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SHARP INTERFACE LIMIT FOR STOCHASTICALLY PERTURBED
MASS CONSERVING ALLEN–CAHN EQUATION

BY TADAHISA FUNAKI1 AND SATOSHI YOKOYAMA

Waseda University

This paper studies the sharp interface limit for a mass conserving Allen–
Cahn equation, added an external noise and derives a stochastically per-
turbed mass conserving mean curvature flow in the limit. The stochastic
term destroys the precise conservation law, instead the total mass changes
like a Brownian motion in time. For our equation, the comparison argument
does not work, so that to study the limit we adopt the asymptotic expansion
method, which extends that for deterministic equations used originally in de
Mottoni and Schatzman [Interfaces Free Bound. 12 (2010) 527–549] for the
nonconservative case and then in Chen et al. [Trans. Amer. Math. Soc. 347
(1995) 1533–1589] for the conservative case. Differently from the determin-
istic case, each term except the leading term appearing in the expansion of
the solution in a small parameter ε diverges as ε tends to 0, since our equa-
tion contains the noise which converges to a white noise and the products or
the powers of the white noise diverge. To derive the error estimate for our
asymptotic expansion, we need to establish the Schauder estimate for a dif-
fusion operator with coefficients determined from higher order derivatives of
the noise and their powers. We show that one can choose the noise sufficiently
mild in such a manner that it converges to the white noise and at the same time
its diverging speed is slow enough for establishing a necessary error estimate.
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1. Introduction and main results. First, we introduce the stochastic mass
conserving Allen–Cahn equation. Our goal is to discuss its sharp interface limit.
The mass conservation law forces us to introduce a scaling for the noise differ-
ent from the stochastic Allen–Cahn equation and prevents the comparison argu-
ment, which was useful for the stochastic Allen–Cahn equation. Our method is
the asymptotic expansion, in which powers of derivatives of the noise appear re-
peatedly, and our main effort is devoted to controlling these diverging terms. The
evolutional law of the limit hypersurface is described by the mass conserving mean
curvature flow with a nonlocal multiplicative white noise term.

1.1. Stochastic mass conserving Allen–Cahn equation and its background.
We consider the solution uε = uε(t, x) of the following stochastic partial differ-
ential equation (1.1) in a bounded domain D in R

n having a smooth boundary
∂D:

(1.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂uε

∂t
= �uε + ε−2

(
f
(
uε) − −

∫
D

f
(
uε)) + αẇε(t) in D × R+,

∂uε

∂ν
= 0 on ∂D × R+,

uε(0, ·) = gε(·) in D,

where ε > 0 is a small parameter, α > 0, ν is the inward normal vector on ∂D,
R+ = [0, ∞),

−
∫
D

f
(
uε) = 1

|D|
∫
D

f
(
uε(t, x)

)
dx,

gε are continuous functions having the property (1.12) stated below, or more pre-
cisely, satisfying the conditions (4.19)–(4.21). The noise ẇε(t) is the derivative of
wε(t) ≡ wε(t,ω) ∈ C∞(R+) in t defined on a certain probability space (	,F,P )
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such that wε(t) converges to a one-dimensional standard Brownian motion w(t) as
ε ↓ 0 in a suitable sense; see (1.8) and Assumption 1.1 below. We assume that the
reaction term f ∈ C∞(R) is bistable and satisfies the following three conditions:

(i) f (±1) = 0, f ′(±1) < 0,

∫ 1

−1
f (u)du = 0,

(ii) f has only three zeros ± 1 and one another between ± 1,

(iii) there exists c̄1 > 0 such that f ′(u) ≤ c̄1 for every u ∈ R.

The last equality in (i) is called the balance condition. A typical example is f (u) =
u − u3. From (i) and (ii), it follows that there exists a unique increasing solution
m: R −→ (−1,1) of

(1.2) m′′ + f (m) = 0 on R, m(±∞) = ±1, m(0) = 0,

and m is called the traveling wave (or standing wave) solution. The function m =
m(ρ), ρ ∈ R, satisfies

(1.3) ∂k
ρ

(
m(ρ) ∓ 1

) = O
(
e−ζ |ρ|) as ρ → ±∞,

for k = 0,1,2, . . . , where ζ = min{√ −f ′(−1),
√−f ′(1)} > 0.

A mass conserving Allen–Cahn equation without noise, that is, (1.1) with α = 0,
is introduced by Rubinstein and Sternberg [24]. Then the existence and uniqueness
results for (1.1) with α = 0 are established by [5], [6], [19] and its sharp interface
limit as ε ↓ 0 is studied by Chen et al. [3]. Note that the general theory of par-
tial differential equations [17] provides the well-posedness and the smoothness of
the solutions for equation (1.1) having an additional smooth external force term
αẇε(t). On the other hand, for a stochastic Allen–Cahn equation, that is, (1.1)
without the averaged reaction term, the sharp interface limit is studied by Funaki
[10], [11], Lions and Souganidis [22] and Weber [26]; see also [12], [13] which
give a brief survey. The study of the sharp interface limit of the stochastic mass
conserving Allen–Cahn equation (1.1) is a natural extension and combination of
these two problems. Note that the noise term considered in [11], [26] was scaled
as ε−1αẇε(t). This is very different from αẇε(t) in (1.1). In other words, our dy-
namics are more sensitive to the noise. We will give a heuristic explanation for this
difference in Section 2.1. Note also that the comparison argument used in [11], [26]
does not work for equation (1.1). This is the main technical difference between our
equation and the stochastic Allen–Cahn equation.

1.2. Limit dynamics, conservation law and related results. Our goal is to show
that the solution uε(t, x) of (1.1) converges as ε ↓ 0 to χγt (x) with certain hyper-
surface γt in D, where χγ (x) = +1 or −1 according to the outside or inside of the
hypersurface γ , if this holds for the initial data gε with a certain γ0, and the time
evolution of γt is governed by

(1.4) V = κ − −
∫
γt

κ + α|D|
2|γt | ◦ ẇ(t), t ∈ [0, σ ],
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up to a certain stopping time σ > 0 (a.s.), where V is the inward normal velocity
of γt , κ represents the mean curvature of γt multiplied by n − 1, |γt | denotes the
surface area of γt , −∫γt

κ = 1
|γt |

∫
γt

κ ds̄, ds̄ stands for the volume element of γt , ẇ(t)

is the white noise process and ◦ means the Stratonovich stochastic integral. When
α = 0, equation (1.4) coincides with the limit of the mass conserving Allen–Cahn
equation studied in [3]. Note that, in [3], the sign of V is taken opposite. When
α = 0, the mass of the solution uε of (1.1) is conserved, namely,

(1.5)
1

|D|
∫
D

uε(t, x) dx = C,

holds for some constant C ∈ R. On the other hand, in the case where the fluctuation
caused by αwε(t) is added, the rigid mass conservation law is destroyed and in
place of (1.5), we have the conservation law in a stochastic sense

(1.6)
1

|D|
∫
D

uε(t, x) dx = C + αwε(t), t ∈ R+,

which can be derived by integrating (1.1) over D:

(1.7)
1

|D|
∫
D

(
∂tu

ε(t, x) − αẇε(t)
)
dx = 0.

Equation (1.6) implies that the total mass per volume behaves like a Brownian
motion multiplied by α as ε tends to 0.

At least heuristically, the limit dynamics (1.4) is consistent to the conservation
law (1.7) if the coefficient c of the noise ẇ(t) is given by c = α|D|

2|γt | as in (1.4).
In fact, if V > 0, the (−1)-phase transfers into (+1)-phase with speed V per unit
time. If V < 0, an opposite transition occurs. Therefore, the rate of change of the
total mass is given by ∂t

∫
D uε(t, x) dx ≈ 2

∫
γt

V . If V is governed by the equation
of the form of (1.4) with a coefficient c in front of the noise ẇ(t), 2

∫
γt

V is equal to
2c|γt |ẇ(t) and, for this to be consistent to (1.7) asymptotically as ε ↓ 0, we would
have 2c|γt | = α|D|, and this implies c = α|D|

2|γt | . See Section 2.1 for more detailed
heuristic derivation of (1.4).

Equation (1.1) with α = 0 and without the averaged reaction term is called the
Allen–Cahn equation. It is well known that the mean curvature flow V = κ appears
in the limit for this equation; cf., [1], [13]. For the stochastic Allen–Cahn equa-
tion, that is, (1.1) without the averaged reaction term and with the noise differently
scaled as we mentioned above, the limit dynamics are given by V = κ + σ̄ αẇ(t),
where σ̄ (≡ c0) is the inverse surface tension defined in (2.30) or in Section 2.1 be-
low; see [11], (1.5). In this case, a simple additive noise appears in the limit, while
in our case the limit dynamics (1.4) has a multiplicative noise and its coefficient
contains a nonlocal term |γt |−1. This is due to the effect of the conservation law.
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1.3. Formulation of main results. We take an integer K satisfying K >

max(n + 2,6) and fix it throughout the paper. This will be necessary for the proof
of Theorem 4.9 later. Let wε = wε(t) ≡ wε(t,ω), 0 < ε ≤ 1, t ∈ R+, ω ∈ 	

be a family of (Ft )-adapted stochastic processes defined on a probability space
(	,F,P ) equipped with the filtration (Ft )t ≥0, which satisfy that wε(0) = 0,
wε(·) ∈ C∞(R+) in t a.s. ω and

(1.8) lim
ε↓0

∥∥wε − w
∥∥
Cθ ([0,T ]) = 0 a.s.,

for every T > 0 and some θ ∈ (0, 1
2), where w(t) is an (Ft )-Brownian motion

satisfying w(0) = 0 and

(1.9) ‖v‖Cθ ([0,T ]) = sup
t ∈[0,T ]

∣∣v(t)
∣∣ + sup

0≤s,t ≤T
s �=t

|v(t) − v(s)|
|t − s|θ .

To prove our main theorem, we need two assumptions formulated as follows.
The first assumption is on the speed of blowing up of the time derivatives of the
noises, which is slow enough to control the diverging terms appearing in the ex-
pansion of uε(t, x) in ε.

ASSUMPTION 1.1. For every T > 0, there exists Hε ≥ 1, 0 < ε ≤ 1, such that

sup
t ∈[0,T ],ω∈	

∣∣∣∣ dk

dtk
wε(t,ω)

∣∣∣∣ ≤ Hε, k = 1,2, . . . , n1(K) + 1,(1.10)

lim
ε↓0

Hε = ∞, lim
ε↓0

H
2n1(K)
ε

log log | log ε| = 0,(1.11)

where n1(K) ∈ N is the number determined from K by Proposition 3.6 below.

Two examples of our mild noise wε satisfying (1.8) and Assumption 1.1 will be
given in Section 4.1.

The second assumption concerns the local existence and uniqueness for the limit
dynamics (1.4) and the Wong–Zakai-type convergence theorem for the solutions
as the noises converge.

ASSUMPTION 1.2. There exist stopping times σε and σ such that V αẇε

(resp., V ), the solution of (2.6) below with v = αẇε [resp. (1.4)], exists uniquely in
[0, σ ε ] (resp., [0, σ ]). In addition, σε > 0 and σ > 0 hold a.s. Furthermore, for ev-
ery T > 0 and m ∈ N, the joint variable (σ ε, dε(t ∧ σε)) ∈ R+ × C([0, T ],Cm(O))

converges in this space to (σ, d(t ∧ σ)) as ε ↓ 0 in a.s.-sense, where dε(t) [resp.,
d(t)] is the signed distance determined by the hypersurface γ αẇε

t (resp., γt ),
which is negative inside γ αẇε

t (resp., γt ), and O is an open neighborhood of
γ0; see Theorem 1.1 and [26]. The signed distance d(t) = d(t, x) is defined as
d(t, x) = sgn(x) infy∈γt |x − y| and sgn(x) = 1 or −1 if x is outside of γt or inside
of γt , respectively. dε(t, x) is similarly defined.
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Note that the smoothness of various constructions in the evolution of hyper-
surfaces is guaranteed by this assumption. We will show in Section 5 that As-
sumption 1.2 holds in the sense of law under a two-dimensional setting as long as
the limit curve γt stays convex. Applying Skorohod’s representation theorem for
joint variables (wε, σ ε, dε(t ∧ σε)), by changing the probability space (	,F,P )

if necessary, one can realize the convergence in a.s.-sense as in (1.8) and Assump-
tion 1.2. One of the reasons to formulate Assumption 1.2 in a general setting is
that we have a hope to prove it in the future. Another reason is that one can clearly
separate the methods in the theory of partial differential equations and those in
stochastic analysis by formulating Assumption 1.2.

Assumption 1.2 implies uniform bounds on spatial derivatives of the distance
functions in ε > 0 locally in time; see Section 3.3.1. We also need bounds on t-
derivatives of the hypersurface γ αẇε

t by means of a certain norm of the noise ẇε .
This will be formulated precisely as Assumption 3.1 in Section 3.3.2 and shown
under two-dimensional settings in Section 5.

The aim of this paper is to prove the following theorem.

THEOREM 1.1. Let γ0 be a smooth hypersurface in D without boundary with
finitely many connected components and it has the form γ0 = ∂D0 with a smooth
domain D0 such that D0 ⊂ D. Suppose that a local solution � = ⋃

0≤t<σ (γt × {t })
of (1.4) up to the stopping time σ > 0 (a.s.) satisfying γt ⊂ D for all t ∈ [0, σ ]
uniquely exists (a.s.). Furthermore, let us assume three Assumptions 1.1, 1.2 and
3.1. Then one can find a family of continuous functions {gε(·)}ε∈(0,1] satisfying

(1.12) lim
ε↓0

gε(x) = χγ0,

such that uε(t ∧ σε ∧ τ, ·) converges to χγt ∧σ ∧τ (·) in C(R+,L2(D)) as ε ↓ 0 in
a.s.-sense, where uε is the solution of (1.1) with initial value gε and τ = τ(ω) > 0
is that given below Assumption 3.1.

If Assumption 1.2 holds in the sense of law, by the observation we gave above,
Theorem 1.1 holds also in the sense of law. More precise conditions for gε are
formulated in (4.19)–(4.21).

The right-hand side of the first equation in (1.1) contains the averaged reaction
term, and hence, as we already pointed out, one cannot directly apply the com-
parison principle to estimate its solution. This is a difference from the stochastic
Allen–Cahn equation treated in [11], [26]. Our method for the proof of Theo-
rem 1.1 is an extension of the asymptotic expansion used originally in de Mottoni
and Schatzman [4] and then in [3].

Recall that w(t) is not in C1-class in t and, therefore, for any smooth se-
quence {wε(t)}0<ε≤1 converging toward w(t), the products or the powers of its
time derivative {ẇε(t)}0<ε≤1 and higher order time derivatives always diverge as
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ε ↓ 0. Due to this, each term in inner and outer solutions constructed by the asymp-
totic expansion except its leading term explodes as ε ↓ 0 because it contains some
powers of the time derivatives of wε . [Here, the inner solution is defined through
the expansion of uε near the interface in a stretched (microscopic) spatial variable
ρ ∈ R, which is introduced to relax the sharp transition of uε near the interface,
rather than the original (macroscopic) variable x ∈ D, while the outer solution de-
termines the boundary condition of the inner solution at ρ = ±∞; see Section 2.3
for more details. The meaning of the outer solution becomes clear in Section 2.1.]
However, by choosing the sequence ẇε(t) in a suitable manner that its divergent
speed is slow enough as in Assumption 1.1, one can control the diverging terms.
Indeed, the speed of divergence of each kth inner and outer solutions having pref-
actor εk can be controlled once we can make the divergent speed of the powers
of time derivatives of wε(t) slower than ε−k . This is one of the key points in the
proof of Theorem 1.1.

The paper is organized as follows. In Section 2, we first give a heuristic deriva-
tion of the evolutional law (1.4) of γt , as a result of the combination of (2.4) and
(2.30). Then we introduce the asymptotic expansion of the solution uε of equation
(1.1) in ε in detail. It turns out that one needs to analyze the asymptotic expan-
sion up to the K th order term with K > max(n + 2,6); cf. Lemma 2 of [3] and
Theorem 4.9 below. We briefly touch the stochastic mass conserving Allen–Cahn
equation with a spatially dependent noise with vanishing spatial average, and com-
pare the scaling of the noise to our case. In Section 3, we define an approximate
solution and show the estimates on each term in the asymptotic expansion. This
is accomplished by carefully studying the Schauder estimate for a diffusion oper-
ator with diverging coefficients. In particular, we need to study how the constants
in the Schauder estimate depend on the coefficients, especially the norm of the
noise ẇε . As a result, we find out that Assumption 1.1 for ẇε is enough to con-
trol the expansion of uε . Then in Section 4, we give the proof of Theorem 1.1.
In Section 5, we discuss the stochastic partial differential equation (SPDE) cor-
responding to (1.4) under the situation that n = 2 and the interfaces stay convex
and show that the SPDE corresponding to (1.4) has a unique local solution in such
case. Assumption 1.2 in law sense and Assumption 3.1 are shown in this situation.

Proofs of all the lemmas in Sections 3–5, with some exceptions, are deferred to
the Supplementary Materials [14].

REMARK 1.1. Weber [26] established the sharp interface limit for the stochas-
tic Allen–Cahn equation in a.s.-sense with the choice of ẇε(t) such as the first
example given in Section 4.1. In his argument, it was essential that the SPDE de-
scribing the dynamics of the limit hypersurface γt in terms of the signed distance
d has an additive noise. This is not the case for our limit dynamics (1.4) and his
argument does not work or at least requires substantial modifications for showing
Assumption 1.2 under a more general setting than we discuss in Section 5.
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2. Asymptotic expansion of the solution of (1.1).

2.1. Heuristic argument for the derivation of (1.4). Before starting the proof
of Theorem 1.1, it might be worthy to give a heuristic derivation of the evolu-
tional law (1.4) of the limit hypersurface γt from the stochastically perturbed mass
conserving Allen–Cahn equation (1.1).

Note that the scaling for the noise term in (1.1) is essentially different from that
for the stochastic Allen–Cahn equation. In fact, without the term −−∫D f (uε) in
(1.1), the proper scaling for the noise term was ε−1αẇε(t) rather than αẇε(t);
see [11]. We give a heuristic argument to explain the reason for this difference;
see also Section 2.5 for a spatially dependent noise. In particular, we will see that
the averaged reaction term behaves as −∫D f (uε) = O(ε) as ε ↓ 0 so that ε−2 −∫
D f (uε) ≈ ε−1λ0(t) with a certain λ0(t), and the evolution of λ0(t) is governed

by the noise αẇε(t) of O(1).
Our basic ansatz is that uε(t, x) ≈ ±1 as ε ↓ 0. We actually assume this at t = 0

as in (1.12). This implies f (uε) ≈ 0 so that aε(t) := −∫D f (uε) should be small; see
Remark 2.1 below. Conversely, if aε(t) is small, the main term of the reaction term
becomes ε−2f (uε) so that the solution uε is pushed toward ±1 and we can expect
our ansatz to be true. Anyway, this observation suggests that, instead of m defined
by (1.2), it might be better to consider the perturbed traveling wave solutions with
the reaction term f replaced by f − aε(t) + ε2v(t) and v(t) = αẇε(t). We denote
v(t) for αẇε(t), since this term could be regarded as O(1) as ε ↓ 0; see (2.5)
below. More precisely, for a ∈ R with small |a|, define the traveling wave solution
m = m(ρ; a), ρ ∈ R and its speed c = c(a) by

(2.1)

{
m′′(ρ) + cm′(ρ) + {

f
(
m(ρ)

) − a
} = 0, ρ ∈ R,

m(±∞) = m∗±, m(0) = 0,

where m∗± ≡ m∗±(a) = ±1 + O(a) (a → 0) are solutions of f (m∗±) − a = 0. It is
easy to see that c0 := c′(0) = 2/

∫
R

m′(ρ)2 dρ; see below. Another expression of
c0 is also known: c0 =

√
2∫ 1

−1
√

V (u)du
where V (u) = ∫ 1

u f (v) dv; see [11].

Our guess for the behavior of the solution uε of (1.1) is the following:

(2.2) uε(t, x) = m

(
d(t, x)

ε
; aε(t) − ε2v(t)

)
+ O(ε),

as ε ↓ 0, where d(t, x) is the signed distance between x ∈ D and the limit hyper-
surface γt . Then, denoting m(·; aε(t) − ε2v(t)) simply by m, we have

0 =
∫
D

{
�uε + 1

ε2

(
f
(
uε) − −

∫
D

f
(
uε))}dx

≈ 1

ε2

∫
D

{
m′′

(
d

ε

)
+ εm′

(
d

ε

)
�d + f

(
m

(
d

ε

))
− aε(t) + ε2v(t)

}
dx

− |D|v(t)
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= 1

ε2

∫
D

{
−c

(
aε(t) − ε2v(t)

)
m′

(
d

ε

)
+ εm′

(
d

ε

)
�d

}
dx − |D|v(t)

≈ 1

ε2

∫
D

m′
(

d

ε

){−c0a
ε(t) + ε�d

}
dx − |D|v(t)

≈ 1

ε2

∫
R

∫
γt

m′
(

r

ε

){−c0a
ε(t) + εκ(t, s̄) + εrb(t, s̄)

}
dr ds̄ − |D|v(t)

≈
∫
R

∫
γt

m′(ρ)

{
− 1

ε
c0a

ε(t) + κ(t, s̄) + ερb(t, s̄)

}
dρ ds̄ − |D|v(t)

= (
m∗+ − m∗−

) ∫
γt

{
−c0

aε(t)

ε
+ κ(t, s̄)

}
ds̄ − |D|v(t) + O(ε).

Here, the first line is a consequence of
∫
D �uε dx = 0 which holds under the

Neumann condition at ∂D, we apply (2.2) for the second line noting that �uε ≈
�(m(d

ε
)) = 1

ε2 m′′(d
ε
)|∇d|2 + 1

ε
m′(d

ε
)�d and |∇d| = 1 at least near γt , the third

line follows from (2.1) with a = aε(t) − ε2v(t), the fourth line by c(aε − ε2v) =
c0a

ε + O((aε)2) + O(ε2) and c(0) = 0, the fifth line from (30), (40) of [3], that is,
�d = κ(t, s̄) + rb(t, s̄) + O(ε) with b(t, s̄) = −∇d · ∇�d for s̄ ∈ γt and the sixth
line follows by the change of variables r = ερ. The above computation implies
that aε(t) should be of order O(ε) and, defining λ0(t) as

(2.3)
1

ε
aε(t) ≡ 1

ε
−
∫
D

f
(
uε(t, ·)) = λ0(t) + O(ε),

since m∗± = ±1 + O(aε(t) − ε2v(t)) = ±1 + O(ε), we obtain

(2.4) 2c0λ0(t)|γt | = 2
∫
γt

κ ds̄ − |D|v(t),

in the limit ε ↓ 0.
It will be clear that this condition is necessary for the first term of (3.13) to van-

ish and used in (2.29) to determine λ0(t); note that c0 = σ̄ := 2(
∫
R

m′(ρ)2 dρ)−1

holds as we will see below, where σ̄ is called the inverse surface tension. In par-
ticular, (2.2) and (2.3) suggest

uε(t, x) ∼
x=(s̄,r),r→ ± ∞ m∗±

(
aε(t) − ε2v(t)

) ∼ ±1 + ε
λ0(t)

f ′(±1)
,

since 0 = f (m∗±) − a ∼ f ′(±1)(m∗± ∓ 1) − a, which implies m∗± ∼ ±1 + a
f ′(±1)

.
This exactly coincides with the formula (2.34) for the asymptotic behavior of the
outer solutions.

Once (2.4) is obtained, (1.4) could be derived from

V = κ − σ̄ λ0(t) on γt ,

which is obtained as a solvability condition for u0 appearing in the expansion of uε;
see (2.30) below. Later, we will consider the expansion of uε based on m(d(t,x)

ε
; 0)
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with a = 0 rather than that introduced in (2.2), since the leading orders are the
same.

We finally comment on the identity c0 = σ̄ . The smoothness of c(a) in a is
shown in the Appendix of [7]. We compute for m = m(·; a) as

0 = −
∫
R

1

2

{(
m′)2}′

dρ = −
∫
R

m′′ · m′ dρ

=
∫
R

{
c(a)m′ + f (m) − a

}
m′ dρ

= c(a)

∫
R

(
m′)2

dρ +
∫ m∗+

m∗−
f (s) ds − a

(
m∗+ − m∗−

)
.

Take the derivative of both sides in a and set a = 0 noting that m′ = m′(ρ; a)

and m∗± = m∗±(a). This leads to the identity c0 = σ̄ since m∗±(a) = ±1 + O(a) as
a → 0.

REMARK 2.1. If the condition (1.12) does not hold for the initial data gε ,
aε(0) is not small in general. In this case, aε(t) may not be small as well. This
means that the reaction term f (u) − aε(t) does not satisfy the balance condition,
that is, the last equality in the condition (i) for f . Thus, the situation is more close
to that of Gärtner [15] and others discussed at least in the nonrandom case; see
Section 4.1 of [13] and also Hilhorst et al. [18]. In particular, the proper time scale
and the limit dynamics should be totally different from ours.

2.2. Signed distance from γt and parametrization of γt . Let us start more pre-
cise discussions. The expansion of the solution uε(t, x) of (1.1) in ε will be given
only in ε appearing in the reaction term and not that in the noise term. To make
this clear, we consider the following equation with an external force v(t), which is
deterministic (nonrandom) such that v ∈ C∞(R+):

(2.5)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂uε

∂t
= �uε + ε−2

(
f
(
uε) − −

∫
D

f
(
uε)) + v(t) in D × R+,

∂uε

∂ν
= 0 on ∂D × R+,

uε(·,0) = gε(·) in D.

Needless to say, the solution of (1.1) is the same as that of (2.5) with v = αẇε . In
addition, we consider the hypersurface {γ v

t } whose evolution is governed by

(2.6) V v = κ − −
∫
γ v
t

κ + |D|
2|γ v

t | v(t),

where V v is the inward normal velocity of γ v
t . From Assumption 1.2, (2.6) has a

unique solution for t ≤ T v with some T v > 0. Under these settings, we will first
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expand the solution uε = uε,v of (2.5) in ε based on the solution γt = γ v
t of (2.6).

Next, we will estimate each term appearing in the expansion by a suitable norm of
v; see Proposition 3.6 and Lemma 4.3. Finally, in Sections 4.2–4.5, we will apply
these lemmas taking v(t) = αẇε(t).

In Sections 2.2 and 2.3, we copy several notation and computations from [3].
Let d = dv(t, x) be the signed distance of x ∈ D to the hypersurface γt , which is
negative inside γt ; cf. Bellettini [1], Chapter 1. To parametrize the hypersurface γt

on a fixed reference manifold, we go along with [1], Chapter 16 as follows. Let
S ⊂ R

n be an oriented compact smooth (n − 1)-dimensional submanifold without
boundary and with finitely many connected components being smoothly embedded
in R

n. For each s = (sl)nl=1 ∈ S , except some singular points, sn is represented
by other coordinates such that sn = sn(s1, . . . , sn−1), and thus we can take s =
(sl)n−1

l=1 as a local coordinate of S . Near singular points for sn, one may take other
coordinates, for example, (sl)nl=2, but we denote it by s = (sl)n−1

l=1 for simplicity.
Then { ∂

∂sl }n−1
l=1 forms a basis of the tangent space TsS at s ∈ S . We parametrize

γt , t ∈ [0, T ] as x = X0(t, s) by s = (sl)n−1
l=1 ∈ S such that X0 ∈ C∞([0, T ] ×

S,Rn) and the map X0(t, ·) : S → γt is homeomorphic for every t ∈ [0, T ]. See
Remark 2.2 below to see that this is possible. In particular, (

∂X0(t,s)

∂s1 , . . . ,
∂X0(t,s)

∂sn−1 )

forms a basis of the tangent space to γt at x = X0(t, s) for each s ∈ S .
We denote by n(t, s) the unit outer normal vector on γt so that

(2.7) n(t, s) = ∇d
(
t,X0(t, s)

)
.

We define the Jacobian of the map X0(t, ·) as

(2.8) J 0(t, s) = det
[
n(t, s), ∂s1X0(t, s), . . . , ∂sn−1X0(t, s)

]
.

REMARK 2.2. Bellettini ([1], page 251) introduces the parametrization
ϕε(t, s) of the hypersurface γ̃ ε

t determined by (2.18) below. Our parametrization
X0(t, s) of γt by S is similar and corresponds to ϕ0(t, s) [i.e., ϕε(t, s) with ε = 0]
in [1]; see especially Remark 3.6 and Definition 16.1 of [1]. Chen et al. [3], (31)
considers the parametrization by U instead of our S satisfying

(2.9) J 0(t, s) = 1,

but under this parametrization the set U changes in t . To avoid this inconvenience,
we follow [1].

Let δ > 0 be small enough such that the signed distance function d(t, x) from γt

is smooth in the 3δ-neighborhood of γt = γ v
t (recall Assumption 1.2) and the dis-

tance between γt and ∂D is larger than 3δ for every t ∈ [0, T v ]. A local coordinate
(r, s) ∈ (−3δ,3δ) × S of x in a tubular neighborhood of γt is defined by

(2.10) x = X0(t, s) + rn(t, s) =: X(t, r, s).
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In other words, X0(t, s) is the point on γt closest from x. Then its inverse function
on a tubular neighborhood of γt is given by

r = d(t, x), s = S(t, x) = (
S1(t, x), . . . , Sn−1(t, x)

)
.

In particular, since r = d(t,X0(t, s) + rn(t, s)), by differentiating this in r , we
have

∇d
(
t,X0(t, s) + rn(t, s)

) · n(t, s) = 1, r ∈ (−3δ,3δ).

Since |∇d(t, x)| = 1 for x close to γt , this implies

(2.11) ∇d
(
t,X0(t, s) + rn(t, s)

) = n(t, s), r ∈ (−3δ,3δ).

Changing coordinates from (t, x) to (t, r, s) for a function φ = φ(t, x), we asso-
ciate another function φ̃ = φ̃(t, r, s) as

φ̃(t, r, s) = φ
(
t,X0(t, s) + rn(t, s)

)
,

or equivalently

φ(t, x) = φ̃
(
t, d(t, x),S(t, x)

)
.

Let V (t, s) be the inward normal velocity of the interface γt at X0(t, s),

V (t, s) = −∂tX0(t, s) · n(t, s).

From (2.7) and d(t,X0(t, s)) = 0, we see that

(2.12) V (t, s) = ∂td
(
t,X0(t, s)

)
.

Then we have

∂tφ(t, x) = (
V ∂r + ∂�

t

)
φ̃
(
t, d(t, x),S(t, x)

)
,

∇φ(t, x) = (
n
(
t,S(t, x)

)
∂r + ∇ �)φ̃(t, d(t, x),S(t, x)

)
,

�φ(t, x) = (
∂2
r + �d(t, x)∂r + ��)φ̃(t, d(t, x),S(t, x)

)
,

where the superscripts � mean the derivatives tangential to the hypersurface γ v

seen under the coordinate s ∈ S :

∂�
t φ̃ =

(
∂t +

n−1∑
i=1

Si
t ∂si

)
φ̃,

∇ �φ̃ =
(

n−1∑
i=1

∂1S
i∂si , . . . ,

n−1∑
i=1

∂nS
i∂si

)
φ̃,

��φ̃ =
(

n−1∑
i=1

�Si∂si +
n−1∑
i,j =1

∇Si · ∇Sj∂2
si sj

)
φ̃,
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see (33) in [3] recalling that the sign of V is opposite. We denote by κ1, . . . , κn−1,0
the eigenvalues of the Hessian D2

xd(t, x) with corresponding normalized eigenvec-
tors τ1, . . . , τn−1, ∇d; note that D2

xd(t, x)∇d(t, x) = 0 so that 0 is an eigenvalue
of the Hessian and ∇d is the corresponding eigenvector; cf. (28) in [3]. Set

(2.13) κ(t, s) := (n − 1)κ̄γt =
n−1∑
i=1

κi = �d
(
t,X0(t, s)

)
,

where κ̄γt is the mean curvature of γt at x = X0(t, s). We denote

(2.14) b(t, s) := −∇d · ∇�d(t, x)|x=X0(t,s) =
n−1∑
i=1

κ2
i .

2.3. Formal expansion of the solution uε . In this subsection, we briefly recall
in our setting the method of construction of inner and outer solutions given in [3].
Equation (2.5) is expressed as

(2.15) 0 = f
(
uε(t, x)

) + ε2(−∂tu
ε(t, x) + �uε(t, x) + v(t)

) − ελε(t),

where λε(t) := ε−1aε(t) is given in (2.3), that is,

(2.16) λε(t) := ε−1 −
∫
D

f
(
uε(t, ·)).

Note that (2.15) combined with the conservation law

(2.17) ∂t

∫
D

uε(t, x) dx = |D|v(t)

implies (2.16) and, therefore, (2.5).
Our first guess for the behavior of the solution uε of (2.5) was given by (2.2).

The term m in the right-hand side of (2.2) attains zeros exactly at γt = {d(t, x) =
0}. However, with the error term O(ε), it is reasonable to expect the zeros Zε

t ≡
{x ∈ D | uε(t, x) = 0} of uε is close to γt and has a distance of O(ε) from γt . This
suggests to introduce a new variable hε(t, s) and a set

(2.18) γ̃ ε
t = {

X(t, r, s) | r = εhε(t, s), s ∈ S
}
,

which, we expect, is almost Zε
t ; cf. (35) of [3]. We will expand uε , λε and hε in ε;

see (2.24) and (2.25) below. In fact, hε(t, s) will be determined in such a way that
the leading term in the expansion of ũε(t, ρ, s), which is defined from uε(t, x) by
shifting by εhε , is exactly m(ρ) as we will see in (2.24).

Let us define the stretched variable ρ = ρε(t, x) as

ρε(t, x) = d(t, x) − εhε(t,S(t, x))

ε
,

which is nearly the distance between x and γ̃ ε
t (more precisely, the distance be-

tween x and γt minus that between γ̃ ε
t and γt measured at the projected point of
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x onto γt ) divided by ε > 0; see below for the reason to introduce the stretched
(microscopic) variable. Then the variables (t, x) and (t, ρ, s) are related by

(2.19)
x = X̂(t, ρ, s) = X

(
t, ε

(
ρ + hε(t, s)

)
, s
)

= X0(t, s) + ε
(
ρ + hε(t, s)

)
n(t, s).

Furthermore, its Jacobian J ε(t, ρ, s) defined by dx = εJ ε(t, ρ, s) dρ ds is written
as

J ε(t, ρ, s) = J 0(t, s)

(
1 + �d(t, s)

(
ε
(
ρ + hε(t, s)

))

+
n−1∑
i=2

(
ε
(
ρ + hε(t, s)

))i
ji(t, s)

)
,

(2.20)

with some given functions ji depending on γt ; see [3], (44), page 537 and also
page 538. By the change of variable formula [see [3], (39)], we obtain

∂tu
ε(t, x) = (

V
(
t,S(t, x)

)
ε−1

− ∂�
t hε

(
t,S(t, x)

))
∂ρũε(t, ρ(t, x),S(t, x)

)
(2.21)

+ ∂�
t ũε(t, ρ(t, x),S(t, x)

)
,

�uε(t, x) = (
ε−2 + ∣∣∇ �hε

(
t,S(t, x)

)∣∣2)∂2
ρũε(t, ρ(t, x),S(t, x)

)
+ (

�d(t, x)ε−1 − ��hε

(
t,S(t, x)

))
∂ρũε(t, ρ(t, x),S(t, x)

)
(2.22)

− 2∇ �hε

(
t,S(t, x)

) · ∇ �∂ρũε(t, ρ(t, x),S(t, x)
)

+ ��ũε(t, ρ(t, x),S(t, x)
)
,

where ũε = ũε(t, ρ, s) is the function uε = uε(t, x) viewed under the coordinate
(t, ρ, s) defined by (2.19). In the following, we will denote ũε by u for simplicity.
Therefore, from (2.15), we have

0 = [
∂2
ρu + f (u)

] + ε
[(−V (t, s) + �d

)
∂ρu − λε(t)

]
+ ε2[(��u − ∂�

t u
) + (

∂�
t hε − ��hε

)
∂ρu

]
+ ε2[|∇ �hε |2∂2

ρu − 2∇ �hε · ∇ �∂ρu
] + ε2v(t).

(2.23)

Suppose that u and hε have the inner asymptotic expansions:

(2.24)
u(t, ρ, s) = m(ρ) + εu0(t, ρ, s) + ε2u1(t, ρ, s) + ε3u2(t, ρ, s) + · · · ,

εhε(t, s) = εh1(t, s) + ε2h2(t, s) + ε3h3(t, s) + · · · ,

for (t, ρ, s) ∈ [0, T v ] × R × S , respectively, where m is the standing wave solution
determined by (1.2). On the other hand, assume that λε and u± have the outer
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asymptotic expansions:

(2.25)
λε(t) = λ0(t) + ελ1(t) + ε2λ2(t) + ε3λ3(t) + · · · ,

u±(t) = ±1 + εu±
0 (t) + ε2u±

1 (t) + ε3u±
2 (t) + · · · ,

for t ∈ [0, T v ], respectively. As we mentioned in Section 1.3 after formulating
Theorem 1.1, the inner expansion of uε is that given near the interface. The tran-
sition from (+1)-phase to (−1)-phase near the interface is sharp. To relax this, we
observe the solution uε in a stretched spatial variable ρ and make its expansion in
this scale. To complete this procedure, we need to determine the boundary values
of the inner solution at ρ = ±∞ (i.e., the limits as ρ → ±∞), and the outer so-
lution provides this information. This was already seen for u±

0 (t) in the heuristic
argument in Section 2.1.

Furthermore, let us note that �d(t, x) is expanded into

�d(t, x)|x=X0(t,s)+ε(ρ+hε(t,s))n(t,s)

= κ(t, s) − ε
(
ρ + hε(t, s)

)
b(t, s) + ∑

i≥2

εibi(t, s)
(
ρ + hε(t, s)

)i
,

(2.26)

where bi(t, s), i ≥ 2 are some functions depending only on γt ; see (40) of [3].

2.4. Inductive scheme to determine coefficients. In this subsection, for a fixed
K > max(n + 2,6), we construct functions {uk }K

k=0, {hk }K
k=0, {λk }K

k=0 and {u±
k }K

k=0
appearing in the above expansions (2.24) and (2.25) of u, hε , λε and u± defined
for t ∈ [0, T v ] in such a manner that all kth order terms [i.e., those of order O(εk)]
vanish when we substitute these formal expansions in (2.23), where we set h0 = 0
for convenience. In fact, setting

(2.27) νk = (
uk,hk, λk, u

±
k

)
, k = 0,1, . . . ,K,

νk will be inductively determined as follows: For k = 0, λ0 will be defined by
(2.29) below, u0 by (2.32) and u±

0 by (2.34), respectively. This determines ν0. For
k ≥ 1, once we know {νi }k−1

i=0 , hk is determined by solving equation (2.44) and
λk by (2.43) knowing hk additionally, respectively. Furthermore, uk is defined by
(2.38) knowing hk and λk , while u±

k are determined by (2.41).
When we insert the expansion of u in (2.24) into (2.23), the term of order O(1)

needs to satisfy m′′(ρ) + f (m(ρ)) = 0 so that we took the leading term of u as
m(ρ).

Let us start the procedure to determine ν0. For the term of order O(ε) in (2.23)
to vanish, recalling (2.26), we have

(2.28) Lu0 = (−V + κ)m′ − λ0(t),

where L is the linearized operator of −(∂2
ρu + f (u)) around m defined as

Lu0 = −∂2
ρu0 − f ′(m)u0, ρ ∈ R.
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Suggested by (2.4), we first define λ0(t) as

(2.29) λ0(t) = 1

σ̄ |γ v
t |

∫
γ v
t

κ(t, s̄) ds̄ − |D|
2σ̄ |γ v

t | v(t).

Note that
∫
γ v
t

κ(t, s̄) ds̄ = ∫
S κ(t, s)J 0(t, s) ds and |γ v

t | = ∫
S J 0(t, s) ds by the

change of variables s̄ = X0(t, s). Then, from the solvability condition
∫
Lu0 ×

m′ dρ = 0 for (2.28), V needs to satisfy

(2.30) −V (t, s) + κ(t, s) = λ0(t)σ̄ , (t, s) ∈ [
0, T v] × S,

where σ̄ = 2(
∫
R

m′(ρ)2 dρ)−1. This combined with (2.29) leads to the evolutional
law (2.6) of γ v

t .
Next, to determine u0, we note the following fact: Since m1(ρ) := m′(ρ) and

m2(ρ) := m′(ρ)
∫ ρ

0
1

m′(y)2 dy are linearly independent two solutions of Sturm–

Liouville second-order differential equation Lu(ρ) = 0 with Wronskian m′
1m2 −

m1m
′
2 = −1, the solution of the equation Lu(ρ) = g(ρ) satisfying u(0) = 0 is

unique and given by

u(ρ) =
(

−
∫ ρ

0
m′(y)g(y) dy

)
m′(ρ)

∫ ρ

0

dy

m′(y)2

+
(∫ ρ

0
m′(y)

(∫ y

0

dz

m′(z)2

)
g(y) dy

)
m′(ρ).

(2.31)

Let us determine u0(t, ρ, s) and u±
0 (t). The function u0(t, ρ, s) satisfies (2.28). To

solve this equation, let θ1 be a unique solution of Lθ1 = 1 − m′σ̄ , namely, from
(2.31) with g = 1 − m′σ̄ ,

θ1(ρ) =
(

−
∫ ρ

0
m′(y)

(
1 − m′(y)σ̄

)
dy

)
m′(ρ)

∫ ρ

0

1

m′(y)2 dy

+
(∫ ρ

0
m′(y)

(∫ y

0

1

m′(z)2 dz

)(
1 − m′(y)σ̄

)
dy

)
m′(ρ).

Then, noting (2.30), u0(t, ρ, s) is given by

(2.32) u0(t, ρ, s) = −λ0(t)θ1(ρ).

Furthermore, since limρ→ ± ∞ |g(t, ρ, s) + λ0(t)| = O(e−ζ |ρ|), ζ > 0 holds for the
right-hand side g(t, ρ, s) of (2.28), by Lemma 3 in [3], it follows that

(2.33) lim
ρ→ ± ∞ ∂m

ρ ∂n
s ∂l

t

(
u0(t, ρ, s) − λ0(t)

f ′(±1)

)
= O

(
e−ζ |ρ|),

for all (m,n, l) ∈ Z+ × Z
n−1+ × Z+. Therefore, we define

(2.34) u±
0 (t) := λ0(t)

f ′(±1)
.
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Now, let us determine νk for k ≥ 1 assuming that {νi }k−1
i=0 are known. For the

term of order O(εk+1) in (2.23) to vanish, it is necessary to have

Luk = Ak−1 + (
∂�
t − �� − b(t, s)

)
hkm

′ − b(t, s)ρm′1{k=1}
+ (2 · 1{k≥2} + 1{k=1})∇ �h1 · ∇ �hkm

′′ − λk(t) + v(t)1{k=1},
(2.35)

where b(t, s) is defined by (2.14), Ak−1 = Ak−1(λ0, ui, hi,0 ≤ i ≤ k − 1) is given
by

Ak−1 = λ0(t)σ̄ ∂ρuk−1

+
k∑

l=2

bl(t, s)
∑

i1,...,il ≥1,j ≥−1,
i1 +···+il +j =k−1

h̃i1 · · · h̃il ∂ρuj

− ∂�
t uk−2 + ��uk−2

+
k−1∑
i=1

(
∂�
t hi − ��hi − b(t, s)h̃i

)
∂ρuk−1−i

+ ∑
i,j ≥1,i+j ≤k+1,
(i,j) �=(k,1),(1,k)

∇ �hi · ∇ �hj∂
2
ρuk−(i+j)

− 2
k−1∑
i=1

∇ �hi · ∇ �∂ρuk−1−i

+
k+1∑
l=2

1

l! f
(l)(m)

∑
i1,...,il ≥0,

i1 +···+il =k+1−l

ui1 · · · uil ,

(2.36)

h̃i(t, s) := hi(t, s) + ρ1{i=1}, 1 ≤ i ≤ K , u−1 = m and bl(t, s) are defined
by (2.26). In particular, A0(λ0, u0) = λ0(t)σ̄ ∂ρu0 + 1

2f ′′(m)u2
0, since ∂�

t m =
��m = 0. We have used (2.26) and (2.30) to have the expansion of the term
−V + �d .

From the solvability condition
∫
Lukm

′ dρ = 0 for (2.35) and noting that∫
R

m′′m′ dρ = 0, it follows that λk and hk should satisfy

λk(t) = 1

σ̄

(
∂�
t − �� − b(t, s)

)
hk + 1

2

∫
R

Ak−1m′(ρ) dρ

+
{
v(t) − 1

2
b(t, s)

∫
R

ρ
(
m′(ρ)

)2
dρ

}
1{k=1}.

(2.37)

The next task is to determine uk(t, ρ, s) and u±
k (t). Recall that k ≥ 1 is fixed.

From (2.31), it follows that the linear equation Luk = Ãk satisfying u(t,0, s) = 0
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has a unique solution given by

uk(t, ρ, s) =
(

−
∫ ρ

0
m′(y)Ãk(t, y, s) dy

)
m′(ρ)

∫ ρ

0

dy

m′(y)2

+
(∫ ρ

0
m′(y)

(∫ y

0

dz

m′(z)2

)
Ãk(t, y, s) dy

)
m′(ρ),

(2.38)

where Ãk(t, ρ, s) denotes the right-hand side of (2.35). Especially, supposing that
u±

0 , u±
1 , . . . , u±

k−1 are determined inductively and {ui }k−1
i=0 satisfy the following

(2.39) with i instead of k, from Lemma 3 in [3] and noting that hk are independent
of ρ and m′, ρm′, m′′, ∂ρui , ∂2

ρui , ��uk−2 tend to 0 as |ρ| → ∞, it is easy to
check

(2.39) ∂m
ρ ∂n

s ∂l
t

(
uk(t, ρ, s) − g±

k (t)

f ′(±1)

)
= O

(
e−ζ |ρ|) as ρ → ±∞,

for (t, s), where

g±
k (t) = −(

Ak−1|ρ=±∞ − λk(t) + v(t)1{k=1}
)

= −
k+1∑
j =2

1

j !
∑

0≤i1 ≤i2 ≤···≤ij ,

i1 +i2 +···+ij =k−(j −1)

f (j)(±1)
u±

i1
(t) · · · u±

ij
(t)

f ′(±1)j

+ ∂�
t u±

k−2(t) + λk(t) − v(t)1{k=1}.

(2.40)

This suggests to define

(2.41) u±
k (t) := g±

k (t)

f ′(±1)
.

We will determine λk(t) in such a way that the term of order O(εk) of the
integral

(2.42)
∫
D

(
∂tu

ε
k(t, x) − v(t)

)
dx

vanishes, where uε
k is an approximate solution defined as (3.2) later. In fact, this

results in

λk(t) = 1

σ̄ |γ v
t |

∫
S

((
�d

(
t,X0(t, s)

) − σ̄ λ0(t)
)
�d

(
t,X0(t, s)

)
hk(t, s)

− b(t, s)hk(t, s) + σ̄

2

∫
R

Ak−1m′(ρ) dρ

)
J 0(t, s) ds

+
(
v(t) − 1

2|γ v
t |

∫
R

ρ
(
m′(ρ)

)2
dρ

∫
S

b(t, s)J 0(t, s) ds

)
1{k=1}

+ 1

2σ̄ |γ v
t | Bk−1,

(2.43)
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where Bk−1 = Bk−1(ui, u
±
i , hi,0 ≤ i ≤ k − 1) is a term which is determined from

ui , u±
i and hi , 0 ≤ i ≤ k − 1; see Section 3.2, in particular, (3.11) for Bk−1 and

(3.14) below. From (2.37) and (2.43), we define hk as the solution of the following
equation:(

∂�
t − �� − b(t, s)

)
hk(t, s)

− 1

|γ v
t |

∫
S

((
�d

(
t,X0

(
t, s′)) − σ̄ λ0(t)

)
�d

(
t,X0

(
t, s′)) − b

(
t, s′))

× hk

(
t, s′)J 0(t, s′)ds′

= − σ̄

2

∫
R

Ak−1m′(ρ) dρ + σ̄

2|γ v
t |

∫ ∫
S×R

Ak−1m′(ρ)J 0(t, s′)ds′ dρ

+
(

σ̄

2

(
b(t, s) − 1

|γ v
t |

∫
S

b
(
t, s′)J 0(t, s′)ds′

)∫
R

ρ
(
m′(ρ)

)2
dρ

)
1{k=1}

+ 1

2|γ v
t | Bk−1.

(2.44)

This is a linear equation for hk , k ≥ 1; note that the right-hand side is determined
from λ0, ui , u±

i and hi with 0 ≤ i ≤ k − 1. When k = 1, nonlinear term |∇ �h1|2

appears in (2.35), however, this disappears by the relation
∫
R

m′(ρ)m′′(ρ) dρ = 0.
We will study equation (2.44) in Section 3.3.3.

2.5. Heuristic argument for the equation with spatially dependent noise. To
digress a little, we discuss the equation with a spatially dependent noise at a heuris-
tic level. Let an x-dependent noise ẇε(t, x), which is also denoted by v(t, x) as
above, is given, and assume that it is smooth in x and satisfies the vanishing con-
dition

∫
D v(t, x) dx = 0. With such noise, consider the equation

(2.45)
∂uε

∂t
= �uε + ε−2

(
f
(
uε) − −

∫
D

f
(
uε)) + ε−1v(t, x) in D × R+,

instead of (1.1) or (2.5). This equation has the precise mass conservation law (1.5)
differently from (1.6) for equation (1.1). The scaling of the noise should be as in
(2.45) and this is different from that for (1.1), but similar to the stochastic Allen–
Cahn equation as we mentioned at the end of Section 1.1 and at the beginning
of Section 2.1. We expect that the sharp interface limit holds for (2.45) and the
evolution of the limit hypersurface γt is governed by the equation

(2.46) V = κ − −
∫
γt

κ + σ̄

(
ẇ(t, x) − −

∫
γt

ẇ(t)

)
, x ∈ γt .

The noise in the limit dynamics is simply additive, but the volume inside γt is
preserved.



SHARP INTERFACE LIMIT FOR STOCHASTIC ALLEN–CAHN EQUATION 579

The heuristic argument to derive (2.46) from (2.45) goes as follows. Our guess
for the behavior of the solution uε of (2.45) is modified from (2.2) to the following:

(2.47) uε(t, x) = m

(
d(t, x)

ε
; aε(t) − εv(t, x)

)
+ O(ε).

Note that ε2v(t) is now replaced by εv(t, x). Then, in the computation below (2.2),
the first line is the same and the lines below are modified as follows:

0 ≈ 1

ε2

∫
D

{
m′′

(
d

ε

)
+ εm′

(
d

ε

)
�d + f

(
m

(
d

ε

))
− aε(t) + εv(t, x)

}
dx

− 2
∫
D

∂m′

∂a

(
d

ε

)
∇d · ∇v dx + O(ε)

≈ 1

ε2

∫
D

m′
(

d

ε

){−c
(
aε(t) − εv(t, x)

) + ε�d
}
dx

≈ (
m∗+ − m∗−

) ∫
γt

{
−c0

aε(t)

ε
+ κ(t, s̄)

}
ds̄ + (

m∗+ − m∗−
) ∫

γt

c0v(t, s̄) ds̄.

In the first line, we have used the vanishing condition
∫
D v(t, x) dx = 0 and need

to compute the derivatives of m in a, since it contains v(t, x). However, the inte-
gral containing ∂m′

∂a
is expected to behave as O(ε). Therefore, instead of (2.4), we

finally obtain

(2.48) 2c0λ0(t)|γt | = 2
∫
γt

κ(t) ds̄ + 2c0

∫
γt

v(t, s̄) ds̄.

On the other hand, instead of (2.30), we would have

(2.49) V = κ − σ̄
(
λ0(t) − v(t, s̄)

)
on γt .

Indeed, to show this, we compute similar to Section 2.4. In particular, noting that
ε2v(t) in (2.23) is replaced by εv(t, x), (2.28) is changed as

Lu0 = (−V + κ)m′ − λ0(t) + v(t, s), s ∈ S.

Then, since
∫
Lu0m

′ dρ = 0, σ̄ ≡ c0 = 2(
∫
R

m′(ρ)2 dρ)−1 and
∫
R

m′ dρ = 2, we
obtain (2.49). Recalling c0 = σ̄ , we obtain (2.46) with v instead of ẇ from (2.48)
and (2.49).

We will not discuss the case with the spatially dependent noise in the present
paper, since the mean curvature motion with a spatial dependent noise is still not
well studied.

3. Approximate solutions and their estimates.

3.1. Approximate solutions. Once all {νi }K
i=0 are determined, for k = 0,1,

. . . ,K , we can define approximations uin
k,ε , uout

k,ε,±, hε
k , λε

k and ρk,ε of u both in
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the sense of inner and outer solutions, hε , λε and ρε , respectively, by cutting the
expansions (2.24) and (2.25) after the k + 1th or kth terms:

(3.1)

uin
k,ε(t, x) := m(ρ) +

k∑
i=0

εi+1ui

(
t, ρ,S(t, x)

)
,

uout
k,ε,±(t) := ±1 +

k∑
i=0

εi+1u±
i (t),

εhε
k(t, s) =

k∑
i=1

εihi(t, s),

λε
k(t) :=

k∑
i=0

εiλi(t),

ρ = ρk,ε(t, x) := 1

ε

(
d(t, x) − εhε

k

(
t,S(t, x)

))
.

Let η ∈ C∞(R) be a function satisfying the conditions: η(s) = 1 for |s| ≤ δ,
η(s) = 0 for |s| ≥ 2δ and 0 ≤ sη′(s) ≤ 4 for δ ≤ |s| ≤ 2δ. Then define the approx-
imate solutions uε

k(t, x) as follows by connecting the inner and outer approximate
solutions:

uε
k(t, x) := η

(
d(t, x)

)
uin

k,ε(t, x)

+ (
1 − η

(
d(t, x)

))(
uout

k,ε,+(t)1{d>0} + uout
k,ε,−(t)1{d<0}

)
.

(3.2)

3.2. Derivation of (2.43). Now we consider the integral (2.42), which is the
left-hand side of (1.7) times |D| with uε and αẇε replaced by uε

k and v, respec-
tively, and expand it in ε to obtain (2.43). Let us decompose the time derivative of
the mass of uε

k over D into∫
D

∂tu
ε
k(t, x) dx =

∫
|d(t,x)|≥3δ

∂tu
ε
k(t, x) dx

+
∫

|ρ|≥ δ
ε

∂tu
ε
k(t, x) dx +

∫
|ρ|< δ

ε

∂tu
ε
k(t, x) dx

= I + II + III,

where δ > 0 is chosen in Section 2.2, {|ρ| ≥ δ
ε

} = {x ∈ V t
3δ : |ρ(t, x)| ≥ δ

ε
}, {|ρ| <

δ
ε

} = {x ∈ V t
3δ : |ρ(t, x)| < δ

ε
} and V t

3δ := {x ∈ D : |d(t, x)| < 3δ}. From now on,
we choose a sufficiently small ε∗

0 = ε∗
0(δ,K,v) > 0 such that

(3.3) sup
s∈S,t ∈[0,T ]

∣∣εhε
k(t, s)

∣∣ ≤ δ

2
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holds for all 0 < ε ≤ ε∗
0 . This is possible for each v. Thus |d(t, x)| ≥ δ

2 follows
from |ρ(t, x)| ≥ δ

ε
and for any point (t, x) where either |d(t, x)| ≥ 3δ or |ρ(t, x)| ≥

δ
ε
, |d(t, x)| ≥ δ

2 holds. Noting that each inner solution ui converges to its associated
outer solution u±

i with an error O(e−ζ |ρ|) as |ρ| → ∞, and setting

D+
ε (t) = {

x ∈ D : d(t, x) ≥ 3δ
} ∪ {

x ∈ D : |d(t, x)| < 3δ, ρ(t, x) > 0
}
,

D−
ε (t) = D \ D̄+

ε (t),

we have

I + II = (
uout

k,ε,+
)′
(t)

∣∣D+
ε (t)

∣∣ + (
uout

k,ε,−
)′
(t)

∣∣D−
ε (t)

∣∣
− (

uout
k,ε,+

)′
(t)

∫
|ρ|< δ

ε

1{ρ>0} dx

− (
uout

k,ε,−
)′
(t)

∫
|ρ|< δ

ε

1{ρ<0} dx + O
(
e−ζ δ/ε),

as ε ↓ 0, where ′ means the derivative in t and we have used (2.39) which gives the
error term O(e−ζ δ/ε). Concerning the term III, change of variables and (81) of [3]
lead us to

III =
∫
S

∫
|ρ|< δ

ε

((
V (t, s)ε−1 − ∂�

t hε
k

)
∂ρuε

k

)
εJ ε(t, ρ, s) dρ ds

+
∫
S

∫
|ρ|< δ

ε

∂�
t uε

kεJ
ε(t, ρ, s) dρ ds.

As a result, we obtain

(3.4)
∫
D

∂tu
ε
k(t, x) dx = (A) + (B) + (C) + O

(
e−ζ δ/ε),

where

(A) = (
uout

k,ε,+
)′
(t)

∣∣D+
ε (t)

∣∣ + (
uout

k,ε,−
)′
(t)

∣∣D−
ε (t)

∣∣,
(B) = −

∫
|ρ|< δ

ε

((
uout

k,ε,+
)′
(t)1{ρ>0} + (

uout
k,ε,−

)′
(t)1{ρ<0}

)
dx

+
∫
S

∫
|ρ|< δ

ε

∂�
t uε

k(t, ρ, s)εJ ε(t, ρ, s) dρ ds,

(C) =
∫
S

∫
|ρ|< δ

ε

(
V (t, s)ε−1 − ∂�

t hε
k(t, s)

)
∂ρuε

k(t, ρ, s)εJ ε(t, ρ, s) dρ ds.

In the following, we rewrite these three terms (A), (B) and (C). First, (A) can
be rewritten as follows: Let us denote by J (t, r, s) the Jacobian of the map (2.10).
By equation (44) and page 538 of [3], we have

(3.5) J (t, r, s) = J 0(t, s)

(
1 + �d

(
t,X0(t, s)

)
r +

n−1∑
i=2

riji(t, s)

)
,
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for some functions ji(t, s); see also (2.20). By (3.5), we get

∣∣D−
ε (t)

∣∣ = |Dt | +
∫
S

∫ εhε
k(t,s)

0
J (t, r, s) dr ds

= |Dt | +
∫
S

εhε
k(t, s)J

0(t, s) ds + (A1),

∣∣D+
ε (t)

∣∣ = |D| − ∣∣D−
ε (t)

∣∣ = |D| − |Dt | −
∫
S

εhε
k(t, s)J

0(t, s) ds − (A1),

where Dt denotes the inside surrounded by the hypersurface γ v
t and

(A1) = 1

2

∫
S

�d
(
t,X0(t, s)

)(
εhε

k(t, s)
)2

J 0(t, s) ds

+
n−1∑
i=2

1

i + 1

∫
S

ji(t, s)
(
εhε

k(t, s)
)i+1

J 0(t, s) ds.

Recalling the expansions of uout
k,ε,± and εhε

k given in (3.1), we can decompose (A)

into the sum of the following two parts, namely,

(3.6) (A) =
k∑

i=1

εiBA
i−1 +

∞∑
i=k+1

εiB̄A
k,i,

where BA
i−1 is the term of order O(εi) determined from d , u±

j and hj , 0 ≤ j ≤ i − 1
and B̄A

k,i denotes the term of order O(εi) determined from d , u±
j , hj , 0 ≤ j ≤ k

for i ≥ k + 1.
For (B), using (2.20) and the expansions of uε

k = uin
k,ε for |ρ| < δ

ε
and uout

k,ε,±
given in (3.1), we obtain

(B) =
∫
S

∫
|ρ|< δ

ε

(
∂�
t uε

k − (
uout

k,ε,+
)′
(t)1{ρ>0} − (

uout
k,ε,−

)′
(t)1{ρ<0}

)
× εJ ε(t, ρ, s) dρ ds

=
k∑

i=0

∫
S

∫
|ρ|< δ

ε

εi+2(∂�
t ui(t, ρ, s) − (

u+
i

)′
(t)1{ρ>0} − (

u−
i

)′
(t)1{ρ<0}

)

×
(

1 + ε
(
ρ + εhε

k(t, s)
)
�d +

n−1∑
l=2

εl(ρ + εhε
k(t, s)

)l
jl(t, s)

)

× J 0(t, s) dρ ds

= (B1) − (B2),

(3.7)

where (B1) and (B2) are defined as the middle of (3.7) with the integral region
{|ρ| < δ

ε
} replaced by R and {|ρ| ≥ δ

ε
}, respectively. Note that both (B1) and (B2)
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are finite, since we have from compatibility condition (2.39) and (2.41):

(3.8)
(
∂�
t ui(t, ρ, s) − (

u+
i

)′
(t)1{ρ>0} − (

u−
i

)′
(t)1{ρ<0}

) = O
(
e−ζ |ρ|),

as ρ → ±∞ for (t, s). Then, similar to (A), we can decompose (B1) into the sum
of two parts and we obtain

(3.9) (B) =
k∑

i=2

εiBB
i−2(t) +

∞∑
i=k+1

εiB̄B
k,i(t) − (B2),

where BB
i−2 is the term of order O(εi) determined from d , uj , u±

j and hj , 0 ≤ j ≤
i − 2 and B̄B

k,i denotes the term of order O(εi) determined from d , uj , u±
j , hj ,

0 ≤ j ≤ k for i ≥ k + 1.
For (C), note that V (t, s) = �d(t,X0(t, s)) − σ̄ λ0(t) from (2.13) and (2.30),

and ∂ρuε
k = ∂ρuin

k,ε = ∂ρm + ∑k
i=0 εi+1∂ρui from (3.1). Recalling (2.20) again, we

have

(C) =
∫
S

∫
|ρ|< δ

ε

{(
�d

(
t,X0(t, s)

) − σ̄ λ0(t)
) − ∂�

t

k∑
i=1

εihi(t, s)

}

×
{
m′(ρ) +

k∑
i=0

εi+1∂ρui

}

×
{

1 + �d(t, s)
(
ε
(
ρ + hε

k(t, s)
)) +

n−1∑
i=2

(
ε
(
ρ + hε

k(t, s)
))i

ji(t, s)

}

× J 0(t, s) dρ ds

= (C1) − (C2),

where (C1) and (C2) are defined by the above line with the integral region {|ρ| <
δ
ε

} replaced by R and {|ρ| ≥ δ
ε

}, respectively. Then, in the term of order O(εi) in
the expansion of (C1) in ε, separating terms containing hi from those containing
lower order functions {νj }j ≤i−1, and noting

∫
R

∂ρmdρ = 2, we can decompose
(C1) into the sum of the following four parts:

(C1) = 2
∫
S

(
�d

(
t,X0(t, s)

) − σ̄ λ0(t)
)
J 0(t, s) ds

+ 2
k∑

i=1

εi
∫
S

((
�d

(
t,X0(t, s)

) − σ̄ λ0(t)
)
�d

(
t,X0(t, s)

)
hi(t, s)

− ∂�
t hi(t, s)

)
J 0(t, s) ds +

k∑
i=1

εiBC
i−1(t) +

∞∑
i=k+1

εiB̄C
k,i(t),

(3.10)
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where BC
i−1 is the term of order O(εi) determined from d , λ0, uj , u±

j and hj ,
0 ≤ j ≤ i − 1 and B̄C

k,i denotes the term of order O(εi) determined from d , λ0, uj ,
u±

j , hj , 0 ≤ j ≤ k for i ≥ k + 1.
Setting

(3.11) Bk−1 = BA
k−1 + BB

k−2 + BC
k−1,

and

(3.12) B̄k,i = B̄A
k,i + B̄B

k,i + B̄C
k,i,

we obtain∫
D

(
∂tu

ε
k(t, x) − v(t)

)
dx

= 2
∫
S

(
�d

(
t,X0(t, s)

) − σ̄ λ0(t) − |D|
2|γ v

t | v(t)

)
J 0(t, s) ds

+ 2
k∑

i=1

εi
∫
S

((
�d

(
t,X0(t, s)

) − σ̄ λ0(t)
)
�d

(
t,X0(t, s)

)
hi(t, s)

− ∂�
t hi(t, s)

)
J 0(t, s) ds

+
k∑

i=1

εiBi−1 +
∞∑

i=k+1

εiB̄k,i − (B2) − (C2) + O
(
e−ζ δ/ε),

(3.13)

from (3.4), (3.6), (3.9), (3.10) and noting
∫
S J 0(t, s) ds = |γ v

t |. Recalling that λ0(t)

is defined as in (2.29), the first term of the right-hand side of (3.13) vanishes so
that we can rewrite as∫

D

(
∂tu

ε
k(t, x) − v(t)

)
dx

=
k∑

i=1

εi

[
2
∫
S

((
�d

(
t,X0(t, s)

) − σ̄ λ0(t)
)
�d

(
t,X0(t, s)

)
hi(t, s)

− σ̄ λi(t) − b(t, s)hi(t, s) + σ̄

2

∫
R

Ai−1m′(ρ) dρ

+ σ̄

(
v(t) − b(t, s)

2

∫
R

ρ
(
m′(ρ)

)2
dρ

)
1{i=1}

)
J 0(t, s) ds + Bi−1

]

+
∞∑

i=k+1

εiB̄k,i − (B2) − (C2) + O
(
e−ζ δ/ε),

(3.14)

by using (2.37) for ∂�
t hi and noting

∫
S ��hi(t, s)J

0(t, s) ds = ∫
γ v
t

��hi(t,

s̄) ds̄ = 0. We wrote �� for the operator seen in the coordinate s ∈ S , but we
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also write �� for that defined in the coordinate s̄ on γt . However, since λi(t),
i = 1, . . . , k are defined as in (2.43), the first term of the right-hand side of (3.14)
vanishes. This explains the reason that we determine λk(t) as in (2.43) and we
obtain

(3.15)
∫
D

(
∂tu

ε
k(t, x) − v(t)

)
dx = �ε

k(t),

where �ε
k = ∑∞

i=k+1 εiB̄k,i − (B2) − (C2) + O(e−ζ δ/ε). Furthermore, note that
each of (B2) and (C2) goes to 0 as ε ↓ 0 exponentially fast due to the compatibility
condition for m′, ∂ρui and ∂�

t ui .

3.3. Estimates for uk and u±
k .

3.3.1. Bounds for spatial derivatives of b, X0, d and S. We introduce the fol-
lowing norms for g ∈ C∞(R+).

DEFINITION 3.1. For k ∈ Z+ and T > 0, we define |g|k ≡ |g|k,T as

(3.16) |g|k,T =
k∑

i=0

sup
t ∈[0,T ]

∣∣∣∣dig

dti
(t)

∣∣∣∣.
In the following, we take and fix a class V of functions v ∈ C∞(R+) and T > 0

satisfying that

(3.17) CV,T = max
(
C

(1)
V,T ,C

(2)
V,T

)
< ∞,

where

C
(1)
V,T := sup

v∈V,s∈S,
r∈(−3δ,3δ)

{∣∣∂md
(·,X0(·, s))∣∣0,T ,

∣∣∂mSl(·,X(·, r, s))∣∣0,T ,

∣∣∂mX0(·, s)∣∣0,T ; 1 ≤ l ≤ n − 1, |m| ≤ M
}
< ∞,

(3.18)

and

(3.19) C
(2)
V,T := sup

v∈V,s∈S,t ∈[0,T ]
{(

α−(t, s)
)−1

,
∣∣γ v

t

∣∣−1}
< ∞.

Here, in C
(1)
V,T , M = M(K) ∈ N denotes the maximal number of the degrees of

spatial derivatives taken over the terms appearing in ÃK which is defined below
(2.38) and δ > 0 is chosen as in Section 2.2. Recall Section 2.2 for d,X0, S

l and
X determined depending on v, and ∂m = ∂

m1
x1 · · · ∂mn

xn , |m| = ∑n
i=1 mi for m =

(m1, . . . ,mn) ∈ (Z+)n. Moreover, in C
(2)
V,T ,

α−(t, s) ≡ αv−(t, s) := inf
ξ ∈Rn−1 :|ξ |=1

(
α(t, s)ξ, ξ

)
,
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where α(t, s) = (αij (t, s))1≤i,j ≤n−1 is the matrix defined by (3.25) below, and
(·, ·) and | · | denote the inner product and the norm of Rn−1, respectively.

Later, for each ω ∈ 	, we will take V ≡ V(ω) := {αẇε ; 0 < ε ≤ ε∗
0 }. Then, for

a.s. ω, by Assumption 1.2, one can take T = T (ω) := inf0<ε≤ε∗
0
σε > 0 such that

equation (2.6) with v = αẇε has a solution up to the time T (ω) and CV(ω),T (ω) <

∞ holds.
Recalling the definition (2.14) of b(t, s), the constant C

(1)
V,T gives bounds for b.

We need the bound C
(2)
V,T for deriving estimates on the fundamental solution (see

(0.16) in [14] and Lemma 3.5) and on λ0(t) (see (0.22) in [14] and Proposition 3.6).

3.3.2. Bounds for time derivatives of X0, ∂mX0 and S. Our goal is to give
estimates for uk and u±

k ; see Proposition 3.6 and Corollary 3.7 below. To do this,
we will prepare several lemmas. The inward normal velocity V is represented as
V (t, s) = ∂td(t,X0(t, s)) from (2.12) and

(3.20) V (t, s) = κ(t, s) − 1

|γ v
t |

∫
S

κ(t, s)J 0(t, s) ds + |D|
2|γ v

t | v(t),

holds with κ(t.s) = �d(t,X0(t, s)) from (2.29) and (2.30). Let us formulate the
following assumption on the time derivatives of ∂mX0 and S by means of the norm
of the forcing term v.

ASSUMPTION 3.1. There exist some N = N(K) ∈ N, T = T (V) > 0 and
C1 = C1(CV,T ,K,T ) > 0 such that

sup
1≤i≤n

sup
s∈S

∣∣∂k
t ∂mXi

0(·, s)∣∣0,T ≤ C1
(
1 + |v|N,T

)N
,(3.21)

sup
1≤i≤n−1

sup
r∈(−3δ,3δ),s∈S

∣∣∂k
t ∂mSi(·,X(·, r, s))∣∣0,T ≤ C1

(
1 + |v|N,T

)N
,(3.22)

for k = 0,1, . . . ,K , |m| ≤ M and v ∈ V .

Under the choice V ≡ V(ω) = {αẇε ; 0 < ε ≤ ε∗
0 }, Assumption 3.1 determines

τ(ω) := T (V(ω)), up to which two bounds (3.21) and (3.22) hold. We will show
in Section 5 that Assumption 3.1 is true for some T = τ(ω) > 0 under a two-
dimensional setting as long as the limit curve γt is convex.; see Lemma 5.1.

3.3.3. Schauder estimates for hk . Recall that hk are the solutions of (2.44),
which is rewritten as

(3.23) Lhk + Lhk = Fk−1,
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where L = Lt is a differential operator defined by

L = ∂�
t − �� − b(t, s)

=
(
∂t +

n−1∑
i=1

Si
t ∂si

)
−
(

n−1∑
i=1

�Si∂si +
n−1∑
i,j =1

∇Si · ∇Sj∂2
sisj

)

− b(t, s)

= ∂t −
n−1∑
i,j =1

αij (t, s)∂
2
sisj −

n−1∑
i=1

βi(t, s)∂si − b(t, s),

(3.24)

with

αij (t, s) = ∇Si(t) · ∇Sj (t), βi(t, s) = −Si
t (t) + �Si(t),

s = (
S1(t), . . . , Sn−1(t)

) ∈ S,
(3.25)

while L = Lt is an integral operator acting on a function u = u(s) defined by

Ltu = − 1

|γ v
t |

∫
S

((
�d

(
t,X0

(
t, s′)) − σ̄ λ0(t)

)
�d

(
t,X0

(
t, s′)) − b

(
t, s′))

× u
(
s′)J 0(t, s′)ds′,

and Fk−1 denotes the right-hand side of (2.44). Since v and the interface γ v
t are

smooth, it follows that (3.23) with an initial condition hk(0, s) = 0 has a local
unique solution for each v from general argument for second-order parabolic par-
tial differential equations, for example, by making use of Theorem 3.3.7 and The-
orem 7.4.8 in [8] or Chapter V, Section 6 and Chapter VI, Section 4 in [20].

Our goal is to obtain estimates for the solutions hk of (2.44). To do this, we basi-
cally follow the argument given in Friedman [8] and derive the Schauder estimates.
However, in our setting, the coefficients of the operators L and L determined from
v = αẇε are not bounded in ε, but controlled by the constant CV,T and the norm
|v|1,T . We need to carefully study how the estimates for hk depend on these di-
verging factors. We first treat the contributions of the operator L; see Lemmas 3.2
and 3.3. The contribution of the operator L will be discussed starting from (3.33)
below.

For τ ∈ [0, T ] and ξ ∈ S , let Z(t, s; τ, ξ) be the fundamental solution of

(3.26)

(
∂

∂t
−

n−1∑
i,j =1

αij (τ, ξ)
∂2

∂si∂sj

)
u(t, s) = 0, (t, s) ∈ (τ, T ] × S,

that is, Z is a Gaussian kernel. Then the fundamental solution � of Lt is con-
structed by the usual parametrix method. Namely, by regarding Z as the principal
part of �, we can find � in the form

(3.27) �(t, s; τ, ξ) = Z(t, s; τ, ξ) +
∫ t

τ

∫
S

Z
(
t, s; σ, s′)�(

σ, s′ ; τ, ξ
)
dσ ds′,
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where � is a function satisfying

�(t, s; τ, ξ) = LtZ(t, s; τ, ξ)

+
∫ t

τ

∫
S

LtZ
(
t, s; σ, s′)�(

σ, s′ ; τ, ξ
)
dσ ds′.

(3.28)

Let μ ∈ (1
2 ,1) and fix it. Then we have the following estimate on �.

LEMMA 3.1. The fundamental solution � has the estimate:

∣∣�(t, s; τ, ξ)
∣∣ ≤ C8

(
1 + |v|N )ν0 + N

1−μ eC8(T ∨1)(1+|v|N)
N

1−μ

× 1

(t − τ)
n−1

2

e
−C9

|s−ξ |2
(t −τ) ,

(3.29)

for 0 ≤ τ < t ≤ T , s, ξ ∈ S with some ν0 ∈ N, C8 = C8(CV,T , T ,μ) and C9 =
C9(CV,T , T ,μ) > 0.

Consider the following equation:

(3.30)

{
Ltu(t, s) = f (t, s), (t, s) ∈ (0, T ] × S,

u(0, s) = u0(s), s ∈ S,

for f ∈ C
α

, α ∈ (0,1] and u0 ∈ C(S), where

C
α = {

u(t, s) | |u|α < ∞}
,

|u|α ≡ |u|α,T = |u|0 + sup
(t,s),(t,s)

∈[0,T ]×S

|u(t, s) − u(t, s)|√
|s − s|2 + |t − t |α

,

|u|0 ≡ |u|0,T = sup
(t,s)∈[0,T ]×S

∣∣u(t, s)
∣∣, |s| =

(
n−1∑
i=1

(
si)2

) 1
2

.

Applying the argument of [8], Chapter 3, Section 3, Theorem 7 for our problem,
we obtain the following lemma.

LEMMA 3.2. There exists a unique solution u of (3.30) and u ∈ C
2+α

, where

C
2+α = {

u(t, s) | |u|2+α < ∞}
,

|u|2+α = |u|α + ∑
|m|=1

∣∣∂mu
∣∣
α + ∑

|m|=2

∣∣∂mu
∣∣
α + ∑ |∂tu|α.

Furthermore, the following lemma is shown by using [8], Chapter 5, Section 3,
Lemma 2.
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LEMMA 3.3. Let u be the solution of (3.30). Then we have

(3.31) |u|0 ≤ K1

(
sup
s∈S

∣∣u0(s)
∣∣ + T sup

(t,s)∈[0,T ]×S

∣∣f (t, s)
∣∣),

where

(3.32) K1 ≡ K1(v) = C11e
2C8(1+|v|N)p(T ∨1),

for some C11 = C11(CV,T , T ,μ) > 0 and p = p(μ, ν0) ∈ N.

We now study equation (3.23) for hk taking the contribution of the operator Lt

into account. Let us consider

(3.33)

{
Ltu(t, s) = g(t, s, u), (t, s) ∈ (0, T ] × S,

u(0, s) = 0, s ∈ S,

where

(3.34) g(t, s, u) = −Ltu + Fk−1(t, s).

LEMMA 3.4. There exists a unique solution u of (3.33) satisfying

(3.35) |u|0,T ≡ sup
(t,s)∈[0,T ]×S

∣∣u(t, s)
∣∣ ≤ (C13K3)

C13K3 |Fk−1|0,T ,

for some C13 = C13(CV,T , T ,μ) > 0 and

K3 ≡ K3(v) = e4C8(1+|v|N)1+p(T ∨1).

As for the regularity of the solution u of (3.33), we have the following lemma.
The proof is given based on the arguments in [8] or [21].

LEMMA 3.5. For the solution u of (3.33) satisfying (3.35),

(3.36) |u|2+α ≤ K4
(|u|0 + |Fk−1|α),

holds for K4 ≡ K4(v) = C14(1 + |v|n0(K))
n0(K), where C14 = C14(CV,T , T ,μ) > 0

and n0 = n0(K) ∈ N.

3.3.4. Estimates for uk and u±
k . One can apply Lemma 3.5 for the solutions

hk of (3.23) to obtain estimates for them. Based on this, we have the following
estimates for uk and u±

k .

PROPOSITION 3.6. For every k = 0,1, . . . ,K ,

(3.37) sup
(t,ρ,s)∈[0,T ]×R×S

{∣∣uk(t, ρ, s)
∣∣, ∣∣u±

k (t)
∣∣} ≤ (C15K5)

C15K5,

holds for some C15 = C15(CV,T , T ,μ) > 0 and

K5 ≡ K5(v) = en1(K)(1+|v|n1(K))
n1(K)(T ∨1),

with some n1 = n1(K) ∈ N.
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PROOF. First, note that the estimates for |∂mX0(·, s)|0 and |∂mSj (·, x)|0 for
every |m| ≤ M are given by Assumption 3.1. Recalling that u0 and u±

0 are deter-
mined by (2.32) and (2.34), respectively, since we have |λ0(t)| ≤ C · CV,T (1 +
|v|0,T ) from (2.29) and 1/|γ v

t | ≤ C
(2)
V,T as we saw for (0.22) in the proof of

Lemma 3.4 in [14], (3.37) is easily shown for u0 and u±
0 .

From this, one can derive the estimate for F0 defined by the right-hand side
of (2.44) with k = 1, since F0 contains u0, u±

0 and b. Thus, the estimate for
|h1|0 is obtained by Lemma 3.4. In addition, the estimates for |∂th1|0, |∂si h1|0
and |∂2

si sj h1|0 are obtained by Lemma 3.5. Similarly, the estimate for |∂m∂l
t F0|0,

|m| ≤ M , l ≤ K is obtained. Differentiating (3.23) and applying the above argu-
ment recursively, the estimates for |∂l

t h1|0 and |∂mh1|0, |m| ≤ M , l ≤ K are also
obtained.

Recall that u1 is represented by using Ã1, which contains λ0, u0, h1. Therefore,
the estimate for |u1|0 is obtained from those for λ0, u0, h1. Once we have the
estimate for |u1|0, similarly as above, the estimate for |F1|0 follows. From this, we
have the estimate for |h2|0 by Assumption 3.1.

In this way, the estimates for uk , u±
k , k ≤ K are obtained recursively by deriving

the estimate for each term in Ãk . Since K is finite and Ãk, k ≤ K contain only
finitely many terms, it is easy to see that there exists a suitable n1(K) such that
(3.37) holds. The proof is complete. �

Finally in this section, we consider the random case taking v(t) = αẇε(t),
where wε(t) satisfies Assumption 1.1, and apply Proposition 3.6 for this case.

COROLLARY 3.7. We assume Assumptions 1.1, 1.2 and 3.1, and define Gε ≥
ee, 0 < ε ≤ 1, from Hε appearing in Assumption 1.1 by the relation

(3.38) log logGε = H 2n1(K)
ε ,

where n1(K) ∈ N is the number determined by Proposition 3.6. Then we have

(3.39) lim
ε↓0

Gε = ∞, lim
ε↓0

Gε

| log ε| = 0.

Furthermore, uk and u±
k determined from v(t) = αẇε(t) as above satisfy

(3.40) sup
(t,ρ,s)∈[0,T (ω)∧τ(ω)]×R×S

{∣∣uk(t, ρ, s)
∣∣, ∣∣u±

k (t)
∣∣} ≤ Gε, 0 ≤ k ≤ K,

for every sufficiently small ε > 0 and every ω ∈ 	, where T (ω) > 0 is the minimum
of that determined at the end of Section 3.3.1 and τ(ω) given below Assumption 3.1
in Section 3.3.2.

PROOF. The first one in (3.39) is clear from (3.38) and limε↓0 Hε = ∞.
For the second one, use twice that limε↓0

logaε

logbε
= 0 and limε↓0 bε = ∞ imply
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limε↓0
aε

bε
= 0. To show (3.40), we see from Assumption 1.1 that v = αẇε satis-

fies

(3.41) |v|n1(K),T ≤ (
n1(K) + 1

)
αHε.

From this, one can verify

(3.42) (C15K5)
C15K5 ≤ Gε,

for every sufficiently small ε > 0, where the left-hand side is the bound obtained
in Proposition 3.6; note that K5 = K5(v) with v = αẇε . Indeed,

(3.43) log log
{
(C15K5)

C15K5
} = logC15 + logK5 + log log(C15K5),

whose leading term for small ε > 0 is logK5, and it has a bound

logK5 = n1(K)
(
1 + |v|n1(K)

)n1(K)
(T ∨ 1) ≤ CHn1(K)

ε < H 2n1(K)
ε ,

with some C > 0, by the definition of K5 = K5(v) and (3.41), for every ε > 0
small enough, since limε↓0 Hε = ∞. Note that, recalling the remark CV(ω),T (ω) <

∞ for V(ω) = {αẇε ; 0 < ε ≤ ε∗
0 } made at the end of Section 3.3.1, C15 =

C15(CV(ω),T (ω), T (ω),μ) is bounded in ε so that the other terms in (3.43) are
much smaller than logK5. Thus, we obtain (3.42) for every ε > 0 small enough.
Proposition 3.6 completes the proof. �

4. Proof of Theorem 1.1.

4.1. The stochastic term wε(t). This subsection gives two examples of wε(t),
which satisfy the condition (1.8) and Assumption 1.1. The integer K is fixed
throughout the paper.

The first example is a mollification of the Brownian motion with an extremely
slow convergence speed. Let w = w(t) be the one-dimensional standard Brownian
motion and set

(4.1) ψ(ε) = (
log log log | log ε|)β̃ ,

with β̃ > 0. Let Wε(t), ε > 0 be the stopped process of w, that is, Wε(t) =
w(t ∧ τ(ε)), where τ(ε) is the first exit time of w(t) from the interval Iε =
(−ψ(ε),ψ(ε)), that is, τ(ε) = inf{t > 0,w(t) /∈ Iε }. We define wε(t) by

(4.2) wε(t) =
∫ ∞

0
ηψ(ε)(t − s)Wε(s) ds,

where

ηψ(ε)(s) = ψ(ε)η
(
ψ(ε)s

)
and η is a nonnegative C∞-function on R, whose support is contained in (0,1),
satisfying

∫
R

η(u)du = 1.
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LEMMA 4.1. For wε(t) defined by (4.2), we have

(4.3)
∣∣ẇε

∣∣
k,T ≤ k|η|k+2ψ(ε)k+2, k ∈ Z+.

In particular, Assumption 1.1 holds for this wε(t) with the choice of Hε =
n1(K)|η|n1(K)+2ψ(ε)n1(K)+2. The condition (1.8) holds obviously.

Indeed, a simple computation shows (4.3). Once (4.3) is shown, the rest of the
lemma is obvious.

REMARK 4.1. If we choose β̃ > 0 as 2β̃n1(K)(n1(K) + 2) = 1, we have
H

2n1(K)
ε = (n1(K)|η|n1(K)+2)

2n1(K) log log log | log ε|. Since the condition (3.38)

can be relaxed as log logGε = CH
2n1(K)
ε with any constant C > 0, one can choose

Gε = log | log ε| for every small enough ε > 0.

Let us give another example of wε(t). Let ξ = ξ(t), t ≥ 0 be a stochastic process
satisfying the following conditions (see [11]):

1. ξ is a stationary and strongly mixing stochastic process defined on a prob-

ability space (	,F,P ), that is,
∫ ∞

0 ρ(t)
1
p dt < ∞ for some p > 3

2 , where ρ is
given by

ρ(t) = sup
s≥0

sup
A∈Fs+t,∞,B∈F0,s

|P(A ∩ B) − P(A)P (B)|
P(B)

, t ≥ 0,

where Fs,t = σ(ξ(u), u ∈ [s, t ]).
2. ξ(·) ∈ C∞(R+), a.s. and |ξ (k)(t)| ≤ M , a.s., k = 0,1,2, . . . ,K for some non-

random M > 0.
3. E[ξ(t)] = 0.

Let us define ẇε(t) as

(4.4) ẇε(t) = A−1ψ(ε)ξ
(
ψ(ε)2t

)
,

where ψ(ε) is taken as in (4.1) and A = {2
∫ ∞

0 E[ξ(0)ξ(t)] dt }1/2. Then, by a
simple computation, we obtain the following lemma.

LEMMA 4.2. The process ẇε(t) defined by (4.4) satisfies∣∣ẇε
∣∣
k,T ≤ M(k + 1)

A
ψ(ε)2k+1, k ∈ Z+.

In particular, Assumption 1.1 holds with the choice of Hε = M(n1(K) +
1)ψ(ε)2n1(K)+1/A.

REMARK 4.2. The process wε(t) converges to the Brownian motion w(t) as
ε ↓ 0 in law; see [11]. Therefore, for the condition (1.8) in a.s.-sense, we need to
apply Skorohod’s representation theorem.
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4.2. Error estimate. In this subsection, coming back to the situation we dis-
cussed in Corollary 3.7, we estimate the error term δε

k defined by

(4.5) δε
k(t, x) := ∂uε

k

∂t
− �uε

k − 1

ε2

(
f
(
uε

k

) − ελε
k

) − v(t),

with v(t) = αẇε(t). The corresponding quantity is introduced in [3], (9), but in
our case, its bound involves an extra slowly diverging factor Gε .

More precisely, in Sections 4.2–4.4, we assume a (nonrandom) v(t) is given,
and uk and u±

k determined from this v(t) satisfy the bound (3.40) in Corollary 3.7
with T (ω) replaced by T and for simplicity for every ε > 0, that is,

(4.6) sup
(t,ρ,s)∈[0,T ]×R×S

{∣∣uk(t, ρ, s)
∣∣, ∣∣u±

k (t)
∣∣} ≤ Gε, 0 ≤ k ≤ K,

holds for every ε > 0. Later, we will apply the results obtained in these three sec-
tions for v = αẇε and T = T (ω).

LEMMA 4.3. There exists Cerr = Cerr(K,T ) > 0 such that

(4.7) sup
(t,x)∈[0,T ]×D

∣∣δε
k(t, x)

∣∣ ≤ εkCerrGε,

holds for every k = 1,2, . . . ,K and ε > 0.

We prepare another lemma; recall that �ε
k(t) is defined just below (3.15).

LEMMA 4.4. There exists C0
err = C0

err(K,T ) > 0 such that

(4.8)
∣∣�ε

k(t)
∣∣
0,T ≤ εkC0

errGε,

for k = 0,1, . . . ,K .

Indeed, recalling that Bk,i has a prefactor εk+1 and (B2), (C2) decrease to 0
exponentially fast as ε ↓ 0, the estimate (4.8) is obtained by the condition (4.6).

We may assume Cerr ≥ C0
err by taking Cerr ∨ C0

err for Cerr.

4.3. The Allen–Cahn operator. The goal of this subsection is to show Lem-
ma 4.6, that is, the lower bound of the spectrum of the Allen–Cahn operator −ε� −
ε−1f ′(vε

k), which is a linearization of the nonlinear Allen–Cahn equation around
vε
k defined by

(4.9) vε
k(t, x) = uε

k(t, x) − 1

|D|
∫ t

0
�ε

k(s) ds, 0 ≤ k ≤ K,

for x ∈ V t
3δ , where �ε

k is the function defined as in (3.15).
An estimate similar to that in Lemma 4.6 is stated in [3], (10) (the condition∫

D φ dx = 0 is unnecessary), in which they consider the linearization around uε
k .
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The idea goes back to [4]. In our case, we need to take vε
k instead of uε

k , since the
vanishing condition

∫
D(uε(t, x) − vε

k(t, x)) dx = 0 holds under this choice because
of the effect of v(t), as we will see in Lemma 4.7 below. This vanishing condition
is needed for Lemma 4.8, which is shown by applying Poincaré’s inequality.

The argument to show Lemma 4.6 relies on [2], Section 2. Note that the correc-
tion term of vε

k from uε
k [i.e., the second term of (4.9)] is small, but it involves a

slowly diverging factor Gε as is seen in Lemma 4.4. This gives the factor Gε in
Lemma 4.6, differently from [2], Theorem 2.3.

We denote by vε
k(t, ρ, s) the inner solution of vε

k viewed under the coordinate
(t, ρ, s) defined by (2.19). By Lemma 4.4 and the condition (4.6), it follows that
vε
k , 2 ≤ k ≤ K is rewritten into

(4.10) vε
k(t, ρ, s) = m(ρ) − ελ0(t)θ1(ρ) + ε2qε(t, ρ, s),

where θ1(ρ) is the function given below (2.31) and qε(t, ρ, s) is a function satis-
fying

(4.11) sup
ρ∈R

sup
s∈S

sup
ε∈(0,1]

∣∣qε(·, ρ, s)
∣∣
0 ≤ CerrGε.

For measurable and integrable functions �(t, z, s), �(t, z, s), ψ(t, r, s) and
φ(t, r, s), z ∈ Iε ⊂ R, r ∈ I1, s ∈ S , t ∈ [0, T ], by following Section 2 in [2], we
define

Ls 〈�,�〉 =
∫
Iε

(
�z�z − f ′(vε

k(t, εz, s)
)
��

)
J (t, εz, s) dz,(4.12)

Ls(ψ,φ) =
∫
I1

(
εψrφr − ε−1f ′(vε

k(t, r, s)
)
ψφ

)
J (t, r, s) dr,(4.13)

L0〈�,�〉 =
∫
Iε

(
�z�z − f ′(m(z)

)
��

)
dz,(4.14)

〈�,�〉 =
∫
Iε

��dz, 〈�,�〉s =
∫
Iε

��J(t, εz, s) dz,(4.15)

‖�‖ = 〈�,�〉 1
2 , ‖�‖s = 〈�,�〉

1
2
s ,(4.16)

(ψ,φ)s =
∫
I1

ψφJ(t, r, s) dr, |ψ |s = (ψ,ψ)
1
2
s ,(4.17)

where �z(t, z, s), ψr(t, r, s) represents ∂�
∂z

(t, z, s), ∂ψ
∂r

(t, r, s), respectively, z =
r
ε
, J (t, r, s) is given by (3.5) and Iε = (− 1

ε
, 1

ε
). Note that (4.12) stands for the

quadratic form corresponding to the operator −� − f ′(vε
k) in the microscopic

view point, while (4.13) represents that in the macroscopic view point. Under these
settings, the following lemma holds.
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LEMMA 4.5. Let us set λ1(t, s) = inf‖�‖s =1 Ls 〈�,�〉, s ∈ S , t ∈ [0, T ]. Then
there exist constants c1, c2 > 0 depending on K , T and ε0,1 = ε0,1(K,T ) > 0 such
that

(4.18) −c1ε
2CerrGε ≤ λ1(t, s) ≤ c2ε

2CerrGε,

holds for every ε ∈ (0, ε0,1] and t ∈ [0, T ].

From Lemma 4.5 and [2], Theorem 2.3, in which the lower bound of the
quadratic form (4.13) is studied, we obtain the following lemma.

LEMMA 4.6. There exists a constant CA > 0 independent of ε and t such that
for every ε ∈ (0, ε0,1] and ψ = ψ(t, ·) ∈ H 1(D), t ∈ [0, T ],∫

D

(
ε
∣∣∇ψ(t, x)

∣∣2 − ε−1f ′(vε
k(t, x)

)
ψ(t, x)2)dx

≥ −CAεCerrGε

∫
D

ψ(t, x)2 dx, 0 ≤ t ≤ T ,

holds.

4.4. Estimate for the difference between uε
K and uε . Similar to [3], (12), we

take initial data gε = gε(x) of (1.1) or (2.5) satisfying the following three condi-
tions:

gε(x) = uε
K(0, x) + φε(x),(4.19)

∥∥φε
∥∥
L2(D) ≤ C

− 1
p

1 εK,(4.20) ∫
D

φε(x) dx = 0,(4.21)

for sufficiently small ε > 0, where C1 > 0 is the constant appearing in (4.25) in
the proof of Theorem 4.9 below and p = min{ 4

n
,1} is the number which will be

given in Lemma 4.8. Recall that uε
K(0, x) is defined by (3.2) with t = 0 and K >

max (n + 2,6) is fixed throughout the paper. Then the following lemma is shown
by an elementary computation.

LEMMA 4.7. Let uε be the solution of (2.5) with initial data gε satisfying
the conditions (4.19) and (4.21). Then,

∫
D R(t, x) dx = 0 holds, where R(t, x) =

uε(t, x) − vε
K(t, x).

The next lemma is taken from [3], page 530; see page 547 and middle of page
530 for the proof.
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LEMMA 4.8. Let D ⊂ R
n be a bounded domain. Let p = min{ 4

n
,1}. Then

there exists Cn(D) > 0 such that for every R ∈ H 1(D) with
∫
D R(x)dx = 0,

(4.22) ‖R‖2+p

L2+p(D)
≤ Cn(D)‖R‖p

L2(D)
‖∇R‖2

L2(D)
,

holds. Furthermore, there exists a constant C′ > 0 such that

(4.23) R
(
f (u + R) − f (u) − f ′(u)R

) ≤ C′ |R|2+p,

for every |u| ≤ 2 and R ∈ R.

The following theorem extends [3], Lemma 2, in our setting. Note that the dif-
ference between vε

K and uε
K is small; recall (4.9) and Lemma 4.4.

THEOREM 4.9. Let uε be the solution considered in Lemma 4.7 and assume
(4.19)–(4.21) for the initial data gε . Then, for sufficiently small ε ∈ (0, ε1], where
ε1 = min(ε0,1, e

−1),

(4.24) sup
t ∈[0,T ]

∥∥vε
K(t) − uε(t)

∥∥
L2(D) ≤ C2ε

K−1| log ε|,

holds for some constant C2 = C2(D,CA) > 0.

PROOF. From (3.39), we can assume

(4.25) C
− 1

p

1 ≤ T |D| 1
2 CerrGε and

2CACerrGεT

| log ε| ≤ 1,

for sufficiently small ε > 0, where the constant C1 = Cn(D)C′ > 0 is determined
from the two constants given in Lemma 4.8. We can also assume

(4.26) ε| log ε||D| 1
2 C−1

A C
1
p

1 ≤ 1,

for sufficiently small ε > 0.
Similar to the proof of Lemma 2 in [3], using (4.23) with R = uε − vε

K and
u = vε

K , we obtain

1

2

d

dt

∥∥R(t)
∥∥2
L2(D) +

∫
D

(∣∣∇R(t, x)
∣∣2 − ε−2f ′(vε

K

)
R2(t, x)

)
dx

≤
∫
D

(
C′ε−2∣∣R(t, x)

∣∣2+p + ∣∣R(t, x)δε
K(t, x)

∣∣)dx

≤
∫
D

C′ε−2∣∣R(t, x)
∣∣2+p

dx

+ ∥∥R(t)
∥∥
L2(D)

∥∥δε
K(t)

∥∥
L2(D), t ∈ [0, T ].

(4.27)

Note that |vε
K | ≤ 2 holds for sufficiently small ε > 0 because of the definition

(4.9) of vε
K , the construction of uε

K , the condition (4.6) and Lemma 4.4 for �ε
K(t).
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However, the second term in the left-hand side of (4.27) can be decomposed and
be bounded from below as follows for all ε ∈ (0, ε1]:

ε2
∫
D

(∣∣∇R(t, x)
∣∣2 − ε−2f ′(vε

K

)
R2(t, x)

)
dx

+ (
1 − ε2) ∫

D

(∣∣∇R(t, x)
∣∣2 − ε−2f ′(vε

K

)
R2(t, x)

)
dx

≥ ε2∥∥∇R(t)
∥∥2
L2(D) − c̄1

∥∥R(t)
∥∥2
L2(D) − CACerrGε

∥∥R(t)
∥∥2
L2(D).

Here, for the first term, we have used the assumption (iii) for f : f ′(vε
K(t, x)) ≤ c̄1,

while for the second term, we have applied Lemma 4.6 with ψ(t, x) = R(t, x) and
omitted the factor (1 − ε2). On the other hand, for the first term in the right-hand
side of (4.27), we can apply the interpolation inequality (4.22) and finally obtain

1

2

d

dt

∥∥R(t)
∥∥2
L2(D) ≤ ∥∥δε

K(t)
∥∥
L2(D)

∥∥R(t)
∥∥
L2(D)

+ (c̄1 + CACerrGε)
∥∥R(t)

∥∥2
L2(D)

− ε2∥∥∇R(t)
∥∥2
L2(D)

(
1 − C1ε

−4∥∥R(t)
∥∥p

L2(D)

)
,

(4.28)

for t ∈ [0, T ], where C1 > 0 is defined below (4.25).
Now, consider the time Tε ≥ 0 defined by

Tε := inf
{
t ≥ 0; ∥∥R(t)

∥∥
L2(D) ≥ C

− 1
p

1 ε
4
p
} ∧ T .

If the above set {·} is empty, we define Tε = T . The goal is to show Tε = T and the
conclusion (4.24) based on this. From (4.19) and (4.20), we have R(0) = φε and

(4.29)
∥∥R(0)

∥∥
L2(D) ≤ C

− 1
p

1 εK,

for all 0 < ε ≤ ε1, which implies that Tε > 0 since K > 4
p

+ 2. Note that K > 4
p

+ 2
follows from K > max (n + 2,6) and the choice of p: p = min{ 4

n
,1}. On the other

hand, from (4.28) and the definition of Tε , which guarantees the nonpositivity of
the last term in (4.28) for t ≤ Tε , we obtain that for every t ∈ [0, Tε ],

d

dt

∥∥R(t)
∥∥
L2(D) ≤ 2CACerrGε

∥∥R(t)
∥∥
L2(D) + ∥∥δε

K(t)
∥∥
L2(D),

where we have estimated c̄1 as c̄1 ≤ CACerrGε for sufficiently small ε > 0 from
(3.39). Then Gronwall’s lemma shows that

(4.30) sup
t ∈[0,Tε ]

∥∥R(t)
∥∥
L2(D) ≤ e2CACerrGεTε

(∥∥R(0)
∥∥
L2(D) +

∫ Tε

0

∥∥δε
K(t)

∥∥
L2(D) dt

)
.

However, Lemma 4.3 implies∫ Tε

0

∥∥δε
K(t)

∥∥
L2(D) dt ≤ Tεε

K |D| 1
2 CerrGε,
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and, therefore, noting e2CACerrGεTε ≤ e| log ε| = ε−1 from (4.25), we obtain

sup
t ∈[0,Tε ]

∥∥R(t)
∥∥
L2(D) ≤ 2εK−1T |D| 1

2 CerrGε

≤ εK−1| log ε||D| 1
2 C−1

A < ε
4
p C

− 1
p

1 ,

where we have used (4.29), (4.30), (4.25) and Tε ≤ T for the first inequality, (3.39)
for the second for sufficiently small ε > 0 and then K > 4

p
+ 2 and (4.26) for

the last one. Thus, Tε = T holds, which implies that we obtain (4.24) by setting

C2 = |D| 1
2 C−1

A . The proof is complete. �

4.5. Proof of Theorem 1.1. Let γ0 be a smooth hypersurface in D satisfying
the conditions in Theorem 1.1.

DEFINITION 4.1. The solution of (1.4) with an initial hypersurface γ0 means
the hypersurface � = ⋃

0≤t<σ (γt × {t }) and (d(t ∧ σ),w(t ∧ σ)) ∈ C2(O) × R,
t ≥ 0, with a stopping time σ defined on a probability space (	,F,P ) equipped
with the filtration (Ft )t ≥0 and O being an open neighborhood of γ0 (cf. [26]) such
that:

(i) d(t, x) is an (Ft )-adapted signed distance of x ∈ O to γt for t ∈ [0, σ ) and
satisfies |∇d| = 1.

(ii) w(t) is an (Ft )-Brownian motion.
(iii) The following stochastic integral equation holds in Stratonovich sense:

d(t ∧ σ, x) = d(0, x) +
∫ t ∧σ

0
g
(
D2d(u, x), d(u, x)

)
du

−
∫ t ∧σ

0

du

|γu|
∫
γu

�d(u, s̄) ds̄

+
∫ t ∧σ

0

α|D|
2|γu| ◦ dw(u), x ∈ O.

(4.31)

Here, D2d denotes the Hessian of d and g(A,q) = tr(A(I − qA)−1) for a sym-
metric matrix A and q ∈ R.

It follows from Assumption 1.2 that the solution (γ ε
t , dε) ≡ (γ αẇε

t , dαẇε
) of

(2.6) with v = αẇε exists uniquely for each 0 < ε ≤ 1 and, furthermore, a unique
solution � = ⋃

0≤t<σ (γt × {t }) and (d(t ∧ σ),w(t ∧ σ)) of (1.4) with an initial
hypersurface γ0 also exists.

We are now in the position to give the proof of the main theorem of this paper.

PROOF OF THEOREM 1.1. We assume Assumptions 1.1, 1.2 and 3.1, take
initial data gε of (1.1) satisfying the three conditions (4.19)–(4.21) and fix T > 0 as
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in Assumption 3.1. Note that the solution of (1.1) exists uniquely for t ∈ [0, T ] a.s.,
since ẇε is C∞ in t . By Corollary 3.7, the condition (4.6) holds for v = αẇε and
T = T (ω) ∧ τ(ω); recall that T (ω) determined from σε in Section 3.3.1 satisfies
T (ω) ≡ T ε∗

0 (ω) ↑ σ(ω) as ε∗
0 ↓ 0 a.s. and τ(ω) is given below Assumption 3.1.

Therefore, by (4.9), Lemma 4.4 and recalling the construction of uε
K , we see that

(4.32) lim
ε↓0

sup
t ∈[0,T (ω)∧τ(ω)∧T ]

∥∥vε
K(t, ·) − m

(
dε(t, ·)/ε)∥∥L∞(D) = 0 a.s.

Furthermore, it follows from Assumption 1.2 that

(4.33) lim
ε↓0

sup
t ∈[0,T ]

∥∥m(
dε(t ∧ σε, ·)/ε) − χγt ∧σ (·)∥∥L2(D) = 0 a.s.

Moreover, noting Corollary 3.7 again, Theorem 4.9 implies

(4.34) sup
t ∈[0,T (ω)∧τ(ω)∧T ]

∥∥uε(t, ·) − vε
K(t, ·)∥∥L2(D) ≤ C2ε

K−1| log ε| a.s.

From (4.32)–(4.34), we obtain

lim
ε↓0

sup
t ∈R+

∥∥uε(t ∧ σε ∧ τ ∧ T , ·) − χγt ∧σ ∧τ ∧T
(·)∥∥L2(D) = 0 a.s.

The proof is completed, since T = T ε∗
0 (ω) ↑ σ(ω) as ε∗

0 ↓ 0. �

5. Local existence and uniqueness for the limit dynamics (1.4). In this sec-
tion, we consider the stochastically perturbed volume preserving mean curvature
flow (1.4), which appears in the limit. We write c = |D|/2 for simplicity. As ex-
plained in Section 1, the stochastic term destroys the volume conservation law.
Here, we restrict ourselves in two-dimension and discuss under the situation that
the closed curve γt stays strictly convex. We prove the local existence and unique-
ness of the stochastic evolution governed by (1.4) by extending the method em-
ployed in [11], and show that Assumption 3.1 holds up to some stopping time
T = τ(ω) > 0 assuming Assumption 1.2 in a.s.-sense and then prove Assump-
tion 1.2 in the sense of law for ẇε given by (4.4). The difference between a.s.-
sense and law-sense can be filled by applying Skorohod’s theorem and changing
the probability space as we pointed out in Section 1.

A strictly convex closed plane curve γ can be parameterized by θ ∈ S := [0,2π)

in terms of the Gauss map, that is, the position X0 on γ is denoted by X0(θ) if the
angle between one fixed direction e := (1,0) in the plane R

2 and the outward
normal �n(X0) at X0 to γ is θ . The set S or a unit circle in R

2 plays a role of
the reference manifold S . We further denote by κ = κ(θ) > 0 the curvature of
γ at X0 = X0(θ). Under these notation, the dynamics (1.4) is rewritten into the
stochastic integro-differential equation for κ = κ(t, θ):

(5.1)
∂κ

∂t
= κ2 ∂2κ

∂θ2 + κ3 − κ2 · κ̄ + cακ2

|γ | ◦ ẇ(t),
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where κ̄ denotes the average of κ over the curve γ = γt and |γ | stands for the
length of γ ; heuristically (5.1) is derived by applying [16], page 17, (2.20) with
V = κ − κ̄ + cα

|γ | ẇ(t) and see also [11]. The volume (length) element dθ̄ on γ is

given by dθ̄ = |∂θX0(θ)| dθ . Since X0(θ) ∈ R
2 ∼= C is written as

X0(θ) = X0(0) − √−1
∫ θ

0

e
√ −1θ ′

κ(θ ′)
dθ ′,

we see that |∂θX0(θ)| = 1/κ(θ). Therefore, κ̄ and |γ | are given by

|γ | :=
∫
S

∣∣∂θX0(θ)
∣∣dθ =

∫
S

dθ

κ(θ)
,(5.2)

κ̄ := 1

|γ |
∫
S
κ(θ)

∣∣∂θX0(θ)
∣∣dθ = 2π

|γ | = 2π

(∫
S

dθ

κ(θ)

)−1
,(5.3)

respectively, which are functionals of κ = {κ(θ); θ ∈ S}.
As in [11], we introduce a cut-off because of the singularity in (5.1). For

L ∈ N, we define a cut-off function χL ∈ C∞
b (R) (in particular, χL,χ ′

L, . . . are
all bounded) such that χL(x) = x for x ∈ [1/L,L] and 1/2L ≤ χL(x) ≤ 2L for all
x ∈ R, and set

|γ |L ≡ |γ |L(κ(·)) =
∫
S

dθ

χL(κ(θ))
,

aL(κ) = χ2
L(κ),

bL

(
θ, κ(·)) = χ3

L

(
κ(θ)

) − 2πχ2
L

(
κ(θ)

)|γ |−1
L ,

hL

(
θ, κ(·)) = cαχ2

L

(
κ(θ)

)|γ |−1
L .

(5.4)

Fixing L for a while and denoting aL, bL, hL by a, b, h for simplicity, we consider
the stochastic integro-differential equation with cut-off for κ = κ(t, θ):

(5.5)
∂κ

∂t
= a(κ)

∂2κ

∂θ2 + b(·, κ) + h(·, κ) ◦ ẇ(t), t > 0, θ ∈ S.

We also consider the dynamics (2.6) with v(t) = αẇε(t), which is described by
the integro-differential equation:

(5.6)
∂κ

∂t
= a(κ)

∂2κ

∂θ2 + b(·, κ) + h(·, κ)ẇε(t), t > 0, θ ∈ S,

by replacing ẇ(t) in (5.5) with ẇε(t). We gave two examples of smooth noises
ẇε(t) in Section 4.1. Since ẇε(t) is smooth in t , (5.6) has a unique solution for
every ω.

We now show that Assumption 3.1 holds with the choice V = {αẇε ; 0 < ε ≤
ε∗

0 } in the setting of this section and assuming Assumption 1.2 in a.s.-sense. The
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dynamics (2.6) is rewritten into the integro-differential equation for κ = κ(t, θ):

(5.7)
∂κ

∂t
= κ2 ∂2κ

∂θ2 + κ3 − κ2 · κ̄ + cκ2

|γ v | v,

where the averaged curvature κ̄ and the length |γ v | are determined from κ = κ(t)

by (5.3) and (5.2), respectively. Note that the curve γ v
t = {X0(t, θ) ∈ R

2; θ ∈ S} is
recovered from {κ(s); s ≤ t } and X0(0,0) as

X0(t, θ) = X0(0,0) +
(∫ θ

0

sin θ ′

κ(t, θ ′)
dθ ′, −

∫ θ

0

cos θ ′

κ(t, θ ′)
dθ ′

)

+
(∫ t

0

(
κ(s,0) − κ̄(s) + c

|γs | v(s)

)
ds,

∫ t

0

∂

∂θ
κ(s,0) ds

)
.

(5.8)

Once γ v
t is determined, one can define the signed distance function dv(t, x).

We consider the time

τ v
L = inf

{
t > 0; m(κt ) > L or dist(γt , ∂D) <

1

L
or

inf
x∈V t

3δ

(
I2 + d(t, x)∇ 2d(t, x)

)
<

1

L

}
,

where I2 is the unit matrix, m(κ) = maxθ ∈S {κ(θ), κ(θ)−1, |κ(1)(θ)|}, κ(n) =
∂nκ/∂θn, κt = κ(t) ≡ κv(t) is the solution of (5.7) and γt = γ v

t and d(t, x) =
dv(t, x) are determined as above. We define the stopping time τ ε

L := τ v
L with

v = αẇε; in other words, τ ε
L is the stopping time for the solution of (5.6). Note

that the uniqueness of solutions implies that the solution of (5.6) coincides with
that of (5.7) with v = αẇε for 0 ≤ t ≤ τ ε

L. The reason that we care I2 + d∇ 2d will
be clear in (0.48) in the proof of Lemma 5.1 in [14].

We are now in the position to show Assumption 3.1 assuming Assumption 1.2
in a.s.-sense.

LEMMA 5.1. For every L ∈ N, there exist N = N(K) ∈ N, a stopping time
T = τ(ω) > 0 and C = C(CV,T ,K,T ,L) > 0 such that

sup
1≤i≤2

sup
θ ∈S

∣∣∂k
t ∂m

θ Xi
0(·, θ)

∣∣
0,T ≤ C

(
1 + |v|N,T

)N
,(5.9)

sup
x∈V t

3δ

∣∣∂k
t ∂mθ(·, x)

∣∣
0,T ≤ C

(
1 + |v|N,T

)N
,(5.10)

for every v ∈ V = {αẇε ; 0 < ε ≤ ε∗
0 }, k = 0,1, . . . ,K and m, |m| ≤ M , where

θ(t, x) = S(t, x) ∈ S is the inverse function of x = X0(t, θ) + r �n(X0(t, θ)) defined
below (2.10).
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The next task is to show that Assumption 1.2 holds in the sense of law in our
setting. We prepare the following theorem which gives the construction of the
solution of (5.5) and, therefore, the local solution of (5.1) in the sense of law, and
shows the convergence in law of the solution of (5.7) with v(t) = αẇε(t) to that
of (5.1) locally in time. We use the usual martingale method. Since this is similar
to [11], Section 5, the details are omitted; see Proposition 5.15 and Theorem 5.16
stated below. The noise ẇε(t) is taken the same as the second example given in
Section 4.1, that is, as in (4.4).

THEOREM 5.2. For each m ∈ N, L > 0 and T > 0, let P ε be the distribution
of the solution κε(t, ·) of (5.6) on C([0, T ],Cm(S)). Then {P ε }0<ε<1 is tight.

To prove this theorem, we need to show the following two propositions; see
Theorems 6.1 and 4.2 in [11] for the first proposition and Proposition 4.1 in [11]
for the second. Note that the assertion of Proposition 5.3 is a little weaker than
[11], because an additional term appears in the bound given in Lemma 5.11.

PROPOSITION 5.3. There exist stopping times σ̃ ε ≡ σ̃ ε
L,0 < ε < 1, such that

σ̃ ε > 0 a.s.,

(5.11) lim
ε↓0

P
(
σ̃ ε > T

) = 1,

for every T > 0 and

(5.12) sup
0<ε<1

E
[

sup
0≤t ≤T

∥∥κ(n)(t ∧ σ̃ ε)∥∥p
Lp(S)

]
< ∞,

for every n ∈ Z+ = {0,1,2, . . .} and p ≥ 1, where κ(t) = κε(t) is the solution of
(5.6).

PROPOSITION 5.4. For every ϕ ∈ C∞(S) and p ≥ 0,

E
[∣∣〈κε(t2) − κε(t1), ϕ

〉∣∣p] ≤ C(t2 − t1)
p/2, 0 ≤ t1 < t2 ≤ T ,

where 〈κ,ϕ〉 = ∫
S κ(θ)ϕ(θ) dθ .

Once we have the uniform moment estimates (5.12), relying on the criterion due
to Holley and Stroock (see [9]), the conclusion of Theorem 5.2 follows from the
weak tightness of {κε(t)}0<ε<1 shown in Proposition 5.4. Indeed, (5.12) implies
the tightness of {κε(t ∧ σ̃ ε)}0<ε<1 and this shows the conclusion from (5.11).

PROOF OF PROPOSITION 5.4. We follow the proof of Proposition 4.1 in [11]
and only sketch the proof of the proposition. The difference from [11] is that we
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need to replace h′(κ(t, θ)) by Dh(θ, κ(t)), the Fréchet derivative in κ . Indeed, the
integral form of our equation (5.6) is

κ(t2, ·) − κ(t1, ·) =
∫ t2

t1

a
(
κ(s, ·))∂2κ(s, ·)

∂θ2 ds +
∫ t2

t1

b
(·, κ(s)

)
ds

+
∫ t2

t1

h
(·, κ(s)

)
ẇε(s) ds.

To complete the proof, it suffices to show

E
[∣∣X(t)

∣∣p] ≤ C(t − t1)
p
2 , t ≥ t1,p ∈ 2N,

for X(t) = ∫ t
t1

�(κ(s))ẇε(s) ds, t ≥ t1, where �(κ) = ∫
S h(θ, κ)ϕ(θ) dθ . Since

the Fréchet derivatives toward ψ ∈ L2(S) of h(θ, κ) and |γ |L(κ) are computed as

Dh(θ, κ)(ψ) = 2cαχ ′
L(κ(θ))χL(κ(θ))

|γ |L(κ)
ψ(θ)

(5.13)

+ cαχL(κ(θ))2

|γ |L(κ)2

〈
χ ′

L(κ)

χL(κ)2 ,ψ

〉
,

D|γ |L(κ)(ψ) = −
〈
χ ′

L(κ)

χ2
L(κ)

,ψ

〉
,(5.14)

respectively, we have

X(t)p = p

∫ t

t1

ẇε(s) ds

[∫ s

t1

�1(r) dr +
∫ s

t1

�2(r)ẇ
ε(r) dr

]
,

where

�1(r) = X(r)p−1
∫
S
Dh

(
θ, κ(r)

)(
a
(
κ(r, ·))κ(2)(r, ·) + b

(·, κ(r)
))

ϕ(θ) dθ,

�2(r) = (p − 1)X(r)p−2�
(
κ(r)

)2
+ X(r)p−1

∫
S
Dh

(
θ, κ(r)

)(
h
(·, κ(r)

))
ϕ(θ) dθ.

Noting that a, b, h, χL and its derivative χ ′
L are bounded, similar to the proof of

Proposition 4.1 in [11], the conclusion is shown. �

The proof of Proposition 5.3 can be completed similar to those of Theorem 6.1
and Lemmas 6.1 to 6.16 in [11]. The difference between [11] and ours is that
the coefficients b = b(θ, κ) and h = h(θ, κ) of the SPDE (5.6) are functionals
of κ = {κ(θ); θ ∈ S} in our case. This requires some more careful computations,
although most of the proof is similar to that in [11]. Another difference is that,
in [11], the noise is taken as ẇε(t) = ε−γ ξ(ε−2γ t), γ > 0 with ξ introduced in
Section 4.1, and hence |ẇε(t)| ≤ Mε−γ holds. In our case, ẇε is given by (4.4)
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and satisfies |ẇε(t)| ≤ M
A

ψ(ε), where ψ(ε) is the function of ε defined as (4.1).
Therefore, we need to replace ε−γ appearing in lemmas of [11] by ψ(ε), but we
can obtain similar results to that of [11]. Here, we indicate only the different points
in the proof from that in [11].

Before giving the proof of Proposition 5.3, we prepare several lemmas parallel
to [11]. In the rest of this section, we assume p ∈ 2N. By directly computing from
(5.6), we have

(5.15)
d

dt

∥∥κ(n)
t

∥∥p
Lp = p

(
�

(n)
1 (κt ) + �

(n)
2 (κt ) + �

(n)
3 (κt )ẇ

ε(t)
)
,

where Lp = Lp(S) and

�
(n)
1 (κ) =

∫
S

{
κ(n)(θ)

}p−1{
a
(
κ(θ)

)
κ(2)(θ)

}(n)
dθ,

�
(n)
2 (κ) =

∫
S

{
κ(n)(θ)

}p−1{
b(θ, κ)

}(n)
dθ,

�
(n)
3 (κ) =

∫
S

{
κ(n)(θ)

}p−1{
h(θ, κ)

}(n)
dθ.

Then, d
dt

�
(n)
3 (κt ) can be decomposed into

(5.16)
d

dt
�

(n)
3 (κt ) = �

(n)
1 (κt ) + �

(n)
2 (κt )ẇ

ε(t),

where

�
(n)
1 (κ) = (p − 1)

∫
S

{
κ(n)(θ)

}p−2{
h(θ, κ)

}(n){
a
(
κ(θ)

)
κ(2)(θ) + b(θ, κ)

}(n)
dθ

+
∫
S

{
κ(n)(θ)

}p−1[
Dh(θ, κ)

(
a
(
κ(·))κ(2) + b(·, κ)

)](n)
dθ,

�
(n)
2 (κ) = (p − 1)

∫
S

{
κ(n)(θ)

}p−2[{
h(θ, κ)

}(n)]2
dθ

+
∫
S

{
κ(n)(θ)

}p−1{
Dh(θ, κ)

(
h(·, κ)

)}(n)
dθ.

Set

(5.17) ψ(n)
p (κ) =

∫
S

{
κ(n)(θ)

}p−2{
κ(n+1)(θ)

}2
dθ, p ≥ 2, n ≥ 1.

We denote by Pn the family of polynomials of the forms P(y1, . . . , yn−1, z; κ) =∑
α g1,α(κ)g2,α(z)yα , yi ∈ R, 1 ≤ i ≤ n − 1, κ ∈ R, z ∈ L2(S) with g1,α ∈ C∞

b (R),
g2,α ∈ C∞

b (L2(S)), α = (α1, . . . , αn−1) ∈ Z
n−1+ , yα = y

α1
1 · · · yαn−1

n−1 and the sum∑
α finite, where C∞

b (L2(S)) stands for the family of infinitely Fréchet differen-
tiable functions on L2(S) having bounded derivatives.

The term �
(n)
1 coincides with that appearing in [11], Lemma 6.1, so that we

have the following lemma.
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LEMMA 5.5 (Estimate for �
(n)
1 ). For n ≥ 1, there exist constants c =

c(n,p,L) and C = C(n,p,L) > 0 such that

(5.18) �
(n)
1 (κ) ≤ −cψ(n)

p (κ) + C

{∥∥κ(n)
∥∥p
Lp +

3∑
i=1

‖Pi ‖p
Lp

}
,

for some Pi = Pi(κ
(1)(θ), . . . , κ(n−1)(θ), κ; κ(θ)) ∈ Pn with g2,α,i ≡ 1, i = 1,2,3,

that is, Pi of the forms Pi(y1, . . . , yn−1, z; κ) = ∑
α g1,α,i(κ)yα with g1,α,i ∈

C∞
b (R), i = 1,2,3. In particular, in the case n = 1, (5.18) holds with C = 0 and

P1 = P2 = P3 = 0.

As for the terms �
(n)
2 and �

(n)
3 , we have the upper bounds for them as in the

next lemma.

LEMMA 5.6 (Estimates for �
(n)
2 and �

(n)
3 ). For n ≥ 1, there exists a constant

C = C(n,p,L) > 0 such that∣∣�(n)
2 (κ)

∣∣ ≤ C
{∥∥κ(n)

∥∥p
Lp + ‖P4‖p

Lp

}
,∣∣�(n)

3 (κ)
∣∣ ≤ C

{∥∥κ(n)
∥∥p
Lp + ‖P5‖p

Lp

}
,

for some Pi = Pi(κ
(1)(θ), . . . , κ(n−1)(θ), κ; κ(θ)) ∈ Pn, i = 4,5. In particular, in

the case n = 1, these estimates hold with P4 = P5 = 0.

We have another estimate for �
(n)
3 (κ). In what follows, ψ(ε) denotes the func-

tion given in (4.1).

LEMMA 5.7. For every n ≥ 1 and δ > 0,∣∣�(n)
3 (κ)

∣∣ ≤ ψ(ε)−1(p − 1)
[
δψ(n)

p (κ) + δ−1∥∥κ(n)
∥∥p
Lp + δ−1ψ(ε)p ‖P6‖p

Lp

]
,

for some P6 = P6(κ
(1)(θ), . . . , κ(n−1)(θ), κ; κ(θ)) ∈ Pn.

Next, we give a bound for �
(n)
2 for n ≥ 1.

LEMMA 5.8 (Estimate for �
(n)
2 ). For n ≥ 1, there exists a constant C =

C(n,p,L) > 0 such that

∣∣�(n)
2 (κ)

∣∣ ≤ C

[∥∥κ(n)
∥∥p
Lp +

8∑
i=7

‖Pi ‖p
Lp

]
,

for some Pi = Pi(κ
(1)(θ), . . . , κ(n−1)(θ), κ; κ(θ)) ∈ Pn, i = 7,8.

Let us give an estimate for �
(n)
1 . We start with the case n = 1.



606 T. FUNAKI AND S. YOKOYAMA

LEMMA 5.9. For every δ > 0, we have∣∣�(1)
1 (κ)

∣∣ ≤ C
[
1 + ∥∥κ(1)

∥∥p
Lp + ψ(ε)−1δ−1∥∥κ(1)

∥∥p+2
Lp+2 + (

1 + ψ(ε)δ
)
ψ(1)

p (κ)
]
,

for some C = C(1,p,L) > 0.

Next, we consider the the case n ≥ 2. For n ≥ 2, by the integration by parts
formula for �

(n)
1 , it can be decomposed into

�
(n)
1 (κ) = −(p − 1)(p − 2)�(n)

a (κ) − (p − 1)�
(n)
b (κ) − (p − 1)�(n)

c (κ),

where

�(n)
a (κ) =

∫
S

{
κ(n)(θ)

}p−3
κ(n+1)(θ)

{
h(θ, κ)

}(n){
A(θ, κ)

}(n−1)
dθ,

�
(n)
b (κ) =

∫
S

{
κ(n)(θ)

}p−2{
h(θ, κ)

}(n+1){
A(θ, κ)

}(n−1)
dθ,

�(n)
c (κ) =

∫
S

{
κ(n)(θ)

}p−2
κ(n+1)(θ)

[
Dh(θ, κ)

(
A(·, κ)

)](n−1)
dθ.

Then we have the following three lemmas for �
(n)
b , �

(n)
c and �

(n)
a .

LEMMA 5.10 (Estimate on �
(n)
b ). For n ≥ 2, there exists a constant C =

C(n,p,L) > 0 such that

∣∣�(n)
b (κ)

∣∣ ≤ C

[
ψ(n)

p (κ) + ∥∥κ(n)
∥∥p
Lp +

12∑
i=9

‖Pi ‖p
Lp

]
,

for some Pi = Pi(κ
(1)(θ), . . . , κ(n−1)(θ), κ; κ(θ)) ∈ Pn, i = 9, . . . ,12.

The following estimate is similar to [11], Lemma 6.7, but we need the second
term additionally for this estimate.

LEMMA 5.11 (Estimate on �
(n)
c ). For n ≥ 2, there exists a constant C =

C(n,p,L) > 0 such that

∣∣�(n)
c (κ)

∣∣ ≤ C

[
ψ(n)

p (κ) + ∥∥κ(n)
∥∥p
Lp +

15∑
i=13

‖Pi ‖p
Lp

]

+ C
∥∥κ(1)

∥∥4
L2

(∥∥κ(n)
∥∥p
Lp + ‖Q‖p

Lp

)
,

for some Pi = Pi(κ
(1)(θ), . . . , κ(n−1)(θ), κ; κ(θ)) ∈ Pn, i = 13,14,15 and Q =

Q(κ(1)(θ), . . . , κ(n−1)(θ), κ; κ(θ)) ∈ Pn with g2,α ≡ 1, namely, Q does not con-
tain any functional of κ .
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Recalling again that ∂l
κ(θ)h(θ, κ) and ∂l

κ(θ)b(θ, κ), l ∈ Z+, are all bounded and
following the proof of [11], Lemma 6.9, we have the next lemma.

LEMMA 5.12 (Estimate on �
(n)
a ). For every n ≥ 2 and β ′ ∈ (0,1), there exist

constants C,N,q > 0 such that

∣∣�(n)
a (κ)

∣∣ ≤ C

[
ψ(n)

p (κ) + ∥∥κ(n)
∥∥p
Lp +

19∑
i=16

‖Pi ‖p
Lp

]

+ C

[
1 +

n−1∑
i=1

∥∥κ(i)
∥∥N
Lp + ∥∥κ(n)

∥∥β ′
Lq

]
ψ

(n)
2 (κ),

for some Pi = Pi(κ
(1)(θ), . . . , κ(n−1)(θ), κ; κ(θ)) ∈ Pn, i = 16, . . . ,19.

Now we estimate the conditional expectation of the integral of the third term on
the right-hand side of (5.15). Let us recall Fs,t = σ(ξ(u), u ∈ [s, t ]), where ξ is
the stochastic process given in Section 4.1. Set Fε

s,t = Fψ(ε)2s,ψ(ε)2t . Recall also

that in our case ẇε is given by (4.4) and |ẇε(t)| ≤ M
A

ψ(ε) holds. By replacing
the divergent factor ε−γ in [11], Lemmas 6.10 and 6.11 by ψ(ε), we obtain the
following two lemmas. The proofs are the same and, therefore, omitted.

LEMMA 5.13. For 0 ≤ s ≤ t ≤ T , we have∣∣∣∣E[∫ t

s
�

(n)
3 (κr)ẇ

ε(r) dr
∣∣∣Fε

0,s

]∣∣∣∣
≤ Cψ(ε)−1∣∣�(n)

3 (κs)
∣∣ + C

∫ t

s
E
[
ψ(ε)−1∣∣�(n)

1 (κr)
∣∣ + ∣∣�(n)

2 (κr)
∣∣|Fε

0,s

]
dr,

for some C = C(M,A) > 0.

LEMMA 5.14 (Rough estimates uniform in ω). Assume κ0 = κ(0) ∈ C∞(S) is
independent of ε. Then there exist constants C = C(T ,n,p) and N = N(n,p) > 0
such that ∥∥κ(n)

t

∥∥
Lp ≤ Cψ(ε)N,0 ≤ t ≤ T ,(5.19) ∫ T

0
ψ(n)

p (κt ) dt ≤ Cψ(ε)N,(5.20)

∥∥κ(n)
t

∥∥p
Lp ≤

[∥∥κ(n)
s

∥∥p
Lp + Cψ(ε)

∫ t

s

5∑
i=1

∥∥Pi(κr)
∥∥p
Lp dr

]
eCψ(ε)(t −s),
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for 0 ≤ s ≤ t ≤ T . In particular, if n = 1, we can take N = 1 in (5.19) and N = p

in (5.20), that is, ∥∥κ(1)
t

∥∥p
Lp ≤ Cψ(ε), 0 ≤ t ≤ T ,∫ T

0
ψ(1)

p (κt ) dt ≤ Cψ(ε)p.

Under the preparation of Lemmas 5.5 to 5.14, one can complete the proof of
Proposition 5.3.

PROOF OF PROPOSITION 5.3. The proof of (5.12) is completed by induction
in the following three steps as in [11], Section 6.7. Step 1: we prove (5.12) for
n = 1. Step 2: we prove (5.12) for n assuming that it holds for i = 1, . . . , n − 1.
Step 3: we prove (5.12) for n = 0.

As for Step 1, using the estimates on �
(1)
1 , �

(1)
2 , �

(1)
3 , �

(1)
1 and �

(1)
2 , a similar

method to [11] shows

(5.21) sup
0<ε<1

E
[

sup
t ∈[0,T ]

∥∥κ(1)
t

∥∥p
Lp

]
< ∞.

In Step 2, integrating the both sides of (5.15) from s to t and taking the conditional
expectation, and then, using Lemmas 5.5 to 5.14 and noting that |ẇε(t)| satisfies

|ẇε(t)| ≤ M
A

ψ(ε), we have

E
[∥∥κ(n)

t

∥∥p
Lp |Fε

0,s

] + c′′
∫ t

s
E
[
ψ(n)

p (κr)|Fε
0,s

]
dr

≤ (
1 + Cψ(ε)−1)∥∥κ(n)

s

∥∥p
Lp + Cψ(ε)−1∥∥P5(κs)

∥∥p
Lp

+ C

∫ t

s
E
[∥∥κ(n)

r

∥∥p
Lp |Fε

0,s

]
dr + C

∫ t

s
E
[
P(κr)|Fε

0,s

]
dr

+ Cψ(ε)−1
∫ t

s
E
[∥∥κ(1)

r

∥∥4
L2

∥∥κ(n)
r

∥∥p
Lp |Fε

0,s

]
dr

+ Cψ(ε)−1
∫ t

s
E
[∥∥κ(1)

r

∥∥4
L2

∥∥Q(κr)
∥∥p
Lp |Fε

0,s

]
dr

+ Cψ(ε)−1(p − 2)

×
∫ t

s
E

[{
1 + ψ(ε)δ +

n−1∑
i=1

∥∥κ(i)
r

∥∥N
Lq

}
ψ

(n)
2 (κr)

∣∣∣∣Fε
0,s

]
dr,

(5.22)

for every ε ∈ (0, ε0) with a sufficiently small ε0 in such a way that C
c
ψ(ε0)

−1 �
1 (hence, there exists some c′′ > 0), for every δ > 0 and some N = N(δ), q =
q(δ) ≥ 1, where P(κt ) = ∑

1≤i≤19,i �=5,6 ‖Pi(κt )‖p
Lp . Let us define σ̃ε = inf{t >

s; ‖κ
(1)
t ‖L2 > ψ(ε)

1
4 } and σ̃ε = ∞ if the set {·} is empty. Then the estimate (5.21)
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implies (5.11). Note that (5.22) is also true with t replaced by t ∧ σ̃ε . Thus, by
similar manner to [11], Section 6.7 with ε−γ replaced by ψ(ε), we have

sup
0<ε<1

E
[

sup
t ∈[0,T ]

∥∥κ(n)
t ∧σ̃ε

∥∥p
Lp

]
< ∞ ;

see [11], Lemmas 6.12 to 6.16. Finally, Step 3 can be completed by using again
[11], Section 6.7 with ε−γ replaced by ψ(ε) for the estimates on �

(0)
1 , �

(0)
2 , �

(0)
3 ,

�
(0)
1 and �

(0)
2 . Indeed, we obtain

sup
0<ε<1

E
[

sup
t ∈[0,T ]

‖κt ‖p
Lp

]
< ∞.

As a result, we get (5.12) for every n ∈ Z+ and p ∈ 2N, so that for every p ≥ 1.
�

We now show the pathwise uniqueness for (5.5). For this, we apply the energy
inequality; cf. Lemma 5.2 in [11]. To do this, we need to rewrite (5.5) into Itô’s
form. The Fréchet derivatives toward ψ ∈ L2(S) of h(θ, κ) and |γ |L(κ) are com-
puted as in (5.13) and (5.14), respectively. Thus, we have that

h
(
θ, κ(t)

) ◦ dwt = h
(
θ, κ(t)

)
dwt + 1

2
d
{
h
(
θ, κ(t)

)}
dwt

= h
(
θ, κ(t)

)
dwt + 1

2
Dh

(
θ, κ(t)

)(
h
(
θ1, κ(t)

))
dt

= h
(
θ, κ(t)

)
dwt + g

(
θ, κ(t)

)
dt,

where

g(θ, κ) = cα

|γ |L(κ)
χL

(
κ(θ)

)
χ ′

L

(
κ(θ)

)
h(θ, κ)

+ cα

2|γ |L(κ)2 χ2
L

(
κ(θ)

) ∫
S

χ ′
L(κ(θ1))h(θ1, κ)

χ2
L(κ(θ1))

dθ1.

Therefore, (5.5) can be rewritten into Itô’s form:

(5.23)
∂κ

∂t
= a(κ)

∂2κ

∂θ2 + b̃(·, κ) + h(·, κ)ẇt , t > 0, θ ∈ S,

where

b̃(·, κ) = b(·, κ) + g(·, κ).

PROPOSITION 5.15 (cf. Lemma 5.2 in [11]). Let κi(t), i = 1,2, be two so-
lutions of (5.5) or equivalently (5.23) satisfying κi(t) ∈ C([0, T ],C2(S)) a.s. and
having the same initial data: κ1(0) = κ2(0) ∈ C2(S). Then we have P(κ1(t) =
κ2(t) for all t ∈ [0, T ]) = 1.
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PROOF. By applying Itô’s formula,∥∥κ1(t) − κ2(t)
∥∥2
L2 =

∫ t

0
{I1 + I2} ds +

∫ t

0
I3 dws,

where

I1 = 2
∫

(κ1 − κ2)
{
a(κ1)κ

(2)
1 − a(κ2)κ

(2)
2

}
,

I2 = 2
∫

(κ1 − κ2)
{
b̃(·, κ1) − b̃(·, κ2)

} + ∥∥h(·, κ1) − h(·, κ2)
∥∥2
L2,

I3 = 2
∫

(κ1 − κ2)
{
h(·, κ1) − h(·, κ2)

}
,

and the norm ‖ · ‖Lp(S) will be simply denoted by ‖ · ‖Lp for p ∈ [1, ∞ ]. Noting
that a(κ) ≥ a0 = 1/2N > 0, the estimate on I1 is exactly the same as in [11]:

I1 ≤ −2a0
∥∥κ ′

1 − κ ′
2
∥∥2
L2 + 2

∥∥a′∥∥
L∞

∥∥κ ′
1
∥∥
L∞

{
δ−1‖κ1 − κ2‖2

L2 + δ
∥∥κ ′

1 − κ ′
2
∥∥2
L2

}
+ 2

∥∥a′∥∥
L∞

∥∥κ(2)
2

∥∥
L∞ ‖κ1 − κ2‖2

L2,

for every δ > 0. Since D{1/|γ |L}(θ1, κ) = − 1
|γ |2

L

D|γ |L(θ1, κ), (5.14) shows that

‖D{1/|γ |L}(·, κ)‖L2 is bounded in κ , and thus the map κ ∈ L2  → 1/|γ |L(κ) ∈ R

is Lipschitz continuous. This implies that

I2 ≤ C‖κ1 − κ2‖2
L2 .

Now introduce a stopping time

τM = inf
{
t > 0; max

{‖κ1‖L∞ , ‖κ2‖L∞ ,
∥∥κ(1)

1

∥∥
L∞ ,

∥∥κ(2)
2

∥∥
L∞

}
> M

}
, M > 0.

Then, by choosing δ > 0 sufficiently small, we have∥∥κ1(t ∧ τM) − κ2(t ∧ τM)
∥∥2
L2 ≤ CM

∫ t

0

∥∥κ1(s ∧ τM) − κ2(s ∧ τM)
∥∥2
L2 ds

+
∫ t ∧τM

0
I3 dws,

for t > 0, for some CM > 0. Therefore, taking the expectation of both sides and
applying the Gronwall’s lemma, we obtain

E
[∥∥κ1(t ∧ τM) − κ2(t ∧ τM)

∥∥2
L2

] = 0

for all M > 0. This completes the proof of the proposition. �

The pathwise uniqueness combined with the existence of the solution in the
sense of law implies the existence of a strong solution. This is the well-known
Yamada–Watanabe’s theorem which is extended into an infinite-dimensional set-
ting by [23]; see also [25]. As a result, we obtain the following theorem.
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THEOREM 5.16. Let D be a two-dimensional bounded domain and γ0 be a
closed convex curve given such that γ � D. Let κ0(θ), θ ∈ S be the curvature of
γ0. Then there exists a unique local solution κ = κ(t, θ) defined for 0 ≤ t < σ and
θ ∈ S of the SPDE (5.1), where σ > 0 (a.s.) is a stopping time. In particular, the
dynamics (1.4) has a unique solution for 0 ≤ t < σ .

Theorem 5.2 together with the remarks made before it combined with Theo-
rem 5.16, which implies the uniqueness in law, shows that Assumption 1.2 holds
in the sense of law in the setting of this section.

Acknowledgments. The authors thank Danielle Hilhorst for leading them to
the problem discussed in this article and stimulating discussions. They thank two
anonymous referees for their useful comments which helped to improve the paper.

SUPPLEMENTARY MATERIAL

Supplement to “Sharp interface limit for stochastically perturbed mass
conserving Allen–Cahn equation” (DOI: 10.1214/18-AOP1268SUPP; .pdf). The
supplementary file provides proofs of all the lemmas, with some exceptions, stated
in Sections 3–5 of the present paper.
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