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Abstract. We consider one-dimensional Mott variable-range hopping. This random walk is an effective model for the phonon-
induced hopping of electrons in disordered solids within the regime of strong Anderson localization at low carrier density. We
introduce a bias and prove the linear response as well as the Einstein relation, under an assumption on the exponential moments of
the distances between neighboring points. In a previous paper (Ann. Inst. Henri Poincaré Probab. Stat. 54 (2018) 1165–1203) we
gave conditions on ballisticity, and proved that in the ballistic case the environment viewed from the particle approaches, for almost
any initial environment, a given steady state which is absolutely continuous with respect to the original law of the environment.
Here, we show that this bias-dependent steady state has a derivative at zero in terms of the bias (linear response), and use this result
to get the Einstein relation. Our approach is new: instead of using e.g. perturbation theory or regeneration times, we show that the
Radon–Nikodym derivative of the bias-dependent steady state with respect to the equilibrium state in the unbiased case satisfies
an Lp-bound, p > 2, uniformly for small bias. This Lp-bound yields, by a general argument not involving our specific model, the
statement about the linear response.

Résumé. Nous considérons le modèle « Mott variable-range hopping ». Cette marche aléatoire décrit la conduction des electrons
dans des solides désordonnés dans le régime de localisation forte d’Anderson lorsque la densité des porteurs de charge est faible. En
particulier, nous considérons une marche aléatoire de Mott unidimensionelle soumise à un champ extérieur. Sous une hypothèse
à propos des moments exponentiels de la distance entre les points consécutifs, nous montrons la réponse linéaire et la relation
d’Einstein. Dans un travail précedent, voir (Ann. Inst. Henri Poincaré Probab. Stat. 54 (2018) 1165–1203), nous avons donné des
conditions pour la ballisticité de la marche. En plus, nous avons montré que l’environnement vu de la particule converge en loi
(pour presque tous les points de départ) vers une mesure invariante (état stationnaire) qui est absolument continue par rapport à la
loi originale de l’environnement. Ici, nous montrons que cet état stationnaire a une dérivée en zéro par rapport au bias (réponse
linéaire), et nous utilisons ce résultat pour démontrer la relation d’Einstein. Notre méthode est nouvelle : au lieu d’utiliser des
arguments perturbatifs ou des temps de régéneration, nous donnons une borne en Lp , p > 2, pour la densité de l’état stationnaire
par rapport à la mesure invariante sans biais. Cette borne est uniforme dans le biais pour des biais qui sont proches de zéro.
L’argument pour déduire la réponse linéaire de cette borne est général et ne dépend pas des détails de notre modèle.
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1. Introduction

Mott variable-range hopping is a transport mechanism introduced by N. F. Mott [35–39,42] to model the phonon-
assisted electron transport in disordered solids in the regime of strong Anderson localisation (e.g. doped semiconduc-
tors and doped organic semiconductors).

In the case of doped semiconductors, atoms of some other material, called impurities, are introduced into the solid
at random locations {xi}. One can associate to each impurity a random variable Ei called energy mark, the Ei ’s taking
value in some finite interval [−A,A]. Due to the strong Anderson localisation, a single conduction electron is well
described by a quantum wave-function localized around some impurity xi and Ei is the associated energy in the
ground state (to simplify the discussion we refer to spinless electrons). In Mott variable-range hopping an electron
localized around xi jumps (by quantum tunneling) to another impurity site xk , when xk is not occupied by any other
electron, with probability rate

C(β) exp

{
−2

ξ
|xi − xk| − β{Ek − Ei}+

}
. (1)

Above, β is the inverse temperature, ξ is the localization length, {v}+ := max{v,0} and the positive prefactor C(β)

has a β-dependence which is negligible w.r.t. the exponential decay in (1). Treating the localized electrons as classical
particles, the description is then given by an exclusion process on the sites {xi}, with the above jump rates (1) when
the exclusion constraint is satisfied. Calling η a generic configuration in {0,1}{xi }, it then follows that the disordered

Bernoulli distribution μ on {0,1}{xi } such that μ(ηi) = e−β(Ei−γ )

1+e−β(Ei−γ ) is reversible for the exclusion process. The chem-
ical potential γ is determined by the density of conduction electrons; equivalently – as usually done in the physics
literature – we take γ = 0 at the cost of translating the energy (i.e. we take the Fermi energy level equal to zero).

We point out that the mathematical analysis of such an exclusion process is very demanding from a technical
viewpoint due to site disorder. We refer to [12,40] for the derivation of the hydrodynamic limit when the impurities are
localized at the sites of Zd and hopping is only between nearest-neighbor sites (from a physics viewpoint, the nearest-
neighbor assumption leads to a good approximation of Mott variable-range hopping for temperatures that are not too
small). Due to the these technical difficulties, in the physics literature, in the regime of low density of conduction
electrons the above exclusion process on {xi} is then approximated by independent continuous time random walks
(hence one focuses on a single random walk), with probability rate ri,k for a jump from xi to xk �= xi given by (1)
times μ(ηxi

= 1, ηxk
= 0). Note that the last factor encodes the exclusion constraint. The validity of this low density

approximation has been indeed proved for the exclusion process with nearest-neighbor jumps on Zd (cf. [40, Thm. 1]).
It is simple to check (cf. [1, Eq. (3.7)]) that in the low temperature regime interesting for physics (i.e. for large β)

the resulting jump rate of the random walk behaves as

ri,k ≈ C(β) exp

{
−2

ξ
|xi − xk| − β

2

(|Ei | + |Ek| + |Ei − Ek|
)}

. (2)

In conclusion, considering the above approximations, Mott variable-range hopping consists of a random walk (Yt ) in
a random spatial and energetic environment given by {xi} and {Ei} with jump rates (2). We will consider here also a
generalization of the above jump rates (see eq. (6) below).

The name variable-range hopping comes from the possibility of arbitrarily long jumps, which are facilitated (when
β is large) if energetically convenient. Indeed, it has been proved that long jumps contribute to most of the transport
in dimension d ≥ 2 [13,14] but not in dimension d = 1 [6]. The physics counterpart of this feature is the anomalous
behavior of conductivity at low temperature for d ≥ 2 [39,42], which has motivated the introduction of Mott variable-
range hopping. Indeed, for an isotropic medium, the conductivity σ(β) is a multiple of the identity matrix and vanishes
as β → ∞ as a stretched β-exponential:

σ(β) ∼ exp
{−cβ

α+1
α+1+d

}
I (3)

if the energy marks are i.i.d. random variables varying in some finite interval [−A,A] with distribution P(|Ei | ∈
[E,E + dE]) = c(α)Eα dE, where α is a non-negative exponent (these are the relevant energy distributions for
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physics, see [14], [39, Chapter 5] and references therein). On the other hand, in dimension d = 1, the conductivity
exhibits an Arrenhius-type decay (similarly to the nearest-neighbor case):

σ(β) ∼ exp{−cβ}. (4)

The decay (3) has been derived by heuristic arguments by Mott, Efros, Shklovskii, afterwards refined by arguments
involving random resistor networks and percolation (see [1], [34], [39, Chapter 5], [42, Chapter 9] and references
therein). The decay (4) has been derived by Kurkijärvi in terms of resistor networks [24]. A rigorous derivation of
upper and lower bounds in agreement with (3) and (4) has been achieved in [13,14] for d ≥ 2 and in [6] for d = 1.
Strictly speaking, in [6,13,14] it has been shown that the above random walk satisfies an invariance principle and the
asymptotic diffusion matrix D(β) satisfies lower and upper bounds in agreement with the asymptotics in the r.h.s.
of (3) and (4). Assuming the validity of the Einstein relation, i.e. σ(β) = βD(β), the same asymptotic is valid for
the conductivity itself. We point out that, in dimension d = 1, considering shift-stationary and shift-ergodic point
processes {xi} containing the origin, the above result on D(β) holds if E[eZ0 ] < ∞ where Z0 = x1 − x0, x1 being the
first point right to x0 := 0 (cf. [6, Thm. 1.1]). When E[eZ0 ] = ∞ the random walk is subdiffusive, i.e. D(β) = 0 (cf.
[6, Thm. 1.2]).

The present work has two main results: Considering the above Mott variable-range hopping (also with more gen-
eral jump rates) we develop the linear response theory and derive the Einstein relation. As a byproduct, the latter,
together with [6] completes the rigorous proof of (4). The presence of the external field of intensity λ is modelled by
inserting the term λβ(xk − xi) into the exponent in (2). For simplicity of notation, and without loss of generality, we
assume that the localization length ξ equals 2. Then, to have a well-defined random walk, one has to take |λ|β < 1.
As shown in [10, Thm. 1, Thm. 2], if λ �= 0 and E[e(1−|λ|β)Z0 ] < ∞, then the random walk is ballistic (i.e. it has a
strictly positive/negative asymptotic velocity) and moreover the environment viewed from the walker admits an er-
godic invariant distribution Qλ mutually absolutely continuous w.r.t. the original law P of the environment. Strictly
speaking, the last statement refers to the discrete-time version (Yn)n≥0 of the original continuous-time Mott random
walk (Yt )t≥0 (anyway, the latter can be obtained by a random time change from the former, which allows to extend
asymptotic results from Yn to Yt ). For λ = 0 the result is still true with Q0 having an explicit form and being reversible
for the environment viewed from the walker.

The ergodicity of Qλ and its mutual absolute continuity w.r.t. P, together with Birkhoff’s ergodic theorem, imply
in particular that, for any bounded measurable function f ,

lim
N→∞

1

N

N−1∑
n=0

f (ωn) =Qλ[f ] a.s. (5)

for P-almost any starting environment ω, where ωn denotes the environment viewed from Yn. Above, Qλ[f ] denotes
the expectation of f w.r.t. Qλ. In what follows, under the assumption that E[epZ0] < ∞, we show that the map
(−1,1) 	 λ 
→ Qλ[f ] ∈ R is continuous if p ≥ 2 (see Theorem 2) and that it is derivable at λ = 0 if p > 2 and
f belongs to a precise H−1 space (see Theorem 3). The derivative can moreover be expressed both in terms of the
covariance of suitable additive functionals and in terms of potential forms (the first representation is related to the
Kipnis–Varadhan theory of additive functionals [19], the second one to homogenization theory [23,31]). We point out
that similar issues concerning the behavior of the asymptotic steady state (characterized by (5)) for random walks in
random environments have been addressed in [16] and [32]. Finally, in Theorem 4 we state the continuity in λ of the
asymptotic velocity of (Yn) and of (Yt ) and the Einstein relation.

Two main technical difficulties lie behind linear response and Einstein relation: Typically, in the biased case, the
asymptotic steady state is not known explicitly and a limited information on the speed of convergence to the steady
state is available. A weaker form of the Einstein relation, which is often used as a starting point, was proved in
[27]. Since then, the analysis of the Einstein relation, the steady states and the linear response for random walks
in static/dynamic random environments have been addressed in [2,3,11,16–18,21,22,25,26,28–30,32] (the list is not
exhaustive). The approach used here is different from the previous works: Although the distribution Qλ is not explicit,
by refining the analysis of [10] we prove that the Radon–Nikodym derivative dQλ

dQ0
belongs to Lp(Q0) if E[epZ0] < ∞

for some p ≥ 2 (see Theorem 1). This result has been possible since Qλ is indeed the weak limit as ρ → ∞ of the
asymptotic steady state of the environment viewed from a ρ-cutoff version of (Yn), for which only jumps between
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the first ρ neighbors are admitted. For the latter ρ-parametrized asymptotic steady state it is possible to express the
Radon–Nikodym derivative w.r.t. P by a regeneration times method developed already by Comets and Popov in [7] for
random walks on Z with long jumps. This method is therefore very model-dependent. On the other hand, having the
above bound on dQλ

dQ0
, one can derive Theorems 2, 3 and 4 by a general method that could be applied in other contexts

as well.
Outline of the paper: In Section 2 we describe the model, recall some previous results and present our main

theorems (Theorems 1, 2, 3 and 4). Sections 3 and 4 are devoted to the proof of Theorem 1. Theorem 2 is proved in
Section 5. The proof of Theorem 3 is split between Sections 6 and 7. The proof of Theorem 4 is split between Sections
8 and 9. Finally, in the Appendices A, B and C we collect some technical results and proofs, while Appendix D
contains a general lemma for reversible Markov chains.

2. Models and main results

One-dimensional Mott random walk is a random walk in a random environment. The environment ω is given by a
double-sided sequence (Zk,Ek)k∈Z, with Zk ∈ (0,+∞) and Ek ∈R for all k ∈ Z. We denote by � = ((0,+∞)×R)Z

the set of all environments. Let P be a probability on �, standing for the law of the environment, and let E be the
associated expectation. Given � ∈ Z, we define the shifted environment τ�ω as τ�ω := (Zk+�,Ek+�)k∈Z. From now on,
with a slight abuse of notation, we will denote by Zk,Ek also the random variables on (�,P) such that (Zk(ω),Ek(ω))

is the kth coordinate of the environment ω.
Our main assumptions on the environment are the following:

(A1) The random sequence (Zk,Ek)k∈Z is stationary and ergodic with respect to shifts;
(A2) E[Z0] is finite;
(A3) P(ω = τ�ω) = 0 for all � ∈ Z \ {0};
(A4) There exists d > 0 such that P(Z0 ≥ d) = 1.

The random environment can be thought of as a marked random point process [8,15]. Indeed, we can associate to the
the double-sided sequence (Zk,Ek)k∈Z the point process {xk}k∈Z such that x0 = 0 and xk+1 = xk + Zk , marking each
point xk with the value Ek . We introduce the map ψ : {xk} → Z defined as ψ(xk) = k.

The above assumptions (A1), . . . ,(A4) are the same as in [10], thus allowing us to use the results contained therein.
Assumptions (A1) and (A2) are very general. (A3) is used to reconstruct the random walk from the “environment
viewed from the particle” process. (A4) is a technical assumption which was heavily used in [10] and which is anyway
not restrictive from the viewpoint of physics since the distance between impurities cannot be arbitrarily small.

Given the environment ω and λ ∈ [0,1) we define the continuous-time Mott random walk (Yλ
t )t≥0 as the random

walk on {xk}k∈Z starting at x0 = 0 with probability rate for a jump from xi to xk �= xi given by

rλ
i,k(ω) := exp

{−|xi − xk| + λ(xk − xi) + u(Ei,Ek)
}
, (6)

with u(·, ·) a symmetric bounded continuous function. It is convenient to set rλ
i,i (ω) := 0. To have a well-defined

random walk one needs to restrict to |λ| < 1, and without loss of generality we assume λ ∈ [0,1).
We then define the discrete-time Mott random walk (Y λ

n )n≥0 (n varies in N := {0,1, . . . }) as the jump process
associated to (Yλ

t ). In particular it is a random walk on {xk}k∈Z starting at x0 = 0 with probability for a jump from xi

to xk given by

pλ
i,k(ω) := rλ

i,k(ω)∑
j∈Z rλ

i,j (ω)
. (7)

Note that pλ
0,0 ≡ 0. We denote by ϕλ the local drift of the random walk (Y λ

n ), i.e.

ϕλ(ω) :=
∑
k∈Z

xkp
λ
0,k(ω). (8)
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Warning 2.1. When λ = 0 we usually omit the index λ from the notation, writing simply Yt , Yn, ri,k(ω), pi,k(ω),
ϕ(ω).

We now recall some results under the assumption that λ ∈ (0,1) and E[e(1−λ)Z0] < +∞ (cf. [10, Thm. 1 and
Thm. 2]). The asymptotic velocities

vY (λ) := lim
n→∞

Yλ
n

n
, vY(λ) := lim

t→∞
Yλ

t

t
(9)

exist a.s. and for P-almost all realizations of the environment ω. The above asymptotic velocities are deterministic
and do not depend on ω, they are finite and strictly positive. The environment viewed from the discrete-time random
walk (Y λ

n ), i.e. the process (τψ(Yλ
n )ω)n≥0, admits a unique invariant and ergodic distribution Qλ which is absolutely

continuous w.r.t. P (in [10] uniqueness is not discussed: Since invariant ergodic distributions are mutually singular,
Qλ is the unique distribution fulfilling the above properties). Moreover, Qλ and P are mutually absolutely continuous.
Finally (see also Appendix A) the asymptotic velocities vY (λ) and vY(λ) can be expressed as

vY (λ) =Qλ[ϕλ] and vY(λ) = vY (λ)

Qλ[1/(
∑

k∈Z rλ
0,k(ω))] . (10)

We recall some results concerning the unperturbed random walk (Yn) (i.e. with λ = 0). In this case the asymptotic
velocities in (9) still exist a.s. and for P-almost all realizations of the environment ω, but they are zero: vY (0) =
vY(0) = 0 (cf. [10, Remark 2.1]). Moreover, the environment viewed from the walker (Yn) has reversible measure Q0
defined as

Q0(dω) = π(ω)

E[π]P(dω), π(ω) :=
∑
k∈Z

r0,k(ω). (11)

It is known (cf. [6, Section 2]) that, when E[eZ0 ] < ∞, for P-almost all the realizations of the environment ω the
random walk (Yn) starting at the origin converges, under diffusive rescaling, to a Brownian motion with positive
diffusion coefficient given by

DY = inf
g∈L∞(Q0)

Q0

[∑
i∈Z

p0,i (xi + ∇ig)2
]
, (12)

where ∇ig(ω) := g(τiω) − g(ω) (note that, since Q0 and P are mutually absolutely continuous, in formula (1.14) in
[6] one can replace L∞(P) by L∞(Q0)). Similarly (cf. [6, Thm. 1.1]) (Yt ) satisfies a quenched functional CLT with
diffusion coefficient

DY = E[π]DY . (13)

In order to present our results we need to introduce the symmetric non-negative operator −L0 : L2(Q0) → L2(Q0)

with L0 defined as

L0f (ω) =
∑
k∈Z

p0,k(ω)
[
f (τkω) − f (ω)

]
. (14)

We recall some basic facts on the spaces H1 and H−1 associated to the operator L0 (cf. [9,19,20]). In what follows we
denote the scalar product in L2(Q0) by 〈·, ·〉. The H1 space is given by the completion of L2(Q0) endowed with the
scalar product 〈f,g〉1 := 〈f,−L0g〉 (after identifying functions which differ by an additive constant) and H−1 will
denote the space dual to H1. In particular, f ∈ L2(Q0) belongs to H−1 if and only if there exists a constant C > 0 such
that |〈f,g〉| ≤ C〈g,−L0g〉1/2 for any g ∈ L2(Q0). Note that Q0(f ) = 0 for any f ∈ L2(Q0) ∩ H−1. Equivalently,
denoting by ef (dx) the spectral measure associated to f and the operator −L0 (see e.g. [41]), f ∈ L2(Q0) belongs
to H−1 if and only

∫
[0,∞)

1
x

ef (dx) < ∞.
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We can now present our main results. Although having a technical flavour, the following theorem is indeed our
starting point for the investigation of the continuity in λ and the linear response at λ = 0 of the system, as explained
in the introduction:

Theorem 1. Fix λ∗ ∈ (0,1) and suppose that E[epZ0] < +∞ for some p ≥ 2. Then, it holds

sup
λ∈[0,λ∗]

∥∥∥∥dQλ

dQ0

∥∥∥∥
Lp(Q0)

< ∞. (15)

Our next result concerns the continuity in λ of the expectation Qλ(f ).

Theorem 2. Suppose that E[epZ0] < ∞ for some p ≥ 2 and let q be the conjugate exponent of p, i.e. q satisfies
1
p

+ 1
q

= 1. Then, for any f ∈ Lq(Q0) and λ ∈ [0,1), it holds that f ∈ L1(Qλ) and the map

[0,1) 	 λ 
→Qλ(f ) ∈ R (16)

is continuous.

We point out that, for what concerns linear response at λ = 0, only the continuity of the map (16) at λ = 0 plays some
role. Anyway, our techniques allow to prove continuity of the map (16) beyond the linear response regime.

Our next result concerns the derivative at λ = 0 of the map λ 
→ Qλ(f ) for functions f ∈ H−1 ∩ L2(Q0). This
derivative can be represented both as a suitable expectation involving a square integrable form and as a covariance. To
describe these representations we fix some notation starting with the square integrable forms.

We consider the space � ×Z endowed with the measure M defined by

M(ũ) =Q0

[∑
k∈Z

p0,kũ(·, k)

]
, ∀ũ : � ×Z → R Borel, bounded.

A generic Borel function ũ : � × Z → R will be called a form. L2(� × Z,M) is known as the space of square
integrable forms. Below, we will shorten the notation writing simply L2(M), and in general Lp(M) for p-integrable
forms. Given a function g = g(ω) we define

∇g(ω, k) := g(τkω) − g(ω). (17)

If g ∈ L2(Q0) then ∇g ∈ L2(M) (this follows from the identity Q0[∑k p0,kg(τk·)2] = Q0[g2] due to the stationarity
of Q0). The closure in M of the subspace {∇g : g ∈ L2(Q0)} forms the set of the so called potential forms (the
orthogonal subspace is given by the so called solenoidal forms). Take again f ∈ H−1 ∩ L2(Q0) and, given ε > 0,
define g

f
ε ∈ L2(Q0) as the unique solution of the equation

(ε −L0)g
f
ε = f. (18)

As discussed in Section 6, as ε goes to zero the family of potential forms ∇g
f
ε converges in L2(M) to a potential form

hf :

hf = lim
ε↓0

∇gf
ε in L2(M). (19)

We now fix the notation that will allow us to state the second representation of ∂λ=0Qλ(f ) in terms of covariances.
To this aim we write (ωn) for the environment viewed form the unperturbed walker (Yn), i.e. ωn := τψ(Yn)ω where
ω denotes the initial environment (recall that ψ(xi) = i). Take now f ∈ H−1 ∩ L2(Q0). Due to [19, Cor. 1.5] and
Wold theorem, starting the process (ωn) with distribution Q0, we have the following weak convergence of 2d random
vectors

1√
n

(
n−1∑
j=0

f (ωj ),

n−1∑
j=0

ϕ(ωj )

)
n→∞→ (

Nf ,Nϕ
)

(20)
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for a suitable 2d gaussian vector (Nf ,Nϕ) (with possibly degenerate diffusion matrix). We recall that ϕ denotes the
local drift when λ = 0 (cf. (8) and Warning 2.1).

We can now state our next main result:

Theorem 3. Suppose E[epZ0] < ∞ for some p > 2. Then, for any f ∈ H−1 ∩ L2(Q0), the map λ 
→ Qλ(f ) is
differentiable at λ = 0. Moreover it holds

∂λ=0Qλ(f ) = Q0

[∑
k∈Z

p0,k(xk − ϕ)hf (·, k)

]
(21)

= −Cov
(
Nf ,Nϕ

)
. (22)

Starting from the above theorems one can derive the continuity of the velocity and the Einstein relation between
velocity and diffusion coefficient both for (Yn) and for (Yt ):

Theorem 4. The following holds:

(i) If E[e2Z0] < ∞, then vY (λ) and vY(λ) are continuous functions of λ;
(ii) If E[epZ0] < ∞ for some p > 2, then the Einstein relation is fulfilled, i.e.

∂λ=0vY (λ) = DY and ∂λ=0vY(λ) = DY. (23)

Remark 2.2. We point out that in general the velocities vY (λ) and vY(λ) can have discontinuities. See [10, Ex. 2 in
Section 2] for an example.

If we make explicit the temperature dependence in the jump rates (6) we would have

rλ
i,k(ω) := exp

{−|xi − xk| + λβ(xk − xi) + βu(Ei,Ek)
}
,

where λ is the strength of the external field. Then equation (23) takes the more familiar (from the viewpoint of physics)
form

∂λ=0vY (λ,β) = βDY (β) and ∂λ=0vY(λ,β) = βDY(β).

Remark 2.3. In our treatment, and in particular in Theorems 2, 3 and 4, we have restricted our analysis to λ ∈ [0,1).
One can easily extend the above results to λ ∈ (−1,1). Indeed, by taking a space reflection w.r.t. the origin, the
resulting random environment still satisfies the main assumptions (A1), . . . ,(A4) and the same exponential moment
bounds as the original environment, while random walks with negative bias become random walks with positive
bias. Hence, after taking a space reflection w.r.t. the origin, one can apply the above theorems to study continuity for
λ ∈ (−1,0] and derivability from the left at λ = 0. Noting that the left derivatives at λ = 0 in Theorem 3 and 4 equal
the right derivatives at λ = 0, one recovers that the claims in Theorems 2, 3 and 4 remain valid with λ ∈ (−1,1).

3. Proof of Theorem 1

It is convenient to introduce the following notation for i, j ∈ Z:

cλ
i,j (ω) :=

{
e−|xj −xi |+λ(xi+xj )+u(Ei,Ej ) if i �= j,

0 otherwise.
(24)

The above cλ
i,j (ω) can be thought of as the conductance associated to the edge {i, j} and indeed the perturbed walk

(Y λ
n ) is a random walk among the above conductances, since pλ

i,j (ω) = cλ
i,j (ω)/

∑
k∈Z cλ

i,k(ω).
The proof of Theorem 1 is an almost direct consequence of the following lemma:
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Lemma 3.1. Fix λ∗ ∈ (0,1). Then there exist positive constants K0,K such that, given λ ∈ (0, λ∗], the Radon–
Nikodym derivative dQλ

dP
satisfies

dQλ

dP
(ω) ≤ Kλg(ω,λ) P-a.s., (25)

where

g(ω,λ) := K0
(
cλ−1,0 + cλ

0,1

) ∞∑
j=0

e−2λxj +(1−λ)(xj+1−xj ). (26)

The proof of Lemma 3.1 requires a fine analysis of Mott random walk (Y λ
n )n≥0. We postpone it to the next section.

Here we show how to derive Theorem 1 from Lemma 3.1.

Proof of Theorem 1. It is enough to consider the case λ �= 0. The constants c,C,C∗,C′ appearing below are to be
thought independent from λ ∈ (0, λ∗] (they can depend on λ∗). By (11) and Lemma 3.1 we can write

dQλ

dQ0
= dQλ

dP

dP

dQ0
= E[π]

π

dQλ

dP
≤ λC∗

cλ−1,0 + cλ
0,1

π

∞∑
j=0

e−2λxj +(1−λ)(xj+1−xj ). (27)

Since (recall the bounded function u in (6))

cλ−1,0 + cλ
0,1

π
e−2‖u‖∞ ≤ e−|x−1|+λx−1 + e−x1+λx1∑

k �=0 e−|xk | ≤ 1 + eλx1 ≤ 2eλx1,

eλx1

∞∑
j=0

e−2λxj +(1−λ)(xj+1−xj ) ≤ ex1 +
∞∑

j=1

e−λxj +(1−λ)(xj+1−xj ) ≤ eZ0 +
∞∑

j=1

e−λdj+Zj ,

from (27) we get dQλ

dQ0
≤ 2e2‖u‖∞C∗λ

∑∞
j=0 e−λdj+Zj . As a consequence, to conclude it is enough to prove that

Q0

[( ∞∑
j=0

e−λdj+Zj

)p]
≤ C/λp (28)

for some constant C. To this aim let q be the conjugate exponent such that 1/p + 1/q = 1. By the Hölder inequality
we can bound

∞∑
j=0

e−λdj+Zj ≤
( ∞∑

j=0

e− λdq
2 j

) 1
q
( ∞∑

j=0

e− λdp
2 j+pZj

) 1
p

= (
1 − e− λdq

2
)− 1

q

( ∞∑
j=0

e− λdp
2 j+pZj

) 1
p

.

By using the above bound in (28) we get

Q0

[( ∞∑
j=1

e−λdj+Zj

)p]
≤ (

1 − e− λdq
2

)− p
q

(
1 − e− λdp

2
)−1

Q0
[
epZ0

]

≤ (
C′λ

)− p
q

(
C′λ

)−1
Q0

[
epZ0

] = Cλ
− p

q
−1 = Cλ−p

thus implying (28). �
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4. Proof of Lemma 3.1

In the first part of the section we will improve a bound obtained in [10], see Proposition 4.3 below. This result will be
essential to the proof of Lemma 3.1 (which will be carried out in Section 4.1).

In the rest of this section λ ∈ (0, λ∗] is fixed once and for all and is omitted from the notation. In particular, we
write (Yn) for the biased discrete-time Mott random walk (Y λ

n ) and we write ci,j (ω) instead of cλ
i,j (ω) (cf. (24)). As in

[10], it will be convenient to consider the ψ -projection of (Yn) on the integers. We call (Xn) the discrete-time random
walk on Z such that Xn = ψ(Yn). As already pointed out, the probability for a jump of Xn from i to k is given by (7)
which equals ci,k∑

j∈Z ci,j
.

We further introduce a truncated version of (Xn). We set N+ := {1,2,3, . . . }. For ρ ∈ N+ ∪ {+∞} we call (X
ρ
n )

the discrete-time random walk with jumping probabilities from i to j given by⎧⎪⎨
⎪⎩

ci,j (ω)/
∑

k∈Z ci,k(ω), if 0 < |i − j | ≤ ρ,

0 if |i − j | > ρ,

1 − ∑
j :|j−i|≤ρ ci,j (ω)/

∑
k∈Z ci,k(ω) if i = j.

(29)

Clearly the case ρ = ∞ corresponds to the random walk (Xn). We write P
ω,ρ
i for the law of (X

ρ
n ) starting at point

i ∈ Z and E
ω,ρ
i for the associated expectation. In order to make the notation lighter, inside P

ω,ρ
i (·) and E

ω,ρ
i [·] we

will sometimes write Xn instead of X
ρ
n , when there will be no possibility of misunderstanding.

Call

T
ρ
i := inf

{
n ≥ 0 : Xρ

n ≥ i
}

(30)

the first time the ρ-truncated random walk jumps over point i ∈ Z (also for T
ρ· we will drop the ρ super-index inside

P
ω,ρ
i (·) and E

ω,ρ
i [·]). A fundamental fact (cf. [10, Lemma 3.16]) is the following: One can find a positive ε = ε(λ∗)

independent from ρ, ω and λ ∈ (0, λ∗] such that

P
ω,ρ
k (XTi

= i) ≥ 2ε ∀k < i,∀ρ ∈ N+ ∪ {∞}. (31)

Remark 4.1. In [10, Rem. 3.2] it is stated that all constants K’s and the constant ε appearing in [10, Section 3] can
be taken independent of λ if λ e.g. varies in [0,1/2). As the reader can easily check the same still holds as λ varies in
[0, λ∗] for any fixed λ∗ in (0,1) (note that the above constants will depend on λ∗).

Given a subset A ⊂ Z we define τA as the hitting time of the subset A, i.e. τA is the first non-negative time for
which the random walk is in A. For A,B disjoint subsets of Z, we define the effective ρ-conductance between A and
B as

C
ρ
eff(A,B) := min

{ ∑
i<j :|i−j |≤ρ

ci,j

(
f (j) − f (i)

)2 : f |A = 0, f |B = 1

}
. (32)

The following technical fact provides a crucial estimate for the proof of Lemma 3.1:

Lemma 4.2. For all k ∈ {1, . . . , ρ − 1},

P
ω,ρ
k (τ0 < τ[ρ,∞)) ≥ 2ε2 C

ρ
eff(k, (−∞,0])

C
ρ
eff(k, (−∞,0] ∪ [ρ,∞))

.

Proof. For simplicity we will call A := (−∞,0] and B := [ρ,∞). First notice that P
ω,ρ
k (τ0 < τ[ρ,∞)) ≥

2εP
ω,ρ
k (τA < τB). In fact,

P
ω,ρ
k (τ0 < τB) =

∑
j≤0

P
ω,ρ
k (τ0 < τB |τA < τB,XτA

= j)P
ω,ρ
k (τA < τB,XτA

= j)
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=
∑
j≤0

P
ω,ρ
j (τ0 < τB)P

ω,ρ
k (τA < τB,XτA

= j) ≥ 2εP
ω,ρ
k (τA < τB), (33)

where in the last inequality we have used that P
ω,ρ
j (τ0 < τB) ≥ P

ω,ρ
j (XT0 = 0) ≥ 2ε, which follows from (31). Now,

it suffices to show that

P
ω,ρ
k (τA < τB) ≥ ε

C
ρ
eff(k,A)

C
ρ
eff(k,A ∪ B)

. (34)

This follows from a general argument for reversible Markov chains, see Lemma D.1 in Appendix D, which we apply
to the Markov chain (X

ρ
n ), noting that C

ρ
eff(A,B) as defined in (32) agrees with the effective conductance defined in

(114), by taking there π(i) := ∑
k∈Z ci,k(ω). �

Having Lemma 4.2 we can prove the following lower bound on the expected value of Tρ , which refines that of
Lemma 4.3 in [10]:

Proposition 4.3. Fix λ∗ ∈ (0,1). Then there exist constants C1,C2 > 0, independent of λ ∈ (0, λ∗] and of ρ ∈ N+ ∪
{+∞}, such that

EE
ω,ρ
0 [Tρ] ≥ C1

ρ

λ
− C2

1

λ2
.

Proof. Formula (3.22) in [4] reads in our case as

E
ω,ρ
0 [Tρ] = 1

C
ρ
eff(0, [ρ,∞))

∑
k<ρ

(∑
j∈Z

ck,j

)
P

ω,ρ
k (τ0 < τ[ρ,∞)),

where k 
→ ∑
j∈Z ck,j is a reversible measure for the ρ-truncated random walk for each ρ. Hence,

E
ω,ρ
0 [Tρ] ≥ 1

C
ρ
eff(0, [ρ,∞))

∑
0<k<ρ

(∑
j∈Z

ck,j

)
P

ω,ρ
k (τ0 < τ[ρ,∞))

≥ C3

∑
0<k<ρ

ck,k+1
C1

eff(k, (−∞,0])
C1

eff(0, [ρ,∞))C1
eff(k, (−∞,0] ∪ [ρ,∞))

, (35)

where C3 is a strictly positive constant independent of ρ, ω and λ as λ varies in (0, λ∗] (as all the constants of the
form Ci that will appear in what follows). For the last line in (35) we have used Lemma 4.2 and the bounds

C1
eff(A,B) ≤ C

ρ
eff(A,B) ≤ c · C1

eff(A,B),

for some universal constant c ≥ 1. The above bounds follow from [10, Prop. 3.4]. The fact that c can be taken
uniformly in λ ∈ [0, λ∗] follows from [10, Rem. 3.2] and Remark 4.1.

Writing for simplicity cj := cj,j+1, we explicitly calculate

C1
eff(k, (−∞,0])

C1
eff(0, [ρ,∞))C1

eff(k, (−∞,0] ∪ [ρ,∞))

=
(
∑k−1

j=0
1
cj

)−1

(
∑ρ−1

j=0
1
cj

)−1((
∑ρ−1

j=k
1
cj

)−1 + (
∑k−1

j=0
1
cj

)−1)
=

ρ−1∑
j=k

1

cj

. (36)
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Therefore, by taking the expectation w.r.t. the environment in (35), we obtain

EE
ω,ρ
0 [Tρ] ≥ C3E

[ ∑
0<k<ρ

ck

ρ−1∑
j=k

1

cj

]

≥ C3e−2‖u‖∞E

[ ∑
0<k<ρ

e−(1−λ)Zk+2λ(Z0+···+Zk−1)

ρ−1∑
j=k

e(1−λ)Zj −2λ(Z0+···+Zj−1)

]

≥ C4

(
ρ − 1 +

∑
0<k<ρ

ρ−1∑
j=k+1

E
[
e−(1−λ)(Zk−Zj )−2λ(Zk+···+Zj−1)

])

≥ C5

∑
0<k<ρ

ρ−1∑
j=k+1

e−2λE[Z0](j−k), (37)

where in the third line ρ comes from the case j = k and in the last line we have used Jensen’s inequality and the fact
that e−(1−λ)E[Z0] is bigger than a constant independent from λ. We call now A := e−2λE[Z0] < 1 and calculate

∑
0<k<ρ

ρ−1∑
j=k+1

Aj−k =
∑

0<k<ρ

ρ−k−1∑
m=1

Am =
∑

0<k<ρ

A − Aρ−k

1 − A
=

∑
0<k<ρ

A − Ak

1 − A

= (ρ − 1)
A

1 − A
− A − Aρ

(1 − A)2
≥ C6

(
ρ

1 − A
− 1

(1 − A)2

)
.

We can then continue the chain of inequalities of (37):

EE
ω,ρ
0 [Tρ] ≥ C7

(
ρ

1 − A
− 1

(1 − A)2

)
≥ C1

ρ

λ
− C2

1

λ2
,

which is the statement of the proposition. Here we have used the fact that

0 < inf
λ∈(0,λ∗]

λ

1 − e−2λE[Z0] < sup
λ∈(0,λ∗]

λ

1 − e−2λE[Z0] < +∞,

which follows from the fact that the the function λ
1−A

= λ

1−e−2λE[Z0] can be extended to a continuous strictly positive
function on the compact interval [0, λ∗]. �

4.1. Proof of Lemma 3.1

With Proposition 4.3 we can finally prove Lemma 3.1. We first stress that below all constants of type C,K can depend
on λ∗, but do not depend on the chosen parameter λ ∈ (0, λ∗]. We recall that, in [10], for a given ρ ∈ N∪ {+∞}, one
calls Qρ the asymptotic invariant distribution for the environment viewed from the ρ-truncated random walk (X

ρ
n ),

when an external drift of intensity λ (here implicit in the notation) is applied (the case ρ = ∞ corresponds again to the
random walk (Xn) without cut-off, and Q∞ =Qλ). In [10] it is shown that Qρ is absolutely continuous to P. In order
to describe the Radon–Nikodym derivative dQρ

dP
we have to introduce an auxiliary process. We let ζ = (ζ1, ζ2, . . .) be

a sequence of i.i.d. Bernoulli random variables of parameter ε, where ε is the same appearing in (31). We call P the
law of ζ and E the relative expectation. As detailed in [10, Section 4] adapting a construction in [7], one can couple ζ

and the random walk (X
ρ
n ) so that if ζj = 1 for some j ∈ N, then X

ρ

T
ρ
jρ

= jρ (see (30)). In [10, Eq. (46) and Eq. (47)]

one has the precise construction of the quenched probability P
ω,ρ,ζ
0 for the random walk once the sequence ζ has

been fixed. E
ω,ρ,ζ
0 is the associated expectation. The Radon–Nikodym derivative for the environment viewed from
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the ρ-truncated walk w.r.t. the original measure of the environment P is given by (cf. [10, Eq. (63)]), recalling that we
write T�1ρ for T

ρ
�1ρ

inside expectations,

dQρ

dP
(ω) = 1

EE[Eω,ζ,ρ
0 [T�1ρ]]

∑
k∈Z

EE
τ−kω,ζ,ρ

0

[
NT�1ρ

(k)
]
. (38)

Above, given a generic integer n ≥ 0, Nn(k) denotes the time spent at k by the random walk up to time n, i.e.
Nn(k) = ∑n

r=0 1(X
ρ
r = k).

Due to [10, Eq. (50)] we have E[Eω,ζ,ρ
0 [T�1ρ]] ≥ εE

ω,ρ
0 [Tρ], thus implying that

EE
[
E

ω,ζ,ρ
0 [T�1ρ]] ≥ εE

[
E

ω,ρ
0 [Tρ]]. (39)

We set

K1(ρ,λ) := C1ε

λ
− C2ε

ρλ2
. (40)

Then, by combining Proposition 4.3 with (38) and (39), when K1(ρ,λ) > 0 we have

dQρ

dP
(ω) ≤ 1

K1(ρ,λ)ρ

∑
k∈Z

EE
τ−kω,ζ,ρ

0

[
NT�1ρ

(k)
]
.

The above estimate can be rewritten as

dQρ

dP
(ω) ≤ H+(ω) + H−(ω)

K1(ρ,λ)ρ
, (41)

where (as in [10, Eq. (67)]) we have defined

H+(ω) :=
∑
k>0

EE
τ−kω,ζ,ρ

0

[
NT�1ρ

(k)
]
, H−(ω) :=

∑
k≤0

EE
τ−kω,ζ,ρ

0

[
NT�1ρ

(k)
]
.

Note that (41) equals [10, Eq. (67)] with the only difference that the constant K1 in [10] is now replaced by K1(ρ,λ).
The computations done in the proof of Prop. 5.4 in [10] show how to go from [10, Eq. (67)] to [10, Eq. (77)] by
bounding H+(ω) and H−(ω), and these bounds do not involve the constant K1 there. In particular, due to (41), the
first line in [10, Eq. (77)] remains valid with K1 replaced with K1(ρ,λ). In conclusion, since the function g(ω,λ)

introduced in (26) equals the function gω(0) defined in [10, Prop. 3.11], we have:

dQρ

dP
(ω) ≤ Gρ,λ(ω) := C′

K1(ρ,λ)

(
π1(0)

∑
k≤0 e−2λx−kF∗(τ−kω)

ρ
+ g(ω,λ)

)
, (42)

where the notation has the following meaning. As in [10] π1(0) := c−1,0 + c0,1 (recall that λ is understood and that
in this section we write ci,j instead of cλ

i,j ). C′ is a constant depending only on ε. Finally, F∗ is the function defined
in [10, Lemma 5.5], i.e.

F∗(ω) := K0

∞∑
i=0

(i + 1)e−2λxi+(1−λ)(xi+1−xi ).

Note that the positive constant K0 is independent of λ ∈ (0, λ∗] and ρ (see [10, Rem. 3.2] and Remark 4.1). We have
that limρ→∞ K1(ρ,λ)ρ = ∞ and limρ→∞ K1(ρ,λ) = C1ε/λ . Hence, for any ρ ≥ ρ0 (the latter can depend on λ) it
holds K1(ρ,λ) > 0 and

0 ≤ Gρ,λ(ω) ≤ C3

(
π1(0)

∑
k≤0

e−2λx−kF∗(τ−kω) + g(ω,λ)

)
, (43)

lim
ρ→∞Gρ,λ(ω) = C4λg(ω,λ), (44)
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for suitable positive constants C3,C4 independent of ρ,λ. We claim that the r.h.s. of (43) is in L1(P). Indeed, π1(0)

is bounded by an universal constant. The series appearing in (43) can be bounded from above by using the equivalent
expression given by [10, Eq. (78)] together with the property |xk| ≥ kd . In this way one easily gets that the series
is in L1(P). Finally, g(ω,λ) ∈ L1(P) due to [10, Lemma 3.12]. By the above claim, (43), (44) and the dominated
convergence theorem, we conclude that Gρ,λ(ω) converges to C4λg(ω,λ) in L1(P). Take now a bounded positive
continuous function h on �. Since Qρ weakly converges to Q∞ =Qλ as ρ → ∞ (cf. [10, Prop. 5.3]), by (42) and the
above observations we get

E

[
dQ∞

dP
h

]
=Q∞[h] = lim

ρ→∞Qρ[h] = lim
ρ→∞E

[
dQρ

dP
h

]
≤ lim

ρ→∞E
[
Gρ,λ(ω)h

] = E
[
C4λg(ω,λ)h

]
.

The above bound trivially implies (25).

5. Proof of Theorem 2

Warning 5.1. In the previous section, in order to make more transparent the comparison with the formulas in [10],
we used the convention to omit λ from the index of several objects. From now on we drop this convention and we
come back to the notation introduced in Sections 2 and 3.

Take f ∈ Lq(Q0), p and q be as in Theorem 2. The fact that f ∈ L1(Qλ) is a simple consequence of the Hölder
inequality and Theorem 1. Indeed we can bound

Qλ

(|f |) =Q0

(
|f |dQλ

dQ0

)
≤ ‖f ‖Lq(Q0)

∥∥∥∥dQλ

dQ0

∥∥∥∥
Lp(Q0)

< ∞.

The proof of the continuity of the map λ 
→ Qλ(f ) is more subtle and uses two main tools. One tool comes from
functional analysis and is given by the following proposition (we postpone the proof to Appendix C):

Lemma 5.2. Let I be a finite interval of the real line and let λ0 ∈ I . Let Qλ, λ ∈ I , be probability measures on some
measurable space (�,F). Let Lλ, λ ∈ I , be a family of operators defined on a common subset C of L2(Qλ0), i.e.
Lλ : C ⊂ L2(Qλ0) → L2(Qλ0). We assume the following hypotheses:

(H1) Qλ � Qλ0 and supλ∈I ‖ρλ‖L2(Qλ0 ) < ∞, where ρλ := dQλ

dQλ0
;

(H2) if Q is a probability measure on (�,F) such that Q � Qλ0 , dQ
dQλ0

∈ L2(Qλ0) and Q(Lλ0f ) = 0 for all

f ∈ C, then Q = Qλ0 ;
(H3) Qλ(Lλf ) = 0 for all λ ∈ I and f ∈ C;
(H4) limλ→λ0 ‖Lλf − Lλ0f ‖L2(Qλ0 ) = 0 for all f ∈ C.

Then ρλ converges to ρλ0 in the weak topology of L2(Qλ0), and

lim
λ→λ0

Qλ(f ) = Qλ0(f ), ∀f ∈ L2(Qλ0). (45)

We point out that, in the above lemma, f ∈ L1(Qλ) if f ∈ L2(Qλ0), hence the expectation Qλ(f ) in the l.h.s. of
(45) is well-defined. Indeed, since dQλ

dQλ0
∈ L2(Qλ0), it is enough to apply the Cauchy–Schwarz inequality.

In order to apply the above lemma with λ0 ∈ [0,1), I := [λ0 − δ,λ0 + δ] ⊂ (0,1), � := � and Qλ := Qλ to get
the continuity of the map λ 
→ Qλ(f ) at λ0, we need an upper bound of the norm ‖ dQλ

dQλ0
‖L2(Qλ0 ) uniformly in λ as

λ varies in a neighborhood of λ0 (the above mentioned second tool). In the special case λ0 = 0 this uniform upper
bound is provided by Theorem 1. For λ0 > 0, this bound is stated in the following lemma:

Lemma 5.3. Suppose that E[e2Z0] < ∞. Fix λ0 ∈ (0,1) and δ > 0 such that [λ0 − δ,λ0 + δ] ⊂ (0,1). Then we have

sup
λ:|λ−λ0|≤δ

∥∥∥∥ dQλ

dQλ0

∥∥∥∥
L2(Qλ0 )

< ∞. (46)
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Proof. to λ ∈ [λ0 − δ,λ0 + δ]. We recall that all Qλ’s are mutually absolutely continuous w.r.t. P [10, Thm. 2]. As a
consequence, Qλ �Qλ0 and moreover we can write

∥∥∥∥ dQλ

dQλ0

∥∥∥∥
2

L2(Qλ0 )

=Qλ0

[
dQλ

dQλ0

dQλ

dQλ0

]
=Qλ

[
dQλ

dQλ0

]
=Qλ

[
dQλ

dP

(
dQλ0

dP

)−1]

= E

[(
dQλ

dP

)2(
dQλ0

dP

)−1]
. (47)

Due to (25) and assumption (A4) we can bound dQλ

dP
≤ 2K0

∑∞
j=0 e−cdj+Zj for suitable positive constants K0 and c

depending only on λ0 and δ (note that cλ−1,0, c
λ
0,1 are bounded by a universal constant from above). On the other hand

[10, Thm. 2] provides the bound
dQλ0
dP

≥ γ , for some strictly positive constant γ depending on λ0. By combining the
above bounds with (47), to get (46) it is enough to prove that E[(∑∞

j=0 e−cdj+Zj )2] < ∞. By expanding the square,

the last estimate can be easily checked since E[e2Z0 ] < ∞. �

The next step is then to apply Lemma 5.2 (with the support of Theorem 1 and Lemma 5.3) to get the continuity of
the map λ 
→Qλ(f ) for f ∈ L2(Q0). To this aim, given a bounded Borel function f on �, we define Lλf as

Lλf (ω) =
∑
k∈Z

pλ
0,k(ω)

[
f (τkω) − f (ω)

]
. (48)

Trivially, Lλf ∈ L2(Qλ). We now consider Lemma 5.2 with � := �, Qλ := Qλ, I := [λ0 − δ,λ0 + δ] ⊂ (0,1), C
being the set of Borel bounded functions on � and with Lλ defined as the above operator Lλ restricted to C. As an
application we get:

Lemma 5.4. Suppose that E[e2Z0 ] < ∞. Then for any bounded measurable function f : � → R and for any λ0 ∈
[0,1), it holds

lim
λ→λ0

Qλ(f ) =Qλ0(f ). (49)

Proof. Since bounded measurable functions are in L2(Qλ0), due to (45), to get (49) we only need to check the
hypotheses of Lemma 5.2 with �, Qλ, I , C and Lλ defined as above.

Hypothesis (H1) is satisfied due to Theorem 1 and Lemma 5.3. Let us check (H2). Suppose that Q is a probability
on the environment space � satisfying the properties listed in (H2). Since C is dense in L2(Qλ0) and Q(Lλ0f ) = 0
for any f ∈ C, Q is an invariant distribution for the process (ω

λ0
n ), defined as ω

λ0
n := τkω where k = ψ(Y

λ0
n ) (the

environment viewed from the walker). We now want to use that Q � Qλ0 to deduce that Q = Qλ0 . To this aim we
denote by P

λ0
ν the law of the process (ω

λ0
n ) starting with distribution ν and by E

λ0
ν the associated expectation. If ν = δω

we simply write P
λ0
ω and E

λ0
ω . We take f : � →R to be any bounded measurable function. By the invariance of Q we

have

Q[f ] = E
λ0
Q

[
1

n

n−1∑
j=0

f
(
ω

λ0
j

)]
=Q[Fn], (50)

where Fn(ω) := E
λ0
ω [ 1

n

∑n−1
j=0 f (ω

λ0
j )]. Now, since Qλ0 is ergodic, we know that for

A :=
{

ω ∈ � : lim
n→∞

1

n

n−1∑
j=0

f
(
ω

λ0
j

) =Qλ0 [f ] Pλ0
ω -a.s.

}
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we have Qλ0 [A] = 1. Since the map (ω
λ0
j )j≥0 → 1

n

∑n−1
j=0 f (ω

λ0
j ) is bounded by ‖f ‖∞, we can apply the dominated

convergence theorem to obtain that, for each ω ∈ A,

lim
n→∞Fn(ω) =Qλ0 [f ].

To conclude, we would like to apply again the dominated convergence theorem to analyze limn→∞ Q[Fn]. We can
do that since |Fn(ω)| ≤ ‖f ‖∞ and since Fn(ω) → Qλ0 [f ] for Q-a.a. ω (because Q � Qλ0 and Qλ0(A) = 1, thus
implying that Q(A) = 1). We then obtain that limn→∞ Q[Fn] = Qλ0 [f ]. By (50) we get Q[f ] = Qλ0 [f ]. Since this
is true for every f , we have Q =Qλ0 .

(H3) follows from the fact that Qλ is an invariant distribution for the process “environment viewed from the random
walk Yλ

n ”.
It remains to check (H4). Since f ∈ C is bounded, it is enough to have

lim
λ→λ0

Qλ0

[(∑
k∈Z

∣∣pλ
0,k − p

λ0
0,k

∣∣)2]
= 0. (51)

To conclude we observe that, by writing Qλ0 [·] = Q0[ dQλ0
dQ0

·], (51) follows from the Cauchy–Schwarz inequality, the

fact that
dQλ0
dQ0

∈ L2(Q0) and Lemma B.2 in Appendix B. �

As a byproduct of Theorem 1, Lemma 5.3 and Lemma 5.4 we can complete the proof of Theorem 2. To this aim we
suppose the assumptions of Theorem 2 to be satisfied and we take f ∈ Lq(Q0) and λ0 ∈ [0,1). We take λ∗ ∈ (λ0,1)

and from now on we restrict to λ ∈ [0, λ∗]. Recall that at the beginning of this section we have proved that f ∈ L1(Qλ).
We want to show that Qλ(f ) →Qλ0(f ) as λ → λ0. To this aim, given M > 0, we define fM(ω) as M if f (ω) > M ,

as −M if f (ω) < −M and as f (ω) otherwise. We then can bound∣∣Qλ(f ) −Qλ0(f )
∣∣ ≤ ∣∣Qλ(f ) −Qλ(fM)

∣∣ + ∣∣Qλ(fM) −Qλ0(fM)
∣∣

+ ∣∣Qλ0(fM) −Qλ0(f )
∣∣. (52)

To conclude it is enough to show that the r.h.s. of (52) goes to zero when we take first the limit λ → λ0 and afterwards
the limit M → ∞. Due to Lemma 5.4 the second term in the r.h.s. of (52) goes to zero already as λ → λ0 since fM is
bounded. On the other hand, by the Hölder inequality, the first and third terms in the r.h.s. of (52) can be bounded by

‖f − fM‖Lq(Q0) sup
ζ∈[0,λ∗]

∥∥∥∥dQζ

dQ0

∥∥∥∥
Lp(Q0)

.

Note the independence from λ of the above expression. Since f ∈ Lq(Q0), ‖f − fM‖Lq(Q0) goes to zero as M → ∞
by the dominated convergence theorem, thus completing the proof.

6. Proof of Theorem 3 (first part)

In this section we prove the existence of ∂λ=0Qλ(f ) and equation (21). As in the theorem, we suppose that E[epZ0] <

∞ for some p > 2 and that f ∈ H−1 ∩ L2(Q0). In what follows, q is the exponent conjugate to p, i.e. the value
satisfying p−1 + q−1 = 1.

To simplify the notation we write here gε , h instead of the functions g
f
ε , hf introduced in (18), (19), respectively.

Recall that, given ε > 0, gε ∈ L2(Q0) is the solution of the equation εgε − L0gε = f . Since L2(Q0) ⊂ L1(Qλ) (by
Theorem 1 and the Cauchy–Schwarz inequality), the above identity on gε implies that Qλ(f ) = εQλ(gε)−Qλ(L0gε).
Using that Q0(f ) = 0 since f ∈ H−1, we can write

Qλ(f ) −Q0(f )

λ
= εQλ(gε)

λ
− Qλ(L0gε)

λ
. (53)

In what follows we will take first the limit ε → 0 and afterwards the limit λ → 0.
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Since f ∈ H−1 we can apply the results and estimates of [19]. In particular, it holds ε‖gε‖2
L2(Q0)

→ 0 as ε → 0
(see [19, Eq. (1.12)]) and, due to Theorem 1, we can bound

∣∣εQλ(gε)
∣∣ =

∣∣∣∣ε
〈
dQλ

dQ0
, gε

〉∣∣∣∣ ≤ ε‖gε‖L2(Q0)

∥∥∥∥dQλ

dQ0

∥∥∥∥
L2(Q0)

→ 0 as ε → 0. (54)

We recall that the scalar product in L2(Q0) is denoted by 〈·, ·〉. As a consequence of (54), the first term in the r.h.s. of
(53) is negligible as ε → 0.

It remains to analyze the second term in the r.h.s. of (53). Recall the space L2(M) of square integrable forms
introduced in Section 2 and recall (17).

Lemma 6.1. Let E[epZ0] < ∞ for some p > 2. Let q̂ > 2 be such that 1
p

+ 1
q̂

= 1
2 . Given a form v with v(·,0) ≡ 0

and a square integrable form w ∈ L2(M), there exists C > 0 such that for all λ ∈ (0,1/2) it holds

Qλ

[∑
k∈Z

∣∣v(·, k)w(·, k)
∣∣] ≤ C‖w‖L2(M)Q0

[ ∑
k∈Z\{0}

p0,k

∣∣∣∣v(·, k)

p0,k

∣∣∣∣
q̂] 1

q̂

. (55)

Proof. We simply compute

Qλ

[∑
k∈Z

∣∣v(·, k)w(·, k)
∣∣] =Q0

[ ∑
k∈Z\{0}

p0,k

∣∣∣∣dQλ

dQ0

v(·, k)

p0,k

∣∣∣∣∣∣w(·, k)
∣∣]

≤ ‖w‖L2(M)Q0

[ ∑
k∈Z\{0}

p0,k

(
dQλ

dQ0

)2(
v(·, k)

p0,k

)2]1/2

≤ ‖w‖L2(M)Q0

[(
dQλ

dQ0

)p] 1
p

Q0

[ ∑
k∈Z\{0}

p0,k

∣∣∣∣v(·, k)

p0,k

∣∣∣∣
q̂] 1

q̂

,

where for the second line we have used the Cauchy–Schwarz inequality with respect to the measure M , while for the
second inequality we used the Hölder inequality again with respect to M and with exponents p/2 and q̂/2, so that
(p/2)−1 + (q̂/2)−1 = 1 by hypothesis. We also have used the fact that M[( dQλ

dQ0
)p] = Q0[( dQλ

dQ0
)p]. To conclude it is

enough to apply Theorem 1. �

Lemma 6.2. Let E[epZ0] < ∞ for some p > 2 and let q̂ be as in Lemma 6.1. Then there exists a constant C not
depending on λ ∈ [0, 1

2q̂
) such that, for any form w ∈ L2(M), it holds

Qλ

[∑
k∈Z

∣∣(pλ
0,k − p0,k

)
w(·, k)

∣∣] ≤ C‖w‖L2(M).

Proof. In this proof the constants C,C′ are positive, might vary from line to line and do not depend on the specific
choice of λ ∈ [0, 1

2q̂
). By applying Lemma 6.1 with v(·, k) = pλ

0,k − p0,k we already know that

Qλ

[∑
k∈Z

∣∣(pλ
0,k − p0,k

)
w(·, k)

∣∣] ≤ C‖w‖L2(M)Q0

[ ∑
k∈Z\{0}

p0,k

∣∣∣∣p
λ
0,k

p0,k

− 1

∣∣∣∣
q̂] 1

q̂

. (56)

Since for a ≥ 0 it holds |a − 1|q ≤ |a|q + 1, we can bound

Q0

[ ∑
k∈Z\{0}

p0,k

∣∣∣∣p
λ
0,k

p0,k

− 1

∣∣∣∣
q̂]

≤ 1 +Q0

[ ∑
k∈Z\{0}

p0,k

∣∣∣∣p
λ
0,k

p0,k

∣∣∣∣
q̂]

. (57)
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Since
pλ

0,k

p0,k
≤ Ceλ(xk+Z−1) (see (91) in the Appendix for a proof of this fact), we can bound

Q0

[ ∑
k∈Z\{0}

p0,k

∣∣∣∣p
λ
0,k

p0,k

∣∣∣∣
q̂]

≤ CQ0

[∑
k∈Z

p0,keλq̂(|xk |+Z−1)

]
≤ Ce‖u‖∞E

[
dQ0

dP

∑
k∈Z

e−|xk |

π
eλq̂(|xk |+Z−1)

]

≤ C′
(∑

k∈Z
e−(1−λq̂)|k|d

)
E

[
eλq̂Z−1

]
, (58)

where for the last inequality we have used that dQ0
dP

= π
E[π] and that |xk| ≥ |k|d . Note that the last line in (58) is

uniformly bounded for λ ∈ (0, 1
2q̂

) (recall that E[epZ0] < ∞). This bound together with (56) and (57) allows to
conclude. �

Lemma 6.3. Given g ∈ L2(Q0), the series
∑

k∈Z pλ
0,k|g(τk·) − g(·)| belongs to L1(Qλ). Defining, as in (48),

Lλg(ω) := ∑
k∈Z pλ

0,k(g(τk·) − g(·)), we get that Lλg ∈ L1(Qλ) and Qλ(Lλg) = 0.

Proof. Recall that Qλ is an invariant distribution for the environment viewed from the perturbed walker, i.e. for
(τYλ

n
ω)n≥0. This implies that Qλ[∑k∈Z pλ

0,k|g(τk·)|] = Qλ[|g|] < ∞ (in the last bound we have used Theorem 1

to get g ∈ L1(Qλ)). As a consequence,
∑

k∈Z pλ
0,k|g(τk·) − g(·)| belongs to L1(Qλ) and therefore Lλg is a well-

defined element of L1(Qλ). Finally, again by the invariance of Qλ, we have Qλ[g] = Qλ[∑k∈Z pλ
0,kg(τk·)], which is

equivalent to Qλ(Lλg) = 0. �

By the above lemma Qλ(Lλgε) is well-defined and equals zero. Hence we can write

−Qλ(L0gε) =Qλ

([Lλ −L0]gε

) =Qλ

[∑
k∈Z

(
pλ

0,k − p0,k

)(
gε(τk·) − gε

)]
. (59)

By [19, Eq. (1.11a)] we have that the sequence gε is Cauchy, as ε ↓ 0, in the space H1 referred to the operator −L0.
In particular, we have

lim
ε1,ε2↓0

Q0

[∑
k∈Z

p0,k

(
(gε1 − gε2)(τk·) − (gε1 − gε2)

)2
]

= 0. (60)

(60) can be restated as follows: The family of quadratic forms (∇gε)ε>0 is Cauchy in L2(M). As a consequence, we
get that ∇gε → h in L2(M) for some form h ∈ L2(M). Finally, we point out that, due to Lemma 6.2, the expectation
Qλ[∑k∈Z(pλ

k − p0
k)h(·, k)] is well-defined.

Lemma 6.4. It holds

lim
ε↓0

∣∣∣∣Qλ(L0gε) +Qλ

[∑
k∈Z

(
pλ

0,k − p0k

)
h(·, k)

]∣∣∣∣ = 0. (61)

Proof. We set wε = ∇gε − h. Due to (59) we only need to show that

lim
ε↓0

Qλ

[∑
k∈Z

∣∣(pλ
k − p0

k

)
wε(·, k)

∣∣] = 0. (62)

By applying Lemma 6.2 and using that limε→0 ∇gε = h in L2(M), we get the claim. �

Lemma 6.5. It holds

lim
λ↓0

1

λ
Qλ

[∑
k∈Z

(
pλ

0,k − p0,k

)
h(·, k)

]
=Q0

[∑
k∈Z

∂λ=0p
λ
0,kh(·, k)

]
. (63)
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Proof. We can write

Qλ

[∑
k∈Z

pλ
0,k − p0,k

λ
h(·, k)

]
=Qλ

[∑
k∈Z

∂λ=0p
λ
0,kh(·, k)

]

+Qλ

[∑
k∈Z

(
pλ

0,k − p0,k

λ
− ∂λ=0p

λ
0,k

)
h(·, k)

]
. (64)

In the first part of the proof (Step 1) we show that the first term in the r.h.s. converges to the r.h.s. of (63), while in the
second part (Step 2) we show that the second term in the r.h.s. goes to zero as λ → 0.

Step 1. Due to Theorem 2 it is enough to show that
∑

k∈Z ∂λ=0p
λ
0,kh(·, k) belongs to Lq(Q0). Since ∂λp

λ
0,k =

pλ
0,k(xk − ϕλ), we can rewrite

∑
k∈Z ∂λ=0p

λ
0,kh(·, k) as

∑
k∈Z p0,k(xk − ϕ)h(·, k). Applying the Cauchy–Schwarz

inequality we get

∥∥∥∥∑
k∈Z

p0,k(xk − ϕ)h(·, k)

∥∥∥∥
q

Lq(Q0)

≤Q0

[(∑
k∈Z

p0,k(xk − ϕ)2
)q/2(∑

k∈Z
p0,kh(·, k)2

)q/2]
.

We choose now exponents A := 2/q > 1 and B := 2/(2−q) such that A−1 +B−1 = 1 and apply the Hölder inequality
to the previous display obtaining

∥∥∥∥∑
k∈Z

p0,k(xk − ϕ)h(·, k)

∥∥∥∥
q

Lq(Q0)

≤Q0

[(∑
k∈Z

p0,k(xk − ϕ)2
) qB

2
]1/B

Q0

[∑
k∈Z

p0,kh(·, k)2
]1/A

.

The second factor in the r.h.s. is bounded since h ∈ L2(M). For finishing Step 1 we are thus left to show that

Q0

[(∑
k∈Z

p0,k(xk − ϕ)2
) qB

2
]

< ∞. (65)

By the Cauchy–Schwarz inequality one has ϕ2 = (
∑

k p0kxk)
2 ≤ ∑

k p0kx
2
k so that

∑
k∈Zd

p0,k(xk − ϕ)2 ≤ 2
∑
k∈Zd

p0,kx
2
k + 2

∑
k∈Zd

p0,kϕ
2 ≤ 4

∑
k∈Zd

p0,kx
2
k . (66)

Since qB/2 = q/(2 − q) > 1, by the Hölder inequality we have

( ∑
k∈Zd

p0,kx
2
k

) qB
2 ≤

∑
k∈Zd

p0,kx
qB
k . (67)

At this point (65) follows from (66), (67) and (95) in Appendix B.
Step 2. By Taylor expansion with the Lagrange rest we can write

pλ
0,k − p0,k

λ
− ∂λ=0p

λ
0,k = λ

2
∂2
λ=ξk

pλ
0,k, (68)

where ∂2
λ=ξk

pλ
0,k denotes the second derivative of the function λ 
→ pλ

0,k evaluated at some ξk ∈ [0, λ]. To prove that
the second term in the r.h.s. of (64) is negligible as λ → 0, it is therefore enough to show that, for some δ > 0,

sup
λ∈[0,δ]

Qλ

[∑
k∈Z

∣∣v(·, k)h(·, k)
∣∣] < ∞, v(·, k) := sup

ξk∈[0,δ]

∣∣∂2
λ=ξk

pλ
0,k

∣∣. (69)
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By Lemma 6.1, since h ∈ L2(M), it is enough to show

Q0

[ ∑
k∈Z\{0}

p0,k

∣∣∣∣v(·, k)

p0,k

∣∣∣∣
q̂] 1

q̂

< ∞,

where q̂ > 2 is such that 1
p

+ 1
q̂

= 1
2 . This follows from (98) in Lemma B.1 in Appendix B. �

By collecting Lemma 6.4, Lemma 6.5 and using that ∂λ=0p
λ
0,k = p0,k(xk − ϕ) we obtain

lim
λ↓0

lim
ε↓0

−Qλ(L0gε)

λ
=Q0

[∑
k∈Z

∂λ=0p
λ
0,kh(·, k)

]
=Q0

[∑
k∈Z

p0,k(xk − ϕ)h(·, k)

]
. (70)

This together with (53) and (54) gives that Qλ[f ] is derivable at λ = 0 and we obtain (21).

7. Proof of Theorem 3 (second part)

In this section we deal with the second identity in Theorem 3, that is, equation (22), and show how it can be derived
from (21). Recall the process (ωn) of the environment viewed from the unperturbed walker (Yn) defined through
ωn = τYnω, where ω denotes the initial environment. Below we denote by ‖ · ‖−1 the H−1 norm referred to the
operator −L0 in L2(Q0) and by 〈·, ·〉 the scalar product in L2(Q0).

Lemma 7.1. For any V ∈ H−1 ∩ L2(Q0), the sequence 1√
n

∑n−1
j=0 V (ωj ) converges weakly as n → ∞ to a Gaussian

random variable with variance σ 2 = 2‖V ‖2−1 − ‖V ‖2
L2(Q0)

.

Proof. By [19, Cor. 1.5] we have that 1√
n

∑n−1
j=0 V (ωj ) converges to a Gaussian random variable with variance given

by (see [19, Eq. (1.1)])

σ 2 =
∫

[0,1]
1 + θ

1 − θ
mV (dθ) < ∞,

where mV denotes the spectral measure of V associated to the symmetric operator S0 on L2(Q0) defined as S0f (ω) :=∑
k∈Z p0,kf (τkω). Since −L0 = I− S0, by spectral calculus we obtain

σ 2 = 2
∫

[0,1]
1

1 − θ
mV (dθ) −

∫
[0,1]

mV (dθ) = 2‖V ‖2−1 − ‖V ‖2
L2(Q0)

. �

Let f ∈ H−1 ∩ L2(Q0) be as in Theorem 3. A direct consequence of the above lemma is that, for the gaussian
variables Nf and Nϕ considered in (20), it holds Var(Nf ) = 2‖f ‖2−1 − ‖f ‖2

L2(Q0)
, Var(Nϕ) = 2‖ϕ‖2−1 − ‖ϕ‖2

L2(Q0)

and Var(Nf + Nϕ) = 2‖f + ϕ‖2−1 − ‖f + ϕ‖2
L2(Q0)

. By this we obtain a first formula for their covariance:

Cov
(
Nf ,Nϕ

) = 1

2

(
Var

(
Nf + Nϕ

) − Var
(
Nf

) − Var
(
Nϕ

))
= ‖f + ϕ‖2−1 − ‖f ‖2−1 − ‖ϕ‖2−1 − 〈f,ϕ〉. (71)

We are now ready to show (22). In what follows, we write gε,h for the functions g
f
ε , hf introduced in (18), (19),

respectively. Recall by (21) that one has

∂λ=0Qλ(f ) = Q0

[∑
k∈Z

p0,kxkh(·, k)

]
−Q0

[
ϕ

∑
k∈Z

p0,kh(·, k)

]
. (72)

We divide the proof into the two following claims, that together with (71) and (72) clearly imply (22).
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Claim 7.2. We have

Q0

[
ϕ

∑
k∈Z

p0,kh(·, k)

]
= −〈f,ϕ〉.

Claim 7.3. We have

−Q0

[∑
k∈Z

p0,kxkh(·, k)

]
= ‖f + ϕ‖2−1 − ‖f ‖2−1 − ‖ϕ‖2−1.

Proof of Claim 7.2. We can write

Q0

[
ϕ

∑
k∈Z

p0,kh(·, k)

]
=Q0

[
ϕ

∑
k∈Z

p0,k∇gε(·, k)

]
+Q0

[
ϕ

∑
k∈Z

p0,k

(
h(·, k) − ∇gε(·, k)

)]
.

We denote by Aε and Bε the two terms in the r.h.s. of the above expression. We now show that, as ε ↓ 0, Aε → −〈f,ϕ〉
and Bε → 0, which gives the claim.

Since (ε −L0)gε = f , we have

Aε =Q0
[
ϕ(L0gε)

] = εQ0[ϕgε] −Q0[ϕf ].

For the first summand we can bound

∣∣εQ0[ϕgε]
∣∣ ≤ ε‖ϕ‖L2(Q0)

‖gε‖L2(Q0)

ε↓0−−→ 0

since, by [19, Eq. (1.12)], we know that ε‖gε‖L2(Q0)
→ 0 as ε ↓ 0. This implies limε↓0 Aε = −Q0[ϕf ] = −〈f,ϕ〉.

Turning to Bε , by (19) and the Cauchy–Schwarz inequality with respect to the measure M , we have

|Bε| ≤ Q0

[∑
k∈Z

p0,kϕ
2
] 1

2

Q0

[∑
k∈Z

p0,k

(
h(·, k) − ∇gε(·, k)

)2
] 1

2

= ‖ϕ‖L2(Q0)
‖h − ∇gε‖L2(M)

ε↓0−−→ 0. �

Proof of Claim 7.3. First of all we notice that

Q0

[∑
k∈Z

p0,kxkh(·, k)

]
= lim

ε↓0
Q0

[∑
k∈Z

p0,kxk∇gε(·, k)

]
. (73)

Indeed, by the Cauchy–Schwarz inequality and (19), it holds

∣∣∣∣Q0

[∑
k∈Z

p0,kxk

(
h(·, k) − ∇gε(·, k)

)]∣∣∣∣ ≤Q0

[∑
k∈Z

p0,kx
2
k

] 1
2

Q0

[∑
k∈Z

p0,k

(
h(·, k) − ∇gε(·, k)

)2
] 1

2

=Q0

[∑
k∈Z

p0,kx
2
k

] 1
2 ‖h − ∇gε‖L2(M)

ε→0−−→ 0.

The expectation in the r.h.s. of (73) can be rewritten as

Q0

[∑
k∈Z

p0,kxk

(
gε(τk·) − gε

)]
= −2Q0

[∑
k∈Z

p0,kxkgε

]
= −2Q0[ϕgε]. (74)



Einstein relation and linear response in 1D Mott variable-range hopping 1497

To see why the first equality holds we just note that for each k ∈ Z

Q0
[
p0,kxkgε(τk·)

] = 1

E[π]E
[
r0,kxkgε(τk·)

] = 1

E[π]E
[
r0,k(τ−k·)xk(τ−k·)gε(·)

]
= 1

E[π]E
[
r0,−k(·)

(−x−k(·)
)
gε(·)

] = −Q0[p0,−kx−kgε],

where for the first equality we have used that dQ0/dP= π/E[π] and for the second equality the translation invariance
of P. The first equality in (74) then follows by summing over all k ∈ Z.

By putting (74) back into (73), we see that the proof of the claim is concluded if we can prove that

lim
ε↓0

2Q0[ϕgε] = ‖f + ϕ‖2−1 − ‖f ‖2−1 − ‖ϕ‖2−1. (75)

Note that, by spectral calculus, the symmetric operators (ε−L0)
−1 and (ε−L0)

−1/2 are defined on the whole L2(Q0).
Since moreover (ε −L0)gε = f , we have that

2Q0[ϕgε] = 2Q0
[
ϕ(ε −L0)

−1f
]

= 2
〈
(ε −L0)

−1/2ϕ, (ε −L0)
−1/2f

〉
= 〈

(ε −L0)
−1/2(ϕ + f ), (ε −L0)

−1/2(ϕ + f )
〉

− 〈
(ε −L0)

−1/2f, (ε −L0)
−1/2f

〉 − 〈
(ε −L0)

−1/2ϕ, (ε −L0)
−1/2ϕ

〉
ε↓0−−→ ‖f + ϕ‖2−1 − ‖f ‖2−1 − ‖ϕ‖2−1.

The last limit follows from the observation that, for each V ∈ H−1 ∩ L2(Q0), we have

〈
(ε −L0)

−1/2V, (ε −L0)
−1/2V

〉 ε↓0−−→ ‖V ‖2−1.

Indeed, writing eV for the spectral measure associated to V and −L0, it holds

〈
(ε −L0)

−1/2V, (ε −L0)
−1/2V

〉 = ∫
[0,∞)

1

ε + θ
eV (dθ)

ε↓0−−→
∫

[0,∞)

1

θ
eV (dθ) = ‖V ‖2−1. �

8. Proof of Theorem 4(I)

We fix λ0 ∈ [0,1) and prove the continuity of vY (λ), vY(λ) at λ0. To this aim we take λ∗ ∈ (λ0,1) and restrict below
to λ ∈ [0, λ∗). The positive constants C,C′ will depend on λ∗ but not on the specific choice of λ, moreover they can
change from line to line.

8.1. Continuity of vY (λ)

We first observe that limλ→λ0 πλ = πλ0 P-a.s., where πλ(ω) := ∑
k∈Z cλ

0,k(ω). Indeed, by Assumption (A4), we

can bound |cλ
0,k| ≤ Ce−(1−λ∗)d|k|, P-a.s., and therefore the claim follows from dominated convergence applied to the

counting measure on Z.
Since pλ

0,k = cλ
0,k/π

λ and πλ → πλ0 , we obtain that

lim
λ→λ0

pλ
0,k = p

λ0
0,k ∀k ∈ Z , P-a.s.

Note that πλ ≥ cλ
0,1 ≥ Ce−Z0 . Using also that e−(1−λ∗)uu ≤ Ce− (1−λ∗)

2 u for all u ≥ 0 and using Assumption (A4) we
get

pλ
0,k|xk| ≤ CeZ0e−|xk |+λxk |xk| ≤ C′eZ0e− (1−λ∗)

2 |d|k P-a.s. (76)
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We claim that ϕλ ∈ L2(Q0) and that limλ→λ0 ‖ϕλ − ϕλ0‖L2(Q0)
= 0. Indeed, by (76), we have that |ϕλ| ≤ CeZ0 , Q0-

a.s. Since E[e2Z0] < ∞, π ≤ C P-a.s. and Q0[�] = E[π]−1E[π�], we have that eZ0 ∈ L2(Q0). To conclude the proof
of our claim it is enough to apply the dominated convergence theorem to the measure Q0.

Since ϕλ0 ∈ L2(Q0), by Theorem 1 and the Cauchy–Schwarz inequality we derive that ϕλ0 ∈ L1(Qλ), in particular
the expectation Qλ[ϕλ0 ] is well-defined. Due to (10) we can therefore write

vY (λ) − vY (λ0) =Qλ[ϕλ] −Qλ0 [ϕλ0 ] =Qλ[ϕλ − ϕλ0 ] +Qλ[ϕλ0 ] −Qλ0 [ϕλ0 ]. (77)

By Theorem 1, the Cauchy–Schwarz inequality and since limλ→λ0 ‖ϕλ − ϕλ0‖L2(Q0)
= 0, we get for λ → λ0

∣∣Qλ[ϕλ − ϕλ0]
∣∣ =

∣∣∣∣Q0

[
dQλ

dQ0
(ϕλ − ϕλ0)

]∣∣∣∣ ≤
∥∥∥∥dQλ

dQ0

∥∥∥∥
L2(Q0)

‖ϕλ − ϕλ0‖L2(Q0)
→ 0. (78)

Since we have proved that ϕλ0 ∈ L2(Q0), by Theorem 2 we get that limλ→λ0 Qλ[ϕλ0] =Qλ0 [ϕλ0 ]. By combining this
last limit with (77) and (78), we conclude that limλ→λ0 vY (λ) = vY (λ0).

8.2. Continuity of vY(λ)

Due to the continuity of vY (λ) and due to (10), it is enough to prove that the map λ 
→ Qλ[1/πλ] is continuous (note
that cλ

0,k = rλ
0,k , thus implying that πλ = ∑

k∈Z rλ
0,k(ω)).

By the observations in the above subsection we have that limλ→λ0 πλ = πλ0 Q0-a.s. and 1/πλ ≤ CeZ0 ∈ L2(Q0).
We get three main consequences (applying also Theorem 1 and the Cauchy–Schwarz inequality): (i) 1/πλ ∈ L2(Q0),
(ii) 1/πλ ∈ L1(Qλ0) (hence the expectation Qλ0 [1/πλ] is well-defined) and (iii) limλ→λ0 ‖1/πλ − 1/πλ0‖L2(Q0)

= 0.
We then write

Qλ

[
1/πλ

] −Qλ0

[
1/πλ0

] =Qλ

[
1/πλ − 1/πλ0

] +Qλ

[
1/πλ0

] −Qλ0

[
1/πλ0

]
. (79)

At this point, we can proceed as done for (77), replacing ϕλ by 1/πλ.

9. Proof of Theorem 4(ii)

We recall that we denote by ‖ · ‖−1 the H−1 norm referred to the operator −L0 in L2(Q0) and by 〈·, ·〉 the scalar
product in L2(Q0).

9.1. Einstein relation for (Y λ
n )

Since vY (λ) =Qλ[ϕλ] and vY (0) =Q0[ϕ] = 0 we can write

vY (λ) − vY (0)

λ
= vY (λ)

λ
= Qλ[ϕλ]

λ
=Qλ

[
ϕλ − ϕ

λ

]
+ Qλ[ϕ] −Q0[ϕ]

λ
. (80)

Lemma 9.1. ϕ ∈ H−1.

Proof. We need to show that there exists a constant C > 0 such that for any h ∈ L2(Q0) it holds

〈ϕ,h〉 ≤ C〈h,−L0h〉1/2.

The above bound is equivalent to

Q0

[∑
k∈Z

xkp0,kh

]
≤ C√

2
Q0

[∑
k∈Z

p0,k

(
h(τk·) − h

)2
]1/2

,
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which is equivalent to (cf. C′ := C
√
E[π]/2)

E

[∑
k∈Z

xkc0,kh

]
≤ C′E

[∑
k∈Z

c0,k

(
h(τk·) − h

)2
]1/2

. (81)

Note that∑
k∈Z

E[xkc0,kh] = −
∑
k∈Z

E
[
x−k(τk·)c0,−k(τk·)h

]

= −
∑
k∈Z

E
[
x−kc0,−kh(τ−k·)

] = −
∑
k∈Z

E
[
xkc0,kh(τk·)

]
.

Indeed, in the first identity we have used that c0,k(ω) = c0,−k(τkω) and xk(ω) = −x−k(τkω), in the second one we
have used the translation invariance of P, in the third one we have replaced k by −k. By the above identity and the
Cauchy–Schwarz inequality we have

l.h.s. of (81) = −1

2

∑
k∈Z

E
[
c0,kxk

(
h(τk·) − h

)]

≤ C′′
(∑

k∈Z
E

[
c0,kx

2
k

])1/2(∑
k∈Z

E
[
c0,k

[
h(τk·) − h

]2])1/2

.

thus concluding the proof of (81). �

As a consequence of Lemma 9.1 and Theorem 3 we have (recall definition (19))

lim
λ→0

Qλ[ϕ] −Q0[ϕ]
λ

= ∂λ=0Qλ(ϕ) =Q0

[∑
k∈Z

p0,k(xk − ϕ)hϕ

]
. (82)

Take δ > 0 small enough as in Lemma B.1 of Appendix B. Using (68) we can write, for λ ∈ (0, δ),

Qλ

[
ϕλ − ϕ

λ

]
=Qλ

[∑
k∈Z

∂λ=0p
λ
0,kxk

]
+ λ

2
E(λ), (83)

where E(λ) can be bounded as

Qλ

[∑
k∈Z

(
sup

ζ∈[0,δ]
∣∣∂2

λ=ζ p
λ
0,k

∣∣)|xk|
]

≤ sup
ξ∈[0,δ]

∥∥∥∥dQξ

dQ0

∥∥∥∥
L2(Q0)

∥∥∥∥∑
k∈Z

(
sup

ζ∈[0,δ]
∣∣∂2

λ=ζ p
λ
0,k

∣∣)|xk|
∥∥∥∥

L2(Q0)

.

Due to Theorem 1 and (97) in Lemma B.1 in the Appendix, the above λ-independent upper bound is finite. Hence
supλ∈[0,δ] |E(λ)| < ∞, thus implying that limλ↓0 λE(λ) = 0. On the other hand, since by Lemma B.1 in the Appendix
the function

∑
k∈Z ∂λ=0p

λ
0,kxk belongs to Lq(Q0), by Theorem 2 we get that

lim
λ↓0

Qλ

[∑
k∈Z

∂λ=0p
λ
0,kxk

]
=Q0

[∑
k∈Z

∂λ=0p
λ
0,kxk

]
. (84)

At this point, by using that ∂λ=0p
λ
0,k = pλ

0,k(xk − ϕ) and by combining (80), (82), (83), the limit limλ↓0 λE(λ) = 0
and (84), we conclude that vY (λ) is derivable at λ = 0 and that

∂λ=0vY (λ) =Q0

[∑
k∈Z

p0,k(xk − ϕ)
(
xk + hϕ

)]
. (85)
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It remains to show that the last part of (85) equals DY . We manipulate (85) to obtain

∂λ=0vY (λ) =Q0

[∑
k∈Z

p0,k(xk − ϕ)hϕ

]
+Q0

[∑
k∈Z

p0,kx
2
k

]
− ‖ϕ‖2

L2(Q0)

= −Var
(
Nϕ

) +Q0

[∑
k∈Z

p0,kx
2
k

]
− ‖ϕ‖2

L2(Q0)

= −2‖ϕ‖2−1 +Q0

[∑
k∈Z

p0,kx
2
k

]
= DY .

For the second equality we have used the second part of Theorem 3 (i.e., equation (22)) with the function f = ϕ, for
the third equality we have used Lemma 7.1 with V = ϕ and finally the last line follows from [9, Thm. 2.1, Eq. (2.28)].

9.2. Einstein relation for (Yλ
t )

The continuous time process τYλ
t
ω can be obtained by a suitable random time change from the discrete time process

τYλ
n
ω as detailed in [10, Section 7]. By using this random time change and arguing as in the derivation of [9, Eq.

(4.20)], we get that DY = E[π]DY , where π was defined in (11). Since we have just proved that DY = ∂λ=0vY (λ), to
get the Einstein relation for Yλ

t it is enough to show that vY(λ) is differentiable at λ = 0 and moreover ∂λ=0vY(λ) =
E[π]∂λ=0vY (λ). Since vY(0) = 0, thanks to (10) and since πλ = ∑

k∈Z cλ
0,k = ∑

k∈Z rλ
0,k (cf. Section 8.2), we can

write

∂λ=0vY(λ) = lim
λ↓0

vY(λ)

λ
= lim

λ↓0

vY (λ)

λ

1

Qλ[1/πλ] . (86)

In Section 8.2 we have proved that the map [0,1) 	 λ 
→ Qλ[1/πλ] ∈ R is continuous. Hence, we have
limλ↓0 Qλ[1/πλ] = Q0[1/πλ=0] = E[π]−1. On the other hand we have just proved that limλ↓0

vY (λ)
λ

= DY . Com-
ing back to (86) we conclude that ∂λ=0vY(λ) = DYE[π]−1 = DY.

Appendix A: Comments on (10)

Formula (10) for vY(λ) coincides with [10, Eq. (9)]. The expression for vY (λ) given in [10, Eq. (10)] is slightly
different from our identity vY (λ) =Qλ[ϕλ] in (10), since [10, Eq. (10)] has been obtained from the asymptotic velocity
of a third random walk (which is the discrete-time random walk on Z with probability for a jump from i to k given
by (7)). Let us explain how to derive that vY (λ) =Qλ[ϕλ]. We consider the process (ωλ

n), defined as ωλ
n := τkω where

k ∈ Z satisfies xk = Yλ
n . Note that, due to Assumption (A3), one recovers a.s. (Y λ

n ) as an additive functional of (ωλ
n).

More precisely, Yλ
n = ∑n−1

k=0 h(ωλ
k ,ωλ

k+1), where h(ω,ω′) := xi if ω′ = τiω for some i, and h(ω,ω′) := 0 if ω′ does
not coincide with any translation of ω. Let us denote by Eλ

Qλ
the expectation w.r.t. the process (ωλ

n) starting with

distribution Qλ. Then, using that Qλ is an ergodic distribution for the process (ωλ
n), by Birkhoff’s ergodic theorem

we get that limn→∞ Yλ
n

n
exists a.s. for Qλ-a.a. initial configurations and equals Eλ

Qλ
[h(ω0,ω1)] = Qλ[ϕλ]. Since, as

proven in [10], Qλ and P are mutually absolutely continuous, we conclude that limn→∞ Yλ
n

n
= Qλ[ϕλ] a.s. for P-a.a.

initial configurations.

Appendix B: Collected computations

Here we collect some basic estimates that are useful in several parts of the paper. In what follows, λ∗ is a fixed value
in (0,1). All constants of the form K,C appearing below (possibly with some additional typographic character) have
to be thought of as λ∗-dependent but uniform for all λ ∈ [0, λ∗]. Moreover, the above constants can change from line
to line. Moreover, without further mention, we will restrict to ω such that |xk| ≥ k|d|. We recall that by Assumption
(A4) this event has P-probability one.
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It is convenient to express the jump probabilities pλ
0,k(ω) in terms of the conductances introduced in (24). Com-

paring with (7) we can write

pλ
0,k(ω) = cλ

0,k(ω)

πλ(ω)
, πλ(ω) :=

∑
j∈Z

cλ
0,j (ω). (87)

Note that πλ = π when λ = 0 (cf. (11)).
An easy calculation shows that

∂λp
λ
0,k = pλ

0,k(xk − ϕλ), (88)

∂2
λpλ

0,k = pλ
0,k

(
x2
k − 2xkϕλ + 2ϕ2

λ −
∑
j∈Z

pλ
0,j x

2
j

)
. (89)

We also observe that, for some universal constant c, it holds

∣∣∂2
λpλ

0,k

∣∣ ≤ cpλ
0,k

(
x2
k +

∑
j∈Z

pλ
0,j x

2
j

)
. (90)

Indeed, by (89) we can bound

∣∣∂2
λpλ

0,k

∣∣ ≤ c′pλ
0,k

(
x2
k + ϕ2

λ +
∑
j∈Z

pλ
0,j x

2
j

)

for some universal constant c′. On the other hand, by the Cauchy–Schwarz inequality, ϕ2
λ ≤ ∑

j∈Z pλ
0,j x

2
j . We also

have that, for some finite constant C > 0,

pλ
0,k

p0,k

= eλxk
π

πλ
≤ Ceλ(xk+Z−1) ∀k ∈ Z,∀λ ∈ [0, λ∗]. (91)

This is true since cλ−1,0 + cλ
0,1 ≤ πλ ≤ K(cλ−1,0 + cλ

0,1) for some constant K (see [10, Rem. 3.2], [10, Lemma 3.6] and
Remark 4.1), and therefore

π

πλ
≤ K ′ e−Z−1 + e−Z0

e−(1+λ)Z−1 + e−(1−λ)Z0
≤ K ′

(
1 + e−Z−1

e−(1+λ)Z−1

)
≤ CeλZ−1 . (92)

Another bound which will be repeatedly used below is the following. For a fixed positive integer n, it holds

∑
k∈Z

pλ
0,k|xk|n ≤ C

1

πλ

∑
k∈Z

e−|xk |+λxk |xk|n ≤ C̃
1

πλ
, ∀λ ∈ [0, λ∗] (93)

(C̃ depends on λ∗ and n). Above we used that e−(1−λ∗)uun ≤ Ce−(1−λ∗)u/2 for all u ≥ 0 and that |xj | ≥ dj . As a
consequence of (93) we get

|ϕλ|n ≤
∑
k∈Z

pλ
0,k|xk|n ≤ C

πλ
, ∀λ ∈ [0, λ∗]. (94)

Since dQ0/dP= π/E[π], by (92), (93) and (94) we get

E
[
eZ0

]
< ∞ =⇒ sup

λ∈[0,λ∗]
Q0

[∑
k∈Z

pλ
0,k|xk|n

]
< ∞ and sup

λ∈[0,λ∗]
Q0

[|ϕλ|n
]
< ∞. (95)
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Lemma B.1. Suppose E[epZ0] < ∞ for some p > 2, let q > 1 be such that p−1 + q−1 = 1 and let q̂ > 2 be such that
p−1 + q̂−1 = 2−1. Then, for δ small enough, it holds

∑
k∈Z

∣∣∂λ=0p
λ
0,k · xk

∣∣ ∈ Lq(Q0) ⊂ L1(Qλ), (96)

∑
k∈Z

(
sup

ζ∈[0,δ]
∣∣∂2

λ=ζ p
λ
0,k

∣∣)|xk| ∈ L2(Q0) ⊂ L1(Qλ), (97)

∑
k∈Z\{0}

(p0,k)
1−q̂

(
sup

ζ∈[0,δ]
∣∣∂2

λ=ζ p
λ
0,k

∣∣)q̂ ∈ L1(Q0). (98)

Proof. Since p > 2 we have q ∈ (1,2), thus implying that L2(Q0) ⊂ Lq(Q0) by the Hölder inequality. To get the set
inclusions stated in the lemma, it is therefore enough to check that Lq(Q0) ⊂ L1(Qλ). This can be easily checked by
writing Qλ[�] =Q0[� · dQλ/dQ0], using the Hölder inequality and then Theorem 1.

We call f1, f2 and f3 the l.h.s. of (96), (97) and (98), respectively. For (96) we use (88) and the Cauchy–Schwarz
inequality to bound

‖f1‖q

Lq(Q0)
≤ Q0

[(∑
k∈Z

p0,k(xk − ϕ)2
)q/2(∑

k∈Z
p0,kx

2
k

)q/2]
.

As in the proof of Lemma 6.5 we take A := 2/q > 1 (recall that p > 2) and B := 2/(2 − q) (so that A−1 + B−1 = 1)
and use the Hölder inequality to further obtain

‖f1‖q

Lq(Q0)
≤ Q0

[(∑
k∈Z

p0,k(xk − ϕ)2
) qB

2
]1/B

Q0

[∑
k∈Z

p0,kx
2
k

]1/A

.

The first term in the r.h.s. can be bounded as in (65), the second is bounded by (95).
We move to (97). To prove that f2 ∈ L2(Q0) we need to show that E[πf 2

2 ] < ∞. We take δ small (the precise
value will be stated at the end) and set λ∗ := δ (hence, our C-type constants below depend on δ but not on the specific
λ ∈ [0, δ]). We note that for all ζ ∈ [0, δ] it holds

∣∣∂2
λ=ζ p

λ
0,k

∣∣|xk| ≤ Cp
ζ
0,k

(
|xk|3 +

(∑
j∈Z

p
ζ
0,j x

2
j

)2)
≤ Cp

ζ
0,k

(
|xk|3 +

∑
j∈Z

p
ζ
0,j x

4
j

)

≤ C′p0,keδ(|xk |+Z−1)

(
|xk|3 +

∑
j∈Z

p0,j eδ(|xj |+Z−1)x4
j

)
. (99)

Indeed, the first inequality follows from (90) and the property that |xk| ≥ d for k �= 0 (as intermediate step bound
the product (

∑
j p

ζ
0,j x

2
j )|xk| by the sum of their squares). The second inequality follows from the Cauchy–Schwarz

inequality, while the third inequality follows from (91).
Note that the last term of (99) depends only on δ. Hence, to prove that E[πf 2

2 ] < ∞, we only need to show that
(we use repeatedly the Cauchy–Schwarz inequality)

E

[
π

∑
k∈Z

p0,ke2δ(|xk |+Z−1)|xk|6
]

< ∞, (100)

E

[
π

∑
k∈Z

p0,ke2δ(|xk |+Z−1)
∑
j∈Z

p0,j e2δ(|xj |+Z−1)x8
j

]
< ∞. (101)
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We prove (101), the proof of (100) follows the same lines and it is even simpler. Using that e−(1−2δ)u(1+u8) ≤ Ce−u/2

for all u ≥ 0 if we restrict to δ ≤ 1/8, we can bound the integrand in (101) by

C

π

∑
k∈Z

e− |xk |
2 e2δZ−1

∑
j∈Z

e− |xj |
2 e2δZ−1 .

Since |xk| ≥ d|k| and since π ≥ c−1,0 ≥ Ce−(1+δ)Z−1 , we conclude that the P-expectation of (101) is finite if
E[e(1+5δ)Z−1 ] < ∞. By taking δ small enough, the last bound is satisfied due to the assumption E[epZ0] < ∞.

We move to (98). Again we need to prove that E[πf3] < ∞. Similarly to (99), by (90) and (91), we get

∣∣∂2
λ=ζ p

λ
0,k

∣∣ ≤ Cp
ζ
0,k

(
|xk|2 +

∑
j∈Z

p
ζ
0,j x

2
j

)
≤ C′p0,keδ(|xk |+Z−1)

(
|xk|2 +

∑
j∈Z

p0,j eδ(|xj |+Z−1)x2
j

)
.

Then, using also that (x + y)q̂ ≤ c(q̂)(xq̂ + yq̂) for all x, y ≥ 0 and the Hölder inequality,

f3 ≤ C
∑
k∈Z

p0,keq̂δ(|xk |+Z−1)|xk|2q̂ +
∑
k∈Z

p0,keq̂δ(|xk |+Z−1)
∑
j∈Z

p0,j eq̂δ(|xj |+Z−1)x
2q̂
j . (102)

At this point, we get that E[πf3] < ∞ if we prove

E

[
π

∑
k∈Z

p0,keq̂δ(|xk |+Z−1)|xk|2q̂

]
< ∞, (103)

E

[
π

∑
k∈Z

p0,keq̂δ(|xk |+Z−1)
∑
j∈Z

p0,j eq̂δ(|xj |+Z−1)x
2q̂
j

]
< ∞. (104)

The above bound can be proved by the same arguments adopted for (101) when δ is small enough. �

Lemma B.2. Suppose E[epZ0] < ∞ for some p > 1. Given λ0 ∈ [0,1), it holds

lim
λ→λ0

Q0

[(∑
k∈Z

∣∣pλ
0,k − p

λ0
0,k

∣∣)4]
= 0. (105)

Proof. We fix λ∗ ∈ (λ0,1). Recall that all constants of type C,K appearing in what follows can depend on λ∗ but do
not depend on the particular bias parameter taken in [0, λ∗], and moreover can change from line to line. First of all we
bound, by applying the Hölder inequality,

Q0

[(∑
k∈Z

∣∣pλ
0,k − p

λ0
0,k

∣∣)4]
=Q0

[( ∑
k∈Z\{0}

p
λ0
0,k

∣∣∣∣p
λ
0,k − p

λ0
0,k

p
λ0
0,k

∣∣∣∣
)4]

≤ Q0

[ ∑
k∈Z\{0}

p
λ0
0,k

∣∣∣∣p
λ
0,k − p

λ0
0,k

p
λ0
0,k

∣∣∣∣
4]

. (106)

By the Taylor expansion with the Lagrange rest at the first order and by (88) we have

pλ
0,k − p

λ0
0,k = (λ − λ0)∂λ=ξk

pλ
0,k = (λ − λ0)p

ξk

0,k(xk − ϕξk
),

where ξk is some random value between λ0 and λ depending on k, λ0 and λ. Therefore we can continue from (106)
and bound

Q0

[ ∑
k∈Z\{0}

p
λ0
0,k

∣∣∣∣p
λ
0,k − p

λ0
0,k

p
λ0
0,k

∣∣∣∣
4]

≤ C(λ − λ0)
4
(
Q0

[ ∑
k∈Z\{0}

(p
ξk

0,k)
4

(p
λ0
0,k)

3
x4
k

]
+Q0

[ ∑
k∈Z\{0}

(p
ξk

0,k)
4

(p
λ0
0,k)

3
ϕ4

ξk

])
. (107)

Given δ > 0 small (the precise value of δ will be stated below) we set Uδ := [λ0 − δ,λ0 + δ] and assume Uδ ⊂ [0, λ∗].
If we show that both the Q0-expectations on the r.h.s. of (107) are finite uniformly in λ ∈ Uδ , then we are done. To
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this aim we extend the bound in (91). Indeed, by the same arguments used for (91), we have for any λ, ζ ∈ [0, λ∗] and
k ∈ Z that

pλ
0,k

p
ζ
0,k

= e(λ−ζ )xk
πζ

πλ
≤ Ce(λ−ζ )xk

e−(1−ζ )Z0 + e−(1+ζ )Z−1

e−(1−λ)Z0 + e−(1+λ)Z−1
≤ Ce|λ−ζ |·|xk |[e|λ−ζ |Z0 + e|λ−ζ |Z−1

]
(108)

(the above constant C does not depend on k ∈ Z).
From now on we restrict to λ ∈ Uδ (thus implying that ξk ∈ Uδ). Then by (108) we can bound

(p
ξk

0,k)
4

(p
λ0
0,k)

4
x4
k ≤ Ce4δ|xk |[e4δZ0 + e4δZ−1

]
x4
k ≤ C′e5δ|xk |[e4δZ0 + e4δZ−1

]

(C′ depends on δ). Hence we get (cf. (92))

dQ0

dP

(p
ξk

0,k)
4

(p
λ0
0,k)

3
x4
k = E[π]−1 π

πλ0
c
λ0
0,k

(p
ξk

0,k)
4

(p
λ0
0,k)

4
x4
k ≤ C′eλ0Z−1e−(1−λ0−5δ)|xk |e4δZ0+4δZ−1 . (109)

We assume δ so small that λ0 + 5δ < 1. Using that |xk| ≥ kd , to prove that the first expectation in the r.h.s. of (107)
is bounded uniformly in λ ∈ Uδ we only need to show that

E
[
e(λ0+4δ)Z−1+3δZ0

]
< ∞. (110)

Before explaining how to proceed we move to the second Q0-expectation on the last line of (107). Due to (94) and
since πξk ≥ c

ξk

0,1 ≥ Ce−(1−ξk)Z0 , we have

ϕ4
ξk

≤ C

πξk
≤ C̃e(1−λ0−δ)Z0 .

Reasoning as in (109) we get

dQ0

dP

(p
ξk

0,k)
4

(p
λ0
0,k)

3
ϕ4

ξk
≤ C′eλ0Z−1e−(1−λ0−4δ)|xk |e4δZ0+4δZ−1 e(1−λ0−δ)Z0

and the second Q0-expectation on the last line of (107) is bounded uniformly in λ ∈ Uδ if we prove that

E
[
e(λ0+4δ)Z−1+(1−λ0+3δ)Z0

]
< ∞. (111)

We explain how to get (111) (indeed, (111) implies (110)). By the Hölder inequality, given a, b ≥ 1 with a−1 +
b−1 = 1, (111) is satisfied if the expectations E[ea(λ0+4δ)Z−1] and E[eb(1−λ0+3δ)Z0] are finite. To conclude we take
a := (λ0 + 4δ)−1 and therefore b := (1 − λ0 − 4δ)−1, and take δ small to have b(1 − λ0 + 3δ) ≤ p. At the end, it
remains to invoke the bound E[epZ0] < ∞. �

Appendix C: Proof of Lemma 5.2

To simplify the notation, inside the proof we write ‖ · ‖ and 〈·, ·〉 for the norm and the scalar product in L2(Q0). Note
that ρ0 ≡ 1. Since Qλ(f ) = Q0(ρλf ) = 〈ρλ,f 〉, the L2-weak convergence ρλ ⇀ ρ0 would imply (45). Hence, we
only need to prove that ρλ ⇀ ρ0.

Suppose by contradiction that ρλ �⇀ ρ0. Then we can extract a sequence λn → λ0 such that ρλn /∈ U , with U

being a suitable open neighbourhood of ρ0. Let R := supλ∈I ‖ρλ‖ and set B(0,R) := {f ∈ L2(Q0) : ‖f ‖ ≤ R}.
Note that R < ∞ by (H1). By the Banach–Alaoglu Theorem and the reflexivity of L2, the ball B(0,R) is compact
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in the L2-weak topology, hence the set {ρλn} is relatively compact in the L2-weak topology. Due to the Eberlein–
Šmulian Theorem (see e.g. [33]), the set {ρλn} is also relatively sequentially compact in the L2-weak topology. As a
consequence, at the cost of extracting a subsequence, we have that ρλn ⇀ ρ for some ρ ∈ L2(Q0). Since ρλn /∈ U , we
also have that ρ �= ρ0. To get a contradiction, we prove that it must be ρ = ρ0.

To this aim we first isolate some properties of ρ. For any function f ∈ L2(Q0) with f ≥ 0, we have 〈ρ,f 〉 ≥ 0
(indeed 〈ρn,f 〉 ≥ 0 since ρn ≥ 0). As a consequence ρ ≥ 0. Moreover 〈ρ,1〉 = limn→∞〈ρn,1〉 = 1. By the above
properties dQ := ρ dQ0 is a well-defined probability measure and dQ

dQ0
∈ L2(Q0). We claim that Q(L0f ) = 0 for

any f ∈ C. By (H2), assuming our claim, we obtain that Q = Q0, thus implying that ρ = ρ0 and leading to the
contradiction.

It remains to prove the claim. Note that for f ∈ C

Q(L0f ) = 〈ρ,L0f 〉 = lim
n→∞〈ρλn,L0f 〉 = lim

n→∞Qλn(L0f ). (112)

Since Qλn(Lλnf ) = 0 by (H3), using assumptions (H1) and (H4) we can bound∣∣Qλn(L0f )
∣∣ = ∣∣Qλn(L0f − Lλnf )

∣∣ = ∣∣Q0
(
ρλn(L0f − Lλnf )

)∣∣ ≤ ‖ρλn‖‖L0f − Lλnf ‖ → 0 (113)

as n → ∞. As a byproduct of (112) and (113) we get that Q(L0f ) = 0 for any f ∈ C, thus proving our claim.

Appendix D: A general lemma for reversible Markov chains

In this appendix we report in full generality a result concerning Markov chains. Assume that (Xn)n≥0 is an irreducible
Markov chain on a countable (finite or infinite) state space S with reversible measure π , not necessarily of finite mass.
For z ∈ S, denote by Pz the distribution of the chain started from z. For D ⊆ S, let τD := inf{n ≥ 0 : Xn ∈ D} and
τ+
D := inf{n ≥ 1 : Xn ∈ D}. The effective conductance (called capacity in [5]) between two disjoint subsets A,B of S

is defined as

Ceff(A,B) := 1

2
min

{∑
z,y

cz,y

(
f (z) − f (y)

)2 : f |A = 0, f |B = 1

}
, (114)

where cz,y := π(z)Pz(X1 = y). We recall that, for x /∈ A, it satisfies the identity

Ceff(x,A) := Ceff
({x},A) = π(x)Px

(
τA < τ+

x

)
(115)

(see Theorem 7.33 and Lemma 7.13 in [5]).

Lemma D.1. Assume that (Xn)n≥0 is an irreducible, reversible Markov chain on a countable (finite or infinite) state
space S with reversible measure π . Let A ⊂ S and B ⊂ S be disjoint subsets of the state space and fix x /∈ A ∪ B .
Assume that there is ε > 0 such that

Pz

(
τ+
x < τB

) ≥ ε ∀z ∈ A. (116)

Then

Px(τA < τB) ≥ ε
Ceff(x,A)

Ceff(x,A ∪ B)
. (117)

Proof. Note first that

Px

(
τA < τ+

x

) = Px

(
τB < τA < τ+

x

) + Px

(
τA < τB ∧ τ+

x

)
. (118)

Define τ
(2)
A := inf{n > τB : Xn ∈ A} and τ

(2)
B := inf{n > τA : Xn ∈ B}. Using the strong Markov property (with the

stopping time τA) and (116), we have

Px

(
τB < τA < τ+

x < τ
(2)
B

) ≥ εPx

(
τB < τA < τ+

x

)
. (119)
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When the Markov chain starts at x, the event {τB < τA < τ+
x < τ

(2)
B } contains all the excursions from x which, before

coming back to x, hit B before A, then hit A and finally come back to x without revisiting B . The time-reversed
excursions are excursions from x which, before coming back to x, hit A before B , then hit B and finally come back
to x without revisiting A. By reversibility,

Px

(
τB < τA < τ+

x < τ
(2)
B

) = Px

(
τA < τB < τ+

x < τ
(2)
A

)
. (120)

Clearly,

Px

(
τA < τB < τ+

x < τ
(2)
A

) ≤ Px

(
τA < τB < τ+

x

)
. (121)

Combining (119), (120) and (121) gives

Px

(
τB < τA < τ+

x

) ≤ 1

ε
Px

(
τA < τB < τ+

x

)
. (122)

Let us now show that

Px

(
τA < τB < τ+

x

) ≤ (1 − ε)Px

(
τA < τB ∧ τ+

x

)
. (123)

Indeed, by the strong Markov property (applied at the stopping time τA) and (116), we get

Px

(
τA < τB ∧ τ+

x

) = Px

(
τA < τB < τ+

x

) + Px

(
τA < τ+

x < τB

)
≥ Px

(
τA < τB < τ+

x

) + εPx

(
τA < τ+

x ∧ τB

)
.

The above estimates allow to get (123). As a consequence of (122) and (123) we get

Px

(
τB < τA < τ+

x

) ≤ 1 − ε

ε
Px

(
τA < τB ∧ τ+

x

)
. (124)

Applying (124) to the first term on the r.h.s. of (118), and using (115) we get

Ceff(x,A) = π(x)Px

(
τA < τ+

x

) ≤ π(x)

ε
Px

(
τA < τB ∧ τ+

x

)
. (125)

Finally note that

Px(τA < τB) = Px

(
τ+
x < τA < τB

) + Px

(
τA < τB ∧ τ+

x

)
= Px

(
τ+
x < τA ∧ τB

)
Px(τA < τB) + Px

(
τA < τB ∧ τ+

x

)
,

where we again applied the strong Markov property (at the stopping time τ+
x ). Hence

Px(τA < τB)Px

(
τ+
x > τA ∧ τB

) = Px

(
τA < τB ∧ τ+

x

)
,

which we can write, using again (115) and that τA ∧ τB = τA∪B , as

Px(τA < τB)Ceff(x,A ∪ B) = π(x)Px

(
τA < τB ∧ τ+

x

)
.

Together with (125), the claim now follows. �
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