantum area. One can also
consider quantum spheres with one, two or three marked points, which we take to
be sampled uniformly and independently from the

√
8/3-LQG area measure μh.

Note that the marked points in [11], Definition 4.21, correspond to the points ±∞
in the cylinder, and are shown to be sampled uniformly and independently from μh

in [11], Proposition A.13, when one conditions on the quantum surface structure of
a quantum sphere (i.e., modulo conformal transformation). Equivalently, the law
of a quantum sphere using the parameterization by the cylinder as described in
[11] is invariant under the operation of picking x, y from μh independently and
then applying a change of coordinates which takes x, y to ±∞.

A quantum disk is a finite-volume quantum surface with boundary (D, h) de-
fined in [11], Definition 4.21, which can be taken to have fixed area or fixed area
and fixed boundary length. A singly (resp., doubly) marked quantum disk is a quan-
tum disk together with one (resp., two) marked points in ∂D sampled uniformly
(and independently) from the

√
8/3-LQG boundary length measure νh. Note that

the marked points in [11], Definition 4.21, correspond to the points ±∞ in the in-
finite strip. It is shown in [11], Proposition A.8, that the marked points are sampled
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uniformly from νh, meaning that the law of the quantum disk is invariant under the
operation of sampling two independent points from νh then applying a conformal
map which sends these points to ±∞. It follows from the definitions in [11], Sec-
tion 4.4 and 4.5, that a doubly marked quantum disk has the same law as a single
bead of a (weight-2/3)

√
6-quantum wedge if we condition on quantum area and

left/right quantum boundary lengths (note that this is only true for γ = √
8/3).

Suppose w−,w+ > 0 and w= w− +w+. It is shown in [11], Theorem 1.2, that
if one cuts a weight-w quantum wedge by an independent chordal SLE8/3(w

− −2;
w+ − 2) curve (or a concatenation of such curves in the thin wedge case) then one
obtains a weight-w− quantum wedge and an independent-w+ quantum wedge.
Since the

√
8/3-LQG length measures as viewed from either side of the curve

match up [47], these two quantum wedges can be glued together according to quan-
tum boundary length to recover the original weight-w quantum wedge. Similarly,
by [11], Theorem 1.5, if one cuts a weight-w quantum cone by an independent
whole-plane SLE8/3(w − 2) curve, then one obtains a weight-w quantum wedge
whose left and right boundaries can be glued together according to quantum length
to recover the original weight-w quantum cone.

1.4. Metric gluing of general quantum wedges. In this section, we will state
the main results of this paper in full generality. Our first two theorems state that
whenever we have a conformal welding of two or more

√
8/3-LQG surfaces along

a simple SLE8/3-type curve as in [11, 47], the metric on the welding of the surfaces
is equal to the metric space quotient of the surfaces being welded together accord-
ing to boundary length. We start by addressing the case of two quantum wedges
glued together to obtain another quantum wedge. For the statement (and at several
other points in the paper), we will use the following definition.

DEFINITION 1.4. Let X be a topological space, let Y ⊂ X, and let d be a
metric on Y which is continuous with respect to the topology on Y inherited from
X. If A ⊂ Y \ Y , we say that d extends by continuity to A if there is a metric d ′ on
Y ∪ A which agrees with d on Y and is continuous with respect to the topology on
Y ∪ A which it inherits from X.

THEOREM 1.5. Let w−,w+ > 0 and let w := w− + w+. If w ≥ 4/3, let
(H, h,0,∞) be a weight-w quantum wedge (recall (2)). If w ∈ (0,4/3), let
(H, h,0,∞) be a single bead of a weight-w quantum wedge with area a > 0
and left/right boundary lengths l−, l+ > 0. Let η be an independent chordal
SLE8/3(w

− − 2;w+ − 2) from 0 to ∞ in H. Let W− (resp., W+) be the region
lying to the left (resp. right) of η and let W− (resp., W+) be the quantum surface
obtained be restricting h to W− (resp., W+). Let U− (resp., U+) be the ordered
sequence of connected components of the interior of W− (resp., W+). Let dh be
the

√
8/3-LQG metric induced by h. For U ∈ U± let dh|U be the

√
8/3-LQG met-

ric induced by h|U . Then a.s. each dh|U extends by continuity (with respect to the
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FIG. 3. Left: Illustration of the statement of Theorem 1.5 in the case when w ≥ 4/3 and
w−,w+ < 4/3. The metric space (H,dh), which is a weight-w quantum wedge, is the metric quo-
tient of the disjoint union of the metric spaces (U,dh|U ) for U ∈ U− ∪U+, which are the beads of a
pair of independent quantum wedges of weights w− and w+, glued together according to quantum
boundary length. The gluing interface is a chordal SLE8/3(w1 − 2;w2 − 2) curve η from 0 to ∞
in H, which a.s. hits both (−∞,0] and [0,∞). Right: Illustration of the statement of Theorem 1.7.
The boundary of a space-filling SLE6 curve stopped when it hits 0 divides C into two independent
weight-2/3 quantum wedges (green and blue), whose beads are independent quantum disks (Brow-
nian disks) when we condition on boundary length. The weight 4/3 quantum cone metric space
(C,dh), which is a Brownian plane, is the metric quotient of these Brownian disks glued together
according to boundary length.

Euclidean topology) to ∂U and the metric space (H,dh) is the quotient of the dis-
joint union of the metric spaces (U,dh|U ) for U ∈ U− ∪ U+ under the natural
identification (i.e., according to quantum length).

See Figure 2 (resp., Figure 3) for an illustration of the statement of Theorem 1.5
in the case when w−,w+ ≥ 4/3 (resp., w−,w+ < 4/3). The reason why the met-
rics dh|U for U ∈ U− ∪ U+ extend continuously to ∂U is explained in Lemma 2.7
below.

In the setting of Theorem 1.5, [11], Theorem 1.2, implies that the quantum
surfaces W− and W+ are independent, the former is a weight-w− quantum wedge
(or a collection of beads of such a wedge if w < 4/3), and the latter is a weight-
w+ quantum wedge (or a collection of beads of such a wedge if w < 4/3). Note in
particular that U− = W− if w− ≥ 4/3 and U− is countably infinite if w− < 4/3,
and similarly for U+.

The wedges (or subsets of wedges) W− and W+ are glued together according
to

√
8/3-LQG boundary length [47], Theorem 1.3. Hence Theorem 1.5 says that

one can metrically glue a (subset of a) weight-w− quantum wedge and a (subset
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of a) weight−w+ quantum wedge together according to quantum boundary length
to get a (bead of a) weight-w quantum wedge.

We note that Theorem 1.1 is a special case of Theorem 1.5 since the Brown-
ian half-plane is isometric to the weight-2 quantum wedge [16], Proposition 1.10.
More generally, the quotient metric space in Theorem 1.5 is a LQG surface so
locally looks the same as a Brownian surface, even near the gluing interface. In
fact, the quotient metric dh is independent from the gluing interface η. Hence if
one takes a metric quotient of two quantum wedges, it is not possible to recover
the two original wedges from the quotient metric space (one would need to see the
gluing interface as well to do this).

By the local absolute continuity of different
√

8/3-LQG surfaces near points of
their boundaries, Theorem 1.5 implies that a metric space quotient of any pair of
independent

√
8/3 (equivalently Brownian) surfaces with boundary glued together

according to boundary length also locally looks like a Brownian surface. This ap-
plies in particular if one metrically glues together two Brownian disks according
to boundary length. We emphasize that it is not at all clear from the definition of a
Brownian disk that gluing two such objects together produces something which lo-
cally looks like a Brownian disk near the gluing interface—one needs to use LQG
theory to obtain this fact.

Our next theorem concerns a quantum wedge glued to itself to obtain a quantum
cone and is illustrated in the middle of Figure 2.

THEOREM 1.6. Let w ≥ 4/3, let (C, h,0,∞) be a weight-w quantum cone
(recall (3)), and let dh be the

√
8/3-LQG metric induced by h. Let η be a whole-

plane SLE8/3(w−2) process from 0 to ∞. Let U = C\η and let dh|U be the
√

8/3-
LQG metric induced by h|U . Then a.s. dh|U extends by continuity (with respect to
the Euclidean topology) to ∂U , viewed as a collection of prime ends, and a.s.
(C,dh) is the metric quotient of (U,dh|U ) under the natural identification of the
two sides of η.

In the setting of Theorem 1.6, [11], Theorem 1.5, implies that the surface
(U,h|U,0,∞) has the law of a weight-w quantum wedge. Furthermore, the
boundary arcs of this quantum wedge lying to the left and right of 0 are glued
together according to

√
8/3-LQG boundary length [47], Theorem 1.3. Hence The-

orem 1.6 implies that one can metrically glue the left and right boundaries of a
weight-w quantum wedge together according to quantum length to get a weight-
w quantum cone. Similar absolute continuity remarks to the ones made after the
statement of Theorem 1.5 apply in the setting of Theorem 1.6.

Requiring that w ≥ 4/3 in Theorem 1.6 is equivalent to requiring that this wedge
is thick, equivalently the curve η is simple and the set U is connected. We expect
that one can also metrically glue the beads of a weight-w quantum wedge for
w ∈ (0,4/3) together according to quantum length to get a weight-w quantum
cone, but will not treat this case in the present work.
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Note that Theorem 1.2 is the special case of Theorem 1.6 when w = 2.
Iteratively applying Theorems 1.5 and 1.6 can give us metric gluing statements

for when we cut a quantum surface by multiple SLE8/3-type curves. One basic
application of this fact is Theorem 1.3, in which one identifies the entire boundary
of the two Brownian half-plane instances together. This theorem is obtained by
applying Theorem 1.1 to glue the positive boundaries of the two Brownian half-
planes and then applying Theorem 1.6 to glue the two sides of the resulting weight-
4 quantum wedge.

Another result which can be obtained from multiple applications of Theo-
rems 1.5 and 1.6 is a metric gluing statement in the setting of the peanosphere
construction [11], Theorem 1.9, which allows us to express the Brownian plane or
Brownian map as the metric space quotient of a countable collection of Brownian
disks glued together along their boundaries. Before stating this result, we need to
briefly recall the definition of space-filling SLE6.

Whole-plane space-filling SLE6 from ∞ to ∞ is a variant of SLE6 which travels
from ∞ to ∞ in C and iteratively fills in bubbles as it disconnects them from ∞
(so in particular is not a Loewner evolution). As explained in [11], Footnote 4,
whole-plane space-filling SLE6 can be sampled as follows:

1. Let ηL and ηR be the flow lines of a whole-plane GFF started from 0
with angles π/2 and −π/2, respectively, in the sense of [35]. Note that by [35],
Theorem 1.1, ηL has the law of a whole-plane SLE8/3(−2/3) from 0 to ∞ and by
[35], Theorem 1.11, the conditional law of ηR given ηL is that of a concatenation of
independent chordal SLE8/3(−4/3;−4/3) processes in the connected components
of C \ ηL.

2. Conditional on ηL and ηR , concatenate a collection of independent chordal
space-filling SLE6 processes, one in each connected component of C \ (ηL ∪ ηR).
Such processes are defined in [35], Sections 1.1.3 and 4.3, and can be obtained
from ordinary chordal SLE6 by, roughly speaking, iteratively filling in the bubbles
it disconnects from ∞.

THEOREM 1.7. Let (C, h,0,∞) be a
√

8/3-quantum cone (weight-4/3) and
let η′ be an independent whole-plane space-filling SLE6 parameterized by quan-
tum mass with respect to h and satisfying η′(0) = 0. Let U− (resp., U+) be the
set of connected components of the interior of η′((−∞,0]) (resp., η′([0,∞))). Let
dh be the

√
8/3-LQG metric induced by h and for U ∈ U− ∪ U+ let dh|U be the√

8/3-LQG metric induced by h|U . Then a.s. each dh|U extends by continuity (with
respect to the Euclidean topology) to ∂U and (C,dh) is the metric quotient of the
disjoint union of the metric spaces (U,dh|U ) for U ∈ U− ∪ U+ under the natural
identification.

By [31], Corollary 1.5, the metric space (C,dh) in Theorem 1.7 is isometric to
the Brownian plane. Furthermore, by [11], Theorems 1.2 and 1.5, each of the sur-
faces (U,h|U) has the law of a single bead of a weight-2/3 quantum wedge, which
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has the same law as a quantum disk. Hence each of the metric spaces (U,dh|U ) is
isometric to a Brownian disk. Therefore, Theorem 1.7 expresses the Brownian
plane as a metric space quotient of a countable collection of Brownian disks glued
together according to boundary length.

The following is an analog of Theorem 1.7 in the setting of the finite-volume
peanosphere construction [30], Theorem 1.1.

THEOREM 1.8. Let (C, h,∞) be a singly marked unit area
√

8/3-quantum
sphere and let η′ be an independent whole-plane space-filling SLE6 parameter-
ized by quantum mass with respect to h. Let t ∈ [0,1] be sampled uniformly from
Lebesgue measure, independent from everything else. Let U− (resp., U+) be the
set of connected components of the interior of η′([0, t]) (resp., η′([t,1]). Let dh

be the
√

8/3-LQG metric induced by h and for U ∈ U− ∪ U+ let dh|U be the√
8/3-LQG metric induced by h|U . Then a.s. each h|U extends by continuity (with

respect to the Euclidean topology) to ∂U and (C,dh) is the metric quotient of the
disjoint union of the metric spaces (U,dh|U ) for U ∈ U− ∪ U+ under the natural
identification.

By [31], Corollary 1.5, the metric space (C,dh) in Theorem 1.8 is isometric
to the Brownian map. Furthermore, by [30], Theorem 7.1, each of the surfaces
(U,h|U) are conditionally independent given their quantum boundary lengths and
areas, and each has the law of a single bead of a weight-2/3 quantum wedge (which
has the same law as a quantum disk with given boundary length and area) under
this conditioning. Hence each of the metric spaces (U,dh|U ) is isometric to a Brow-
nian disk. Therefore, Theorem 1.7 expresses the Brownian map as a metric space
quotient of a countable collection of Brownian disks glued together according to
boundary length.

1.5. Basic notation. Here we record some basic notation which we will use
throughout this paper.

NOTATION 1.9. We write N = {1,2,3, . . . }.
NOTATION 1.10. For a < b ∈ R and c > 0, we define the discrete intervals

[a, b]cZ := [a, b] ∩ (cZ) and (a, b)cZ := (a, b) ∩ (cZ).

NOTATION 1.11. If a and b are two quantities, we write a � b (resp., a � b) if
there is a constant C (independent of the parameters of interest) such that a ≤ Cb

(resp., a ≥ Cb). We write a � b if a � b and a � b.

NOTATION 1.12. If a and b are two quantities which depend on a parameter
x, we write a = ox(b) (resp. a = Ox(b)) if a/b → 0 (resp., a/b remains bounded)
as x → 0 (or as x → ∞, depending on context).
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Unless otherwise stated, all implicit constants in �,�, and � and Ox(·) and
ox(·) errors involved in the proof of a result are required to depend only on the
auxiliary parameters that the implicit constants in the statement of the result are
allowed to depend on.

1.6. Outline. The remainder of this article is structured as follows. In Sec-
tion 2, we review the definitions of internal metrics and quotient metrics (Sec-
tion 2.1) and discuss the difficulties involved in gluing together metric spaces along
a curve in a general setting (Section 2.2). We also review the construction of the√

8/3-LQG metric from [29, 31, 32] (Section 2.3).
In Section 3, we recall the definition of the Brownian disk from [4] and prove

some estimates for this metric space which will be needed for the proofs of our
main results. Roughly speaking, these estimates tell us that in various situations
one has the relations

Area ≈ Length1/2 ≈ Distance1/4

with high probability, where area, length and distance, respectively, refer to the
natural area measure, boundary length measure and metric on the Brownian disk.

In Section 4, we prove our main results using the estimates from Section 3
and some facts about SLE and LQG. We first argue in Section 4.1 that geodesics
in

√
8/3-LQG surfaces do not hit the boundary, using [4], Lemma 18, and the

equivalence of Brownian and
√

8/3-LQG surfaces.
Section 4.2 contains the proof of Theorem 1.5 (the proof of Theorem 1.6 is iden-

tical). We will apply the estimates of Section 3 together with the equivalence of the
Brownian disk and the quantum disk and the local absolute continuity of various√

8/3-LQG surfaces to show that a certain regularity event governing the relation-
ships between the μh-mass, νh-length and dh-diameters of certain sets holds with
high probability (Lemma 4.5). We then argue that on this regularity event,

√
8/3-

LQG geodesics can be “re-routed” (i.e., replaced by slightly different paths) in
such a way that they cross the SLE curve only finitely many times, and their length
increases by only a small amount. Since distances with respect to the metric space
quotient are defined as the infimum of the lengths of paths which cross the gluing
interface only finitely many times (Section 2.1), this implies the theorem statement.
A more detailed outline of this argument appears at the beginning of Section 4.2.
Section 4.3 deduces Theorems 1.7 and 1.8 from Theorems 1.5 and 1.6.

2. Metric space preliminaries.

2.1. Basic definitions for metrics. In this paper, we will consider a variety of
metric spaces, including subsets of C equipped with the Euclidean metric,

√
8/3-

LQG surfaces equipped with the metric induced by QLE(8/3,0), and various
Brownian surfaces equipped with their intrinsic metric. Here we introduce some
notation to distinguish these metric spaces and recall some basic constructions for
metric spaces.
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DEFINITION 2.1. Let (X,dX) be a metric space. For A ⊂ X, we write
diam(A;dX) for the supremum of the dX-distance between pairs of points in A.
For r > 0, we write Br(A;dX) for the set of x ∈ X with dX(x,A) < r . If A = {y}
is a singleton, we write Br({y};dX) = Br(y;dX). For A ⊂ C, we write Br(A) for
the set of points lying at Euclidean distance (strictly) less than r from A.

Recall that a pseudometric on a set X is a function dX : X ×X → [0,∞) which
satisfies all of the conditions in the definition of a metric except that possibly
dX(x, y) = 0 for x �= y.

Let (X,dX) be a topological space equipped with a continuous pseudometric
dX , let ∼ be an equivalence relation on X, and let X = X/ ∼ be the corresponding
topological quotient space. For equivalence classes x, y ∈ X, let Q(x, y) be the set
of finite sequences (x1, y1, . . . , xn, yn) of elements of X such that x1 ∈ x, yn ∈ y,
and yi ∼ xi+1 for each i ∈ [1, n − 1]Z. Let

(4) dX(x, y) := inf
(x1,y1,...,xn,yn)∈Q(x,y)

n∑
i=1

dX(xi, yi).

Then dX is a pseudometric on X, which we call the quotient pseudometric. It is
easily seen from the definition that the quotient pseudometric possesses the fol-
lowing universal property. Suppose f : (X,dX) → (Y, dY ) is a 1-Lipschitz map
such that f (x) = f (y) whenever x, y ∈ X with x ∼ y. Then f factors through the
metric quotient to give a 1-Lipschitz map f : X → Y such that f ◦ p = f , where
p : X → X is the quotient map.

For a curve γ : [a, b] → X, the dX-length of γ is defined by

len(γ ;dX) := sup
P

#P∑
i=1

dX

(
γ (ti), γ (ti−1)

)
,

where the supremum is over all partitions P : a = t0 < · · · < t#P = b of [a, b].
Note that the dX-length of a curve may be infinite.

Suppose Y ⊂ X. The internal metric of dX on Y is defined by

(5) dY (x, y) := inf
γ⊂Y

len(γ ;dX) ∀x, y ∈ Y,

where the infimum is over all curves in Y from x to y. The function dY satisfies all
of the properties of a pseudometric on Y (or a metric, if dX is a metric) except that
it may take infinite values.

2.2. Remarks on metric gluing. There are a number of pathologies that can
arise in the context of metric gluing. In what follows, we will describe two such
examples. The first is concerned with what types of problems can arise when one
tries to recover a metric space as the metric quotient of the two metric spaces
which arise by considering the internal metric when one cuts along a simple curve.
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The second example will show that when one considers the metric quotient of two
copies of [0,1]2 glued along [0,1] the gluing interface can in fact collapse to a
single point.

Gluing along a simple curve. We know a priori (see Lemma 2.3 below) that in
the setting of either Theorem 1.5 or Theorem 1.6, it holds for each U ∈ U− ∪ U+
that the restriction of the metric dh|U to the open set U coincides with the internal
metric of dh on U , as defined in Section 2.1. However, this fact together with the
fact that the gluing interface η is a continuous simple curve is far from implying the
statements of Theorems 1.5 and 1.6 since neither of these properties rules out the
possibility that paths which hit η infinitely many times are much shorter than paths
which cross only finitely many times (recall that the quotient metric is defined in
terms of the infimum of the lengths of paths which cross the interface only finitely
many times).

The problem of proving that a metric space cut by a simple curve is the quotient
of the internal metrics on the two sides of the curve is similar in spirit to the prob-
lem of proving that a curve in C is conformally removable [17], which means that
any homeomorphism of C which is conformal off of the curve is in fact conformal
on the whole plane. Indeed, proving each involves estimating how much the length
of a path (the image of a straight line in the case of removability or a geodesic in
the case of metric gluing) is affected by its crossings of the curve. Moreover, in
the setting of LQG and SLE, both the question of removability and the metric glu-
ing problem addressed in this paper are ways to show that the surfaces formed by
cutting along a SLE curve together determine the overall surface (see [11, 47] for
further discussion of this point in the case of removability), although we are not
aware of a direct relationship between the two concepts.

SLEκ -type curves for κ < 4 are conformally removable since they are bound-
aries of Hölder domains [17, 40]. However, there is no such simple criterion for
metric gluing. We know that the SLE8/3 gluing interfaces in our setting are Hölder
continuous for any exponent less than 1/2 with respect to dh (see, e.g., Lemma 3.2
below). However, even Lipschitz continuity of the gluing interface does not imply
the sorts of metric gluing statements we are interested in here, as the following
example demonstrates.

Let X = [0,1]× [−1,1] equipped with the Euclidean metric d and let (X̃, d̃) be
the metric quotient of X � [0,1/2] under the equivalence relation which identifies
t ∈ [0,1/2] with (2t,0) in X. In other words, d̃ is obtained from d by shorten-
ing the lengths of paths which trace along [0,1] × {0} by a factor of 1/2. The
space (X,d) is the metric quotient of the disjoint union of [0,1] × [−1,0] and
[0,1] × [0,1], each equipped with their d-internal metrics (which both coincide
with the Euclidean metric) under the natural identification. Furthermore, (X,d)

and (X̃, d̃) are homeomorphic (in fact, bi-Lipschitz) via the obvious identification
and the internal metrics of d and d̃ on each of the two sides [0,1] × [−1,0) and
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[0,1] × (0,1] of [0,1] × {0} coincide. However, d �= d̃ since points near the in-
terface [0,1] × {0} are almost twice as far apart with respect to d as with respect
to d̃ .

In the example above, d̃-geodesics between points near [0,1] × {0} spend most
of their time in the gluing interface [0,1]×{0}. In fact, paths which trace along the
gluing interface are substantially shorter than those which do not, so d̃-distances
cannot be approximated by the lengths of paths which cross this interface only
finitely many times. The proofs of Theorems 1.5 and 1.6 amount to ruling out
this sort of behavior for dh-geodesics. In particular, we will use estimates for how
often a dh geodesic hits the SLE8/3 curve η and how distances behave near η to
show that one can slightly perturb such a geodesic in such a way that it crosses
the gluing interface only finitely many times and its length is increased by only a
small amount.

Gluing interface collapses to a single point. It is possible to have much more
pathological behavior when we consider metric gluings where the function which
identifies points along the boundaries of the two spaces being glued is not Lips-
chitz. For example, as Lemma 2.2 below demonstrates, it is possible for the bound-
ary to collapse to a single point. If one considers metric gluings of Brownian sur-
faces along their boundary as in Section 1.2 (without reference to SLE/LQG the-
ory), then this is the type of pathology one would be led to worry about as it is
not immediate from the Brownian surface theory that this does not happen. The
following lemma shows that such pathological behavior does in fact arise in many
settings.

LEMMA 2.2. Let (X1, d1) and (X2, d2) be two copies of [0,1] × [0,1],
equipped with the Euclidean distance. Let ν be a nonatomic Borel measure on
[0,1] with ν([0,1]) = 1 which is mutually singular with respect to Lebesgue
measure (e.g., ν could be a γ -LQG boundary measure for γ ∈ (0,2)) and let
f (s) := ν([0, s]) for s ∈ [0,1]. Let (X,d) be the metric space quotient of the
disjoint union of X1 and X2 under the equivalence relation which identifies
(s,0) ∈ X1 with (f (s),0) ∈ X2. Then the d-distance between any two points of
the gluing interface (i.e., the image of the two copies of [0,1] × {0} under the
quotient map) is 0.

Before we give the proof of Lemma 2.2, let us mention that SLE/LQG theory
allows us to immediately rule out the possibility that the gluing interface degen-
erates to a point in each of the theorems of Section 1.2 (in fact, the gluing inter-
face must be a simple curve). The reason for this is as follows. In each theorem,
the claimed quotient metric space (namely, a certain type of quantum wedge or
cone) can be obtained by identifying one or more Brownian half-planes (weight-2
wedges) together along their boundaries due to the conformal welding results of
[11]. By the universal property of the quotient metric (Section 2.1), the quotient
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metric is the largest metric compatible with the equivalence relation, so there must
be a 1-Lipschitz map from the actual quotient metric space to the claimed quotient
metric space which preserves the gluing interface. Since the gluing interface in the
claimed quotient metric space is an SLE8/3-type curve, the gluing interface in the
actual metric space quotient is also a simple curve.

PROOF OF LEMMA 2.2. Let q : X1 � X2 → X be the quotient map, let
0 < s1 < s2 < 1, and view (s1,0) and (s2,0) as points of X1. We will show that
d(q(s1,0), q(s2,0)) = 0. To this end, fix ε > 0. Since ν is mutually singular with
respect to Lebesgue measure, we can find s1 = y0 < x1 < y1 < · · · < xn < yn <

xn+1 = s2 such that

n+1∑
j=0

ν
([yj−1, xj ]) ≤ ε and

n∑
j=1

(yj − xj ) ≤ ε.

By definition of the quotient metric, we therefore have

d
(
q(s1,0), q(s2,0)

)
≤

n∑
j=1

d1
(
(xj ,0), (yj ,0)

) +
n+1∑
j=0

d2
((

f (yj−1),0
)
,
(
f (xj ),0

))

≤
n∑

j=1

(yj − xj ) +
n+1∑
j=0

(
f (xj ) − f (yj−1)

) ≤ 2ε,

which concludes the proof since ε > 0 is arbitrary. �

2.3. The
√

8/3-LQG metric. Suppose (D,h) is a
√

8/3-LQG surface. In [29,
31, 32], it is shown that if h is some variant of the GFF on D, then h induces
a metric dh on D (which in many cases extends to a metric on D ∪ ∂D). The
construction of this metric builds on the results of [11, 28, 30, 34].

In the special case when (D,h) is a quantum sphere, the metric space (D,dh)

is isometric to the Brownian map [31], Theorem 1.4. It is shown in [31], Corol-
lary 1.5, that the metric space (D,dh) is isometric to a Brownian surface in two
additional cases: when (D,h) is a quantum disk we obtain a Brownian disk [4] and
when (D,h) is a

√
8/3-quantum cone we obtain a Brownian plane [9]. It is shown

in [16] that the Brownian half-plane is isometric to the
√

8/3-quantum wedge.
Hence

√
8/3-LQG surfaces can be viewed as Brownian surfaces equipped with a

conformal structure.
For the convenience of the reader, we give in this section a review of the con-

struction of the metric dh and note some basic properties which it satisfies.
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2.3.1. The metric on a quantum sphere. The
√

8/3-LQG metric is first con-
structed in the case of a

√
8/3-LQG sphere (C, h). Conditional on h, let C be

a countable collection of i.i.d. points sampled uniformly from the
√

8/3-LQG
area measure μh. One first defines for z,w ∈ C a QLE(8/3,0) growth process
{�z,w

t }t≥0 started from z and targeted at w, which is a continuum analog of first
passage percolation on a random planar map [34], Section 2.2.3 This is accom-
plished as follows. Let δ > 0 and let ηδ

0 be a whole-plane SLE6 from z to w sam-
pled independently from h and then run for δ units of quantum natural time as
determined by h [11]. For t ∈ [0, δ], let �

z,w,δ
t := ηδ

0([0, τ δ
0 ∧ δ]), where τ δ

0 is the
first time ηδ

0 hits w.
Inductively, suppose k ∈ N and �

z,w,δ
t has been defined for t ∈ [0, kδ]. If w ∈

�
z,w,δ
kδ , let �

z,w,δ
t = �

z,w,δ
kδ for each t ∈ [kδ, (k+1)δ]. Otherwise, let xδ

k be sampled
uniformly from the

√
8/3-LQG length measure νh restricted to the boundary of the

connected component of C \ �
z,w,δ
t containing w. Let ηδ

k be a radial SLE6 from
xδ
k to w sampled conditionally independently of h given xδ

k and {�z,w,δ
s }s≤t and

parameterized by quantum natural time as determined by h. For t ∈ [kδ, (k + 1)δ],
let �

z,w,δ
t := ηδ

k([0, τ ∧ (t − kδ)])∪�
z,w,δ
kδ , where τ δ

k is the first time that ηδ
k hits w.

The above procedure defines for each δ > 0 a growing family of sets {�z,w,δ
t }t≥0

started from z and stopped when it hits w. It is shown in [29] that (along an appro-
priately chosen subsequence), one can take an a.s. limit (in an appropriate topol-
ogy) as δ → 0 to obtain a growing family of sets {�z,w

t }t≥0 from z to w, which
we call QLE(8/3,0). It is shown in [31] that the limiting process {�z,w

t }t≥0 is a.s.
determined by h, even though the approximations are not and that the limit does
not depend on the choice of subsequence.

For t ≥ 0, let X
z,w
t be the νh-length of the boundary of the connected component

of C \ �
z,w
t containing w. Let σz,w

r for r ≥ 0 be defined by

(6) r =
∫ σ

z,w
r

0

1

X
z,w
t

dt.

Set �̃z,w
r := �

z,w

σ
z,w
r

. The
√

8/3-LQG distance between z and w is defined by

dh(z,w) := inf
{
r ≥ 0 : w ∈ �̃z,w

r

}
.

The time-change (6) is natural from the perspective of first passage percolation.
Indeed, quantum natural time is the continuum analog of parameterizing a perco-
lation growth by the number of edges traversed, hence the time change (6) is the
continuum analog of adding edges to the cluster at a rate proportional to boundary
length. It is shown in [29] that this function defines a metric on the set C (which is

3It is expected that the process �
z,w
t is a reparameterization of a whole-plane version of the

QLE(8/3,0) processes considered in [34], which are parameterized by capacity instead of by quan-
tum natural time. However, this has not yet been proven to be the case.
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a.s. dense in C). It is shown in [31] that dh in fact extends continuously to a metric
on all of C, which is mutually Hölder continuous with respect to the metric on
C induced by the stereographic projection of the standard metric on the Euclidean
sphere S2 and isometric to the Brownian map. In particular, dh is a geodesic metric.

The reparameterized QLE(8/3,0) processes {�̃z,w
r }r≥0 for z,w ∈ C are related

to metric balls for dh as follows. For z,w ∈ C and r ≥ 0, the connected component
of C \ �̃z,w

r containing w is the same as the connected component of C \Br(z;dh)

containing w.
Each of the reparameterized QLE(8/3,0) hulls �̃z,w

r is a local set for h in the
sense of [43], Section 3.9, and furthermore is determined locally by h.4 Hence the
definition of the metric dh implies that if U ⊂ C is a deterministic connected open
set, then the quantities {dh(z,w) ∧ dh(z, ∂U) : z,w ∈ U} are a.s. determined by
h|U . In particular, the internal metric of dh on U (Section 2.1) is a.s. determined
by h|U .

The above metric construction also works with h + R in place of h for any
R ∈ R, in which case [31], Lemma 2.2, yields a scaling property for the metric dh:

dh+R(z,w) = e
√

8/3R/4dh(z,w).

It is shown in [32] that the
√

8/3-LQG surface associated with a given Brownian
surface is almost surely determined by the metric measure space structure associ-
ated with the Brownian surface. This in particular implies that if one is given an
instance of the Brownian map, disk, half-plane or plane, respectively, then there
is a measurable way to embed the surface to obtain an instance of a

√
8/3-LQG

sphere, disk, wedge or cone, respectively. As mentioned above, the construction
of the

√
8/3-LQG metric also implies that the Brownian map, disk, half-plane or

plane structure is a measurable function of the corresponding
√

8/3-LQG struc-
ture. In this way, Brownian and

√
8/3-LQG surfaces are one and the same.

2.3.2. Metrics on general
√

8/3-LQG surfaces. In this subsection, we let
D ⊂ C be a connected open set and we let h be a random distribution on D with
the following property. For each bounded deterministic open set U ⊂ D at positive
Euclidean distance from ∂D, the law of h|U is absolutely continuous with respect
to the corresponding restriction of some embedding into C of a quantum sphere
(with possibly random area). For example, h could be an embedding of a quantum
disk, a thick (α ≤ Q) quantum wedge, a single bead of a thin (α ∈ (Q,Q+√

2/3))
quantum wedge, or a quantum cone (in this last case we take D to be the com-
plement of the two marked points for the cone). We will show how to obtain a√

8/3-LQG metric dh on D from h.

4One can check that the same is true if r is a stopping time for the filtration generated by
(�̃

z,w
r , h|�̃z,w

r
) by the usual argument (approximate by stopping times which take only dyadic values

and use that the local set property behaves well under taking limits using, e.g., the first characteriza-
tion of local sets from [43], Lemma 3.9).
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The discussion at the end of Section 2.3.1 together with local absolute continu-
ity allows us to define a metric dh|U for any bounded open connected set U ⊂ D

at positive Euclidean distance from ∂D. If we let {Un}n∈N be an increasing se-
quence of such open sets with

⋃∞
n=1 Un = D, then the metrics dhUn

(extended to
be identically equal to ∞ for points outside of Un) are decreasing as n → ∞, so
the limit

dh(z,w) := lim
n→∞dh|Un

(z,w)

exists for each z,w ∈ D and defines a metric on D. It is easy to see that this metric
does not depend on the choice of {Un}n∈N.

We now record some elementary properties of the metric dh. The first property
is immediate from the above definition.

LEMMA 2.3. Suppose we are in the setting described just above, so that dh is
a well-defined metric on D. For any deterministic open connected set U ⊂ C, the
internal metric (Section 2.1) of dh on U is a.s. equal to dh|U .

REMARK 2.4. It follows from Lemma 2.3 that if A ⊂ ∂U and dh|U extends by
continuity (with respect to the Euclidean topology) in the sense of Definition 1.4
to a metric on U ∪ A (e.g., using the criterion of Lemma 2.6 just below) then for
x, y ∈ U ∪ A, we have dh|U (x, y) ≥ dh(x, y). Indeed, the statement of the lemma
immediately implies that this is the case whenever x, y ∈ U . For points in A, we
take limits and use that both dh|U∪A

and dh|U∪A (and the Euclidean metric) induce
the same topology on U . We do not prove in this paper that dh|U is the same as the
internal metric of dh on U ∪ A.

Next we note that the LQG metric is coordinate invariant.

LEMMA 2.5. Suppose we are in the setting above. Let D̃ be another domain
and let φ : D̃ → D be a conformal map. If we let h̃ := h ◦ φ + Q log |φ′| (with Q

as in (1)), then a.s. dh(φ(z),φ(w)) = dh̃(z,w) for each z,w ∈ D̃.

PROOF. This follows since all of the quantities involved in the definition of
the QLE(8/3,0) processes �̃z,w used to define the metric are preserved under
coordinate changes as in the statement of the lemma. �

Finally, we give conditions under which dh extends by continuity to a subset of
∂D (Definition 1.4). We note that the above definition a priori only defines dh on
the interior of D.

LEMMA 2.6. Suppose we are in the setting above and that D is simply con-
nected, with simple boundary. Let A ⊂ ∂D be a connected set and suppose that
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there is an open set U ⊂ D such that A ⊂ ∂U , A lies at positive distance from
∂D \ ∂U , and the law of h|U is absolutely continuous with respect to the law of
the corresponding restriction of an embedding into D of a quantum disk with fixed
or random boundary length and area. Then dh extends by continuity (with respect
to the Euclidean topology on D ∪ A) to a metric on D ∪ A which induces the
Euclidean topology on D ∪ A.

PROOF. In the case when h is in fact an embedding into D of a quantum disk,
[31], Corollary 1.5, implies that (D,dh) is isometric to the Brownian disk. Since
the Brownian disk has the topology of a closed disk [3, 4], the Brownian disk
metric extends by continuity to the boundary (with respect to the disk topology),
hence dh extends by continuity to ∂D. In general, the first assertion of the lemma
shows that dh|U extends by continuity to a metric on U ∪ A which induces the
Euclidean topology on U ∪ A. By this and Lemma 2.3, the same is true of dh.
Note that the condition that A lies at positive distance from ∂D \ ∂U is used to
avoid worrying about the behavior of dh|U near ∂U . �

The following lemma shows that one can also extend the metric to a boundary
point where the field has a log singularity, such as the first marked point of a
quantum wedge.

LEMMA 2.7. Suppose Q is as in (1), D ⊂ C is simply connected with simple
boundary, x, y ∈ ∂D, and h is either an embedding into (D,x, y) of an α-quantum
wedge for α ≤ Q or an embedding into (D,x, y) of a single bead of an α-quantum
wedge with area a > 0 and left/right boundary lengths l−, l+ > 0 for α ∈ (Q,Q +√

2/3). Then a.s. dh extends by continuity to ∂D \ {y} (in the first case) or ∂D

(in the second case), where in each case we use the Euclidean topology on D in
Definition 1.4.

We note that in the case when the size of the log singularity is smaller than
2 (e.g., if α < 2), one can give a short proof of Lemma 2.7, which does not use
Appendix A, using the fact that a GFF-type distribution has an α-log singularity at
a typical point sampled from its α-LQG boundary length measure (see, e.g., [11],
Lemma A.7). We give a longer argument which works for all log singularities of
size ≤ Q.

PROOF OF LEMMA 2.7. Since the laws of the particular choices of h discussed
in the second statement are locally absolutely continuous with respect to the law
of an embedding into D of a quantum disk away from x and y, it follows that
the metric dh in each of these cases extends by continuity to ∂D \ {x, y}. In the
case of a single bead of a thin wedge for α ∈ (Q,Q + √

2/3), the law of our
given distribution h is locally absolutely continuous near each of its marked points
with respect to the law of an embedding of a β-quantum wedge into (D,x, y) for
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β < Q. By this and Lemma 2.3, it therefore suffices to show that if (D,h, x, y) is
a β-quantum wedge for β ≤ Q, then dh (which we know is defined in D \ {x, y})
extends by continuity to D \ {y}.

By making a conformal change of coordinates and applying Lemma 2.5, we
can assume without loss of generality that (D,x, y) = (S,+∞,−∞) where S =
R× (0, π) is the infinite horizontal strip. We seek to extend dh from S to S∪{+∞}
in such a way that the topology on S ∪ {+∞} induced by the extension is the
same as the topology obtained by conformally mapping S to H in such a way that
−∞ �→ ∞. To do this, it suffices to show that diam([k,+∞)×[0, π]) → 0 as k →
∞. Indeed, this together with the triangle inequality and Cauchy’s convergence
criterion shows that limw→+∞ dh(z,w) exists for each z ∈ S, and we can then
define dh(z,+∞) to be this limit.

The reason for parameterizing by S is that [11], Remark 4.6, implies that (after
possibly applying a translation) the distribution h can be described as follows. If
β < Q, let X : R → R be the process such that for s ≥ 0, Xs = B2s − (Q − β)s,
where B is a standard linear Brownian motion with B0 = 0; and for s < 0, Xs =
B̂−2s +(Q−β)s, where B̂ is an independent standard linear Brownian motion with
B̂0 = 0 conditioned so that B̂2t + (Q − β)t ≥ 0 for all t ≥ 0. If β = Q, instead let
X : R → R be the process such that {Xs}s≥0 is −1 times a 3-dimensional Bessel
process started from 0 and {X−s}s≤0 is an independent standard linear Brownian
motion started from 0. Then h = h0 + h†, where h0 is the function on S such that
h0(z) = Xs for z ∈ {s} × (0, π) for each s ∈ R; and h† is a random distribution
independent from h0 whose law is that of the projection of a free boundary GFF on
S onto the space of functions on S whose average over every segment {s} × (0, π)

is 0.
For k ∈ Z, let Sk := [k, k + 1] × [0, π] and S ′

k := [k − 1, k + 2] × [0, π]. By the
scaling property of the

√
8/3-LQG metric [31], Lemma 2.2, and since h† = h−h0,

if we set S = [−1,2] × [0, π] then

(7) diam(S0;dh†|S′
0
) ≤ exp

(
1√
6

sup
t∈[−1,2]

|Xt |
)

diam(S1;dh|S′
1
).

The law of h† does not depend on α and by the above description of the law of
X, the first factor on the right in (7) has finite moments of all positive orders. By
Lemma A.2, the second factor on the right in (7) has a finite moment of some
positive order in the special case when γ = √

8/3. By Hölder’s inequality, we find
that there is a universal constant p ∈ (0,1] such that

(8) c := E
[
diam(S0;dh†|S′

0
)p

]
< ∞.

By (8), the translation invariance of the law of h†, the independence of h† and X,
and the scaling property of the

√
8/3-LQG metric [31], Lemma 2.2, we infer that

for each k ∈N,

(9) E
[
diam(Sk;dh|S′

k

)p
] ≤ cE

[
exp

(
p√
6

sup
s∈[k−1,k+2]

Xs

)]
.
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By summing over all j ≥ k and using that x �→ xp is concave, hence subadditive,
we get that

(10) E
[
diam

([k,+∞) × [0, π];dh

)p] ≤ c

∞∑
j=k

E

[
exp

(
p√
6

sup
s∈[j−1,j+2]

Xs

)]
.

Recalling that X|[0,∞) is a Brownian motion with negative drift if β < Q or −1
times a 3-dimensional Bessel process if β = Q, we find that the right-hand side
of (10) a.s. tends to 0 as k → +∞, as required. In the case of a 3-dimensional
Bessel process, the finiteness of the sum can be seen by using the Gaussian tail
bound to compare sups∈[j−1,j+2] Xs to Xj and then using the explicit formula for
the transition density of such a process given on [38], page 446. �

3. The Brownian disk. For the proofs of our main results, we will require
several facts about the Brownian disk, which was originally introduced in [4]. We
collect these facts in this section.

3.1. Brownian disk definition. Fix a, � > 0. Here we will give the definition
of the Brownian disk with area a and perimeter �, following [4]. Let X : [0, a] →
[0,∞) be a standard Brownian motion started from � and conditioned to hit 0
for the first time at time a (such a Brownian motion is defined rigorously in, for
example, [4], Section 2.1). For s, t ∈ [0, a], set

(11) dX(s, t) := Xs + Xt − 2 inf
u∈[s∧t,s∨t]Xu.

As explained in [4], Section 2.1, dX defines a pseudometric on [0, a] and the quo-
tient metric space [0, a]/{dX = 0} is a forest of continuum random trees, indexed
by the excursions of X away from its running infimum.

Conditioned on X, let Z0 be the centered Gaussian process with

(12) Cov
(
Z0

s ,Z
0
t

) = inf
u∈[s∧t,s∨t]

(
Xu − inf

v∈[0,u]Xv

)
, s, t ∈ [0, a].

One can readily check using the Kolmogorov continuity criterion that Z0 a.s. ad-
mits a continuous modification which is α-Hölder continuous for each α < 1/4.
For this modification, we have Z0

s = Z0
t whenever dX(s, t) = 0, so Z0 defines a

function on the continuum random forest [0, a]/{dX = 0}.
Let b be

√
3 times a Brownian bridge from 0 to 0 independent from (X,Z) with

time duration �. For r ∈ [0, �], let Tr := inf{t ≥ 0 : Xt = � − r} and for t ∈ [0, a],
let T −1(t) := sup{r ∈ [0, �] : Tr ≤ t}. Set

(13) Zt := Z0
t + bT −1(t).

We view [0, a] as a circle by identifying 0 with a and for s, t ∈ [0, a] we define
Zs,t to be the minimal value of Z on the counterclockwise arc of [0, a] from s to t .
For s, t ∈ [0, a], define

(14) dZ(s, t) = Zs + Zt − 2(Zs,t ∨ Zt,s).
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Then dZ is not a pseudometric on [0, a], so we define

(15) d0
a,�(s, t) = inf

k∑
i=1

dZ(si, ti),

where the infimum is over all k ∈ N and all 2k + 2-tuples (t0, s1, t1, . . . , sk, tk,

sk+1) ∈ [0, a]2k+2 with t0 = s, sk+1 = t , and dX(ti−1, si) = 0 for each i ∈ [1,

k + 1]Z. In other words, d0
a,� is the largest pseudometric on [0, a] which is at

most dZ and is zero whenever dX is 0.
The Brownian disk with area a and perimeter � is the quotient space BDa,� =

[0, a]/{d0
a,� = 0} equipped with the quotient metric, which we call da,�. It is shown

in [4] that (BDa,�, da,�) is a.s. homeomorphic to the closed disk.
We write p : [0, a] → BDa,� for the quotient map. The pushforward μa,� of

Lebesgue measure on [0, a] under p is a measure on BDa,� with total mass a,
which we call the area measure of BDa,�. The boundary of BDa,� is the set
∂ BDa,� = p({Tr : r ∈ [0, �]}). We note that BDa,� has a natural orientation, ob-
tained by declaring that the path t �→ p(t) traces ∂ BDa,� in the counterclockwise
direction. The pushforward νa,� of Lebesgue measure on [0, �] under the compo-
sition r �→ p(Tr) is called the boundary measure of BDa,�.

By [31], Corollary 1.5, the law of the metric measure space (BDa,�, da,�,μa,�,

νa,�) is the same as that of the
√

8/3-LQG disk with area a and boundary length
�, equipped with its

√
8/3-LQG area measure and boundary length measure.

DEFINITION 3.1. Let � > 0 and let T� be a random variable with the law of
the first time a standard linear Brownian motion hits −�. We write (BD∗,�, d∗,�) :=
(BDT�,�, dT�,�), so that BD∗,� is a Brownian disk with random area. Note that in
this case the corresponding function X defined above has the law of a standard
linear Brownian motion started from � and stopped at the first time it hits 0.

It is often convenient to work with a random-area Brownian disk rather than a
fixed-area Brownian disk since the encoding function X has a simpler description
in this case.

3.2. Area, length and distance estimates for the Brownian disk. In this sub-
section, we will prove some basic estimates relating distances, areas and boundary
lengths for the Brownian disk which are needed for the proofs of our main results.
These estimates serve to quantify the intuition that for Brownian surfaces we have

Area ≈ Length1/2 ≈ Distance1/4 .

In other words, a subset of the Brownian disk with area δ typically has boundary
length approximately δ1/2 and diameter approximately δ1/4.

Throughout this section, for x, y ∈ ∂ BDa,� we write [x, y]∂ BDa,�
for the coun-

terclockwise arc of ∂ BDa,� from x to y (i.e., in the notation of Section 3.1, the arc
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traced by the boundary path r �→ p(Tr) between the times when it hits x and y).
Our first estimate tells us that distances along the boundary are almost 1/2-Hölder
continuous with respect to boundary length (in the same way that a standard Brow-
nian motion on a compact time interval is almost 1/2-Hölder continuous).

LEMMA 3.2. Let a > 0 and � > 0 and let (BDa,�, da,�) be a Brownian disk
with area a and perimeter �. For each ζ > 0, there a.s. exists C > 0 such that for
each x, y ∈ ∂ BDa,�, we have

(16) da,�(x, y) ≤ Cνa,�

([x, y]∂ BDa,�

)1/2(∣∣logνa,�

([x, y]∂ BDa,�

)∣∣ + 1
) 7

4 +ζ
.

The same holds for a random-area disk with fixed boundary length as in Defini-
tion 3.1. In this latter case, if we let C be the smallest constant for which (16) is
satisfied, then for A > 1, P[C > A] decays faster than any negative power of A.

The idea of the proof of Lemma 3.2 is as follows. Recall that ∂ BDa,� is the im-
age under the quotient map [0, a] → BDa,� of the set of times when the encoding
function X attains a running infimum relative to time 0 (i.e., the image of r �→ Tr ).
The pair (X,Z0) restricted to each such excursion evolves as a Brownian excur-
sion together with the head of the Brownian snake driven by this excursion, so we
can use tail bounds for the Brownian snake [45], Proposition 14, to bound the max-
imum of the restriction of Z0 to each such excursion in terms of its time length.
On the other hand, the excursions with unusually long time length are distributed
according to a Poisson point process, so there cannot be too many such excursions
in [Tr1, Tr2] for any fixed 0 < r1 < r2 < �. We use (15) to construct a path in BDa,�

between the boundary points corresponding to Tr1 and Tr2 which skips all of the
long excursions. See Figure 4 for an illustration. A similar argument is used in [3],
Section 7.4, to prove that the Hausdorff dimension of ∂ BDa,� is at most 2, but we
need a somewhat more precise estimate so we will give a self-contained proof.

We will use the elementary estimate

(17) P[X ≥ x] ≤ e−λ(eλ)x

xx
∀x > λ for X ∼ Poisson(λ).

PROOF OF LEMMA 3.2. First, fix � ∈ N and let BD∗,� be a random-area Brow-
nian disk with boundary length �. We use the notation introduced at the beginning
of this subsection with a = T� as in Definition 3.1. Recall in particular that Tr for
r ∈ [0, �] denotes the first time X hits −r , and that T ([0, �]) is the pre-image of
∂ BDa,� under the quotient map.

Step 1: bounds for the number of big excursions. We will first bound the number
of large time intervals which do not contain a point mapped to ∂ BDa,� by the
quotient map, equivalently, one of the times Tr . For r > 0, let T̃r := sups<r Ts . Note
that dX(T̃r , Tr) = 0, with dX as in (11). Then the intervals [T̃r , Tr ] for r ∈ [0, �]
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FIG. 4. Illustration of the proof of Lemma 3.2. Shown is the Brownian disk BD∗,� and an arc
p(T ([r1, r2])) ⊂ ∂ BD∗,� (red) whose diameter we are trying to bound. To construct a path from
�(Tr1) to p(Tr2), we consider a path (shown in blue) consisting of a concatenation of segments which
avoid the large excursions of t �→ p(t) away from p(T ([r1, r2])) (pink). The number of such excur-
sions is bounded using (18) and the lengths of each of the segments between excursions is bounded
using (14) and (20).

with Tr > T̃r are precisely the excursion intervals for X away from its running
infimum.

The time lengths of the excursions of X away from its running infimum, pa-
rameterized by minus the running infimum of X, have the law of a Poisson point
process on R with Itô measure π−1/2t−3/2 dt (see, e.g., [38], Theorem 2.4 and
Proposition 2.8, Section XII). Hence for 0 ≤ r1 ≤ r2 ≤ � and A > 0, the law of
#{r ∈ [r1, r2] : Tr − T̃r > A} is Poisson with mean 2π−1/2(r2 − r1)A

−1/2. By (17)
and the union bound, for each k ∈ N it holds except on an event of probability
decaying faster than any exponential function of k that

(18) #
{
r ∈ [

(j − 1)2−k, j2−k] : Tr − T̃r > �22−2k} ≤ k ∀j ∈ [
1,2k]

Z
.

For n ∈ N, let Rn be the set of r ∈ [0, �] for which Tr − T̃r ∈ [(n +
1)−1�2, n−1�2]. Then #Rn is Poisson with mean 2π−1/2((n + 1)1/2 − n1/2) �
n−1/2. Hence, by (17), except on an event of probability decaying faster than any
power of n, we have

(19) #Rm ≤ log(m + 1) ∀m ≥ n.

Step 2: variation of Z over the complement of the large excursion intervals.
We now consider how much the label process Z can vary if we ignore the big
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excursions of X away from its running infimum. In particular, we will show that
except on an event of probability decaying faster than any power of n,

sup

{
|Zs − Zt | : s, t ∈ [Tr1, Tr2] \

n−1⋃
m=1

⋃
r∈Rm

[T̃r , Tr ]
}

≤ 4�1/2n−1/4(logn)
3
4 +ζ

(20)

simultaneously for each 0 ≤ r1 < r2 ≤ � with r2 − r1 ≤ �n−1/2. Recall from (13)
that Z = Z0 +bT −1(·), where Z0 is as in (12) and b is equal to

√
3 times a Brownian

bridge from 0 to 0 in time �. We will bound Z0 and b separately.
If we condition on T |[0,�] then the conditional law of the processes {(X − XT̃r

,

Z0)|[T̃r ,Tr ] : r ∈ [0, �], Tr > T̃r} is described as follows. These processes for differ-
ent choices of r are conditionally independent given T |[0,�]; the conditional law of
each (X − XT̃r

)|[T̃r ,Tr ] is that of a Brownian excursion with time length Tr − T̃r ;
and each Z0|[T̃r ,Tr ] is the head of the Brownian snake driven by (X − XT̃r

)|[T̃r ,Tr ].
By the large deviation estimate for the head of a Brownian snake driven by a stan-
dard Brownian excursion [45], Proposition 14, and two applications of Brownian
scaling, we find that for each r ∈ [0, �] and each A > 1,

P

[
sup

t∈[T̃r ,Tr ]

∣∣Z0
s − Z0

t

∣∣ > A(Tr − T̃r )
1/4|T |[0,�]

]

≤ exp
(
−3

2

(
1 + oA(1)

)
A4/3

)(21)

at a universal rate as A → ∞.
If the event in (19) occurs for some n ∈ N (which we emphasize is determined

by T |[0,�]), then (21) implies that with

En :=
{
∃r ∈

∞⋃
m=n

Rm with sup
t∈[T̃r ,Tr ]

∣∣Z0
t

∣∣ > �1/2n−1/4(logn)
3
4 +ζ

}
(22)

we have

P
[
En|T |[0,�]

]
≤

∞∑
m=n

log(m + 1) exp
(
−3

2

(
1 + on(1)

)
(logn)1+ 4

3 ζ (m/n)1/3
)

= on

(
n−p) ∀p > 0.

(23)

Since b is equal to
√

3 times a Brownian bridge, by a straightforward Gaussian
estimate it holds except on an event of probability decaying faster than any power
of n that whenever 0 ≤ r1 ≤ r2 ≤ � with r2 − r1 ≤ �n−1/2,

(24) sup
ρ1,ρ2∈[r1,r2]

|bρ1 − bρ2 | ≤ �1/2n−1/4(logn)3/4.
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(In fact, we could replace the power 3/4 of logn above with any power strictly
larger than 1/2.) If the event En in (22) does not occur, then for any such
r1, r2 ∈ [0, �] and any t ∈ [Tr1, Tr2] for which t /∈ ⋃n−1

m=1
⋃

r∈Rm
[T̃r , Tr ], we have

either Z0
t = 0 or t ∈ [T̃r , Tr ] for some r ∈ ⋃∞

m=nRm. In either case, |Z0
t | ≤

�1/2n−1/4(logn)3/4+ζ . Hence (23), (24) and the triangle inequality together im-
ply (20).

Step 3: conclusion. Suppose now that k ∈ N, (18) occurs and (20) oc-
curs with n = 22k . Let p : [0, T�] → BD∗,� be the quotient map. Note that
p(T ([(j − 1)2−k�, j2−k�])) corresponds to the counterclockwise segment of the
boundary of the disk of length 2−k� which connects p(T(j−1)2−k�) to p(Tj2−k�).
We will use (15) to bound the diameter of p(T ([(j − 1)2−k�, j2−k�])).

Fix j ∈ [1,2k]Z and r1, r2 ∈ [(j − 1)2−k�, j2−k�] with r1 < r2. By (18), there
are at most k values of r for which [T̃r , Tr ] ⊂ [Tr1, Tr2] and Tr − T̃r ≥ �22−2k . Let
t0 = s1 = Tr1 , tk = sk+1 = Tr2 , and for i ∈ [2, k]Z let [ti−1, si] be the ith interval
[T̃r , Tr ] ⊂ [Tr1, Tr2] with Tr − T̃r ≥ �22−2k , counted from left to right; or ti−1 =
si = Tr2 if there fewer than i such intervals. Then dX(ti−1, si) = 0 for each i ∈
[1, k + 1]Z and (by (18)) each r ∈ [r1, r2] ∩ ⋃22k

m=1 Rm satisfies [T̃r , Tr ] = [ti−1, si]
for some i ∈ [2, k]Z. Hence each of the intervals (si, ti) for i ∈ [1, k]Z is disjoint

from
⋃22k

m=1
⋃

r∈Rm
[T̃r , Tr ].

By (15) and (20),

d0∗,�(Tr1, Tr2) ≤ 2
k∑

i=1

sup
s,t∈[si ,ti ]

|Zs − Zt | � �1/22−k/2k
7
4 +ζ ,

with universal implicit constant, where in the first inequality we recall the defini-
tion (14) of dZ . Since our choice of r1, r2 ∈ [(j − 1)2−k, j2−k] was arbitrary,

(25) diam
(
p
(
T

([
(j − 1)2−k�, j2−k�

]));d∗,�

) � �1/22−k/2k
7
4 +ζ ,

where here we recall the construction of d∗,� from d0∗,�.
By the Borel–Cantelli lemma, there a.s. exists k0 ∈ N such that for k ≥ k0, (18)

occurs and (20) occurs with n = 22k . In fact, if we take k0 to be the smallest integer
for which this is the case, then P[2k0 > A] decays faster than any negative power
of A. Suppose given k ≥ k0 and x, y ∈ ∂ BD∗,� with 2−k−1 ≤ ν∗,�([x, y]∂ BD∗,�

) ≤
2−k . By (25) and the triangle inequality,

d∗,�(x, y) � ν∗,�

([x, y]∂ BD∗,�

)1/2(∣∣logν∗,�

([x, y]∂ BD∗,�

)∣∣ + 1
) 7

4 +ζ

with the implicit constant depending only on �. Taking C to be equal to 2k0 , say,
times this implicit constant (to deal with the case when ν∗,�([x, y]∂ BD∗,�

) > 2−k0 ),
we get the desired continuity estimate in the case of a random-area disk.

The fixed area case follows since for any a > 0, the law of (BDa,�, da,�) is
locally absolutely continuous with respect to the law of (BD∗,2�, d∗,2�) conditioned
on the positive probability event that T� > 2a (cf. [4], Section 2.1). �
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Next we need an estimate for the areas of metric balls, which is a straightforward
consequence of the Hölder continuity of Z and the upper bound for areas of metric
balls in the Brownian map [21], Corollary 6.2.

LEMMA 3.3. Let a, � > 0 and let (BDa,�, da,�) be a Brownian disk with area a

and perimeter �. For each u ∈ (0,1), there a.s. exists C > 1 such that the following
is true. For each δ ∈ (0,1) and each z ∈ BDa,�, we have

(26) μa,�

(
Bδ(z;da,�)

) ≥ C−1δ4+u

and for each z ∈ BDa,� with Bδ(z;da,�) ∩ ∂ BDa,� = ∅, we have

(27) μa,�

(
Bδ(z;da,�)

) ≤ Cδ4−u.

PROOF. It is easy to see from the Kolmogorov continuity criterion that the
process Z used in the definition of the Brownian disk is a.s. Hölder continuous
with exponent (4 + u)−1. By this and (14), there a.s. exists a random C > 0 such
that

(28) da,�

(
p(s),p(t)

) ≤ C|t − s|(4+u)−1 ∀s, t ∈ [0, a].
Since the quotient map p pushes forward Lebesgue measure on [0, a] to μa,�,
we infer that for each t ∈ [0, �] and each sufficiently small δ ∈ (0,1) (how small
depends on C, u and a),

μa,�

(
Bδ

(
p(t);da,�

)) ≥ C−1δ4+u.

Upon shrinking C, this implies (26).
We now prove (27). By local absolute continuity of the process (Z,X,b) for

different choices of a and �, it suffices to prove that for Lebesgue a.e. pair (a, �) ∈
(0,∞)2, there a.s. exists C > 0 so that (27) holds. Suppose to the contrary that this
is not the case. Then there is a positive Lebesgue measure set A ⊂ (0,∞)2 such
that for each (a, �) ∈ A, it holds with positive probability that

(29) sup
δ>0

sup
z∈BDa,�

μa,�(Bδ(z;da,�))

δ4−u
= ∞.

Choose A > 0 such that the projection of A onto its first coordinate intersects
[0,A] in a set of positive Lebesgue measure and let (BMA,dA) be a Brownian map
with area A and let μA be its area measure. By [21], Corollary 6.2, a.s.

(30) sup
δ>0

sup
z∈BMA

μA(Bδ(z;dA))

δ4−u
< ∞.

Now fix r > 0 and let z0, z1 ∈ BMA be sampled uniformly from μA. By [28],
Proposition 4.4 (cf. [24], Theorem 3), the complementary connected component
D of Br(z0;dA) containing z1, equipped with the internal metric dA,D induced by
dA, has the law of a Brownian disk if we condition on its area and boundary length.
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With positive probability, the area and boundary length of D belong to A. Since
each dA,D-metric ball is contained in a dA-metric ball with the same radius, we
see that (29) contradicts (30). �

We will next prove a lower bound for the amount of area near a boundary arc of
given length.

LEMMA 3.4. Let a, � > 0 and let (BDa,�, da,�) be a Brownian disk with area a

and perimeter �. For each u > 0, there a.s. exists c > 0 such that for each δ ∈ (0,1)

and each x, y ∈ ∂ BDa,�, we have

(31) μa,�

(
Bδ

([x, y]∂ BDa,�
;da,�

)) ≥ cδ2+uνa,�

([x, y]∂ BDa,�

)
.

The idea of the proof of Lemma 3.4 is to prove a lower bound for the number of
time intervals of the form [(k − 1)2−2n, k2−2n] for k ∈ Z whose images under the
quotient map p intersect [x, y]∂ BDa,�

, where n is chosen so that 2−n = δ2+oδ(1).
The images of these intervals are disjoint, and each such interval has μa,�-mass
2−2n and is contained in Bδ([x, y]∂ BDa,�

;da,�) by (28). The right-hand side of (31)
will turn out to be 2−2n times the number of such intervals. Our lower bound for
the number of time intervals will follow from the following elementary estimate
for Brownian motion.

LEMMA 3.5. Let B be a standard linear Brownian motion started from 0 and
for r > 0, let Tr := inf{t > 0 : Bt = −r}. For δ > 0, let Nδ be the number of inter-
vals of the form [(k − 1)δ, kδ] for k ∈N which intersect {Tr : r ∈ [0,1]}. There is a
universal constant c0 > 0 such that for each δ ∈ (0,1) and each ζ ∈ (0, (2π)−1/2)

we have

P
[
Nδ < ζδ−1/2] ≤ exp

(
− c0

ζ δ1/2

)
.

PROOF. Let ρ0 = 0 and for j ∈ N inductively let ρj be the smallest r > ρj−1
for which Tr − Tρj−1 ≥ δ. Let J be the largest j ∈ N for which ρj ≤ 1. Each of the
times Tρj

for j ∈ [1, J ]Z lies in a distinct interval of the form [(k − 1)δ, kδ] for
k ∈ N. Hence Nδ ≥ J .

By the strong Markov property for standard Brownian motion, the random vari-
ables ρj − ρj−1 for j ∈ N are i.i.d. Observe that ρ1 − ρ0 = − inft∈[0,δ] Bt because
if r < − inft∈[0,δ] Bt then Tr < δ, and if r > − inft∈[0,δ] Bt , then Tr > δ. Conse-
quently, it follows that each of these random variables has the law of the absolute
value of a Gaussian random variable with mean 0 and variance δ (which has mean
(2/π)1/2δ1/2). By Hoeffding’s inequality for sums of independent random vari-
ables with sub-Gaussian tails (see, e.g., [49], Proposition 5.10), for m ∈ N and
R > 0,

P
[
ρm > R + (2/π)1/2δ1/2m

] ≤ exp
(
−c1R

2

δm

)
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with c1 > 0 a universal constant. Therefore, for ζ ∈ (0, (2π)−1/2) we have

P
[
Nδ < ζδ−1/2] ≤ P

[
J < ζδ−1/2] = P[ρ�ζ δ−1/2� > 1] ≤ exp

(
− c0

ζ δ1/2

)
with c0 > 0 as in the statement of the lemma. �

PROOF OF LEMMA 3.4. In light of Lemma 3.3 (applied with u/2 in place
of u), we can restrict attention to arcs [x, y]∂ BDa,�

satisfying

νa,�

([x, y]∂ BDa,�

) ≥ δ2−u/2.

We start by working with a random-area Brownian disk (BD∗,�, d∗,�) as in
Definition 3.1. Fix a small parameter v ∈ (0, u) to be chosen later, depending
only on u. For n,m ∈ N with n ≥ m and j ∈ [1,2m]Z, let Nn

m,j be the num-

ber of intervals of the form [(k − 1)2−2n, k2−2n] for k ∈ N which intersect
{Tr : r ∈ [(j − 1)2−m�, j2−m�]}. Let Em be the event that Nn

m,j ≥ ��2(1−v)n−m�
for each n ≥ m and all j ∈ [1,2m]Z. By Lemma 3.5 (applied with δ = 22m−2n�−2

and ζ = 2−vn) and scale and translation invariance,

P
[
Nn

m,j <
⌊
�2(1−v)n−m⌋] ≤ exp

(−c0�2(1+v)n−m)
.

By the union bound,

P
[
Ec

m

] ≤ 2m
∞∑

n=m

exp
(−c0�2(1+v)n−m) � 2m exp

(−c0�2vm)
with implicit constant depending only on �. By the Borel–Cantelli lemma, a.s.
there exists m0 ∈ N such that Em occurs for each m ≥ m0.

Let C > 0 be a random constant chosen so that (28) holds for BD∗,�, with v/100
in place of u. Suppose we are given δ > 0 with δ2 ∈ (0,2−(1+2v)m0] and x, y ∈
∂ BDa,� with

(32) δ
2

1+2v ≤ νa,�

([x, y]∂ BDa,�

) ≤ 2−m0−1.

Then we can choose n ≥ m ≥ m0 with

2−m+1 ≤ ν∗,�

([x, y]∂ BD∗,�

) ≤ 2−m+2 and

2−(1−v)n ≤ C−100δ2 ≤ 2−(1−v)(n−1).
(33)

For some j ∈ [1,2m]Z, the boundary arc [x, y]∂ BD∗,�
contains the image under

the quotient map p of the set {Tr : r ∈ [(j − 1)2−m�, j2−m�]}. By definition of
Em, there are at least ��2(1−v)n−m� intervals of the form [(k − 1)2−2n, k2−2n] for
k ∈ [1, �22n]Z whose images under p intersect [x, y]∂ BD∗,�

. By (28) and our choice
of n, the image of each of these intervals under p has d∗,�-diameter at most

C2−2(4+v/100)−1n ≤ C2−(1−v)n/2 ≤ δ,
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where the latter inequality is by (33). Hence each such image lies in Bδ([x, y]∂ BD∗,�
;

d∗,�). By combining this with (33), we find that for an appropriate random choice
of c > 0,

μ∗,�

(
Bδ

([x, y]∂ BD∗,�
;d∗,�

)) ≥ ⌊
�2(1−v)n−m⌋ × 2−2n

≥ (�/2)2−(1+v)n−m

≥ cδ
2(1+v)

1−v ν∗,�

([x, y]∂ BD∗,�

)
.

(34)

This holds simultaneously for each boundary arc [x, y]∂ BD∗,�
satisfying (32). By

choosing v sufficiently small that 2(1 + v)/(1 − v) ≤ 2 + u and shrinking c in a
manner depending on m0, we obtain the statement of the lemma for a random-
area Brownian disk. The statement for a fixed area Brownian disk follows by local
absolute continuity. �

4. Metric gluing. In this section, we will complete the proofs of the theorems
stated in Section 1.4. In Section 4.1, we will show using [4], Lemma 18, that

√
8/3-

LQG geodesics between quantum typical points a.s. do not hit the boundary of the
domain, which is one of the main inputs in the proofs of our main results. Next, in
Section 4.2, we will prove Theorem 1.5, noting that the proof of Theorem 1.6 is
essentially identical. Finally, in Section 4.3, we will deduce Theorems 1.7 and 1.8.

Throughout this section, we define for ρ > 1

(35) Vρ := {
z ∈ Bρ(0) : Im z > ρ−1}

and V
′
ρ := {

z ∈ Bρ(0) : |z| > ρ−1}
.

4.1. LQG geodesics cannot hit the boundary. To prove our main results, we
want to apply the estimates for the Brownian disk obtained in Section 3.2. In or-
der to apply these estimates, we need to ensure that we can restrict attention to
finitely many quantum surfaces that locally look like quantum disks (equivalently,
Brownian disks).

If we are in the setting of Theorem 1.5 with either w− < 4/3 or w+ < 4/3,
the SLE8/3(w

− − 2;w+ − 2) curve η will intersect R in a fractal set (see [36]
for a computation of the dimension of this set), so there will be infinitely many
elements of U− ∪ U+ (i.e., connected components of H \ η) contained in small
neighborhoods of certain points of R. However, since η does not intersect itself and
is a.s. continuous and transient, there are only finitely many connected components
of H\η which intersect each of the sets Vρ of (35). Hence one way to avoid dealing
with infinitely many elements of U− ∪ U+ is to work in a bounded set at positive
distance from R. The following lemma will allow us to do so. For the statement,
we recall the parameter Q from (1).

LEMMA 4.1. Suppose that h is either a free-boundary GFF on H plus
−α log | · | for α ≤ Q, an embedding into (H,0,∞) of an α-quantum wedge for
α ≤ Q, or an embedding into (H,0,∞) of a single bead of an α-quantum wedge
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for α ∈ (Q,Q+√
2/3) with area a > 0 and left/right boundary lengths l−, l+ > 0.

Let R > 1 and let z1, z2 be sampled uniformly from μh|VR
, normalized to be a

probability measure, where VR is as in (35). Almost surely, there is a unique dh-
geodesic γz1,z2 from z1 to z2, and a.s. γz1,z2 does not intersect R∪ {∞}.

We will eventually deduce Lemma 4.1 from [4], Lemma 18, and local absolute
continuity of h with respect to an embedding of a quantum disk, which is isometric
to a Brownian disk. (It is also possible to give a slightly longer proof using only
SLE/LQG theory.) However, due to the presence of the log singularity at 0 this
absolute continuity only holds away from 0 and ∞ so we first need to rule out the
possibility that dh-geodesics hit 0 or ∞ with positive probability. By an absolute
continuity argument, it suffices to prove this in the case when h is a free-boundary
GFF with a log singularity at 0. This is the purpose of the next two lemmas.

The proof of the following lemma illustrates a general technique which can be
used to show that various events associated with the

√
8/3-LQG metric induced

by some variant of the GFF occur with positive probability.

LEMMA 4.2. Let h be a free-boundary GFF on a simply connected domain
D ⊂ C. Let A1,A2 ⊂ D be deterministic disjoint compact sets and let c > 0. Then
with positive probability, the

√
8/3-LQG metric dh satisfies

(36) diam(A1;dh) ≤ cdh(A1,A2).

PROOF. Let U1,U2 ⊂ D be bounded connected relatively open sets such that
A1 ⊂ U1, A2 ⊂ U2 and U1 ∩ U2 = ∅. We note that h|U1 has the law of a GFF
on U1 plus a random harmonic function. Hence the

√
8/3-LQG metric dh|U1

is
well defined, finite on compact subsets of U1, and determines the same topology
on U1 as the Euclidean metric. We furthermore have dh|U1

≥ dh on U1. Since dh

determines the same topology as the Euclidean metric, there exists C > 0 such that

(37) P
[
diam(A1;dh|U1

) ≤ Cdh(A2, ∂U2)
] ≥ 1

2
.

Let R > 0 be a constant to be chosen later and let φ be a smooth function on
D which is identically equal to −R on U1, identically equal to R on U2, and
identically equal to 0 outside a compact subset of D. Let ĥ := h + φ. By the
scaling property of the

√
8/3-LQG metric [31], Lemma 2.2,

diam(A1;dĥ|U1
) = e−

√
8/3
4 R diam(A1;dh|U1

) and

dĥ(A2, ∂U2) = e

√
8/3
4 Rdh(A2, ∂U2).

Hence if we choose R > 0 such that Ce−√
8/3R/4 ≤ c, then (37) implies that with

probability at least 1/2,

diam(A1;dĥ|U1
) ≤ cdĥ(A2, ∂U2),
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in which case

(38) diam(A1;dĥ) ≤ cdĥ(A1,A2).

On the other hand, since ĥ − h is a smooth compactly supported function, the
law of ĥ is absolutely continuous with respect to the law of h, so with positive
probability (38) holds with h in place of ĥ. By scaling, this implies that (38)
holds. �

Now we can rule out the possibility that geodesics for the
√

8/3-LQG metric
induced by a GFF with a log singularity at 0 hit 0.

LEMMA 4.3. Let h̃ be a free-boundary GFF on H and let α ∈ R. Let h :=
h̃ − α log | · | and let dh be the

√
8/3-LQG metric induced by h. Almost surely, no

dh-geodesic between points in H hits 0.

PROOF. For each j ∈ N, let rj = e−j and let Fj be the σ -algebra generated
by h|H\Brj

(0). Let hj be the conditional mean of h|Brj
(0)∩H given h|H\Brj

(0). Let
Ej be the event that

diam
(
∂Brj−1(0) ∩H;dh

)
< dh

(
∂Brj−1(0) ∩H,

(
∂Brj (0) ∪ ∂Brj−2(0)

) ∩H
)
.

Then if Ej occurs for some j ∈ N, no geodesic between points in H \ Brj (0) can
hit 0. Hence we just need to show that for each j0 ∈ N,

P

[ ∞⋃
j=j0

Ej

]
= 1.

The event Ej is the same as the event that the following is true: if we grow the
dh-metric balls centered at any point of ∂Brj−1(0), then we cover ∂Brj−1(0) before
reaching ∂Brj (0) or ∂Brj−2(0). Since metric balls are locally determined by h

(this is immediate from the construction of dh using QLE(8/3,0) in [29, 31, 32]),
it follows that Ej is determined by the restriction of h to Brj−2(0) \ Brj (0), and in
particular Ej ∈ Fj . By the scaling property of dh [31], Lemma 2.2, the events Ej

do not depend on the choice of additive constant for h. By the conformal invariance
of the law of h, modulo additive constant, and Lemma 4.2, we can find p > 0 such
that P[Ej ] ≥ p for each j ∈N.

Now fix j0 ∈ N and ε > 0. Inductively, suppose k ∈ N and we have defined a
jk−1 ≥ j0 which is a stopping time for the filtration {Fj }j∈N. The function hjk−1

is a.s. harmonic, hence smooth, on Brjk−1+1(0) ∩H so we can find jk ≥ jk−1 + 2
such that ∫

Brjk−2 (0)∩H
∣∣∇hjk−1(w)

∣∣2 dw ≤ ε.
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Since hjk−1 is Fjk−1 -measurable, it follows by induction that jk is a stopping time
for {Fj }j∈N. By [31], Lemma 5.4, if we choose ε > 0 sufficiently small, depending
on p, then it holds with conditional probability at least 1−p/2 given Fjk−1 that the
Radon–Nikodym derivative of the conditional law of h|Brjk−2

(0) ∩H with respect

to the unconditional law of a free-boundary GFF on H plus −α log | · | restricted to
Brjk−2(0)∩H, viewed as distributions defined modulo additive constant, is between
1/2 and 2. Hence

P[Ejk
|Fjk−1] ≥ p

4
.

By the Borel–Cantelli lemma, it follows that a.s. Ejk
occurs for some k ∈ N. �

PROOF OF LEMMA 4.1. For each sufficiently small r > 0, the law of h|Br(0)∩H
for an appropriate choice of embedding h is absolutely continuous with respect to
the law of the corresponding restriction of a free-boundary GFF plus a log sin-
gularity at 0 with appropriate choice of additive constant. By Lemma 4.3, a.s. no
geodesic of dh hits 0. In the case of a free-boundary GFF or a thick quantum
wedge, it is clear that a.s. no geodesic of dh hits ∞. In the case of a single bead

of a thin wedge, this follows since (H, h,0,∞)
d= (H, h,∞,0). It follows that we

can find ρ = ρ(p) > 1 such that with probability at least 1 − p, every geodesic
from z1 to z2 is contained in V′

ρ . Let E be the event that this is the case.
By Lemma 2.3, on E the set of dh-geodesics from z1 to z2 coincides with the

set of dh|
V

′
ρ

-geodesics from z1 to z2. The law of the field h|V′
ρ

is absolutely con-

tinuous with respect to the law of the corresponding restriction of an appropriate
embedding into (H,0,∞) of a quantum disk, which by [31], Corollary 1.5, is iso-
metric to a Brownian disk. By [4], Lemma 18, we infer that a.s. there is only one
dh|

V
′
ρ

-geodesic from z1 to z2 and that this geodesic a.s. does not hit ∂D. Since P[E]
can be made arbitrarily close to 1 by choosing ρ sufficiently large, we obtain the
statement of the lemma. �

In the setting of Theorem 1.6, there is no boundary to worry about but we still
need to ensure that geodesics stay away from the origin, since, due to the presence
of a log singularity, the restriction of the field h to a neighborhood of the origin
is not absolutely continuous with respect to a quantum disk (or sphere). The fol-
lowing lemma addresses this issue. We do not give a proof since the argument is
essentially the same as the proof of Lemma 4.1.

LEMMA 4.4. Suppose that h is either a whole-plane GFF plus −α log | · |
for α < Q, an embedding into (C,0,∞) of an α-quantum cone for α < Q, or
an embedding into (C,0,∞) of a quantum sphere. Let R > 1 and let z1, z2 be
sampled uniformly from μh|BR(0)\B1/R(0), normalized to be a probability measure.
Almost surely, there is a unique dh-geodesic γz1,z2 from z1 to z2, and a.s. γz1,z2

does not hit 0 or ∞.



2340 E. GWYNNE AND J. MILLER

4.2. Metric gluing of two quantum wedges. In this subsection, we will prove
Theorem 1.5. The proof of Theorem 1.6 is similar to that of Theorem 1.5,
but slightly simpler because we only need to consider a single complementary
connected component of η (note that the proof uses Lemma 4.4 in place of
Lemma 4.1). So, we will only give a detailed proof of Theorem 1.5.

Throughout, we assume we are in the setting of Theorem 1.5. Recall in particu-
lar that (H, h,0,∞) is a weight-w quantum wedge (so μh(H) = ∞) if w≥ 4/3, or
a single bead of a thin wedge with quantum area a and left/right quantum bound-
ary lengths l− and l+ (if w < 4/3). We assume that the embedding of h is chosen
so that the quantum mass of D ∩H is 1 (if w ≥ 4/3) or so that the quantum mass
of D ∩ H is a/2 (if w < 4/3). This is merely for convenience as the statement of
the theorem is independent of the choice of embedding. We also assume that the
SLE8/3(w

− −2;w+ −2) curve η is parameterized by quantum length with respect
to h.

For a connected component U ∈ U− ∪ U+, let xU (resp., yU ) be the first (resp.,
last) point of ∂U hit by η. Then the quantum surfaces (U,h|U, xU , yU) for U ∈ U±
are the beads of W± if w± < 4/3, or all of W± if w± ≥ 4/3.

We now give an outline of the proof of Theorem 1.5. Recall from Section 2.1
that distances with respect to the quotient metric are given by the infimum of the
lengths of paths which cross η only finitely many times, so to prove that dh coin-
cides with the quotient metric we need to show that dh-distances are well approx-
imated by the lengths of paths which cross η only finitely many times.

For most of the proof, we will truncate on a global regularity event GC =
GC(u,ρ), which we define in Lemma 4.5 just below. After establishing that GC

holds with probability close to 1 when the parameters are chosen appropriately
(which is accomplished using the estimates of Section 3.2), our main aim will be to
prove the following. There is an α > 0 such that if GC occurs, then for small δ > 0
the dh-geodesic γz1,z2 between two points z1, z2 ∈ Bρ(0) sampled from μh|Bρ(0)

hits at most δ−1+α+oδ(1) SLE segments of the form η([(k − 1)δ2, kδ2]) for k ∈ N.
In light of Lemma 3.2, this will allow us to construct a path from z1 to z2 of length
approximately dh(z1, z2) which consists of a concatenation of finitely many seg-
ments of γz1,z2 which are each contained in some U ∈ U− ∪ U+; and δ−1+α+oδ(1)

paths of length at most δ1+oδ(1) which do not cross η, each of which connects two
points of η([(k − 1)δ2, kδ2]) for some k ∈ N. Such a path crosses η only finitely
many times and has length at most len(γz1,z2;dh) + δα+oδ(1). By the definition of
the quotient metric (Section 2.1), the existence of this path shows that dh(z1, z2)

differs from the quotient metric distance between z1 and z2 by at most δα+oδ(1).
Sending δ → 0 then concludes the proof.

The proof of our estimate for the number of δ2-length SLE segments hit by a dh-
geodesic will be accomplished in two main steps. First, we will show in Lemma 4.7
that on GC , a dh-metric ball of radius approximately δ cannot intersect too many
δ2-length SLE segments. Then we will obtain the desired estimate in Lemma 4.8
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by bounding the probability that η gets within dh-distance δ of a given segment of
the geodesic γz1,z2 .

We are now ready to define our regularity event GC and show that it occurs with
high probability. For the statement of the following lemma, we recall the sets Vρ

and V′
ρ from (35).

LEMMA 4.5. There exists β > 0 such that the following is true. For u ∈ (0,1),
ρ > 2 and C > 1, let GC = GC(u,ρ) be the event that the following hold:

(1) For each z ∈ Vρ and each δ ∈ (0,1] with Bδ(z;dh) ∩ R = ∅, we have
μh(Bδ(z;dh)) ≤ Cδ4−u.

(2) For each U ∈ U− ∪ U+ with U ∩ Vρ �= ∅, each z ∈ U ∩ Vρ , and each
δ ∈ (0,1], we have μh(Bδ(z;dh|U )) ≥ C−1δ4+u.

(3) For each U ∈ U− ∪ U+ with U ∩Vρ �= ∅ and each x, y ∈ ∂U ∩Vρ ,

(39) dh|U (x, y) ≤ Cνh

([x, y]∂U

)1/2(∣∣logνa,�

([x, y]∂ BDa,�

)∣∣ + 1
)2

.

(4) For each U ∈ U− ∪ U+ with U ∩Vρ �= ∅, each x, y ∈ ∂U ∩Vρ , and each
δ ∈ (0,1),

μh

(
Bδ

([x, y]∂U ;dh|U
)) ≥ C−1δ2+uνh

([x, y]∂U

)
.

(5) For each z ∈ V′
ρ and each δ ∈ (0,1], we have Bδ(z;dh) ⊂ BCδβ (z).

(6) For each t > s > 0 such that η(s) ∈ Vρ/2 and |t − s| ≤ C−1, we have
η(t) ∈ Vρ .

For each u > 0, ρ > 2, and p ∈ (0,1) there exists C > ρ such that P[GC] ≥ 1−p.

We remark that in (39) it is possible to improve the exponent of the log term
to 7/4 + ζ for any ζ > 0 (see Lemma 3.2), but the particular exponent does not
matter for our purposes so for simplicity we just take it to be 2.

PROOF OF LEMMA 4.5. Fix u ∈ (0,1), ρ > 2, and p ∈ (0,1). We will de-
duce the statement of the lemma from the results of Section 3.2 and local absolute
continuity (recall that the Brownian disk is equivalent to the quantum disk). First,
we need to reduce ourselves to considering only finitely many quantum surfaces,
rather than the surfaces parameterized by all of the complementary connected com-
ponents of η (which is an infinite set of one of w± is smaller than 4/3).

Let F be the σ -algebra generated by the μh-areas of the ordered sequences of
beads of W− and W+ (so that F is trivial if w− ∧w+ ≥ 4/3). For ε > 0, let U±

ε be
the set of U ∈ U± such that the following is true: we have μh(U) ≥ ε, and the sum
of the quantum areas of the beads of W± which come before U is at most ε−1.
Then each U±

ε is a finite set. Furthermore, F determines which elements of U±
belong to U±

ε so the conditional law of the surfaces (U,h|U, xU , yU) for U ∈ U±
ε

given F is that of a collection of independent beads of a weight-w± quantum
wedge with given areas (or a single weight-w± quantum wedge if w± ≥ 4/3).
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The boundary of each U ∈ U± intersects R (since η is simple) and there are only
finitely many U ∈ U± which intersect Bρ(0) and have diameter larger than ρ−1

(since η is continuous and transient [33]). Consequently, we can find ε = ε(ρ) > 0
such that with probability at least 1 − p/5, it holds that each U ∈ U− ∪ U+ which
intersects Vρ belongs to U−

ε ∪ U+
ε . Henceforth fix such an ε.

For U ∈ U±, let φU : U → H be the unique conformal map which takes xU

to 0 and yU to ∞, normalized so that the quantum measure induced by the field
hU := h ◦ φ−1

U + Q log |(φ−1
U )′| assigns mass 1 to D∩H (if μh(U) = ∞) or mass

μh(U)/2 to D∩H (if μh(U) < ∞).
Since each of the marked points xU , yU for U ∈ U± lies in R ∪ {∞}, we infer

that each φU for U ∈ U± a.s. maps U ∩ V2ρ to a bounded subset of H lying at
positive distance from 0. Since each U±

ε is a.s. finite, we can find ρ̃ > 1 such that
with probability at least 1 − p/5,

φU

(
U ∩V

′
2ρ

) ⊂ V
′̃
ρ ∀U ∈ U−

ε ∪ U+
ε .

Again using the finiteness of U±
ε , we can find a > 1 ∧ a and � > 0 such that with

probability at least 1 − p/5,

μh

(
V

′
2ρ

) ≤ a/2, νh

(
∂V′

2ρ ∩R
) ≤ �/2,

μhU

(
V

′
2ρ̃

) ≤ a/2, and νhU

(
∂V′

2ρ̃ ∩R
) ≤ �/2 ∀U ∈ U−

ε ∪ U+
ε .

Let (H, h̃,0,∞) be a doubly marked quantum disk with area a and left/right
boundary lengths each equal to �, with the embedding chosen so that μh̃(D ∩
H) = 1 (if w ≥ 4/3) or μh̃(D ∩ H) = a/2 (if w < 4/3). It is easy to see from the
definitions given in [11], Section 4, that on the event {μh(V

′
2ρ) ≤ a/2, νh(∂V

′
2ρ ∩

R) ≤ �/2} the law of h|V′
ρ

is absolutely continuous with respect to the law of the

corresponding restriction of h̃. Furthermore, if we condition on F then on the event{
μhU

(
V

′
2ρ̃

) ≤ a/2, νhU

(
∂V′

2ρ̃ ∩R
) ≤ �/2

}
,

the conditional law of hU |V′̃
ρ

is absolutely continuous with respect to the law of

the corresponding restriction of h̃.
By [30], Corollary 1.5, the space H equipped with the

√
8/3-LQG metric in-

duced by h̃ is isometric to the Brownian disk with area a and boundary length
2�. Since ∂Vr a.s. lies at positive quantum distance from ∂V2r for each r > 1 and
similarly for V

′
r and V

′
2r , it follows from Lemmas 3.2, 3.3 and 3.4 that we can

find C > 1 such that Conditions (1) through (4) in the statement of the lemma hold
with probability at least 1 − p/2.

By [31], Theorem 1.2, and local absolute continuity, for an appropriate choice
of universal β > 0 and a large enough choice of C, Condition (5) holds with prob-
ability at least 1 − p/4. By the continuity and transience of η [33], Theorem 1.3,
for large enough C > 1 (depending on ρ) Condition (6) holds with probability at
least 1 − p/4. �
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Our next lemma shows that η satisfies a reverse Hölder continuity condition
on the event GC (here we recall that η is parameterized by quantum length with
respect to h).

LEMMA 4.6. For each v ∈ (0,1), there exists u0 = u0(v) ∈ (0,1) such that
for u ∈ (0, u0] the following is true. Let ρ > 2 and C > 1 and let GC = GC(u,ρ)

be the event of Lemma 4.5. There exists ε0 = ε0(C,u, v) such that the following is
true a.s. on GC . If 0 < a < b < ∞ such that b − a ≤ ε0 and η([a, b]) ∩Vρ/2 �= ∅,
then

diam
(
η
([a, b]);dh

) ≥ 7(b − a)(1+v)/2.

PROOF. Throughout the proof, we assume that GC occurs. We first observe
that Condition (5) in Lemma 4.5 implies that there is an ε0 = ε0(C,ρ) such that
for ε ∈ (0, ε0] and z ∈ Vρ/2,

(40) B8ε(1+v)/2(z;dh) ⊂ Vρ.

Suppose now that 0 < a < b < ∞ such that b − a ≤ ε0 and η([a, b]) ∩Vρ/2 �= ∅.
Let z ∈ η([a, b]) ∩ Vρ and write δ := (b − a)(1+v)/2. It follows from (40) that
B8δ(z;dh) does not intersect R, and this combined with (40) implies there exists
U ∈ U− such that η([a, b]) ⊂ ∂U ∩Vρ . By Condition (4) in Lemma 4.5 and since
dh(w1,w2) ≤ dh|U (w1,w2) for each w1,w2 ∈ U (by Lemma 2.3 and Remark 2.4),

μh

(
Bδ

(
η
([a, b]);dh

)) ≥ μh

(
Bδ

(
η
([a, b]);dh|U

)) ≥ C−1(b − a)(2+u)(1+v)/2+1.

By Condition (1),

μh

(
B8δ(z;dh)

) ≤ 84−uC(b − a)(4−u)(1+v)/2.

If u is chosen sufficiently small relative to v, then after possibly shrinking ε0 we
can arrange that 84−uC(b − a)(4−u)(1+v)/2 < C−1(b − a)(2+u)(1+v)/2+1 whenever
b − a ≤ ε0, so Bδ(η([a, b]);dh) cannot be contained in B8δ(z;dh). Therefore,
η([a, b]) cannot be contained in B7δ(z;dh). �

We next bound the number of δ2-length segments of η which can intersect a dh-
metric ball on the event GC . Here we recall that η is parameterized by νh-length.

LEMMA 4.7. For each v ∈ (0,1), there exists u0 = u0(v) ∈ (0,1) such that for
u ∈ (0, u0], the following is true. Let ρ > 2 and C > 1 and let GC = GC(u,ρ) be
the event of Lemma 4.5. There exists δ0 = δ0(C,u, v) > 0 such that the following
is true almost surely on GC . Let z ∈ Vρ/2 and let δ ∈ (0, δ0]. Then the number of
k ∈N for which η([(k − 1)δ2, kδ2]) ∩ Bδ1+v (z;dh) �= ∅ is at most δ−v .
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FIG. 5. Illustration of the proof of Lemma 4.7. The balls Bδ1+v (z;dh) and B2δ1+v (z;dh) are shown
in light green and light blue, respectively. We first use the upper bound for the area of B3δ1+v (z;dh)

to argue that on GC , no curve segment of the form η([(k − 1)δ2, kδ2]) can be completely con-
tained in B2δ1+v (z;dh). This means that the number of such segments can be bounded above by
twice the number of excursions of η into a connected component V of H \ Bδ1+v (z;dh) which in-
tersects H \ B2δ1+v (z;dh) (each such excursion is shown in red). Topological considerations im-
ply that each such excursion η([τV,j , τV,j ]) gives rise to at least one connected component O of
H \ (η ∪ Bδ1+v (z;dh)) which intersects H \ B2δ1+v (z;dh) (here there are 7 such components). To
estimate the number of such components O , we consider for each O an appropriate dh|W± -ball BO

(shown in pink) contained in O . The balls BO are disjoint and each is contained in B2δ1+v (z;dh).
By definition of GC , we have a lower bound for the quantum mass of each BO and an upper bound
for the quantum mass of B2δ1+v (z;dh). By comparing these bounds, we obtain an upper bound on
the number of sets BO , and hence the number of components O .

PROOF. See Figure 5 for an illustration of the argument. Throughout the
proof, we assume that GC occurs. As in the proof of Lemma 4.6, if z is as in
the statement of the lemma then

(41) B3δ1+v (z;dh) ⊂ Vρ

for small enough δ (depending only on C and ρ). By Lemma 4.6, if u ∈ (0,1)

is chosen sufficiently small relative to v, then for small enough δ > 0 (depending
only on C, u, and v) there cannot exist k ∈ N for which η([(k − 1)δ2, kδ2]) ⊂
B2δ1+v (z;dh). Henceforth assume that δ and u are chosen so that the above condi-
tions are satisfied.

Let K be the set of k ∈ N for which η([(k − 1)δ2, kδ2]) ∩ Bδ1+v (z;dh) �= ∅.
By our choices of δ and u, each curve segment η([(k − 1)δ2, kδ2]) for k ∈ K also
intersects H \ B2δ1+v (z;dh).
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To complete the proof, we will first use a topological argument to show that
the number of connected components of H \ (η ∪ Bδ1+v (z;dh)) which intersect
H \ B2δ1+v (z;dh) is at least (#K − 2)/2. We will then use the definition of
GC to argue that each such connected component O contains a one-sided met-
ric ball BO ⊂ O ∩ B2δ1+v (z;dh) which has μh-mass at least a constant times
δ(4+u)(1+v). Hence the number of such components O is at most a constant times
δ−(4+u)(1+v)μh(B2δ1+v (z;dh)), which can be bounded above by δ−v by the defini-
tion of GC .

Step 1: counting complementary connected components. Let V be the set of
connected components of H \ Bδ1+v (z;dh). For V ∈ V , let OV be the set of con-
nected components O of V \ η such that O intersects V \ B2δ1+v (z;dh). Note that⋃

V ∈V OV is the set of connected components of H \ (η ∪ Bδ1+v (z;dh)) which
intersect H \ B2δ1+v (z;dh). We first argue that

(42) #K ≤ 2
∑
V ∈V

#OV + 2.

To see this, fix V ∈ V . Let {[τV,j , τV,j ]}j∈[1,JV ]Z be the ordered sequence of time
intervals for η with the property that η((τV,j , τV,j )) ⊂ V , η(τV,j ), η(τV,j ) ∈ ∂V ,
and η((τV,j , τV,j )) intersects V \ B2δ1+v (z;dh). In other words, the segments
η([τV,j , τV,j ]) are the excursions of η into V which hit H \ B2δ1+v (z;dh). Note
that the number JV of such time intervals is finite by continuity and transience of
η and since V \ B2δ1+v (z;dh) lies at positive Euclidean distance from ∂V .

The set V has the topology of the disk (or the complement of a disk in
H, in the case of the unbounded component). Since η does not hit itself each
curve segment η((τV,j , τV,j )) is contained in a single connected component of
V \ η([0, τV,j ]), which also has the topology of a disk (or the complement of
a disk in H if V is the unbounded component). Since η(τV,j ), η(τV,j ) ∈ ∂V , the
segment η([τV,j , τV,j ]) divides this connected component into at least two further
components. Since η((τV,j , τV,j )) intersects V \B2δ1+v (z;dh), each such compo-
nent also intersects V \ B2δ1+v (z;dh). It follows that JV ≤ #OV .

Since each segment η([(k − 1)δ2, kδ2]) for k ∈ K intersects both Bδ1+v (z;dh)

and H \ B2δ1+v (z;dh), each interval [(k − 1)δ2, kδ2] for k ∈ K intersects
[τV,j , τV,j ] for some V ∈ V and some j ∈ [1, JV ]Z, except possibly the first
and last such intervals. Furthermore, since η([τV,j , τV,j ]) intersects ∂Bδ1+v (z;dh)

only at its endpoints, each such interval [τV,j , τV,j ] intersects at most two in-
tervals of the form [(k − 1)δ2, kδ2] for k ∈ K . Therefore, #K ≤ 2

∑
V ∈V JV + 2,

whence (42) holds.
Step 2: metric balls in connected components. Now we will prove an upper

bound for the right-hand side of (42). Let V ∈ V and O ∈ OV . We can choose
wO ∈ ∂O ∩ η such that dh(wO, ∂Bδ1+v (z)) = dh(wO, ∂B2δ1+v (z)) = 1

4δ1+v . We
have O ⊂ UO for some connected component UO ∈ U− ∪ U+ of H \ η. Let BO

be the open dh|UO
-ball of radius 1

4δ1+v centered at wO . Since η does not cross BO
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and dh|UO
≥ dh,

BO ⊂ B 1
4 δ1+v (wO;dh) ⊂ B2δ1+v (z;dh) \ Bδ1+v (z;dh).

Therefore, BO ⊂ O so in particular BO ∩BO ′ = ∅ for distinct O,O ′ ∈ ⋃
V ∈V OV .

By (41) and Condition (2) in Lemma 4.5, for each O ∈ ⋃
V ∈V OV we have

μh(BO) � C−1δ(4+u)(1+v), with universal implicit constant. Therefore, condition
(1) in Lemma 4.5 implies that

C−1δ(4+u)(1+v)
∑
V ∈V

#OV � μh

(
B2δ1+v (z;dh)

) � Cδ(4−u)(1+v)

with universal implicit constants. By combining this with (42), we get

#K � C2δ−2u(1+v).

After possibly shrinking u and δ, we obtain the statement of the lemma. �

Next, we bound the number of segments of η with quantum length δ2 which are
hit by a dh-geodesic between two typical points.

LEMMA 4.8. Let v ∈ (0,1) and let u0 = u0(v) be chosen as in Lemma 4.7.
Let u ∈ (0, u0], ρ > 2, and C > 1 and let GC = GC(u,ρ) be as in Lemma 4.5.
Let z1, z2 ∈ Vρ and let γz1,z2 be a dh-geodesic from z1 to z2 which is contained
in Vρ/2, all chosen in a manner which is independent from η (viewed as a curve
modulo parameterization). For δ ∈ (0,1), let Kδ

z1,z2
be the set of k ∈ N for which

γz1,z2 ∩ η([(k − 1)δ2, kδ2]) �= ∅. There is an exponent α > 0, depending only on
w−,w+, and the exponent β from Lemma 4.5, such that for δ ∈ (0,1),

(43) E
[
#Kδ

z1,z2
1GC

|h,γz1,z2

] � δ−1−2v+α(1+v)dh(z1, z2),

where the implicit constant in � is deterministic and depends only on u, v,C

and ρ.

PROOF. By possibly increasing the implicit constant in (43), it suffices to
prove the estimate for δ ∈ (0, δ0], where δ0 = δ0(C,u, v) is as in Lemma 4.7.
Fix z1, z2 as in the statement of the lemma. Let N := �δ−1−vdh(z1, z2)� + 1.
For j ∈ [1,N − 1]Z let tj := jδ1+v and let tN := dh(z1, z2). Also let Vj :=
Bδ1+v (γz1,z2(tj );dh). Since γz1,z2 travels one unit of quantum distance in one unit
of time, the union of the balls Vj covers γz1,z2 and the intersection of any four such
balls is empty. Let J δ

z1,z2
be the number of j ∈ [1,N]Z for which η ∩ Vj �= ∅.

Lemma 4.7 implies that for δ ∈ (0, δ0], if GC occurs then for each j ∈ [1,N]Z
there are at most δ−v elements of Kδ

z1,z2
for which η([(k−1)δ2, kδ2]) intersects Vj .

Hence for any such δ,

(44) #Kδ
z1,z2

≤ 3δ−v#J δ
z1,z2

.
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In light of (44), it remains only to show that

(45) E
[
#J δ

z1,z2
1GC

|h,γz1,z2

] � dh(z1, z2)δ
−1−v+α(1+v)

for appropriate α > 0 as in the statement of the lemma. To this end, define the
balls Vj as above. By Condition (5) in Lemma 4.5 (recall that we have assumed
that γz1,z2 ⊂ Vρ/2), for each j ∈ [1,N]Z, the metric ball Vj is contained in the
Euclidean ball Ṽj of radius Cδβ(1+v) and the same center as Vj , where β > 0 is as
in Condition (5).

Since η is an SLE8/3(w
− − 2;w+ − 2), Lemma B.1 implies that there is an

α0 = α0(w
−,w+) such that

(46) P
[
η ∩ Bε(w) �= ∅

] � εα0 ∀w ∈Vρ/2

with the implicit constant depending only on ρ, C, w− and w+. By (46) and the
independence of (h, γz1,z2) and η, viewed modulo time parameterization, we find
that for each j ∈ [1,N]Z,

P[η ∩ Ṽj �= ∅,GC |h,γz1,z2] � δα0β(1+v).

By summing over all j ∈ [1,N]Z, we obtain (45) with α = α0β . �

The following lemma shows that the metric dh is equal to the quotient metric in
Theorem 1.5 at quantum typical points.

LEMMA 4.9. Fix R > 1. Let z1, z2 be sampled uniformly from μh|VR
, normal-

ized to be a probability measure. Let d̃h be the quotient metric on H obtained by
gluing the metric spaces (U,dh|U ) according to the natural identification. Almost
surely, we have

dh(z1, z2) = d̃h(z1, z2).

PROOF. See Figure 6 for an illustration of the proof. Fix p ∈ (0,1). Also let α

be as in Lemma 4.5, let v ∈ (0, α/100), and let u ∈ (0, u0] where u0 = u0(v) is as
in Lemma 4.7. Let γz1,z2 be the dh-geodesic from z1 to z2, which by Lemma 4.1 is
a.s. unique and a.s. does not intersect R ∪ {∞}. We can find ρ > 2 such that with
probability at least 1 − p/5,

γz1,z2 ⊂ Vρ/2 and dh(z1, z2) ≤ ρ.

Let Eρ be the event that this is the case. Also choose C > 0 such that for this
choice of ρ and u as above, the event GC = GC(u,ρ) occurs with probability at
least 1 − p/5.

By taking the expectation of the estimate from Lemma 4.8, we obtain, in the
notation of that lemma,

E[#Kz1,z21GC∩Eρ ] � δ−1−2v+α(1+v)
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FIG. 6. Illustration of the proof of Lemma 4.9. We sample z1, z2 uniformly from μh|VR
and con-

sider the dh-geodesic γz1,z2 (blue) from z1 to z2, which is typically contained in Vρ/2 for some
ρ > R. We divide the segment of η (red) which is contained in Vρ/2 into increments of quantum

length δ2. Lemma 4.8 implies that on GC , the number of such segments which are hit by γz1,z2 is

at most δ−1+α′
for a small positive constant α′. On the other hand, Condition (3) in the definition

of GC (recall Lemma 4.5) implies that for each δ2-length segment of η which is hit by γz1,z2 , we
can find a complementary connected component U ∈ U− and a dh|U -geodesic between the first and

last points of this segment which are hit by γz1,z2 whose length is at most δ1+oδ(1). These one-sided
geodesics are shown in purple. We then concatenate these one-sided geodesics with the segments of
γz1,z2 between the times when it hits η to obtain a path from z1 to z2 which crosses η only finitely
many times and whose length is at most dh(z1, z2) + oδ(1).

with the implicit constant depending only on u, v,C and ρ. By Markov’s inequal-
ity, there exists δ0 = δ0(u, v,C,ρ) > 0 such that for δ ∈ (0, δ0], it holds with prob-
ability at least 1 − p/2 that Eρ ∩ GC occurs and

(47) #Kδ
z1,z2

≤ δ−1−3v+α(1+v) ≤ δ−1+α/2,

where the second inequality follows from our choice of v.
Now fix δ ∈ (0, δ0] and assume that Eρ ∩ GC and the event in (47) occur. We

show that d̃h(z1, z2) ≤ dh(z1, z2) by constructing a path from z1 to z2 which is a
concatenation of finitely many paths which are contained in the closure of a single
set U for U ∈ U− ∪ U+ (the reverse inequality is trivial).

By Condition (6) in Lemma 4.5, if we take δ ≤ C−1/2 then η([(k − 1)δ2, kδ]) ⊂
Vρ for each k ∈ Kδ

z1,z2
. In particular, η([(k − 1)δ2, kδ]) does not intersect R, so

η([(k − 1)δ2, kδ]) ⊂ ∂Uk for some Uk ∈ U− with Uk ∩Vρ �=∅.
For k ∈ Kδ

z1,z2
, let τk (resp., σk) be the first (resp., last) time γz1,z2 hits

η([(k − 1)δ2, kδ2]). Let γ̃k be the dh|Uk
-geodesic from γz1,z2(τk) to γz1,z2(σk). By

Condition (3) in Lemma 4.5, on GC it is a.s. the case that for this choice of Uk , we
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have diam(η([(k − 1)δ2, kδ2]);dh|Uk
) ≤ 4Cδ(| log δ| + 1)2, so in particular

(48) len(γ̃k;dh|Uk
) ≤ 4Cδ

(| log δ| + 1
)2 ∀k ∈ Kδ

z1,z2
.

Let k1 be the element of Kδ
z1,z2

with τk1 minimal (i.e., τk1 is the first time γz1,z2

hits η). Inductively, if j ∈ [2,#Kδ
z1,z2

]Z and kj−1 has been defined, let k ∈ Kδ
z1,z2

be
chosen so that τkj

is the smallest time τk for k ∈ Kδ
z1,z2

which satisfies τk ≥ σkj−1 ,
if such a k exists; and otherwise let kj = ∞. Let J be the smallest j ∈N for which
kj = ∞. Let γ̊1 := γz1,z2 |[0,τk1 ], γ̊J := γz1,z2 |[σJ ,dh(z1,z2)], and for j ∈ [2, J − 1]Z
let γ̊j := γz1,z2 |[σj−1,τj ]. Then each curve γ̊j for j ∈ [1, J ]Z does not hit η except

at its endpoints so is contained in the closure of a single element Ůj ∈ U− ∪ U+,
and its dh|

Ůj
-length is the same as its dh-length.

Let γ̃ be the curve obtained by concatenating the curves γ̊1, γ̃k1, . . . , γ̊kJ−1,

γ̃j , γ̊J . Then γ̃ is a path from z1 to z2 and the quotient metric d̃h satisfies

d̃h(z1, z2) ≤
J−1∑
j=1

len(γ̃kj
;dh|Ukj

) +
J∑

j=1

len(γ̊j ;dh|
Ůj

)

≤
J−1∑
j=1

len(γ̃kj
;dh|Ukj

) + dh(z1, z2)

≤ Oδ

(
δα/2(| log δ| + 1

)2) + dh(z1, z2),

where the last inequality is by (48). Sending δ → 0 shows that d̃h(z1, z2) ≤
dh(z1, z2). By Remark 2.4 (cf. the definition of the quotient metric in Section 2.1),
we have d̃h(z1, z2) ≥ dh(z1, z2), so in fact d̃h(z1, z2) = dh(z1, z2). Since p ∈ (0,1)

can be made arbitrarily small, we conclude. �

PROOF OF THEOREM 1.5. Lemma 4.9 implies that a.s. dh(z1, z2) = d̃h(z1, z2)

for each pair (z1, z2) in a subset of H × H which is dense in H × H with re-
spect to the metric dh × dh and dense in U × U with respect to dh|U × dh|U for
each U ∈ U− ∪ U+. Hence, the following is true a.s. Suppose given ε > 0 and
w1,w2 ∈ H. Choose U1,U2 ∈ U− ∪ U+ with w1 ∈ U1 and w2 ∈ U2. Then we
can find z1 ∈ U1 and z2 ∈ U2 such that dh(z1, z2) = d̃h(z1, z2), dh|U1

(z1,w1) ≤ ε,
and dh|U2

(z2,w2) ≤ ε. Note that the latter two estimates and the triangle inequal-
ity imply that dh(z1, z2) = d̃h(z1, z2) ≤ dh(w1,w2) + 2ε. By another application
of the triangle inequality, we have d̃h(w1,w2) ≤ d̃h(z1, z2) + 2ε ≤ d(w1,w2) +
4ε, so since ε is arbitrary d̃h(w1,w2) ≤ d(w1,w2), and hence d̃h(w1,w2) =
dh(w1,w2). �

4.3. Metric gluing in the peanosphere. In this subsection, we will deduce The-
orem 1.7 and Theorem 1.8 from Theorem 1.5 and Theorem 1.6.
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PROOF OF THEOREM 1.7. Let ηL (resp., ηR) be the left (resp., right) bound-
ary of η′((−∞,0]). Note that U− ∪ U+ is precisely the set of connected compo-
nents of C \ (ηL ∪ ηR).

By [11] and [35], Theorem 1.1, Footnote 4, ηL has the law of a chordal
SLE8/3(−2/3) from 0 to ∞ in H. By [11], Theorem 1.5, the surface (C \
ηL,h|C\ηL,0,∞) has the law of a weight-4/3 quantum wedge. By Theorem 1.6,
it is a.s. the case that (C,dh) is the metric space quotient of (C \ηL,dh|

C\ηL
) under

the natural identification.
By [35], Theorem 1.11, the conditional law of ηR given ηL is that of a chordal

SLE8/3(−4/3;−4/3) from 0 to ∞ in C\ηL. By Theorem 1.5, a.s. (C\ηL,dh|
C\ηL

)

is the metric quotient of the disjoint union of the metric spaces (U,dh|U ) for
U ∈ U− ∪U+ under the natural identification, except that we do not identify points
on ηL. The theorem statement follows by combining this with the previous para-
graph. �

Next, we will deduce Theorem 1.8 from Theorem 1.7 and an absolute continuity
argument.

PROOF OF THEOREM 1.8. Since η′ is parameterized by μh and a.s. hits μh-
a.e. point of C exactly once, it follows that η′(t) is independent from η′ and its
conditional law given h is μh. Hence we can assume that (C, h,∞) is embedded
into C in such a way that η′(t) = 0, in which case (C, h,0,∞) is a doubly marked
quantum sphere. We also assume that our embedding is such that μh(D) = 1/2.

For R > 1, let AR be the closed annulus BR(0) \ B1/R(0). Let UR be the set
of U ∈ U− ∪ U+ such that U ⊂ AR . We observe that our choice of embedding
implies that U is determined by η′, viewed as a curve modulo monotone re-
parameterization. Let WR := ⋃

U∈UR
U . Almost surely, 0 is not contained in ∂U

for any U ∈ U− ∪ U+ and every element of U− ∪ U+ is bounded. It follows that

(49) for each R > 1, there exists R′ > 1 such that AR ⊂ WR′ .

Let (C, ĥ,0,∞) be a
√

8/3-quantum cone independent from η′ with the embed-
ding chosen so that μh(D) = 1/2 and let η̂′ be the curve obtained by parameteriz-
ing η̂′ by μĥ-mass in such a way that η̂′(0) = 0. Then for each R > 1, the laws of
h|AR

and ĥ|AR
are mutually absolutely continuous, so also the laws of (h|AR

,UR)

and (ĥ|AR
,UR) are mutually absolutely continuous.

By Theorem 1.7 and the definition of the quotient metric, it is a.s. the case that
for each ε > 0 and each z,w ∈ C, there exists N ∈ N, U1, . . . ,UN ∈ U− ∪U+, and
dĥ|Ui

-geodesics γ̂i for i ∈ [1,N]Z whose concatenation is a path from z to w such
that

N∑
i=1

len(γ̂i;dĥ|Ui
) ≤ dĥ(z,w) + ε.
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Note that if z ∈ WR and dĥ(z,w) ≤ 1
4dĥ(z, ∂WR), then for small enough ε each of

the sets Ui for i ∈ [1,N]Z must belong to UR .
For R > 1 and z ∈ WR , let ρR(z) := dh(z, ∂WR). Since metric balls are locally

determined by the field, we find that for each z ∈ AR , both ρR(z) and the restriction
of dh to BρR(z)(z;dh) are a.s. determined by (h|AR

,UR). Consequently, it follows
from the preceding paragraph and absolute continuity that a.s. for each z,w ∈ WR

with dh(z,w) ≤ 1
4ρR(z) and each ε > 0, there exists N ∈ N, U1, . . . ,UN ∈ UR ,

and dh|Ui
-geodesics γi for i ∈ [1,N]Z whose concatenation is a path from z to w

such that

(50)
N∑

i=1

len(γi;dh|Ui
) ≤ dh(z,w) + ε.

Now let z1, z2 be sampled uniformly from μh|AR
, normalized to be a probability

measure and let γ be the dh-geodesic from z1 to z2. By Lemma 4.4, γ is a.s. unique
and a.s. does not hit 0 or ∞. Hence (49) implies that for each p ∈ (0,1) there exists
R′ > R such that P[γ ⊂ WR′ ] ≥ 1 − p.

On the event {γ ⊂ WR′ }, there a.s. exists M ∈ N and times 0 = t0 < t1 < · · · <

tM = dh(z1, z2) such that dh(γ (ti), ∂WR′) ≥ 4(ti − ti−1) for each i ∈ [1,M]Z. By
applying (50) for each i ∈ [1,M]Z with (z,w) = (γ (ti−1), γ (ti)) and ε/M in place
of ε, we a.s. obtain a finitely many paths, each of which is a dh|U -geodesic for
some U ∈ UR′ , whose concatenation is a path from z1 to z2 and whose total length
is at most dh(z1, z2) + ε. Since R > 1, p ∈ (0,1), and ε > 0 are arbitrary and by
(49), we infer that if d̃h is the quotient metric on C obtained by identifying the
metric spaces (U,dh|U ) for U ∈ U− ∪ U+ as in the statement of the lemma, then
a.s. dh(z1, z2) = d̃h(z1, z2). By the same argument used to conclude the proof of
Theorem 1.5, we obtain the desired result. �

APPENDIX A: ESTIMATE FOR QUANTUM DIAMETERS

In this Appendix, we prove an estimate to the effect that the quantum diameters
of certain subsets of H with respect to the restriction of the field corresponding to
a

√
8/3-quantum wedge have a polynomial tail (similar estimates for other GFF-

type distributions can be obtained using local absolute continuity). This estimate
is only used in the proof of Lemma 2.7.

LEMMA A.1. Let (H, h,0,∞) be a
√

8/3-quantum wedge normalized so that
νh([0,1]) = 1 and let U,V ⊂ H be connected open sets such that U is bounded,
U ∩H ⊂ V , 1 ∈ ∂V , and 0 /∈ U . There is a universal constant β̃ > 0 such that for
each C > 0,

(51) P
[
diam(U ;dh|V ) ≤ C

] = 1 − OC

(
C−β̃)

.

(The dependence on the choice of U,V is in the implicit constant in the OC(C−β̃ )

term.)
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FIG. 7. Illustration of the proof of Lemma A.1. The connected component B of H \ η′ with 1 on its
boundary is a quantum disk, equivalently a Brownian disk, which allows us to estimate its diameter.
On the other hand, and this component contains U and is contained in V with positive conditional
probability given h.

PROOF. The idea of the proof is to find a random subset B of H such that the
quantum surface parameterized by B has the law of a quantum disk and U ⊂ B ⊂
V with uniformly positive conditional probability given h. We can then use basic
diameter estimates for the quantum disk which come from its definition in terms
of the Brownian snake (Section 3.1). To find such a subset, we will use results for
SLE on the

√
8/3-quantum wedge from [11]. See Figure 7 for an illustration.

To this end, let η′ be a chordal SLE6 from 0 to ∞ sampled independently from
h and let B be the connected component of H \ η′ with 1 on its boundary. By [11],
Theorem 1.18, if we condition on νh(∂B) then the conditional law of the quan-
tum surface (B, h|B) is that of a quantum disk with specified boundary length and
random area. Equivalently, by [31], Corollary 1.4, the metric space (B,dh|B) is
a Brownian disk with boundary length νh(∂B) and area (νh(∂B))2X where X is
sampled from the distribution (2π)−1/2a−5/2e−1/(2a) da independently of νh(∂B).
Using the definition of the Brownian disk with specified area and boundary length
given in Section 3.1 together with the tail estimate for the maximum of the Brow-
nian snake [45], Proposition 14, and the Gaussian tail bound for the maximum of
a Brownian bridge, it is easily seen that there is a universal constant β̃0 > 0 such
that for each C > 0,

(52) P
[
diam(B;dh|B) ≤ Cνh(∂B)1/2|νh(∂B)

] = 1 − OC

(
C−β̃0

)
.

Here, to apply [45], Proposition 14, we decompose the process X into excursions
above its record minimum, as in the proof of Lemma 3.2.

To get an estimate for the unconditional internal diameter of B, we need to
estimate νh(∂B). We do this using the Lévy process description of the left/right
boundary length process for η′ from [11]. If we let Rt for t ≥ 0 be the

√
8/3-LQG

length of the right outer boundary of η′([0, t]) minus the
√

8/3-LQG length of the
interval to the right of 0 which is disconnected from ∞ by η′([0, t]), then the time
at which η′ disconnects B from ∞ is the same as the first time t for which Rt ≤ −1.
If we let T be this time, then νh(∂B) = RT − − RT . By [11], Corollary 1.19, if η′
is parameterized according to so-called quantum natural time, then Rt evolves as
a 3/2-stable process with only downward jumps. Using this, the law of RT − − RT
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can be computed explicitly using a generalization of the arcsine law (see, e.g., [10],
Example 7). In particular, P[RT − − RT > A] decays like a positive power of A−1.
Combining this with (52), we find that there is a β̃ > 0 such that

(53) P
[
diam(B;dh|B) ≤ C

] = 1 − OC

(
C−β̃)

.

By replacing U with its intersections with each of the left and right quarter
planes in H, we can assume without loss of generality that U does not disconnect 0
from ∞ in H. Since η′ is independent from h and η′ can be made to stay arbitrarily
close to a deterministic curve with positive probability [36], Lemma 2.5, under this
assumption on U we can find a constant p > 0 (depending only on U and V ) such
that a.s.,

(54) P[U ⊂ B ⊂ V |h] ≥ p.

If U ⊂ B ⊂ V , then (using Lemma 2.3) we have diam(U ;dh|V ) ≤ diam(B;dh|B).
Hence, combining (53) and (54) yields (51). �

The following consequence of Lemma A.1 is used in the proof of Lemma 2.7.

LEMMA A.2. Let (H, h,0,∞) be the circle average embedding of a
√

8/3-
quantum wedge (so that h is the random distribution from [11], Definition 4.5).
Also fix 0 < a′ < a < 1 < b < b′ and define the semi-annuli U :=
H ∩ (Bb(0) \ Ba(0)) and V := H ∩ (Bb′(0) \ Ba′(0)). There is a universal con-
stant β > 0 such that for each C > 0,

(55) P
[
diam(U ;dh|V ) ≤ C

] = 1 − OC

(
C−β)

.

(The dependence on the choice of a, b, a′, b′ is in the implicit constant in the
OC(C−β) term.)

PROOF. We will extract the lemma from Lemma A.1 and a union bound over
possible approximate values of νh([0,1]) (which is random with our present choice
of normalization for h). Fix ã′, ã, b̃, b̃′ > 0 with a′ < ã′ < b̃′ < b′ and a < ã <

b̃ < a. For s > 0, let rs > 0 be chosen so that νh([0, rs]) = s and let Us := H ∩
(Bb̃rs

(0) \ Bãrs (0)) and V := H∩ (Bb̃′rs (0) \ Bã′rs (0)).
Let β̃ > 0 be as in Lemma A.1. By Lemma A.1 together with the invariance of

the law of the quantum wedge under scaling boundary lengths by s > 0, areas by
s2, and distances by s1/2 ([11] and [31], Proposition 4.7(i), Lemma 2.2), we see
that for each s > 0,

(56) P
[
diam(Us;dh|Vs

) ≤ Cs1/2] = 1 − OC

(
C−β̃)

.

We now need to transfer this bound from the pair (Us,Vs) to the pair (U,V )

in the statement of the lemma. By our choice of ã′, ã, b̃, b̃′, there is an ε > 0 (de-
pending only on the a’s and b’s) such that if rs ∈ [1 − ε,1 + ε], then Us ⊂ U and
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V ⊂ Vs . Hence

(57) rs ∈ [1 − ε,1 + ε] ⇒ diam(U ;dh|V ) ≤ diam(Us;dh|Vs
).

Since νh([1 − ε,1]) and νh([1,1 + ε]) have finite moments of all negative orders
[39], Theorem 2.12, for each δ > 0 it holds except on an event of probability de-
caying faster than any power of C−1 that νh([1 − ε,1]) and νh([1,1 + ε]) are
each at least C−δ . If this is the case, then the relations in (57) both hold provided
|s − νh([0,1])| ≤ C−δ . On the other hand, by standard moment estimates for the
LQG measure (see [39] plus the boundary measure analog of [13], Theorems 2.11
and 2.12, Lemma A.3, to deal with the log singularity at 0) we find that except on
an event of probability decaying faster than some positive power of C−1, we have
νh([0,1]) ∈ [C−β̃/4,Cβ̃/4]. We now conclude by choosing δ < β̃/4, applying (56)
to OC(Cβ̃/4+δ) values of s ∈ [C−β̃/4,Cβ̃/4], and taking a union bound. �

APPENDIX B: UPPER BOUND FOR THE PROBABILITY THAT SLEκ(ρ)

HITS A POINT

We will prove the following rough estimate, which is needed in the special case
when κ = 8/3 and ρ = (w− − 2,w+ − 2) in the proof of Lemma 4.8. We prove
the lemma for general κ and ρ since the proof is the same.

LEMMA B.1. Let κ ∈ (0,8) and let ρ = (ρ1, . . . , ρk) be a vector of weights.
Also let x, y ∈ ∂D and let η be a chordal SLEκ(ρ) from x to y in D with force
points locations z1, . . . , zk ∈ ∂D. Assume that η a.s. does not hit the continuation
threshold, that is, the sum of the force points which have been hit or disconnected
from y by η up to any fixed time is > −2 (this means that η is a.s. defined for all
time [33], Theorem 2.2). There exists α0 = α0(κ, ρ) > 0 such that

(58) P
[
η ∩ Bε(w) �=∅

] � εα0 ∀ε ∈ (0,1),∀w ∈ D.

Here the implicit constant depends on κ,ρ and w (but not on x, y, z1, . . . , zn) and
is uniform for w in compact subsets of D.

Lemma B.1 in the case when ρ = 0, with exponent α0 = 1 − κ/8, follows from
[2], Proposition 4. We expect that α0 = 1−κ/8 for general values of ρ as well, and
that this can be proven, for example, by adapting the arguments of [27], Section 3.
However, we do not need this stronger estimate here so for the sake of brevity we
do not derive it.

PROOF OF LEMMA B.1. Let r0 := 1/100. We first argue that there is a p =
p(κ,ρ) > 0, not depending on x, y, z1, . . . , zn, such that

(59) P
[
η ∩ Br0(0) = ∅

] ≥ p.
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Indeed, by the Schramm–Wilson coordinate change formula [44], Theorem 3, if
we let ρ̃ be equal to κ − 6 minus the sum of the coordinates of ρ, then η agrees in
law with a radial SLEκ(ρ, ρ̃) from x to 0 in D, with force points at z1, . . . , zn plus
an extra force point of weight ρ̃ at y, stopped at the (a.s. finite) time when it hits
f (y). By [36], Lemma 2.5, such a process has positive probability to avoid Br0(0)

for any fixed choice of x, y, z1, . . . , zn. It is shown in [33], Section 2.2, that the
law of the driving process of SLEκ(ρ) process depends continuously on the force
point locations. By combining this with the radial analog of [20], Proposition 4.43,
we find that the probability of avoiding Br0(0) depends continuously on the force
point locations. Since the space of possible choices of x, y, z1, . . . , zn is compact,
the preceding probability can be taken to be uniform over all possible choices of
x, y, z1, . . . , zn. Thus (59) holds.

We now iteratively apply (59) to prove the statement of the lemma in the
case w = 0. Let τ be the first time η hits Br0(0), so that by (59) we have
P[τ < ∞] ≤ 1−p. On the event {τ < ∞}, let f :D\η([0, τ ]) →D be the confor-
mal map which fixes 0 and takes η(τ) to x. On the event {τ < ∞}, the conditional
law of f (η|[τ,∞)) given f (η|[0,τ ]) is that of an SLEκ(ρ) in D started from x with
some choice of target point and force point locations. By (59), the conditional
probability that f (η|[0,τ ]) hits Br0(0) is at most 1 − p. On the other hand, by stan-
dard distortion estimates we have f (Br2

0 /4(0)) ⊂ Br0(0). Therefore, the probability

that η hits Br2
0 /4(0) is at most (1 − p)2. Iterating this n times, we find that

P
[
η ∩ Brn

0 /4n−1(0) �= ∅
] ≤ (1 − p)n ∀n ∈ N

which implies (58) for an appropriate choice of α0 in the case when w = 0.
To treat the case when w �= 0, let φw : D → D be the conformal map which

fixes x and takes w to 0 and choose c > 0 so that φw(Bε(w)) ⊂ Bcε(0) for each
ε ∈ (0, c). We can take c to be uniform over all choices of w in any fixed compact
subset of D. The curve φw(η) is an SLEκ(ρ) with a possibly different choice of
target point and force point locations. The bound (58) for w �= 0 therefore follows
from (58) for w = 0. �
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