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Most epidemiological air pollution studies focus on severe outcomes
such as hospitalisations or deaths, but this underestimates the impact of air
pollution by ignoring ill health treated in primary care. This paper quantifies
the impact of air pollution on the rates of respiratory medication prescribed
in primary care in Scotland, which is a proxy measure for the prevalence
of less severe respiratory disease. A novel bivariate spatiotemporal process-
convolution model is proposed, which: (i) has increased computational effi-
ciency via a tapering function based on nearest neighbourhoods; and (ii) has
locally adaptive weights that outperform traditional distance-decay kernels.
The results show significant effects of particulate matter on respiratory pre-
scription rates which are consistent with severe endpoint studies.

1. Introduction. In the United Kingdom 40,000 premature deaths are at-
tributable to air pollution each year [Royal College of Physicians (2016)], and the
epidemiological literature focuses almost exclusively on severe health outcomes
such as hospital admissions [e.g., Huang, Lee and Scott (2018)] or deaths [e.g.,
Dominici, Samet and Zeger (2000)]. However, this underestimates the impact of
air pollution because it ignores ill health treated in primary (nonhospitalised) care.
One of the few exceptions is Blangiardo, Finazzi and Cameletti (2016) who linked
air pollution concentrations to rates of respiratory medication in general practice
(GP) surgeries in England, the latter being a proxy for the prevalence of respiratory
disease not requiring hospitalisation.

In Scotland, the focus of this study, primary medical care is largely provided by
doctors grouped within GP surgeries who prescribe medication that is generically
referred to as a prescription. The aim of this study is to estimate the impact of
particulate air pollution on respiratory prescription rates, a surrogate measure of
nonhospitalised respiratory ill health. If positive associations are observed, then it
provides evidence that the health burden from air pollution is larger than previously
thought in Scotland because existing studies have only focused on severe outcomes
such as hospitalisation rates [e.g., see Huang, Lee and Scott (2018)]. A secondary
aim of this study is to quantify the magnitude of any health inequalities in respira-
tory prescription rates across Scotland, particularly focusing on variation between
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the 14 regional health boards to which health care spending is devolved. The policy
context for this study is the Cleaner Air For Scotland (CAFS) strategy, which will
introduce air pollution reduction strategies, such as low emission zones, by the end
of 2018. However, existing epidemiological studies in Scotland use relatively old
data up to 2011 [e.g., Dibben and Clemens (2015), Huang, Lee and Scott (2018)],
making current epidemiological evidence vital to inform these policies. Addition-
ally, this is the first study in Scotland to quantify the impact of air pollution in a
nonhospitalised setting and, unlike Blangiardo, Finazzi and Cameletti (2016), fo-
cuses on medications that prevent and relieve the symptoms of respiratory disease
such as asthma and chronic obstructive pulmonary disease (COPD).

The respiratory prescription data in this study relate to GP surgeries that have
a single geographical coordinate while their patient populations are drawn from
the surrounding area. In urban areas the patient populations from spatially close
surgeries will overlap, meaning that the data are not of areal unit type. Further-
more, they are not strictly in the geostatistical paradigm either because data for a
GP surgery relates to its surrounding patient population and not to the measure-
ment of a random quantity at a single location. Therefore, we propose a novel
bivariate spatiotemporal process-convolution [PC, Higdon (1998)] model for the
data, which represents spatial correlation as a spatially weighted moving average
of a noise process. Our proposed model extends current PC models in two main
ways. First, exploratory analysis shows that some pairs of spatially close GP surg-
eries have similar data values suggesting correlation while other pairs have very
different values suggesting no correlation. Furthermore, the spatial correlations do
not always decay with increasing distance apart, in that for GP surgeries (i, j, k)
all close together if surgery i is geographically closer to surgery j than surgery k,
then it often has a data value closer to that from surgery k than surgery j. We model
this structure via a novel random weighting scheme using Dirichlet priors, which
do not enforce a rigid parametric distance-decay form as kernel functions do.

The second methodological novelty of this paper is computational because PC
models are expensive to implement in a Bayesian paradigm via Markov chain
Monte Carlo (MCMC) simulation when the matrix of spatial weights is dense;
see Section 3 for details. Therefore, we propose a novel computationally effi-
cient tapering approach for making the weight matrix sparse. Computationally
efficient modelling can be undertaken via numerous approaches, including covari-
ance tapering [Furrer, Genton and Nychka (2006)], low-rank models [Banerjee
et al. (2008)] and nearest-neighbour models [Datta et al. (2016)]. Our approach
fuses covariance tapering with nearest-neighbour modelling by applying a taper-
ing function to the weight matrix based on being one of the nearest neighbours.
The methodology is presented in Section 3 following the exploratory analysis in
Section 2, while the results are presented in Section 4. Finally, the paper concludes
with a discussion in Section 5.
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2. Motivating study. Scotland contains 966 GP surgeries arranged within 14
regional health boards, although data are only available for K = 939 surgeries
due to missing data problems (see below). The numbers of surgeries per health
board varies between six (Orkney) and 239 (Greater Glasgow and Clyde), and
they are unevenly distributed across the country and concentrated mainly in the
cities. Further details are provided in Section 1 of the Supplementary Material
[Lee (2018)].

2.1. Prescription data. Newly released monthly data on respiratory prescrib-
ing rates were obtained from the Information Services Division of NHS Scotland
between October 2015 and August 2016, and are considered as a proxy for the
prevalence of respiratory disease not requiring hospitalisation. The data comprise
counts for each GP surgery and month of the total numbers of prescriptions for
medication that: (i) prevent (corticosteroids); and (ii) relieve (short-acting 8, ag-
onists), the symptoms of respiratory conditions. The monthly scale was retained
because temporal aggregation would make the data less finely resolved and fur-
ther away from the individual level. The monthly prescription counts at a surgery
will depend on the size and age-sex structure of its patient population, which is
accounted for using indirect standardisation. Specifically, the number of male and
female patients in age groups: 0-4, 5-14, 15-24, 25-44, 45-64, 6574, 75-84 and
85+ were obtained for 2015 and 2016 (monthly data were not available) for each
surgery, which were then multiplied by national age-sex specific rates of asthma
and COPD and then summed to estimate the expected number of patients with
respiratory disease for each surgery. These expected numbers were then scaled,
separately for preventer and reliever medication, so that the total of the observed
and expected counts were equal for each medication. However, 27 surgeries had
missing patient size data and thus were removed.

The standardised prescription rate (SPR) equals the observed divided by the
expected count of prescriptions for each surgery, month and medication type (re-
liever or preventer) and is equivalent to a standardised mortality ratio (SMR) when
modelling death rates. For interpretation an SPR of 1.2 represents a 20% increased
rate compared to the Scotland average. The monthly temporal patterns [shown
in Section 1 of the Supplementary Material, Lee (2018)] in the SPR show little
month-to-month variation with only December having markedly increased rates.
The average (mean over month) spatial patterns in the SPR for preventer and re-
liever medications are displayed in Figure 1 where the SPR has been classified
into three groups: Low (<0.9), Average ([0.9, 1.1]) and High (>1.1), to aid the
visualisation. The main high rate areas are the city of Glasgow and parts of south-
ern Scotland where as low rates are observed in Grampian and Edinburgh. Finally,
the SPRs for the two medication types have a Pearson’s correlation coefficient of
0.60, and further exploratory analysis is given in Section 1 of the Supplementary
Material [Lee (2018)].
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FIG. 1. The spatial distribution in average SPR for: (a) preventer medication; and (b) reliever
medication. The SPR has been categorised as: Low (<0.9), Average ([0.9, 1.1]) and High (>1.1).
The grey lines denote the health board boundaries.

2.2. Air pollution. Data on concentrations of particulate matter less than 10
(PMjp) and 2.5 (PM> 5) microns in size (measured in Mgm_3) are available from
two sources. The first are measured monthly mean concentrations at 76 point-
locations for PM¢ and 17 point-locations for PMj 5, which were obtained from
http://www.scottishairquality.co.uk. These data contain 6.7% and 7.2% missing
values respectively for each pollutant over the 11 months. The locations of these
pollution monitors are clustered mainly in Glasgow and Edinburgh with large parts
of Scotland having no observations, which makes spatial prediction via Kriging
difficult. Therefore, a second source of pollution data we use are modelled annual
average concentrations provided by the Department for the Environment, Food
and Rural Affairs (DEFRA, https://uk-air.defra.gov.uk/data/pcm-data), which are
on a regular 1-kilometer grid and provide complete spatial coverage of Scotland.
Further details of the pollution data are provided in Section 2 of the Supplementary
Material [Lee (2018)].

2.3. Other covariates. The main confounder for respiratory illness is smok-
ing, but as no data are available to quantify smoking rates we use socioeconomic
deprivation as a proxy measure due to its strong relationship. Specifically, the per-
centage of patients from each GP surgery who live in the 15% most deprived data-
zones (a small-area geography), as measured by the Scottish Index of Multiple De-
privation (SIMD), is available as is the median property price surrounding each GP
surgery. These covariates only vary in space and not in time because monthly level
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data are not available. Meteorology also impacts respiratory health, and monthly
modelled average temperatures and relative humidities were obtained from the
Centre for Environmental Data Analysis (2016, 2017). Additionally, the percent-
age of patients from each GP surgery who are white was also included (the only
ethnicity variable available) to adjust for ethnic differences in respiratory disease
rates [Bhopal et al. (2015)]. Finally, we include an indicator variable for December
because it exhibits around a 30% (preventer) and a 25% (reliever) higher rate of
prescription and is a clear outlier compared to the other months. This December
phenomenon is well known amongst GPs and is caused by the public stocking up
on medication during the Christmas holidays when surgeries are closed. Thus, this
variable is essentially an indicator for Christmas holidays.

2.4. Exploratory analysis. Initially, overdispersed quasi-Poisson log-linear
models (where variance = & x mean) were fitted to the prescription count data
separately for each medication type, and the covariates included the expected num-
bers of prescriptions (an offset), PM» 5 concentrations and the confounding factors
described above. The residuals exhibited substantial overdispersion (é = 8.2) and
spatiotemporal and between medication correlations, the latter of which appear to
be separable in space, time and between medications [see Section 3 of the Sup-
plementary Material, Lee (2018)] which motivates the model proposed in the next
section. However, the spatial autocorrelation is not universal because there are nu-
merous pairs of spatially close GP surgeries that have very different residual val-
ues. To illustrate, we considered the absolute differences in the residuals between
each GP surgery and its eight geographically closest neighbours. Table 1 presents
the percentages of GP surgeries for which the most similar residual (in terms of
absolute difference) was from its closest, second closest, third closest, etc. neigh-
bouring surgery, where for ease of presentation the results are averaged over the
11 months of data.

TABLE 1
Percentage of surgeries whose residual is most similar to that of the kth
closest surgery. Only the eight closest surgeries were considered

kth closest surgery  Preventer medication  Reliever medication

1 17.89% 16.93%
2 14.70% 16.51%
3 13.63% 12.99%
4 11.93% 10.76%
5 12.35% 11.71%
6 9.80% 11.40%
7 9.69% 8.95%
8 10.01% 10.76%
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The table shows that the percentages decrease as one moves further away from
the surgery in question as expected, but that the percentages of surgeries for which
the spatially closest residual was the most similar was only 16%—18%. This sug-
gests that, within a spatially close set of GP surgeries, modelling correlation in
terms of a simple distance-decay form is not appropriate as the absolute differ-
ences do not simply increase with increasing distance apart. Furthermore, the sim-
ilarities are not reversible, as in only 42.4% (preventer medication) and 42.9%
(reliever medication) of cases does it follow that if surgery k has a residual that is
most similar to that from surgery j, then the residual from surgery j is most simi-
lar to that from surgery k. This asymmetry suggests that the weights in the process
convolution model described in the next section should not be symmetric.

3. Methodology. We propose a novel bivariate locally adaptive spatiotempo-
ral process-convolution model to estimate the effects of air pollution on respiratory
prescribing rates with inference in a Bayesian framework using MCMC simula-
tion. A bivariate model is chosen because the data are naturally bivariate given
the two different medication types being modelled. Additionally, given the highly
parameterised nature of the localised weight model proposed in this section, a bi-
variate approach provides double the number of data points with which to estimate
the localised weights compared to a univariate model. The model is outlined below,
whilst details of the MCMC algorithm, reproducibility materials and the model’s
correlation structures are presented in Sections 4 and 5 of the Supplementary Ma-
terial [Lee (2018)].

3.1. Overall model. Let sy = (sg1,sx2) fork=1,..., K =939 denote the ge-
ographical coordinates of the kth GP surgery, while (Y3;(Sx), er; (Sx)) respectively
denote the observed and expected numbers of prescriptions for surgery k in month
t (t=1,..., N =11) for medication type i, (i = 1 is preventer and i = 2 is re-
liever). Additionally, let X;(sx) = (x/1(Sk), ..., Xsp(sx)) denote a p x 1 vector of
covariates including a column of ones for the intercept term, while Z, (sx) denotes
the pollution concentrations. Then the first level of the proposed model is given by

Y (sk) ~ Poisson (e (Sx)r+i (Sk)),

K
(3.1) In(rsi (k) =X (s6) " Bi + Ze(si)BE + Y wiejbri (s),
=

(Bi, BY) ~N(ng, Zp).

A negative binomial data model was also considered, but after including the
process-convolution ¢y; (sx) = Zle w0 (s;) no overdispersion remained (see
Section 4.1). In (3.1) r4; (sg) denotes the relative prescribing rate for medication i
compared to the scaled expected numbers e;; (Sx) and has the same interpretation as
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the SPR. The log rate is modelled by covariates and a bivariate PC latent process—
the latter modelling any unmeasured spatiotemporal and between medication cor-
relation in the data after covariate adjustment. The regression parameters (8;, B;)
are medication specific and are assigned a weakly informative Gaussian prior with
a zero mean (fg = 0) and a large diagonal variance matrix (X g = 1000I).

The PC ¢;;(sx) is a spatially weighted average of the latent process {6;;(s;)}
at the K data locations, and spatial autocorrelation is induced by the spatial
weight matrix W = (wg;j) k x k- Here wy; is large for geographically close surg-
eries (k, j) and small for surgeries further apart, and further details are given in
Section 3.3. Temporal and between medication correlations are induced by mod-
elling 0;(sx) = (6;1(sk), 6:2(sx)) as a spatially independent bivariate first order au-
toregressive process:

0(sk) ~N(y0,-1(sx), X) fort=2,..., N,
01(sx) ~N(O, X),

3.2
(52 1n“+—y] ~N(0, 1/0.4),

() o 1/1Z)3/2

Here y controls the temporal autocorrelation, with y = 0 corresponding to
temporal independence while ¥ = 1 corresponds to a nonstationary temporally
dependent random walk. It is assigned a Gaussian prior on the transformed
In[(1 + y)/(1 — y)] scale following the suggestion of Riebler, Held and Rue
(2012), and the prior precision is 0.4 as this provides a relatively noninformative
prior [see Figure 2 in Riebler, Held and Rue (2012)]. The conditional covariance
of @,(s;) is represented by X, which is assigned a weakly informative Jeffeys prior
[for details see Liechty, Liechty and Miiller (2004)]. A sensitivity analysis to these
choices is presented in Section 6 of the Supplementary Material [Lee (2018)].

3.2. Pollution model for Z, (sx). Monthly concentrations of PMj 5 and PM g
need to be predicted for each GP surgery using both the measured and mod-
elled pollution data described in Section 2. In the main analysis concentrations
are predicted at each surgeries coordinates, while Section 6 of the Supplemen-
tary Material [Lee (2018)] presents a sensitivity analysis by instead using the
average concentration within 1 km and 2 km circular buffers of each surgery.
A preliminary cross validation exercise was undertaken to compare a number
of models for predicting pollution concentrations, and details are given in Sec-
tion 2 of the Supplementary Material [Lee (2018)]. A simple linear model per-
formed best, where the square root of the monitored concentrations was regressed
against the modelled concentrations (also square rooted), a monthly factor vari-
able and the site type (a background or a roadside site) variable. Thus, letting
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Z=(Zi(p1),...,ZN(PD))NDx1 represent the vector of monthly averaged pollu-
tion concentrations at the D monitor locations (pi, ..., pp) for all time periods,
the model has the form

VZ ~N(Bw, t°1),

3.3)
fw, r2) x172,

where Bypx14 denotes the design matrix of covariates. Additionally, I is the
N D x N D identity matrix, e are the corresponding regression parameters, and 7>
is the error variance. A square root transformation is applied because the pollution
data are nonnegative and skewed to the right. The joint prior distribution f (w, 72)
was suggested by Gelman et al. (2004) to ensure conjugacy with the data likeli-
hood, allowing the posterior predlctlve distributions to have a closed form (on the
square root scale). Let Z = (Z 1(s1), . . Z ~N(Sk))nNKkx1 denote the unknown pol-
lution concentrations at the K GP surgery locations for all N months; then their
posterior predictive distribution is

(3.4) \f |v/Z ~ Multivariate-ty x_14(m; = B&, V; = s*[I+ BVB)),

where @ = (B'B)"'B"z, V=(B"B)"! and s> = 33 (z—B®) " (z—B®). The
degrees of freedom (N K — 14) comes from the choice of covariates outlined above,
while B denotes the covariates at the prediction locations where in all cases the site
type is set to background rather than roadside so as to be more representative of
population exposure (i.e., people don’t spend their lives next to a main road).

Two approaches are considered for combining (3.1) and (3.4), and the results are
compared to assess its impact on the estimated pollution-health association. The
first assumes that the GP surgery pollution concentrations are fixed and equal to the
posterior predictive mean of (3.4), which is the most common approach in the liter-
ature and thus allows a comparison with previous work. However, this ignores the
predictive uncertainty in (3.4), and thus the second approach feeds the uncertainty
in the pollution predictions forward into the disease model (3.1). Specifically, a
new sample of Z is generated from (3.4) at each MCMC iteration when fitting the
health model, which allows for the pollution uncertainty. This approach cuts the
feedback between the pollution and disease models [see also Blangiardo, Finazzi
and Cameletti (2016), Lee et al. (2017)] because it makes no sense to allow the
disease data to influence the pollution concentrations as this is first, biologically
implausible, and second, it is the relationship in the other direction one is trying to
estimate.

3.3. Weight model for W. We compare two approaches for modelling the spa-
tial weights W, a kernel-smoothing approach similar to Higdon (1998) and a novel
locally adaptive specification that is a methodological contribution of this pa-
per. Another methodological contribution is computational because fitting model
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(3.1)—(3.2) using a Bayesian MCMC algorithm is computationally intensive due
to the need for repeated evaluation of the data likelihood. For example, the full
conditional distribution of @, (sp) is proportional to

f(0:(sp)1-)
2 K

X 1_[ 1_[ Pmsson(Yn (sk)

i=1k=1

eri (sk)exp[xf(sk) B: + Z wijri (s,)})

j=1
X N(0:(sp)|y0:—1(sp), Z)N(Or+1(s6)|¥0:(sp), Z),

where ‘—’ denotes the data and all other parameters. Thus updating 6, (sp) requires
evaluating the data likelihood for all 2K data points at time ¢, which when iterated
over all K x N elements {0, (sp)} for a large number of MCMC iterations is com-
putationally demanding. Therefore, we propose a novel tapering approach based
on the nearest neighbour ideas of Datta et al. (2016), which makes W sparse and
hence removes most of the data likelihood terms from the above full conditional
resulting in faster inference (see Section 4 for details). Specifically, for the kth GP
surgery we only allow the weights {wg, ..., wigx} to be nonzero for the noise pro-
cess {0:(s1),...,0:(sx)} at the m nearest GP surgeries (including at the surgery
itself via a nonzero wgy), where the sensitivity of the results to the choice of m is
evaluated in the next section. This is achieved by combining the weights described
below with the tapering function

1 if location s; is one of the m
3.5 I(sk,s;) = closest points to location sg,
0 otherwise.

We base the tapering function on a fixed number of closest neighbours m rather
than on a fixed threshold distance from location s; because the data locations are
irregularly spaced. Thus, a single threshold distance would not be simultaneously
appropriate in a city (where lots of surgeries are close by) and in a rural area (where
no surgeries are close by).

3.3.1. Kernel smoothing weights. To provide a comparator to the locally adap-
tive weights proposed below, we combine the kernel smoothing weights proposed
by Higdon (1998) with the tapering function (3.5) to give

lIsk— SJII)

I(sk,s])mexp( oy
ZKII(S/(’SZ)WGXP( U

Wi
kj = lIsk— s,u)

(3.6)
O =V 6,

8, ~ Uniform(0, 100), r=1,...,q,



AIR POLLUTION AND RESPIRATORY PRESCRIBING 2549

where || - || denotes Euclidean distance. These weights induce spatial smoothness
into ¢y;(sy) = Zf: 1 Wkj0ri(sj) because the closer two locations (sg, s;) are the
larger the weight wy; is, as ax > 0. The speed at which the weights decay to zero
with increasing distance is controlled by the bandwidth o with small values cor-
responding to long-range spatial smoothness, while as o — 00 then wgr — 1
resulting in spatial independence. The bandwidth varies in space via the regres-
sion model oy = V,;'—S where both the covariates and their regression parameters
are constrained to be positive as oy > 0.

3.3.2. Locally adaptive weights. The weights in (3.6) vary by GP surgery via
a spatially varying bandwidth o but are still constrained to decay monotonically
as the distance between two surgeries increases. However, Section 2.4 and Ta-
ble 1 shows this is unrealistic for the prescription data, because within a group
of spatially close GP surgeries the absolute differences in the residuals from a
covariate only model do not increase with increasing distance apart. Specifically,
the smallest absolute difference is between the geographically closest surgeries in
only 16%—18% of cases, suggesting that within a set of spatially close GP surg-
eries, weights that monotonically decrease with increasing distance apart [as used
in Meyer and Held (2014)] would not be appropriate. Furthermore, there is an
asymmetry in these spatial similarities, in that only 43% of the time does it hold
that if the residual in surgery & is most similar to that in surgery j, then the residual
in surgery j is most similar to that in surgery k. These two observations suggest
that for the m nearest GP surgeries the weights should not be constrained to decay
monotonically with increasing distance or be symmetric (i.e., wg; # wjx). This
motives the following locally adaptive weight model for W:

Yir if s; is the rth closest point to s; forr =1, ..., m,
Wgj = .
(3.7) / 0 otherwise,

¥ = Vi1, ..., Vim) ~ Dirichlet(a; = 1, ..., ap = 1),

where ¥, represents the nonzero weights from the m nearest surgeries to surgery k.
A Dirichlet prior is assigned to ¥, so that they sum to one, and they do not vary
over time for identifiability reasons because the number of weights K x m is larger
than the number of spatial data points K. Spatial autocorrelation is enforced by this
model due to the taper function because only the m geographically closest 6;; (s ;)
values are given nonzero weight in the PC ¢;; (sy). However, the use of random
weights means that spatially close elements (¢;; (i), ¢:i(s;)) can be highly auto-
correlated if the weights (wy;, w;x) are high, but can also be close to independent
if close to zero weights are estimated, which thus allows for the localised structure
observed in the data.
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4. Results. The locally adaptive model (3.7) and the kernel smooth model
(3.6) with constant («x = « for a baseline comparison) and spatially adaptive band-
widths were run with m =4, 8, 16 which assesses model sensitivity to the amount
of tapering. For the latter oy varies by how urban a surgery is (classes urban,
small-town or rural) because in cities GP surgeries are close together allowing
short range correlations, while longer range correlations are necessary in rural ar-
eas. Each model was run separately including PM»> 5 or PMjg (correlation 0.85)
as well as deprivation based on SIMD and property price, temperature, relative
humidity, the percentage of patients who are white and an indicator variable for
December (Christmas holidays). Inference is based on three Markov chains burnt
in for 100,000 iterations, and convergence was checked using trace plots and the
Geweke statistic. A further 100,000 samples were then generated and thinned by
10 to reduce their autocorrelation resulting in 30,000 samples for inference. The
main results are presented below, while a sensitivity analysis is presented in Sec-
tion 6 of the Supplementary Material [Lee (2018)].

4.1. Overall model fit. Table 2 summarises the overall fit of each model by
the Watanabe—Akaike Information Criteria [WAIC, Watanabe (2010)] and the Log
Marginal Predictive Likelihood [LMPL, Congdon (2005)], and both show little
sensitivity to changing the tapering parameter m with a maximum change of 0.6%.
However, increasing m increases the computational burden greatly, for example,

TABLE 2
Summary of the overall fit of the models by WAIC and LMPL (including each pollutant), and its
relative computing time. For the latter the single a model with m = 4 is the baseline, with a
relative time of 1

m Single o, Varying o, Localised
WAIC (p.w) 4 171,000 (8187) 170,990 (8180) 147,624 (5115)
(PMy 5) 8 170,917 (8105) 170,907 (8099) 146,972 (4867)
16 170,912 (8102) 170,903 (8097) 146,724 (4771)
WAIC (p.w) 4 170,942 (8158) 170,934 (8154) 147,641 (5117)
(PMp) 8 170,863 (8078) 170,857 (8081) 146,966 (4865)
16 170,867 (8081) 170,855 (8077) 146,737 (4773)
LMPL 4 —717,735 —717,734 —74,688
(PM> 5) 8 —717,738 —717,739 —74,282
16 =717,740 —717,738 —74,144
LMPL 4 —717,132 —71,730 —74,699
(PMg) 8 —717,735 —717,735 —74,284
16 —717,738 —71,734 —74,153
Relative time 4 1 1.07 1.21
8 1.69 1.77 1.89
16 3.07 3.12 3.30
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by a factor of 3 from m =4 to m = 16. In contrast the locally adaptive model is
only around 10% to 20% more computationally demanding than the kernel model.
WAIC and LMPL evidence that the locally adaptive model fits the data better than
either of the kernel weight models, with percentage improvements of around 16%
(WAIC) and 5% (LMPL) respectively. In contrast moving from a constant to a
spatially-varying bandwidth in the kernel models results in little improvement in
model fit. Additionally, unmeasured overdispersion, quantified by the scaled sum
of the Pearson residuals, is present for the kernel models, with estimated overdis-
persion parameters around 2.4 that are consistent across m. In contrast, for the
locally adaptive model there is slight underdispersion (values around 0.7) consis-
tent across m, which again suggests that this model is better able to capture the
unmeasured structure in the data.

4.2. Covariate effects. Table 3 displays estimated relative rates (posterior me-
dians) and 95% credible intervals for the increase in each covariate given in brack-
ets in the first column of the table. With the exception of PM g the results relate to
when PM> 5 was the pollutant included in the model. The estimated relative rates
show little sensitivity to the choice of m.

4.2.1. Pollution effects. The pollution relative rates correspond to when the
concentrations are fixed at their posterior predictive means from (3.4) because this
makes the results comparable with most of the existing literature. The main finding
is that both PM; 5 and PM g are associated with increased rates of prescription for
preventer and reliever respiratory medication, with between a 1.8% and a 2.8% in-
creased prescription rate for a 2 ugm™ increase in each pollutant. The estimated
effect sizes are slightly larger for PM» 5 compared to PM g, which may be because
smaller particles can travel further into the lungs or because the magnitude of the
PM, 5 concentrations are smaller than those of PM g, and as both pollutants are
highly correlated their estimated regression parameters will thus be larger. The es-
timated effects are slightly larger for reliever medication compared with preventer
medication with, for example, 2.8% and 2.0% increased rates being estimated for
PM, 5 from the locally adaptive model when m = 8. The posterior median esti-
mates are similar between the 3 weight models, with the main difference being
a widening of the credible intervals for the locally adaptive model. This widen-
ing corresponds to the locally adaptive process-convolution accounting for more
variation in the data which is illustrated by the comparison of the overdispersion
parameters in the previous section.

The locally adaptive model with m = 8 was then fitted to the data allowing for
pollution uncertainty, and the estimated relative rates and 95% credible intervals
are as follows: Preventer medication: PM, s—1.005 (0.997, 1.012); PMp—1.002
(0.998, 1.006); Reliever medication: PM; 5—1.008 (1.003, 1.014); PMo—1.003
(1.001, 1.006). In all cases the relative rates from assuming pollution was fixed
have been greatly attenuated to the null rate of 1, which is not surprising because
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TABLE 3

Estimated relative rates and 95% credible intervals for the increase in each covariate given in
brackets in column 1. All results except for those of PM relate to when PM» 5 was the pollutant
included in the model

m Single o, Varying oy Localised
Preventer medication
PM; 5 4 1.022(1.015,1.029) 1.022(1.015,1.030) 1.021 (1.011, 1.030)
2 ugm=3) 8 1.022(1.015,1.029) 1.022(1.015,1.029)  1.020 (1.009, 1.031)
16  1.022(1.015,1.029)  1.022(1.015, 1.030)  1.018 (1.004, 1.033)
PMo 4 1.019(1.014,1.024)  1.019 (1.014, 1.024)  1.019 (1.012, 1.026)
2 ugm*3) 8 1.019(1.014,1.024) 1.019(1.014, 1.024)  1.019 (1.011, 1.027)
16 1.019(1.014, 1.024) 1.019(1.014,1.024)  1.018 (1.008, 1.028)
Price 4 0.979 (0.966,0.992)  0.979 (0.966,0.991)  0.965 (0.950, 0.981)
(£57,461) 8 0.979(0.967,0.992)  0.980 (0.966, 0.993)  0.985 (0.967, 1.002)
16  0.980(0.967,0.993) 0.979 (0.966, 0.992)  0.988 (0.971, 1.006)
SIMD 4  1.162(1.148,1.176)  1.162 (1.148,1.177)  1.106 (1.086, 1.126)
(19.6%) 8 1.163(1.149,1.178)  1.164 (1.149, 1.177)  1.126 (1.103, 1.148)
16  1.164 (1.150, 1.178)  1.164 (1.150, 1.177)  1.131 (1.109, 1.154)
White 4 1.038 (1.025,1.051) 1.039 (1.026, 1.053)  1.021 (1.005, 1.038)
(6.6%) 8 1.038(1.025,1.051)  1.038 (1.025,1.052)  1.019 (1.000, 1.038)
16  1.038 (1.025, 1.051)  1.038 (1.025, 1.051)  1.022 (1.002, 1.042)
Humidity 4 1.014 (1.008, 1.019)  1.014 (1.008, 1.019)  1.013 (1.006, 1.020)
(2.35%) 8 1.014(1.009, 1.019) 1.014 (1.009, 1.019)  1.013 (1.004, 1.022)
16 1.014 (1.009, 1.019)  1.014 (1.009, 1.019)  1.012 (1.001, 1.023)
Temperature 4 1.004 (0.996, 1.011)  1.004 (0.996, 1.011)  1.007 (0.996, 1.019)
(4.05°C) 8 1.003 (0.996,1.011)  1.004 (0.996, 1.011)  1.009 (0.995, 1.024)
16 1.004 (0.996, 1.011)  1.003 (0.996, 1.011)  1.014 (0.993, 1.035)
December 4 1.254(1.237,1.271)  1.254(1.237,1.271)  1.259 (1.238, 1.281)
8  1.253(1.236,1.270)  1.253(1.237,1.270)  1.263 (1.237, 1.290)
16 1.254(1.237,1.271)  1.253 (1.237,1.270)  1.264 (1.231, 1.297)

allowing for measurement/prediction error in the pollutant makes an association
harder to identify as the covariate value itself is uncertain. Similar attenuation was
observed by Lee et al. (2017) and is also observed in classical measurement error
models where covariates contain uncertainty.

4.2.2. Other covariate effects. Socioeconomic deprivation has a large impact
on respiratory prescription rates with both the property price and SIMD covari-
ates showing largely significant effects that point to higher rates of medication for
less affluent communities. These effects are more pronounced for reliever medica-
tion with, for example, the relative rates for SIMD (locally adaptive model when
m = 8) being 1.126 for preventer medication compared to 1.215 for reliever medi-
cation. The effect of the December Christmas holidays is more consistent between
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TABLE 3
(Continued)

m Single o, Varying oy, Localised
Reliever medication
PM 5 4 1.026 (1.021, 1.031) 1.026 (1.021, 1.031) 1.027 (1.021, 1.035)
2 ugm_3) 8 1.026 (1.021, 1.031) 1.026 (1.021, 1.031) 1.028 (1.020, 1.036)

16  1.026 (1.021, 1.031) 1.026 (1.021, 1.031) 1.026 (1.015, 1.037)
PMg 4 1.022 (1.019, 1.025) 1.022 (1.019, 1.025) 1.023 (1.018, 1.027)
2 ,ugm*3) 8 1.022 (1.019, 1.025) 1.022 (1.019, 1.025) 1.023 (1.017, 1.029)

16 1.022 (1.019, 1.025) 1.022 (1.019, 1.025) 1.021 (1.014, 1.029)
Price 4 0.925(0.915,0.934) 0.925(0.915,0.934)  0.916 (0.904, 0.928)
(£57,461) 8 0.925(0.915,0.935) 0.925(0.916,0.934)  0.921 (0.909, 0.933)

16 0.925(0.916,0.934)  0.924 (0.915,0.934)  0.921 (0.910, 0.934)
SIMD 4 1.248 (1.238, 1.258) 1.248 (1.238, 1.259) 1.201 (1.186, 1.216)
(19.6%) 8 1.248 (1.237, 1.258) 1.248 (1.238, 1.258) 1.215 (1.198, 1.23)

16 1.248 (1.238, 1.259) 1.248 (1.238, 1.257) 1.218 (1.199, 1.238)
White 4 1.057 (1.046, 1.067) 1.058 (1.047, 1.068) 1.036 (1.024, 1.048)
(6.6%) 8 1.055 (1.044, 1.065) 1.055 (1.045, 1.065) 1.020 (1.005, 1.035)

16 1.054 (1.045, 1.065) 1.055 (1.044, 1.064) 1.015 (1.000, 1.030)
Humidity 4 1.010 (1.006, 1.013) 1.009 (1.006, 1.013) 1.011 (1.006, 1.016)
(2.35%) 8 1.010 (1.006, 1.013) 1.010 (1.006, 1.013) 1.011 (1.005, 1.017)

16 1.010 (1.006, 1.013) 1.010 (1.006, 1.013) 1.011 (1.002, 1.019)
Temperature 4 1.008 (1.003, 1.014) 1.008 (1.003, 1.014) 1.009 (1.000, 1.018)
(4.05°C) 8 1.008 (1.002, 1.014) 1.008 (1.002, 1.014) 1.010 (0.999, 1.021)

16 1.008 (1.002, 1.014) 1.008 (1.003, 1.014) 1.014 (0.998, 1.030)
December 4 1.234 (1.224, 1.245) 1.234 (1.224, 1.244) 1.240 (1.226, 1.256)

8 1.233 (1.223, 1.244) 1.234 (1.223, 1.244) 1.245 (1.227, 1.264)
16 1.234 (1.223, 1.244) 1.233 (1.222, 1.243) 1.245 (1.219, 1.271)

the two medication types with increased rates between 23%—27% compared to the
other months. Increased relative humidity is associated with a small increased risk
of around 1% for both medication types while the uncertainty intervals for tem-
perature generally include the null risk of one. Finally, increasing the percentage
of a surgeries patients who are white leads to higher prescription rates by around
1%—-5%.

4.3. Health board inequalities. A secondary aim of this study is to estimate
the inequalities in prescription rates across the 14 regional health boards which is
quantified by averaging the process convolution ¢y; (s;) from the locally adaptive
model (with m = 8) over all surgeries and months within each health board. The
estimated health board level relative rates for preventer (a) and reliever (b) med-
ications are displayed in Figure 2 where the average rate across Scotland equals
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FIG. 2. The average (over time) health board level relative rates for: (a) preventer, (b) and reliever
medication after adjusting for the other covariates.

one. The figure shows that both medication types show similar spatial patterns
(Pearson’s correlation coefficient is 0.74) with Dumfries and Galloway (far south)
and Shetland (far north) being high for both medication types while Grampian
in the east is consistently low. The range of estimated relative rates is relatively
large with the highest being an 81% increased rate while the lowest is a 25% re-
duced rate compared to the Scottish average. The other interesting finding is that
the highest rates are typically found in the rural health boards without large cities
as the health boards containing the four largest cities Glasgow (Greater Glasgow
and Clyde), Edinburgh (Lothian), Aberdeen (Grampian) and Dundee (Tayside) all
have average or below average relative rates.

4.4. Correlation structure of the process convolution. The posterior median

between medication correlation from the process convolution ¢y; (sx) is relatively
D)

vV f;l 1 f;22
with 7 = 0.98. The estimated relationship between the spatial autocorrelations and
distance apart are presented in Figure 3 for both the kernel (a) and locally adaptive
(b) weight models where the figure has been truncated at 10 kilometers to improve
the presentation. In each panel of the figure the colours denote the autocorrelations
from the other model: (a) locally adaptive weight model and (b) kernel weight
model to allow a comparison between the two weight models.

strong at 0.71 (from ), while the temporal autocorrelation is very strong
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F1G. 3. The points denote the relationship between distance and correlation for the: (a) adaptive
kernel weight model and (b) locally adaptive weight model. The colours of the points denote the cor-
relations for the same points from the other model: (a) locally adaptive weight model and (b) kernel
weight model.

Panel (a) shows that the kernel model exhibits different distance-decay relation-
ships for surgeries in urban, small town and rural environments. The shortest range
correlations come in urban environments, which is likely to be because surgeries
are much closer together, as well as the fact that even short distances between
surgeries will likely mean they represent different local communities. The kernel
model also produces very few high autocorrelations which is likely because the
rigid distance-decay kernels are not realistic, that is, two pairs of surgeries the
same distance apart will have very different correlations. In contrast the locally
adaptive model in panel (b) shows many more stronger spatial autocorrelations
due to its flexible nature which is likely to be the reason for the improved model
fit. The shading of the points in panel (a) shows that for the locally adaptive model
some pairs of nearby surgeries have very low autocorrelations while other pairs
further apart have much higher autocorrelations, a facet that was observed in the
exploratory data analysis.

5. Discussion. This paper has proposed a novel bivariate locally adaptive spa-
tiotemporal process-convolution model for estimating the effects of air pollution
on respiratory prescribing rates in primary care and has provided data and code to
make the research reproducible. It is the first paper to jointly model data on medi-
cations that relieve and prevent the symptoms of respiratory disease and is the first
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study of its kind in Scotland. We find that both PMj3 5 and PM( exhibit signifi-
cant effects on the rates of prescribing for respiratory medication with estimated
relative rates from the locally adaptive model ranging between 1.018 and 1.028
for a 2 pgm™3 increase in concentrations. For PM, 5 this equates to an average of
634 (preventer medication) and 3715 (reliever medication) fewer respiratory pre-
scriptions per month across Scotland if the concentrations fell by 2 ;gm™3. These
positive effects occur despite Scotland having low particulate matter concentra-
tions with Loader et al. (2016) reporting that in 2015 none of the 76 sites that
monitored PM g exceeded the UK Air Quality Strategy limit of an annual mean of
40 ;1gm~3. What is especially interesting is that the size of the estimated effects
are generally similar to those reported for more severe respiratory outcomes using
arange of study designs [e.g., Dominici, Samet and Zeger (2000) and Huang, Lee
and Scott (2018)], although as a caveat these studies are not directly comparable
because of the differing time periods and spatial-temporal scales of the data sets
used. Thus this study has provided evidence that current estimates of the health
burden attributable to air pollution is likely to be an underestimate because it ig-
nores the effects on ill health treated in primary care.

The methodological novelty of this paper is two-fold, including the use of a
tapering function to make the PC more computationally efficient to fit as well as
the use of locally adaptive weights. The proposed tapering approach combines
covariance tapering with nearest neighbour methods, and Section 4 shows that
it reduces the computational burden without having a noticeable impact on the
results. The use of locally adaptive weights is also novel, and we have illustrated
that for these data it leads to a much better model fit. In this study a pair of GP
surgeries close together may not necessarily have correlated prescription rates, a
point that has also been observed in the Wombling literature for areal unit data [see
Lu et al. (2007)]. We note though that data points close together are on average
likely to be more similar than those further apart, but that this phenomenon does
not hold universally.

The methodology and application presented here suggest two main avenues for
methodological extensions. The first is to relax the separability in space, time and
between medications of the correlations assumed by the PC which although ap-
propriate for the data analysed here is unlikely to hold in all cases. One possible
example would be when jointly modelling medications for different types of dis-
eases with different aetiologies which would likely make the separability assump-
tion less tenable. The second methodological extension would be a joint model
for data on different severities of respiratory disease, such as GP prescriptions and
hospitalisations, which would allow a direct comparison of their relative associa-
tions with air pollution. However, hospitalisation data in Scotland are available at
nonoverlapping areal units [see Huang, Lee and Scott (2018)], so the spatial scales
(fixed areal units vs. GP practice populations with unknown spatial support) of
the two data sets are completely different. Thus to make the results comparable,
such a joint model would require novel spatial misalignment methodology to be
developed.
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SUPPLEMENTARY MATERIAL

Supplement A: Additional results and data analysis (DOI: 10.1214/18-
AOAS1167SUPPA; .pdf). Section 1 contains additional data summaries, while
Section 2 presents predictive analysis for the pollution data. Section 3 presents
exploratory analysis of the prescription data, while Section 4 presents the repro-
ducibility materials. Section 5 provides theoretical results, while Section 6 presents
sensitivity analyses.

Supplement B: Supplementary data and code (DOI: 10.1214/18-A0AS1167
SUPPB; .zip). Code and data for applying the model proposed in Section 3 to the
GP data.
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