

Erratum: Qualitative properties of certain piecewise deterministic Markov processes

Michel Benaim, Stéphane Leborgne, Florent Malrieu and Pierre-André Zitt

Received 22 January 2018; revised 6 September 2018; accepted 10 October 2018

There is a mistake in the proof of Theorem 3.4 which was pointed out to us by Alessandra Faggionato. The definition of the set G_t does not make sense and should be modified as follows.

Let L be a common Lipschitz constant for the fields $\{F^i, i \in E\}$ and $\varepsilon > 0$. For all y let

$$G_t(y) = \{ v \in \{ F^i(y), i \in E \} : \langle v - \dot{\eta}(t), y - \eta(t) \rangle < L \| y - \eta(t) \|^2 + \varepsilon \}.$$

Claim 1. $G_t(y)$ is a nonempty closed set.

Proof. For all y and t there exists $i \in E$ such that

$$\langle F^i(\eta(t)) - \dot{\eta}(t), y - \eta(t) \rangle \le 0$$

because $\dot{\eta}(t) \in \operatorname{co}\{F^i(\eta(t)) : i \in E\}$. Thus

$$\left\langle F^{i}(y) - \dot{\eta}(t), y - \eta(t) \right\rangle \leq \left\langle F^{i}(y) - F^{i}(\eta(t)), y - \eta(t) \right\rangle \leq L \left\| y - \eta(t) \right\|^{2} < L \left\| y - \eta(t) \right\|^{2} + \varepsilon.$$

Being finite, $G_t(y)$ is closed.

Claim 2. The set valued map $(t, y) \mapsto G_t(y)$ is (a) uniformly bounded, (b) lower semicontinuous in y, and (c) measurable in t.

Proof. (a) is obvious since F^i are bounded; (b) follows from the continuity of the F^i (and the definition of l.s.c. for multivalued map). (c) Measurability follows from the fact that for each given y, and each given $v \in \{F^i(y), i \in E\}$ the set $\{t : \langle v - \dot{\eta}(t), y - \eta(t) \rangle < L \|y - \eta(t)\|^2 + \varepsilon\}$ is measurable (and the definition of multivalued measurable maps). \square

By Theorem 3.2 in [26], there exists a solution to $\dot{y} \in G_t(y)$ with $y(0) = \eta(0) = x$. Hence,

$$\langle \dot{y}(t) - \dot{\eta}(t), y(t) - \eta(t) \rangle \le L \|y(t) - \eta(t)\|^2 + \varepsilon$$

so that, by Gronwall's inequality

$$||y(t) - \eta(t)||^2 \le (e^{2Lt} - 1)\frac{\varepsilon}{L}.$$

The rest of the proof remains unchanged.