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The Italian National Institute for Statistics regularly provides estimates
of unemployment indicators using data from the labor force survey. However,
direct estimates of unemployment incidence cannot be released for local labor
market areas. These are unplanned domains defined as clusters of municipal-
ities; many are out-of-sample areas, and the majority is characterized by a
small sample size which renders direct estimates inadequate. The empirical
best predictor represents an appropriate, model-based alternative. However,
for non-Gaussian responses its computation and the computation of the an-
alytic approximation to its mean squared error require the solution of (pos-
sibly) multiple integrals that, generally, have not a closed form. To solve the
issue, Monte Carlo methods and parametric bootstrap are common choices,
even though the computational burden is a nontrivial task. In this paper, we
propose a semiparametric empirical best predictor for a (possibly) nonlinear
mixed effect model by leaving the distribution of the area-specific random
effects unspecified and estimating it from the observed data. This approach is
known to lead to a discrete mixing distribution which helps avoid unverifiable
parametric assumptions and heavy integral approximations. We also derive
a second-order, bias-corrected analytic approximation to the corresponding
mean squared error. Finite sample properties of the proposed approach are
tested via a large scale simulation study. Furthermore, the proposal is ap-
plied to unit-level data from the 2012 Italian Labor Force Survey to estimate
unemployment incidence for 611 local labor market areas using auxiliary in-
formation from administrative registers and the 2011 Census.

1. Introduction. The Italian National Institute for Statistics (ISTAT) reg-
ularly provides estimates of unemployment indicators based on data obtained
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through the Italian Labor Force Survey (ILFS). The ILFS allows to obtain quarterly
estimates of the main aggregates regarding the labor market which are important
both at the local and the central government levels for the development of labor
market policies. These estimates are planned to be reliable at a given, chosen a
priori, geographical level and may not be suitable to all needs. For example, di-
rect estimates of unemployment indicators cannot be disseminated for local labor
market areas (LLMAs). These are 611 unplanned domains obtained as clusters of
municipalities and defined at the Census on the basis of daily working commuting
flows. In this context, direct survey estimates of unemployment incidence cannot
be computed and/or published for most LLMAs. This is due to the presence of
out-of-sample areas and too many LLMAs having a small sample size which leads
to estimates with an unacceptable large coefficient of variation. For these reasons,
ISTAT has implemented the use of indirect, model-based small area estimators to
produce official yearly estimates of unemployment incidence for Italian LLMAs
[D’Alò, Falorsi and Solari (2017), D’Alò et al. (2012)].

Small area estimation (SAE) has received considerable attention in the past
decades in terms of theoretical developments and applications to official statis-
tics. An updated appraisal of available approaches for SAE is given in Rao and
Molina (2015). In this context, generalized liner mixed models [GLMMs, Laird
and Ware (1982)] represent a typical tool of analysis. Area-specific random effects
are used to account for sources of unobserved heterogeneity that are not captured
by the covariates and describe correlation between units within the same small
area. For Gaussian data, Battese, Harter and Fuller (1988) introduced and Prasad
and Rao (1990) developed an empirical best linear unbiased predictor (EBLUP)
to estimate small area characteristics. Tailored to the purpose of the ILFS, D’Alò,
Falorsi and Solari (2017) developed unit-level linear mixed models with area- and
time-specific random effects, which, based on data from different survey cycles,
implement estimation using aggregate data to manage a large number of records.
In fact, the ILFS is a continuous survey that yearly collects information on almost
250,000 households in 1,400 municipalities for a total of 600,000 individuals.
However, many survey variables, such as the unemployment status, are categorical
in nature and, therefore, SAE methods based on linear mixed models may not be
fully appropriate.

Jiang and Lahiri (2001) developed an empirical best prediction (EBP) method
for the area-specific random effects under a mixed logistic model providing a
second-order, bias-corrected estimator for the corresponding mean squared error
(MSE). Jiang (2003) extended this approach to deal with GLMMs for general re-
sponses in the Exponential Family. Several functions of area-specific model ef-
fects are also investigated by the author. More recently, Boubeta, Lombardía and
Morales (2016, 2017) derived the EBP and the corresponding (second-order) ap-
proximation to the MSE under an area-level mixed Poisson model for small area
counts, while Hobza and Morales (2016) specifically focused on the development
of an EBP for small area proportions under the unit-level mixed logistic model
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according to Jiang (2003). They also investigated the empirical behavior of the
proposal through a large scale simulation study. An extension of this latter ap-
proach to deal with longitudinal responses was also recently proposed by Hobza,
Morales and Santamaría (2018).

In all of these approaches, the area-specific random effects are assumed to be
independent and identically distributed (i.i.d.) draws from a Gaussian distribution.
One of the drawbacks associated with this assumption entails the computational
burden required to derive parameter estimates, compute the EBP and, in particu-
lar, provide the corresponding measure of reliability. For non-Gaussian responses,
we need to deal with (possibly) multiple integrals that do not admit a closed form
expression and, therefore, need to be approximated. Numerical approaches based,
for example, on (adaptive) Gaussian quadrature or Laplace approximations [see,
e.g., Pinheiro and Bates (1995)] or using Monte Carlo approximations [see, e.g.,
McCulloch (1997)] are frequently used for this purpose. To avoid computational
issues, ad hoc alternatives, mainly based on plug-in predictors and Taylor lineariza-
tions, were proposed and are currently largely applied [González-Manteiga et al.
(2007), Molina, Saei and Lombardía (2007), Saei and Chambers (2003), López-
Vizcaíno, Lombardía and Morales (2013)].

In this paper, we describe a further alternative and develop a semiparamet-
ric EBP (sp-EBP) for the small area parameters of interest and a second-order,
bias-corrected approximation to the corresponding MSE. In particular, we pro-
pose to leave the distribution of the area-specific random effects (the mixing dis-
tribution) unspecified and estimate it from the observed data via a nonparamet-
ric maximum likelihood approach [NPML, Laird (1978), Simar (1976), Lindsay
(1983a, 1983b)]. This estimate is known to be a discrete distribution defined over
a finite number of locations leading to a (semiparametric) finite mixture model
with a conditional kernel in the Exponential Family. The proposed approach offers
a number of advantages. First, it allows us to avoid unverifiable assumptions on the
random effect distribution; second, since mixture parameters are directly estimated
from the data and are completely free to vary over the corresponding support, ex-
treme and/or asymmetric departures from the homogeneous model can be easily
accommodated. Last and more important, the discrete nature of the mixing dis-
tribution allows us to avoid integral approximations and considerably reduces the
computational effort. The gain with respect to the parametric alternatives is partic-
ularly evident when analyzing non-Gaussian responses.

We present the proposed approach for a general small area parameter, starting
from a general response with density in the Exponential Family. Later, we focus
on the relevant case of binary data. We compare our proposal to the EBP [Jiang
(2003)] and to the plug-in estimator [e.g., González-Manteiga et al. (2007), Saei
and Chambers (2003)] in terms of prediction accuracy and computational burden in
a large scale simulation study. Then, we prove the benefits from using the proposed
sp-EBP approach on data from the ILFS to estimate unemployment incidence for
the 611 LLMAs using auxiliary information from administrative registers and the
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2011 Census. We compare the proposed approach with direct estimates and with
the two aforementioned approaches based on parametric mixed logistic models.

The paper is organized as follows. Section 2 presents the Italian Labor Force
Survey, the estimation problem, and the auxiliary information available. Section 3
introduces the notation and a brief review of the EBP and its MSE approximation.
In Section 4, we describe the proposed approach; Section 4.1 entails maximum
likelihood estimation, while the proposed sp-EBP and its MSE approximation are
detailed in Section 4.2. Section 5 focuses on the case of binary responses. Section 6
reports the results of the simulation study, while Section 7 entails the application of
the proposed approach to the ILFS data. Last, Section 8 summarizes our findings
and provides guidelines for future research.

2. The ILFS data. The ILFS is the most important statistical source of infor-
mation on the Italian labor market. The target population includes the members of
all Italian households who regularly live within the national borders, have Italian
or foreign citizenship and are regularly enrolled in the municipal lists. Households
registered as resident in Italy who habitually live abroad and permanent members
of collective facilities (hospices, children’s homes, religious institutions, barracks,
etc.) are excluded. A two-stage municipality-household sampling design is used
to collect data. Primary sampling units are stratified by province (LAU1) and pop-
ulation size. Secondary sampling units are selected with equal probabilities. All
individuals with usual residence in the dwelling are interviewed.

The ILFS provides quarterly estimates of the main aggregates for the labor mar-
ket, such as employment status, type of work and work experience by gender,
age and region (NUTS2). Here, we focus on data from the first quarter of 2012
which consist of measurements taken on 93,217 units aged 15–65 and distributed
in 453 LLMAs. LLMAs refer to 611 unplanned domains obtained as clusters of
municipalities in which the bulk of the labor force lives and works, and where es-
tablishments can find the largest amount of the labor force necessary to occupy the
offered jobs. They respond to the need for meaningfully comparable subregional
labor market areas for the reporting and the analysis of statistics. LLMAs are de-
fined on a functional basis, the key criterion being the proportion of commuters
who cross the LLMA boundary on their way to work. In 2011 with the last Cen-
sus, LLMAs were redefined by the analysis of daily working commuting flows
using a new allocation process, an evolution of the previous algorithm. Nearly
half of the LLMAs stands in the size class from 10,000 up to 50,000 inhabitants,
whereas the highest proportion of the population (35%) lives in LLMAs with a
dimension between 100,000 and 500,000 inhabitants. In 332 LLMAs (over 70%
of the national population), more than three quarters of the labor force lives and
works in the same LLMA, that is, selfcontainment is more than 75%.

Figure 1(a) shows the distribution of the LLMAs by sample size. This plot does
not include the 158 areas with zero sample size. Among the observed LLMAs, the
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FIG. 1. Distribution of LLMAs by sample size (a) and percent coefficient of variation of direct
estimates of unemployment incidence (b). First quarter, 2012.

sample size ranges between 13 (Acqui Terme, Piedmont Region) and 3,301 (Mi-
lan, Lombardy Region). The mean value is equal to 205.8, while quartiles are 61
(25%), 122 (50%) and 223 (75%), respectively. That is, several LLMAs are char-
acterized by a very small sample size that hinders reliability of direct estimates.
Figure 1(b) reports the distribution of the (percent) coefficient of variation (CV)
for the direct estimates of unemployment incidence. The vast majority of estimates
have a CV that is larger than 33% which is usually considered as a threshold for
reliability.

Our main interest is on the employment status variable which can take one out
of three different categories: employed (53.6%), unemployed (6.6%) and inactive
(39.8%). Together with information on employment status for sampled individu-
als, the following explanatory variables are also available: gender-age, a categor-
ical variable with six categories corresponding to female or male (F/M) and three
age groups (15–24, 25–34 and 35–65); educational level, a categorical variable
with four categories corresponding to no education or primary school diploma,
secondary school diploma, high school diploma and university degree or beyond;
and U-count, a discrete variable measuring the number of unemployed in a given
gender-age group for each LLMA according to the 2011 Census.

To have a first insight on the data, we report in Tables 1–2 the sample dis-
tribution of the employment status by gender-age and educational level, respec-
tively. From these tables, we may observe that unemployment incidence is gen-
erally higher for people aged 25–34 in the sample regardless of gender; for the
other age groups, unemployment is less frequent among females. By looking at
the last column of the table, we notice that females are more frequently inactive
when compared to males regardless of the age group. This is likely due to their
engagement in housekeeping and explains why unemployment incidence is lower
in this group. Similarly, by looking at Table 2 we may observe that the percent-
age of unemployment is relatively higher for individuals with higher education.
Also in this case, by looking at the last column it is evident that such a finding
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TABLE 1
Sample percentage distribution with standard errors (S.E.) of unemployed status by gender-age

Unemployed S.E. Employed S.E. Inactive S.E.

M: 15–24 11.0 0.4 21.5 0.5 67.6 0.6
M: 25–34 11.7 0.4 71.6 0.5 16.7 0.4
M: 35–65 5.3 0.1 70.8 0.3 23.8 0.2
F: 15–24 8.8 0.3 14.1 0.4 77.1 0.5
F: 25–34 11.7 0.4 53.9 0.6 34.5 0.5
F: 35–65 4.2 0.1 48.3 0.3 47.5 0.3

is mainly related to job hunting. For instance, 70% of individuals with a primary
school diploma or less are out of the job market as they are not actively looking
for a job, and this can be explained by a relatively older age.

As highlighted before, the prediction of unemployment incidence cannot be
based on direct survey estimation as direct estimates cannot be computed and/or
published for most LLMAs. For these reasons, unit-level SAE methods may pro-
vide a viable tool to obtain such estimates. In the following section, we introduce
the EBP approach by Jiang (2003) for the estimation of small area parameters
together with the approach to approximate the corresponding MSE. As stated in
Section 1, one of the main drawbacks of such a method is the computational com-
plexity we have to face with non-Gaussian data and a large number of observa-
tions/small areas as for the ILFS data. In Section 4, we develop a computationally
efficient alternative based on a semiparametric approach.

3. The empirical best prediction. Let U denote a finite population of size
N , which can be partitioned into m nonoverlapping small areas/domains, with Ui

denoting the ith small area with size Ni, i = 1, . . . ,m. For a given small area i, data
consist of Ni measurements of a response variable Yij and a p-dimensional vector
of covariates xij = (xij1, . . . , xijp)′, with j = 1, . . . ,Ni . Also, let α1, . . . ,αm be
i.i.d., q-dimensional, vectors of area-specific random effects (q ≤ p) with density

TABLE 2
Sample percentage distribution with standard errors (S.E.) of unemployed status by educational

level

Unemployed S.E. Employed S.E. Inactive S.E.

Primary school or less 4.6 0.2 24.9 0.4 70.5 0.5
Middle school 6.9 0.1 44.5 0.3 48.6 0.3
High school 7.2 0.1 62.8 0.3 30.0 0.2
University degree or beyond 5.6 0.2 75.7 0.4 18.8 0.4



1172 MARINO, RANALLI, SALVATI AND ALFÒ

fα(·), Eα(αi ) = 0 and Eα(αiα
′
i ) = �, for all i = 1, . . . ,m. Last, let wij denote a

q-dimensional subset of xij associated to αi .
We assume that a sample of size n is drawn from the above population and

denote by si the set containing the ni population indexes of sample units belonging
to small area i with n = ∑m

i=1 ni . On the other hand, the set ri ⊆ Ui contains the
Ni − ni indexes for nonsampled units in small area i. For ease of notation, we
assume that all areas are sampled, even though the presence of out of sample areas
can be easily accommodated. We further assume that values of Yij are known only
for the sample (i = 1, . . . ,m, j ∈ si), while the values of xij and wij are known
for all units in the population (i = 1, . . . ,m, j = 1, . . . ,Ni). This assumption can
be quite restrictive in some real-world applications, since it implies the availability
of individual population information. However, when the auxiliary variables are
categorical and/or take a finite number of values, the assumption can be relaxed,
as we will discuss in more details in the application to the ILFS data. Last, we
assume that sampling is noninformative for the small area distribution of Yij | xij

allowing us to use population level models with sample data.

3.1. The model. According to a local independence assumption, we assume
that, conditional on the area-specific random effects αi , responses Yij from the
same small area i are independent with density in the Exponential Family

fy|α(yij | αi;xij ) = exp
{
yij θij − b(θij )

a(φ)
+ c(yij , φ)

}
,

for i = 1, . . . ,m and j = 1, . . . ,Ni . In the previous expression, φ is a dispersion
parameter, a(·), b(·) and c(·) are known functions, and θij is the canonical param-
eter for the chosen member of the family. Let β denote a p-dimensional vector of
fixed regression coefficients, and let us assume that θij is modeled via the follow-
ing regression model:

θij = x′
ijβ + w′

ijαi .

The joint distribution of yi = (yi1, . . . , yiNi
)′ for the ith small area, conditional on

the vector of area-specific random effects αi , is obtained by exploiting conditional
independence, while the marginal distribution of the area-specific sequence yi is
obtained by integrating out αi :

fy(yi;Xi ) =
∫
Rq

fy|α(yi | αi;Xi )fα(αi ) dαi ,

with Xi denoting the matrix of covariates associated to units in the ith area. Typ-
ically, a parametric specification for fα(αi ) is adopted with a common choice be-
ing the zero mean, multivariate Gaussian distribution. It is worth noticing that
an implicit exogeneity assumption of observed covariates xij is taken, that is,
fα(αi | Xi ) = fα(αi ) or E(αi | Xi ) = E(αi ) = 0. When this assumption is not
fulfilled, the auxiliary regression approach by Mundlak (1978) can be adopted.
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This slightly modifies the linear predictor above and produces area-specific ran-
dom effects that are (linearly) free of Xi ; see Neuhaus and McCulloch (2006).
In the following, we assume that, if needed, such an approach is applied and that
fα(αi | Xi) = fα(αi ).

3.2. EBP and MSE approximation. We are interested in using sample data on
responses Yij (i = 1, . . . ,m, j ∈ si) and population data on covariates xij (i =
1, . . . ,m, j = 1, . . . ,Ni) to predict a (possibly) nonlinear function of fixed and
random effects, say ζ(β,α,�), with α = (α1, . . . ,αm). According to Jiang (2003),
the best predictor (BP) of ζ in terms of minimum MSE is given by

ζ̃BP = Eα|y
[
ζ(β,α,�) | y] =

∫
Rυ

ζ(β,α,�)fα|y(α | y) dα,(1)

where

fα|y(α | y) =
∏m

i=1 fy|α(yi | αi;Xi )fα(αi )∏m
i=1

∫
Rq fy|α(yi | αi;Xi )fα(αi ) dαi

,

fy|α(yi | αi;Xi ) = ∏
j∈si

fy|α(yij | αi;xij ), y = (y′
1, . . . ,y

′
m)′ and υ = m × q .

Since model parameters � = (β, φ,�) are unknown, they need to be estimated.
Estimation can be accomplished by maximizing the observed data likelihood func-
tion:

L(�) =
m∏

i=1

fy(yi;Xi) =
m∏

i=1

∫
Rq

fy|α(yi | αi;Xi)fα(αi ) dαi ,(2)

where, as before, fy|α(yi | αi;Xi ) refers to sample data only. To maximize equa-
tion (2), we need to evaluate an integral defined over the support of the area-
specific random effects, and this can be directly done only in a few cases, for
instance, when fy|α(· | ·) and fα(·) are conjugate. In all other cases numerical
approximations (e.g., Gaussian quadrature techniques) or simulation based meth-
ods (e.g., Monte Carlo integration) need to be used, often leading to a nontrivial
computational complexity. To overcome the issue, Jiang (1998) suggested to de-
rive estimates by exploiting the method of moments. A penalized quasi-likelihood
(PQL) approach [e.g., Breslow and Clayton (1993)] represents a further alternative
which is less computationally demanding, even though it may provide inconsistent
model parameter estimates [see, e.g., Rodriguez and Goldman (1995)].

Once parameters are estimated, we may compute the EBP of ζ , that is, ζ̂EBP =
ζ̃BP(β̂, α̂, �̂). To evaluate the quality of such predictions, the second-order MSE
estimator detailed by Jiang (2003) can be considered. Under mild regularity con-
ditions, the following decomposition holds:

MSE
(
ζ̂EBP) = E

[(
ζ̂EBP − ζ

)2]
= E

[(
ζ̃BP − ζ

)2] + E
[(

ζ̂EBP − ζ̃BP)2]
= d(�) + 1

m
e(�) + op(1/m),

(3)
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where

E
[(

ζ̂EBP − ζ̃BP)2] = 1

m
e(�) = 1

m
Ey

[(
∂ζ̃BP

∂�

)′
mV (�̂)

(
∂ζ̃BP

∂�

)]
(4)

and

E
[(

ζ̃BP − ζ
)2]

= d(�) = Eα

[
(ζ )2] − Ey

[(
ζ̃BP)2]

(5)

=
∫
Rυ

ζ(β,α,�)2fα(α) dα − Ey

[(∫
Rυ

ζ(β,α,�)fα|y(α | y) dα

)2]
.

In the last expression, fα(α) = ∏m
i=1 fα(αi) denotes the joint density of the ran-

dom effects αi , with i = 1, . . . ,m. An estimator of MSE(ζ̂EBP) can be obtained by
replacing � in equation (3) by a consistent estimator, that is,

M̂SE
(
ζ̂EBP) = d(�̂) + 1

m
e(�̂).

However, as outlined by Jiang (2003), while we get an error of order op(m−1)

when we replace � by �̂ into e(�), a bias correction is needed to obtain an unbi-
ased estimator for d(�). We discuss this issue in more detail in the following.

As it is clear by looking at the above equations, computing the MSE requires the
solution of (multiple) integrals that may not admit a closed form expression and
this makes the computation extremely time-consuming. Bootstrap may represent
an alternative to Monte Carlo approximations or Gaussian quadrature techniques,
particularly when dealing with a limited number of small areas. However, when m

is large, as in the case of the ILFS data, neither the analytic MSE approximation nor
the bootstrap represent viable strategies due to computational issues. González-
Manteiga et al. (2007) proposed a nonoptimal Prasad–Rao-type MSE estimator
derived from a Taylor series approximation. This estimator fails when sample sizes
are too small, while its behavior is proved to be reliable in the case of large sample
sizes.

4. The semiparametric empirical best prediction. As highlighted before,
deriving the EBP of small area parameters and the corresponding MSE approxi-
mation as detailed by Jiang (2003) is a nontrivial task. In this section, we develop
a computationally convenient alternative that allows us to avoid unverifiable para-
metric assumption on the random effect distribution. In Section 4.1, we present the
proposed approach to derive model parameter estimates within a maximum likeli-
hood framework. In Section 4.2, we detail the proposed semiparametric empirical
best predictor (sp-EBP) and the corresponding second-order, bias-corrected MSE
estimator.
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4.1. Model parameter estimation. When dealing with non-Gaussian responses
and GLMMs with Gaussian random effects, maximum likelihood (ML) estimators,
although optimal, can be time consuming as we need to approximate (possibly
multidimensional) integrals that do not admit a closed form expression. An alter-
native may be based on leaving the distribution of αi completely unspecified and
follow the approach detailed by Aitkin (1996, 1999). The area-specific random
effects are treated as nuisance parameters, and a NPML estimate of their distribu-
tion is derived. Different contributions to the theory of NPML can be found in the
literature [Böhning (1982), Laird (1978), Lindsay (1983a), Simar (1976), Lindsay
(1983b)]. Results by Lindsay (1983a, 1983b) show that, as long as the (log-) like-
lihood function is bounded, it is maximized by a discrete distribution defined on,
at most, as many support points as the number of distinct area profiles in the sam-
ple. In particular the mixing distribution estimate is a discrete distribution, which
puts masses πg > 0 on locations ξg = (ξg1, . . . , ξgq)

′, g = 1, . . . ,G, where the

constraint
∑G

g=1 πg = 1 holds. In a regression context the number of locations G

is bounded from above by the number of different profiles (yi ,Xi ) in the sample.
That is, in the presence of categorical covariates the number of locations does not
necessarily grow with m.

Let � denote the global vector of model parameters, � = (β, φ, ξ ′
1, . . . , ξ

′
G,

π1, . . . , πG−1)
′; the observed data likelihood is approximated by

(6) L(�) =
m∏

i=1

∫
Rq

fy|α(yi | αi;Xi )fα(αi ) dαi �
m∏

i=1

G∑
g=1

fy|α(yi | ξg;Xi )πg,

where

fy|α(yi | ξg;Xi ) = ∏
j∈si

fy|α(yij | αi = ξg;xij )

denotes the product of densities in the Exponential Family with canonical param-
eter θijg defined by the (mixed) model

θijg = x′
ijβ + w′

ij ξg.

As it is clear, expression (6) resembles the likelihood of a finite mixture of distribu-
tions, with weights πg = Pr(αi = ξg). That is, αi ∼ ∑G

g=1 πgδ(ξg), where δ(a) is
a one-point distribution putting a unit mass at a. It is worth noticing that, while the
discrete nature of the estimate for fα(·) may seem unappealing, most approxima-
tion techniques applied when a parametric specification is considered are exactly
of the type in equation (6). The only substantial difference is that locations ξg and
masses πg in the present proposal are estimated to best fit observed data.

To maximize the likelihood in (6), the EM algorithm [Dempster, Laird and Ru-
bin (1977)] can be employed. A drawback of such an algorithm is that it does not
directly provide estimates for the covariance matrix of model parameters. A fre-
quent solution to this issue is based on the use of the Oakes’ formula [Oakes
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(1999)]; computational details on estimation of model parameters and standard
errors are provided in Sections 1 and 2 of the online Supplementary Material
[Marino, Ranalli, Salvati and Alfò (2019)], where the EM algorithm is described.
A crucial point in the proposed approach is the choice of the number of mixture
components G. A simple and frequently used solution is as follows: parameter
estimates are computed for varying values of G and the model with the best fit,
typically measured by penalized likelihood criteria (such as AIC or BIC), is re-
tained. Typically, the optimal G increases either (i) when the variability of the ran-
dom effect distribution increases or (ii) when the number of small areas increases
as, in this case, this may lead to a higher number of distinct area profiles in the
sample. As long as convergence is entailed, the order for the mixing distribution
estimate is Op(m−1/4), as compared to Op(m−1/2) for ML parameter estimates in
regular models [see Chen (1995)]. However, according to Lindsay and Lesperance
(1995), some smooth functionals, such as the empirical Bayes estimates, can be es-
timated at the usual Op(m−1/2) rate. Furthermore, as shown by Redner and Walker
(1984), when the order of the mixture is finite and known (that is, when αi ∼∑G

g=1 πgδ(ξg) is the true mixing, with G known), the usual ML asymptotics apply.

4.2. Semiparametric EBP and MSE approximation. Let us now turn to the
main problem of interest, where we have a finite population of size N which
can be partitioned into m nonoverlapping domains or small areas. Furthermore,
let ξ = (ξ ′

1, . . . , ξ
′
G)′ and π = (π1, . . . , πG)′ denote the vectors of locations and

masses of the finite mixture respectively. We aim at predicting a (possibly) non-
linear function of fixed and random effects, ζ(β, ξ ,π), by exploiting sample data
on responses Yij and populations data on covariates xij . Under the proposed ap-
proach, the semiparametric best predictor of ζ is defined according to the following
expression:

ζ̃ sp-BP = Eα|y
[
ζ(β, ξ ,π) | y] = ∑

g1...gm

ζ(β, ξg1,...,gm
,π)

m∏
i=1

τigi
,(7)

where
∑

g1...gm
is a shorthand for

∑G
g1=1 · · ·∑G

gm=1, ξg1,...,gm
= (ξ ′

g1
, . . . , ξ ′

gm
)′ and

τigi
denotes the posterior probability for the ith small area to belong to the gi th

component of the finite mixture. In particular, denoting by zigi
, i = 1, . . . ,m,gi =

1, . . . ,G, the component membership indicator for the ith small area, τigi
is de-

fined by

(8) τigi
= Pr(zigi

= 1 | yi ) = πgi
fy|α(yi | ξgi

;Xi )∑G
l=1 πlfy|α(yi | ξ l;Xi )

,

where, as before, fy|α(yi | ξgi
;Xi ) refers to sample data only. As it is clear, ex-

pression (7) denotes the expected value of ζ(β, ξ ,π), with respect to the posterior
distribution of the random effects α. Since this is a discrete distribution, the inte-
gral approximation which is required in equation (1) directly translates into simpler
summations.
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An estimate of ζ̃ sp-BP can be obtained by replacing model parameters β , ξ and
π by consistent estimates. Here, we consider the estimates derived by the EM algo-
rithm described in Section 1 of the online Supplementary Material. In the follow-
ing, we will refer to such a quantity as the semiparametric empirical best predictor
(sp-EBP) of ζ , denoted by ζ̂ sp-EBP = ζ̃ sp-BP(β̂, ξ̂ , π̂).

To evaluate the quality of predictions, we develop an analytic approximation to
the MSE of ζ̂ sp-EBP based on the approach detailed by Jiang (2003) but considering
a maximum likelihood estimator. Starting from equation (3), the MSE of the sp-
EBP is given by

MSE
(
ζ̂ sp-EBP) = 1

m
esp(�) + dsp(�) + op(1/m),(9)

where the former term, esp(�), is defined according to expression (4) and can
be derived by computing model derivatives with respect to β , α and π , together
with the covariance matrix of model parameter estimates, V (�̂). See Section 2 in
the online Supplementary Material for computational details. On the other hand,
dsp(�) can be derived as follows:

dsp(�) = Eα

[
(ζ )2] − Ey

[(
ζ̃ sp-BP)2]

= ∑
g1···gm

ζ(β, ξg1,...,gm
,π)2

m∏
i=1

πgi

− Ey

[( ∑
g1···gm

ζ(β, ξg1,...,gm
,π)

m∏
i=1

τigi

)2]
.

The computational burden to obtain the above quantities is substantially lower than
that required for the approach by Jiang (2003). Intractable integrals appearing in
equations (4) and (5) all translate into simple summations which can be solved
analytically.

An estimator of MSE(ζ̂ sp-EBP) is obtained by replacing � in (9) by a consistent
estimator such as that obtained by maximizing the observed data likelihood in
equation (6). That is,

(10) M̂SE
(
ζ̂ sp-EBP) = 1

m
esp(�̂) + dsp(�̂).

However, as we remarked before, this approach does not directly lead to an unbi-
ased estimator of MSE(ζ̂ sp-EBP). When replacing �̂ in dsp(�), we get an error of
order Op(m−1/2) and a bias correction term needs to be considered. Jiang (2003)
provided an explicit expression for such a term when model parameters are es-
timated by the method of moments. Clearly, under the current approach, these
results do not directly hold but, rather, need to be adapted.
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Let �0 denote the “true” vector of model parameters, and let us consider a
second-order Taylor expansion of dsp(�) around �0 evaluated at �̂:

dsp(�̂) = dsp(�0) +
(

∂dsp

∂�

)′∣∣∣∣
�0

(�̂ − �0)

+ 1

2
(�̂ − �0)

′
(

∂2dsp

∂�∂�′
)∣∣∣∣

�0

(�̂ − �0) + op

(
m−1)

,(11)

where dsp is a shorthand for dsp(�). From expression (11), it is easy to see that

E
[
dsp(�̂)

] = dsp(�0) + 1

m
bsp(�̂) + op

(
m−1)

,

where bsp(�̂) denotes a bias correction defined as

bsp(�̂) =
(

∂dsp

∂�

)′∣∣∣∣
�0

mE(�̂ − �0)

+ m

2
E

[
(�̂ − �0)

′
(

∂2dsp

∂�∂�′
)∣∣∣∣

�0

(�̂ − �0)

]
= b

sp
1 (�̂) + b

sp
2 (�̂).(12)

As shown in Section 3 of the online Supplementary Material, denoting by K the
total number of free model parameters in the model, the former term on the right-
hand side of equation (12) is given by

b
sp
1 (�̂) = −

(
∂dsp

∂�

)′∣∣∣∣
�0

m

2
Ie(�0)

−1 tr
[
Ie(�0)

−1
(

∂I k
e (�)

∂�′
)∣∣∣∣

�0

]K

k=1
.

Here, I k
e (�) denotes the kth row of the expected information matrix Ie(�) and

k = 1, . . . ,K , is used to indicate that trace values need to be stacked underneath
each other to derive b

sp
1 (�̂). On the other hand, it can be shown that the term

b
sp
2 (�̂) in equation (12) can be computed as

b
sp
2 (�̂) = m

2
tr

{(
∂2dsp

∂�∂�′
)∣∣∣∣

�0

V (�̂)

}
,

where V (�̂) denotes the covariance matrix of parameter estimates, as detailed in
Section 2 of the online Supplementary Material.

A second-order, bias-corrected estimator of MSE(ζ̂ sp-EBP) is then given by

(13) M̂SE
∗(

ζ̂ sp-EBP) = dsp(�̂) + 1

m

[
esp(�̂) − bsp(�̂)

]
.

We report the computational details required to derive b
sp
1 (�̂) and b

sp
2 (�̂) in Sec-

tion 3 of the online Supplementary Material.
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5. A special case: Binary data. In this section we focus on the relevant case
of binary responses modeled via a mixed logistic model with random intercepts.
Let Yij denote the binary response associated to unit j in the ith small area (i =
1, . . . ,m, j = 1, . . . ,Ni), and let αi denote an area-specific random effect. Again,
let xij denote a p-dimensional vector of covariates, and Xi the matrix of covariates
for the ith small area. We assume that, conditional on αi , responses for units in the
ith small area are independent Bernoulli random variables with success probability
pij described by the following mixed logistic model:

(14) θij = log
pij

1 − pij

= αi + x′
ijβ.

In the equation above β is a p-dimensional vector of fixed model parameters that
describes the effect of observed covariates on the logit transform of pij . We con-
sider the practical problem of predicting small area proportions

Ȳi = 1

Ni

Ni∑
j=1

Yij ,

using the GLMM in equation (14). To this end, we use the EBP for the quantity

(15) pi = 1

Ni

Ni∑
j=1

pij .

In fact, since Ni is usually very large in most applications, the EBP for pi can also
be used to predict the indicator Ȳi .

Let us assume that responses Yij are observed for sampled units only (i =
1, . . . ,m, j ∈ si), while covariates xij are available at the population level (i =
1, . . . ,m, j = 1, . . . ,Ni). Following the approach detailed in the previous sections,
we leave the distribution of the area-specific random effects in equation (14) un-
specified and approximate it via a discrete distribution that puts masses πg > 0 on
locations ξ1, . . . , ξG, with

∑G
g=1 πg = 1. By adopting a canonical link function,

the logistic transform of the success probability for a generic area i in the gth
component of the finite mixture is given by

θijg = log
pijg

1 − pijg

= ξg + x′
ijβ.

Using the standard notation for the Exponential Family, the joint conditional den-
sity for the observed responses in the ith small area and the gth component is

fig = fy|α(yi | ξg;Xi ) = exp
{∑

j∈si

[
yij θijg − log

(
1 + eθijg

)]}
.
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Turning back to the problem of estimating pi in equation (15), the corresponding
sp-BP is given by

p̃
sp-BP
i =

G∑
g=1

pig

exp[∑j∈si
yij θijg − ∑

j∈si
log(1 + eθijg )]πg∑G

l=1 exp[∑j∈si
yij θij l − ∑

j∈si
log(1 + eθijl )]πl

=
G∑

g=1

pig

exp[αgyi· − ∑
j∈si

log(1 + eθijg )]πg∑G
l=1 exp[αlyi· − ∑

j∈si
log(1 + eθijl ))]πl

,

where yi· = ∑
j∈si

yij and pig = N−1
i

∑Ni

j=1 pijg . By letting

τig(yi·) = exp[αgyi· − ∑
j∈si

log(1 + eθijg )]πg∑G
l=1 exp[αlyi· − ∑

j∈si
log(1 + eθijl ))]πl

,

the sp-BP of pi is given by

p̃
sp-BP
i =

G∑
g=1

pigτig(yi·).(16)

The corresponding sp-EBP, denoted by p̂
sp-EBP
i , is obtained by substituting ML

estimates of model parameters into expression (16):

(17) p̂
sp-EBP
i =

G∑
g=1

p̂igτ̂ig(yi·),

while the quality of predictions obtained via p̂
sp-EBP
i can be evaluated through the

following MSE expression:

(18) MSE
(
p̂

sp-EBP
i

) = Eα

[
(pi)

2] − Ey

[(
p̃

sp-BP
i

)2] + Eα

[(
p̂

sp-EBP
i − p̃

sp-BP
i

)2]
,

where

Eα

[
(pi)

2] =
G∑

g=1

p2
igπg

and

Ey

[(
p̃

sp-BP
i

)2] =
ni∑

h=0

(
p̃

sp-BP
i(h)

)2 Pr(Yi· = h;Xi ).

Here, p̃
sp-BP
i(h) denotes the sp-BP of pi conditional on yi. = h, that is,

p̃
sp-BP
i(h) =

G∑
g=1

pig

[ exp[ξgh − ∑
j∈si

log(1 + eθijg )]πg∑G
l=1 exp[ξlh − ∑

j∈si
log(1 + eθijl )]πl

]
=

G∑
g=1

pigτig(h).
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The term Pr(Yi· = h;Xi ) is obtained as

Pr(Yi· = h;Xi ) =
G∑

g=1

Pr(Yi· = h | ξg;Xi )πg,

where Pr(Yi· = h | ξg;Xi ) represents the probability of observing h successes in
ni independent but nonidentically distributed Bernoulli trials. This quantity can
be obtained using the probability mass function of a Poisson-Binomial random
variable [see Chen and Liu (1997)] with parameter (pi1g, . . . , pinig)

′. The last term
in equation (18) is obtained as

Eα

[(
p̂

sp-EBP
i − p̃

sp-BP
i

)2]
=

ni∑
h=0

[(∂p̃
sp-BP
i(h)

∂�

)′
mV (�̂)

(∂p̃
sp-BP
i(h)

∂�

)]
Pr(Yi· = h;Xi ),(19)

where, as before, V (�̂) is the covariance matrix of model parameter estimates
and ∂p̃

sp-BP
i(h) /∂� is the vector of model derivatives conditional on yi· = h. Explicit

formulas for these latter quantities are provided in Section 4 of the online Supple-
mentary Material.

The second-order, bias-corrected estimator of MSE(p̂
sp-EBP
i ), denoted by

M̂SE
∗
(p̂

sp-EBP
i ), is obtained according to expression (13) after adapting the bias

correction term to the binary case.

6. Model-based simulation study. In this section, we evaluate the empirical
properties of the proposed approach via a large scale (model-based) simulation
study. This consists of T = 1,000 samples, where binary population data were
generated under some model assumptions and sample data were selected from the
simulated population. In particular, population data entailed m = 100,200,500
small areas; samples were selected by simple random sampling without replace-
ment within each area. The population and the sample sizes were constant across
areas and are fixed to Ni = 100 and ni = 10, respectively. According to the simu-
lation study discussed by González-Manteiga et al. (2007), for each unit j in small
area i we generated the target variable Yij , i = 1, . . . ,m, j = 1, . . . ,Ni , from a
Bernoulli distribution with success probability defined by

(20) pij = exp(αi + xijβ)

1 + exp(αi + xijβ)
,

with β = 1, xij ∼ Unif(−1, bi), and bi = i/8, i/16, i/48 for m = 100,200 and
500, respectively. To evaluate the impact of parametric assumptions on the distri-
bution of the area-specific random effects, we considered two different scenarios.
The first one (Scenario 1) uses area-specific random effects from a zero mean,
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Gaussian distribution with standard deviation equal to σ1 = 0.5. The second sce-
nario (Scenario 2) involves area-specific random effects generated from a mixture
of Gaussian distributions, αi ∼ νN(μ1, σ2) + (1 − ν)N(μ2, σ2), where ν repre-
sents a random draw from a Bernoulli distribution with Pr(ν = 1) = 0.7, μ1 = 0,
μ2 = 3 and σ2 = 0.05. Based on this latter quantity, it is evident that, under this
scenario, the random effect distribution closely resembles that of a discrete distri-
bution putting masses ν and 1 − ν on locations μ1 and μ2. In this framework, the
population is made by two separate sets of small areas having different baseline
levels for the success probabilities. This may be reasonable, for example, for prop-
erly representing nonhomogeneous unemployment rates typically observed in the
north/south of Italy, as we see in Section 7. Clearly, the chosen scenarios repre-
sent two extreme situations; we expect that, in real applications, the random effect
distribution lies in between them.

In this simulation study, our aim is that of evaluating the empirical behavior of
the proposed approach. For each simulated sample, we estimated model parame-
ters for a varying number of mixture components (G = 2, . . . ,5) and selected the
optimal G according to the AIC index. We report in Table 3 the distribution of
the optimal number of mixture components G across simulations. As it can be ob-
served, in most of the cases the AIC index leads to selecting a model with G = 2
components only. This reflects the reduced variability of the random effect distri-
bution considered under both simulation scenarios. However, it is worth to high-
light that, for higher sample sizes, the chance of selecting a higher G slightly in-
creases, especially when αi is a random draw from a Gaussian density. This result
is clearly related to the requirement of a higher number of components to properly
approximate the “true” continuous distribution of the area-specific effects.

Starting from parameter estimates derived from the proposed approach, the sp-
EBP for small area proportions was derived according to equation (17). The pro-
posed predictor was then compared to the parametric EBP by Jiang and Lahiri
(2001) and to the naive predictor considered in González-Manteiga et al. (2007),
where both are based on the assumption of Gaussian random effects. For the EBP
parameter estimates were derived via a ML approach based on a Laplace approxi-
mation available in the glmer function from the R lme4 package [Bates et al.
(2015)]. Given the estimates, small area proportions and corresponding MSEs
were derived by adopting the formulas detailed in Section 3. To evaluate the in-

TABLE 3
Distribution of the optimal number of mixture components across simulations

Scenario 1 Scenario 2

m / k 2 3 4 5 2 3 4 5

100 0.988 0.012 0.000 0.000 0.968 0.032 0.000 0.000
200 0.962 0.038 0.000 0.000 0.950 0.049 0.001 0.000
500 0.866 0.133 0.001 0.000 0.943 0.056 0.001 0.000



SEMIPARAMETRIC EMPIRICAL BEST PREDICTION 1183

tractable integrals, we followed the approach suggested by Boubeta, Lombardía
and Morales (2016). That is, we started by generating B = 2,500 replicates of the
area-specific random effects, say α

(b)
i , from a Gaussian density with zero mean

and variance equal to the corresponding ML estimate. Then, we considered their
antithetic transform α

(B+b)
i = −α

(b)
i to obtain 2B random effect values. Finally,

integrals were approximated by the corresponding empirical means. In the follow-
ing, we denote EBP estimates of small area proportions by p̂EBP

i . Although this
approach is optimal, the computational complexity greatly limits its applicabil-
ity. Via the current simulation study we aim at understanding whether the sp-EBP
approach we propose could represent an effective alternative which is optimal in
terms of minimum MSE and simpler from a computational point of view.

For completeness, we also included in the simulation study results from the
naive approach. In this case, parameter estimates were obtained using a PQL ap-
proach available in the glmmPQL function from the R MASS package [Venables
and Ripley (1994)]. To get predictions, parameter estimates were directly plugged
into the expression for the area-specific proportions:

(21) p̂Naive
i = 1

Ni

Ni∑
j=1

exp(α̂i + xij β̂)

1 + exp(α̂i + xij β̂)
.

The performance of the small area estimators were evaluated by computing, for
each area i = 1, . . . ,m, the bias and the root mean squared error (RMSE), defined
as follows:

BIASi = T −1
T∑

t=1

(
p̂Model

it − pit

)
,

RMSEi =
√√√√T −1

T∑
t=1

(
p̂Model

it − pit

)2
,

where p̂Model
it denotes the model-based proportion estimate for the ith small area in

the t th simulated sample obtained via either the EBP (p̂EBP
i ), the sp-EBP (p̂sp-EBP

i ),
or the naive (p̂Naive

i ) approach, i = 1, . . . ,m. For completeness, we also report
in Section 5 of the online Supplementary Material the distribution of the mean
absolute error (MAE) across small areas for the EBP, the sp-EBP and the naive
predictor under the two experimental scenarios. Together with the bias, MAE is
frequently used to evaluate the quality of results in the small area literature, even
though it may not be a consistent tool to evaluate predictions obtained by pos-
terior means [Gneiting (2011)]. Figures 2 and 3 show the BIAS and the RMSE
distribution across small areas for the three estimators under investigation for Sce-
nario 1 and m = 100,200,500, respectively; the dotted red line denotes the cor-
responding mean values. As expected, when looking at the first two panels (i.e.,
m = 100,200), the sp-EBP performs better than the naive estimator and slightly
worse than the EBP with a gap that reduces as m increases both in terms of BIAS
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FIG. 2. Scenario 1: distribution of the BIAS over areas for p̂
sp-EBP
i , p̂EBP

i and p̂Naive
i , for m = 100

(left panel), m = 200 (central panel) and m = 500 (right panel).

and RMSE. When m = 500, performance values of EBP are not shown due to the
computational burden required to get the estimates. For one replication we needed
161.612 minutes on an Intel(R) I5-3330 architecture – 3.0 GHz, and, therefore,
we couldn’t obtain results for T = 1,000 replications in a reasonable amount of
time.

Figures 4 and 5 show the performance of the estimators under Scenario 2. As be-
fore, results for the EBP approach for m = 500 are not shown due to computational
issues. As it is clear by looking at these plots, when the assumption of Gaussian
random effects does not hold, parametric approaches produce predictions with a
reduced quality than those obtained via the semiparametric alternative we propose.
In particular, we may notice that p̂

sp-EBP
i clearly outperforms the two competitors

in terms of both bias and RMSE. Also, results for p̂Naive
i and p̂EBP

i slightly worsen
as m increases. This may be possibly due to the higher information available and
the stronger impact of the random effect distribution on the overall response vari-
ability when the number of small areas increases.

A further purpose of this simulation study is to investigate the performance
of the MSE estimators to evaluate the accuracy of the predictions we discussed
so far. In particular, for p̂

sp-EBP
i , we considered the proposed MSE estimator re-

ported in equations (10) and (13); we refer to the square root of these quantities

as R̂MSE(p̂
sp-EBP
i ) and R̂MSE∗(p̂sp-EBP

i ), respectively. For the estimator p̂EBP
i , we

used the approximate MSE estimator proposed by Hobza and Morales (2016); the

FIG. 3. Scenario 1: distribution of the RMSE over areas for p̂
sp-EBP
i , p̂EBP

i and p̂Naive
i , for

m = 100 (left panel), m = 200 (central panel) and m = 500 (right panel).



SEMIPARAMETRIC EMPIRICAL BEST PREDICTION 1185

FIG. 4. Scenario 2: distribution of the BIAS over areas for p̂Naive
i , p̂EBP

i and p̂
sp-EBP
i for m = 100

(left panel), m = 200 (central panel) and m = 500 (right panel).

corresponding square root is denoted by R̂MSE(p̂EBP
i ). Last, for the naive pre-

dictor p̂Naive
i , we considered the approach suggested by González-Manteiga et al.

(2007), based on linearizing the GLMM in equation (20) and, then, applying the
Prasad-Rao MSE approximation for the corresponding linear mixed model; the
square root of such an estimator is denoted by R̂MSE(p̂Naive

i ).
The performance of the RMSE estimators were evaluated by considering the

ratio (R) between the estimated RMSE for the model-based estimates and the cor-
responding actual RMSE for each small area prediction, that is,

Ri =
∑T

t=1 R̂MSE(p̂Model
it )√∑T

t=1(p̂
Model
it − pit )2

,

for i = 1, . . . ,m. The distribution over areas for such a ratio for varying m and
varying random effect distributions is reported in Figure 6. Under Scenario 1

R̂MSE(p̂
sp-EBP
i ) and R̂MSE∗(p̂sp-EBP

i ) perform generally better than the alterna-
tives. In particular, simulation results suggest that the former estimator is more ap-
propriate when a reduced number of small areas is available (m = 100,200), while

its precision decreases in case of larger m. On the other hand, R̂MSE∗(p̂sp-EBP
i )

shows slight overestimation of the actual Monte Carlo RMSE for m = 100 and
m = 200, but it has to be preferred in the presence of a large number of small areas
since the Ri index is strongly concentrated around 1.

FIG. 5. Scenario 2: distribution of the RMSE over areas for p̂Naive
i , p̂EBP

i and p̂
sp-EBP
i for m = 100

(left panel), m = 200 (central panel) and m = 500 (right panel).
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FIG. 6. Distribution of the RMSE ratio over areas for the sp-EBP (without bias correction), the
sp-EBP∗ (with bias correction), the EBP and the Naive approach, for m = 100 (left panel), m = 200
(central panel) and m = 500 (right panel), under Scenario 1 (upper panel) and Scenario 2 (lower
panel).

The estimator R̂MSE(p̂EBP
i ) underestimates the actual Monte Carlo RMSE,

with a ratio which is always lower than 1 for m = 100. The quality of the re-
sults improves with m, even though it is always lower than that provided by the
proposed approach. Such a finding may be possibly due to the estimation of the co-
variance matrix for parameter estimates which is not as accurate as expected with
B∗ = 250 bootstrap resamples. In fact, it is worth noticing that Boubeta, Lom-
bardía and Morales (2016) highlighted the need of a very accurate estimate of the
covariance matrix of parameter estimates to ensure high quality of the results. For
this reason in their simulation study, the authors suggested to estimate V (�̂) by
running a Monte Carlo experiment based on 104 iterations in advance. In practice,
when dealing with large sample sizes, such an approach is computationally very
expensive and this is the reason why we considered a bootstrap approach based on
B∗ = 250 iterations only. Last, the estimator suggested by González-Manteiga et
al. (2007) overestimates the actual RMSE in all the scenarios we considered in this
simulation study.

By looking at the bottom panel in Figure 6, we observe that, when dealing with
non-Gaussian random effects, the MSE estimator of the sp-EBP has again good
performances with an average ratio close to 1 for all values of m. The effect of the
bias correction term is less evident than before. When a reduced number of small
areas is available, R̂MSE(p̂

sp-EBP
i ) allows us to estimate the actual RMSE with a

higher precision than the corresponding bias-corrected version R̂MSE∗(p̂sp-EBP
i ).

However, when m = 500, the two estimators seem to perform similarly. The above
results are not that surprising from our perspective. The bias correction term
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strongly relies on asymptotic results from ML theory. As a consequence, the qual-
ity of the approximation and, in turn of the results, improves only when dealing
with large sample sizes that render asymptotics more reliable.

Considering that, in real applications, we expect the random effect distribution
to lie in between the two “extreme” settings we considered in this simulation study
and, also, that we generally need to deal with a large number of small areas, using

R̂MSE∗(p̂sp-EBP
i ) seems to be generally more appropriate. From Figure 6 we may

also notice that, under Scenario 2, the MSE estimator of the EBP works quite well
(apart from being computationally prohibitive from large m), whereas that for the
naive estimator consistently underestimates the actual RMSE.

Table 4 shows the mean coverage rate (CR) for nominal 95% Wald-type confi-
dence intervals over simulations, that is,

CRi = T −1
T∑

t=1

1
(|p̂it − pit | ≤ 1.96 × R̂MSE

(
pModel

it

))
,

for i = 1, . . . ,m. As it is clear from this table, the proposed estimators show a good
performance with an average empirical coverage of approximately 92–94% in all
cases, except for m = 100 under Scenario 1. On the other hand both the EBP and,
particularly, the naive approach show a more erratic behavior. The former approach
leads to under coverage for Scenario 1 and to over coverage for Scenario 2. This
behavior is reversed for the naive estimator.

To conclude, we also compared MSE estimators in terms of computational com-
plexity. The last columns of Tables 4 report the computational time (averaged

TABLE 4
Average coverage rate over areas and computational time (in minutes) of R̂MSE(p̂Naive

i ),

R̂MSE(p̂EBP
i ), R̂MSE(p̂

sp-EBP
i ) and R̂MSE∗(p̂

sp-EBP
i ), for m = 100,200,500

Coverage Computational Time

m 100 200 500 100 200 500

Scenario 1
sp-EBP 0.888 0.920 0.940 0.059 0.122 0.332
sp-EBP* 0.890 0.923 0.944 0.528 1.042 2.986
EBP 0.864 0.912 16.907 41.385 ∗161.609
Naive 0.962 0.967 0.976 0.005 0.018 0.206

Scenario 2
sp-EBP 0.928 0.931 0.927 0.053 0.110 0.303
sp-EBP* 0.933 0.933 0.928 0.481 0.959 2.437
EBP 0.966 0.974 17.229 42.112 ∗162.528
Naive 0.903 0.906 0.910 0.004 0.018 0.219

∗Results refer to a single Monte Carlo draw.
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over simulations) required to get the estimates on an Intel(R) I5-3330 architec-
ture (3.0 GHz) under each simulation setting. As it can be seen, the proposed MSE
estimators show good performance also in this respect. When compared to the
naive approach, they clearly require a higher effort which is, however, always un-
der control. When compared to the EBP approach, the computational burden is
considerably reduced. It is important to notice that, due to computational issues,
results reported for the EBP approach when m = 500 refer to a single Monte Carlo
draw in place of being the average of T = 1,000 draws as for the other methods. In
this respect, it is clear that this approach does not represent an option for empirical
applications with large m, as the one we discuss here.

When comparing the two MSE estimators we propose (with and without bias

correction), we may observe that deriving R̂MSE∗(p̂sp-EBP
i ) requires a higher com-

putational effort than that required for R̂MSE(p̂
sp-EBP
i ). This is clearly due to the

computation of model derivatives in equation (12) which does not represent an
easy task. However, such an effort is rewarded by the quality improvements we
discussed so far, at least for large m.

7. Estimating unemployment incidence for LLMAs in Italy. In this sec-
tion, we use ILFS data to estimate unemployment incidence for the 611 LLMAs in
Italy. According to the simulation results in Section 6, the sp-EBP is a potentially
useful approach as: (i) it performs better than the naive predictor in terms of bias
and efficiency; and (ii) it dramatically decreases the computational complexity of
the MSE estimator for the parametric EBP which becomes unfeasible for a large
number of small areas and/or large sample sizes. The use of the proposed approach
is made easy by the availability of a (computationally efficient) algorithm for esti-
mation and inference developed in R language from the authors. This is part of the
online Supplementary Material at the publisher’s website together with an example
data set similar to the real one.

7.1. The model. To predict unemployment incidence in Italy, we considered a
response variable Yij taking value 1 if unit j in small area i is unemployed and
0 otherwise. We followed an approach similar to that used by Molina, Nandram
and Rao (2014) and considered the variables introduced in Section 2 and their
transformations in the linear predictor, that is, gender-age (reference = M:15–
24), educational level (reference = no education or primary school diploma) and
the logarithmic transform of U-count. We ran the EM algorithm described in the
Supplementary Material (Section 1) for different model specifications and a vary-
ing number of components (G = 2, . . . ,6) for the random effect distribution. The
optimal solution, corresponding to the smallest AIC value, is based on G = 3 com-
ponents and includes in the linear predictor a random intercept and main covariate
effects only. We report in Table 5 model parameter estimates, standard errors, and
resulting p-values together with the corresponding log-likelihood and AIC index.
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TABLE 5
Parameter estimates, standard errors and corresponding p-values for the mixed logistic model fitted

to the ILFS data based on an unspecific (left) and a Gaussian (right) random effect distribution

Unspecific Gaussian

Estimate SE p-value Estimate SE p-value

Intercept −3.052 0.176 <0.001 −3.002 0.150 <0.001
M:25–34 0.118 0.057 0.038 0.122 0.054 0.024
M:35–65 −0.787 0.054 <0.001 −0.778 0.048 <0.001
F:15–24 −0.222 0.062 <0.001 −0.221 0.058 <0.001
F:25–34 0.113 0.05 0.023 0.118 0.054 0.029
F:35–65 −1.039 0.052 <0.001 −1.027 0.050 <0.001
Middle School 0.206 0.059 <0.001 0.211 0.054 <0.001
High School 0.235 0.062 <0.001 0.239 0.053 <0.001
University Degree or Beyond −0.032 0.083 0.682 −0.029 0.064 0.653
log(U-count) 0.113 0.012 <0.001 0.104 0.022 <0.001

� −21,833.599 −21,837.357
AIC 43,695.199 43,696.714

For comparison, we also report such quantities for the corresponding parametric
model based on Gaussian random effects. Looking at this table, we may first ob-
serve that the AIC index suggests a better fit of the model based on an unspecified
random effect distribution with respect to its parametric counterpart, even though
differences in terms of parameter estimates are rather negligible. For this reason
in the following, we focus on results obtained by means of the semiparametric ap-
proach only. In particular, looking at the estimates for gender-age, we may notice
that, when controlling for the effect of other explanatory variables in the model
and for the effect of unobserved heterogeneity, the odds of being unemployed for
younger people is higher than that for the older ones. For instance, the odds of be-
ing unemployed for a male in the 25–34 group are e0.118 = 1.125 times higher than
those of males aged 15–24. On the other hand, for a male who is aged 35–65 years,
the odds are 54.5% lower than those for the baseline category. Such differences are
even stronger for females. Turning to the educational level, the odds of being un-
employed for subjects with middle or high school diplomas are higher than those of
low educated subjects (parameter estimates for middle and high school diplomas
are all positive). On the other hand, having a university degree or higher educa-
tion has not a significant effect. These findings are in line with the results reported
in the preliminary analysis; low educated females and relatively younger individ-
uals (the reference category) are more frequent in the inactive category. Last, as
expected, results reported in Table 5 suggest that the probability of being unem-
ployed increases as the total number of unemployed registered at the 2011 Census
increases.
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FIG. 7. Semiparametric approach: estimated prior (a) and posterior (b) distribution for αi ’s; para-
metric approach: posterior distribution for αi ’s (c).

Figure 7 shows the estimated prior (Figure 1(a)) and posterior distribution (Fig-
ure 1(b)) estimates for the random effects obtained using the proposed (semipara-
metric) approach together with the estimated posterior distribution deriving from
the parametric approach (Figure 1(c)). In particular, in Figure 1(b), we report the
posterior mean of the area-specific random intercepts calculated as

α̂i =
G∑

g=1

(ξ̂g − ˆ̄ξ)τ̂ig,

where ˆ̄ξ = ∑
g ξ̂gπ̂g is the overall intercept estimate reported in Table 5. By focus-

ing on Figure 1(a), we may notice that observed data lead to the estimation of a
random effect with a clear degree of skewness. If the standard Gaussian assumption
had been reasonable, the NPML estimate of the random effect distribution would
have been a symmetric distribution centered around zero. As a consequence, we
may conclude that such an assumption may not be that adequate for the current ap-
plication. Furthermore, by comparing Figures 1(b) and 1(c), we may observe that
the parametric assumption also affects the posterior mean of the area-specific inter-
cepts, leading to a less skewed distribution than that obtained under the proposed
approach.

7.2. Small area predictions. As highlighted in Section 3, we need the covari-
ate values, xij , to be known for all units in the population to predict the target
variable. This would require access, for example, to Census microdata. However,
in the important and special case where the components of xij are all categorical or
take a finite number of values, the method described in this paper only requires the
corresponding area level cross-tabulations to be available. This is the case of the
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FIG. 8. Maps of the estimated unemployment incidences for LLMAs in Italy in 2012: direct esti-
mates, sp-EBP, EBP and naive estimates.

ILFS data, where information on the covariates in the model are available at an ag-
gregate level for the whole population. Figure 8 shows the map of unemployment
incidence predictions for the 611 LLMAs obtained using direct estimation (upper-
left panel), the proposed sp-EBP approach (upper-right panel), the parametric EBP
(lower-left panel) and the naive approach (lower-right panel). Direct estimates are
computed using Hájek-type estimators with adjusted weights that account for non
response and calibrate to population level information of demographic variables.
The patterns of unemployment produced by the proposed approach are consistent
with those obtained by all the other methods; model-based maps are smoother
when compared to direct estimates. As expected, relatively larger values for un-
employment incidences are mainly located in the south of Italy and in the islands.

To assess the quality of predictions, we used a set of diagnostic tools based on
the requirement that model-based small area estimates should be coherent with,
in the sense of being close to, the corresponding unbiased direct estimates, albeit
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FIG. 9. sp-EBP estimates of small area proportions versus the corresponding direct (left), EBP
(centre) and naive estimates (right). Dots’ size is proportional to the sample size.

more precise. Figure 9 shows the estimates derived from the sp-EBP approach ver-
sus the direct, the EBP and the naive estimates, respectively. From this figure (first
panel), we may observe that our approach leads to predictions which are close to
those provided by a direct approach, with a correlation coefficient equal to 0.881.
From the remaining panels in Figure 9, it is evident that model-based estimates for
unemployment incidence are all very close to each other, with correlation coeffi-
cients equal to 0.978 (sp-EBP vs. EBP) and 0.977 (sp-EBP vs. naive).

Coherence of direct and sp-EBP estimates can be also evaluated by comput-
ing a goodness-of-fit diagnostic [Brown et al. (2001)] which is obtained from the
following Wald-test statistic:

(22) W =
m∑

i=1

(p̂Direct
i − p̂

sp-EBP
i )2

V̂ar(p̂Direct
i ) + M̂SE

∗
(p̂

sp-EBP
i )

,
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where the estimated MSE of the sp-EBP is calculated by using formulas in Sec-
tion 5. Considering the results of the simulation experiments with m = 500, we
decided to consider the bias-corrected MSE reported in equation (13). The above
test is based on the idea that, should model-based estimates be close to the “true”
small area parameters of interest, the unbiased direct estimates can be considered
as random variables with expected value equal to the value of the corresponding
model-based estimates. Here, W = 360.56, and such a value needs to be compared
to the 95th percentile of a χ2 distribution with 452 d.f., that is, χ2

452,0.95 = 502.56.
In this respect, we may conclude that model-based estimates are not significantly
different from direct estimates.

To assess the potential gain in precision we obtain by using the proposed sp-
EBP approach in place of the direct one, we compare in Figure 10 the empirical
cumulative density functions (ECDs) of the coefficients of variation (CV) of both
estimators. The first panel uses CVs from all areas, while the second (third) one
focuses on small areas with sample size smaller (larger) than 100. As it is clear
by looking at the first panel, the ECDF corresponding to sp-EBP almost always
dominates the one for the direct estimates, highlighting that CV values for the
former approach are lower than those estimated with the latter. Only for very small
CV values, the ECDFs show an inverse relation; CVs for direct predictions are
smaller than those for sp-EBP. This is more evident in the second panel and is
related to the presence of some areas with a small sample size for which p̂Direct

i is

zero or is very close to zero, and so is R̂MSE(p̂Direct
i ). However, also in this case,

more than 60% of Italian LLMAs have CV% associated to the direct estimator
above the standard 33% threshold which is typically considered for reliability in
the SAE context. Such a percentage reduces to about 50% when considering the
proposed sp-EBP approach; in addition, less than 5% of the estimates have CV%
larger than 40%. When we move to higher CVs, the sp-EBP approach always
provides smaller CV values when compared to the direct approach, and such CVs
are always smaller than 40%. When focusing on the third panel in Figure 10, it

FIG. 10. CVs empirical cumulative density functions for the sp-EBP and the direct estimator.
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is evident that, as the sample size gets larger, direct and model-based estimates
tend to have quite similar CV values, although those associated with model-based
estimates are still consistently smaller.

8. Conclusions. The paper described some tools to derive best predictions
for responses with distribution in the Exponential Family in the presence of clus-
tered data. In particular, we proposed a semiparametric version of the EBP and the
corresponding second-order, bias-corrected MSE approximation using a NPML
approach and leaving the distribution of the random effects unspecified. Motivated
by a real application to data on unemployment incidence in LLMAs in Italy, we
focused on a binary response modeled via a mixed logistic model with random
intercepts which represents a relevant case in the SAE framework.

Simulation experiments showed that the proposed estimator performs equally or
better than the competitors. In particular, when moving far from the assumption of
Gaussian distributed random effects, the proposed semiparametric approach per-
formed better than the corresponding parametric versions. Also, when compared
to the parametric EBP, simulation results highlighted better performance of the
proposed approach in terms of computational load required to get predictions and
corresponding MSE. The simulation study, where different sample sizes were con-
sidered, showed that the semiparametric approach is always reliable, especially
for large m. Such a gain comes from the discrete nature of the mixing distribution
estimate which substantially simplifies calculations.

We illustrated the benefits of our proposal discussing the estimation of unem-
ployment incidence for Italian LLMAs in 2012. In this context, direct estimates
cannot be published for most of the LLMAs given the unacceptable large value of
the coefficient of variation for those areas with a small sample size. In this respect,
model-based approaches represent a necessary strategy. Since the sample size and
the number of small areas are particularly large in this application, the implemen-
tation of the EBP turns out to be particularly cumbersome and the evaluation of
its precision prohibitive. This application indicated that the proposed methodology
leads to estimates which are coherent with, but more efficient than, the direct ones
still being comparable with alternative model-based estimates.

Although the approach we proposed is presented for responses with density
in the Exponential Family, we did not explore the behavior of the small area sp-
EBPs for counts or multinomial responses. However, a possible extension to multi-
category outcomes is quite straightforward. Also, we notice that suitable exten-
sions of the proposed approach to allow for spatial correlation could be envisioned
by properly modeling, for each small area, the prior mixture probabilities as a func-
tion of neighborhood component memberships. Last, developing design-consistent
small area estimators under the proposed methodology represents a topic of inter-
est, especially for those researchers working in survey sampling from a design-
based or a model-assisted perspective. More specifically, we could adopt a model-
assisted approach, thereby the model is used only to motivate the predictors, but
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their properties are evaluated only with respect to the randomization distribution
induced by the sampling design.

SUPPLEMENTARY MATERIAL

Supplement to “Semiparametric empirical best prediction for small area
estimation of unemployment indicators” (DOI: 10.1214/18-AOAS1226SUPP;
.pdf). The online Supplementary Material describes the EM algorithm for param-
eter estimation and the procedure for estimating the covariance matrix of model
parameters. Also, computational details for deriving the bias correction term for
the MSE estimator of the proposed sp-EBP, as well as explicit formulas for com-
puting model derivatives in the case of binary data are reported. Some additional
simulation results are also presented. Last, a computationally efficient algorithm
for estimation and inference developed in R language from the authors, together
with an example data set, is made available as part of the online Supplementary
Material.
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