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The classical Skorokhod embedding problem for a Brownian motion W

asks to find a stopping time τ so that Wτ is distributed according to a pre-
scribed probability distribution μ. Many solutions have been proposed dur-
ing the past 50 years and applications in different fields emerged. This article
deals with a generalized Skorokhod embedding problem (SEP): Let X be a
Markov process with initial marginal distribution μ0 and let μ1 be a probabil-
ity measure. The task is to find a stopping time τ such that Xτ is distributed
according to μ1. More precisely, we study the question of deciding if a finite
mean solution to the SEP can exist for given μ0, μ1 and the task of giving a
solution which is as explicit as possible.

If μ0 and μ1 have positive densities h0 and h1 and the generator A of X

has a formal adjoint operator A∗, then we propose necessary and sufficient
conditions for the existence of an embedding in terms of the Poisson equation
A∗H = h1 − h0 and give a fairly explicit construction of the stopping time
using the solution of the Poisson equation. For the class of Lévy processes,
we carry out the procedure and extend a result of Bertoin and Le Jan to Lévy
processes without local times.

1. Introduction and main results. The Skorokhod embedding problem was
originally formulated and solved by Skorokhod [30, 31] for a one-dimensional
Brownian motion W started from 0 and a given probability measure μ:

(CLASSICAL SEP). Find a stopping time τ such that Wτ ∼ μ and E[τ ] < ∞.

The additional requirement on τ to satisfy E[τ ] < ∞ is commonly posed
to exclude nonmeaningful solutions. As observed by Doob (see [23], Re-
mark 51.7), without this condition a trivial solution would be τ = inf{t ≥ 2 : Bt =
F−1

μ (�(B1))}, where � is the distribution function of a standard normal vari-
able and F−1

μ is the right-inverse of the distribution function Fμ of μ. There is a
great ongoing effort to obtain solutions with different properties to the Skorokhod
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embedding problem in different generalizations. For a survey paper on classical
results, we refer to [20] and references therein.

Recent motivation to deal with various versions of the classical Skorokhod em-
bedding problem stems from its applications in mathematical finance starting with
the seminal work of Hobson [17], where model-independent pricing bounds and
hedging techniques for lookback options were studied by means of Skorokhod em-
bedding. The link between robust financial mathematics and the classical SEP was
utilized by many authors to determine robust price bounds for exotic options; see
[16] for a more detailed introduction to this area. More recently, additional inter-
est in the Skorokhod embedding problem was also caused by new applications in
game theory (e.g., [13, 29]) and in numerical analysis (e.g., [1, 14]).

There are two direct extensions of the Skorokhod embedding problem: gen-
eralizing the process and generalizing the deterministic initial condition δ0 to an
arbitrary distribution μ0. A natural motivation for the latter is the interest of con-
structing multi-marginal Skorokhod embeddings.

The version of the Skorokhod embedding problem we deal with allows for a
general process and a general initial distribution. Let μ0 and μ1 be two given
probability distributions. On a complete probability space (�,F,Pμ0), we con-
sider a stochastic process L with L0 ∼ μ0 under Pμ0 and denote by (Ft )t≥0 the
Pμ0 -augmented natural filtration of L. This setting leads to the following formula-
tion of the Skorokhod embedding problem:

(SEP). Find an (Ft )t≥0-stopping time τ such that Lτ ∼ μ1 and Eμ0[τ ] < ∞.

The first natural question is under which conditions an embedding τ exists. For
a Brownian motion starting from an initial law μ0 with finite second moment, this
is a classical result: There is a finite mean embedding for μ1 if and only if μ0 and
μ1 have the same first moment, finite second moments and μ0 is smaller than μ1
in convex order, that is,∫

R
ϕ(x)μ0(dx) ≤

∫
R

ϕ(x)μ1(dx) for all ϕ convex.

Sufficiency follows, for example, by [3], necessity by the optional sampling the-
orem and Jensen’s inequality. To give the right generalization of this property for
more general Markov processes is the main purpose of this article. Using general
Markov process theory, we find an abstract formulation in terms of Poisson equa-
tions which becomes explicit for Lévy processes but we believe to hold much more
generally.

Recall that a continuous-time process (Lt )t≥0 with values in R is called the
Lévy process if it has almost surely RCLL sample paths, is almost surely issued
from 0, is stochastically continuous and has stationary and independent incre-
ments. Due to the Lévy–Khintchine representation, there exist α ≥ 0, γ ∈ R and a
measure ν on R with ν({0}) = 0 and

∫
R(x2 ∧ 1)ν(dx) < ∞ such that

(1.1) E
[
eiuLt

] = etη(u), u ∈R, t ≥ 0,
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with the characteristic exponent

(1.2) η(u) = −1

2
α2u2 + iuγ +

∫
R\{0}

(
eiuy − 1 − iuy1{|y|≤1}

)
ν(dy), u ∈ R.

The triplet (α2, γ, ν) is called a Lévy triplet and fully characterizes L. We ex-
clude the trivial case of a constant Lévy process, that is, α = γ = ν = 0. For more
background information, we refer for instance to the introductory texts of Bertoin
[4] and Kyprianou [18]. A Lévy process with initial distribution μ0 is defined as
L = L̃+X0, where X0 ∼ μ0 is independent from the Lévy process L̃. Throughout
the article, L will be a Lévy process with initial distribution μ0 under Pμ0 . For the
special case μ0 = δ0, we always abbreviate P = Pδ0 .

To the best of our knowledge, there is only one article that deals with sufficient
and necessary conditions for the existence of finite mean Skorokhod embeddings
for Lévy processes, for the particular case, μ0 = δ0. For symmetric and recurrent
Lévy processes that possess jointly continuous local times (e.g., α-stable processes
with α ∈ (1,2]), Bertoin and Le Jan [5] give the following necessary and suffi-
cient condition for the Skorokhod embedding problem: If μ̂1 denotes the Fourier
transform of the measure μ1, then the necessary and sufficient condition for the
existence of a finite mean Skorokhod embedding is

μ̂1 − 1

η
∈ L1(R), H ≥ 0 and H ∈ L1(R),(1.3)

where

H(x) := 1

2π

∫
R

μ̂1(ξ) − 1

η(ξ)
e−ixξ dξ, x ∈ R.(1.4)

We should mention that the results of [5] hold not only for Lévy processes
but also for Hunt processes with local times. Since their proofs were based on
excursion theory, we had to develop a completely different approach to deal with
processes that do not have local times (e.g., the Cauchy process).

The main result of the present article shows that the obvious generalization of
(1.3) and (1.4) to nontrivial μ0 (i.e., replacing 1 by μ̂0) is the necessary and suffi-
cient condition also for a wide class of measures and Lévy processes without local
times. Allowing the Lévy process to be more general forces us on the other hand to
assume a priori regularity on μ0, μ1. We will always assume that μ0, μ1 have posi-
tive densities with respect to the Lebesgue measure. Additional smoothness will be
imposed (e.g., h0, h1 ∈ C0(R) for the Brownian motion). Assumptions on the den-
sities are different for different Lévy processes; we state the precise assumptions
in Section 1.1 below.

THEOREM 1.1. Suppose L is a Lévy process with initial distribution μ0 and
characteristic exponent η. Suppose μ0, μ1 have strictly positive densities h0, h1
which are “sufficiently smooth” (specified below in Assumption 1.6):



ON SKOROKHOD EMBEDDINGS AND POISSON EQUATIONS 2305

(i) The necessary and sufficient condition for the existence of a finite mean
Skorokhod embedding is

μ̂1 − μ̂0

η
∈ L1(R), H ≥ 0 and H ∈ L1(R),(1.5)

where

H(x) := 1

2π

∫
R

μ̂1(ξ) − μ̂0(ξ)

η(ξ)
e−ixξ dξ, x ∈ R.(1.6)

(ii) If (1.5) is satisfied, then an explicit solution under Pμ0 is given as follows:

τ := inf
{
t ∈ [0, ρ) :

∫ t

0
e−G(r) h1(Lr)

H(Lr)
dr ≥ 1

}
∧ ρ,

where, for t ≥ 0,

ρ := inf
{
t ∈ [0,∞) : H(Lt) = 0

}
and G(t) :=

∫ t

0

h1(Lr) − h0(Lr)

H(Lr)
dr

with the usual convention inf∅ := ∞.
(iii) With τ from (ii), it holds that Eμ0[τ ] = ∫

R H(x)dx.

The conditions might look complicated at first sight but they are explicit since
they only involve the given densities and the given characteristic exponent of the
Lévy process. Also the stopping time is fairly explicit: It only involves the process
and explicit functions but no further stochastic quantities (e.g., local times).

Even though the three conditions in (1.5) cannot be considered separately from
each other, each of them has an interpretation in analogy to the Brownian case
mentioned above: Since η(0) = 0, the integrability at zero of (μ̂1 − μ̂0)/η forces a
decay of μ̂1 − μ̂0 in relation to the behavior of η at zero. Since the behavior at zero
of a characteristic function relates to the moments, the integrability of (μ̂1 − μ̂0)/η

is an abstract condition for equal first moments of μ0, μ1. Nonnegativity of H is a
generalization of the convex order condition for Brownian motion and integrability
of H corresponds to finite second moments.

REMARK 1.2. Note that for lattice type Lévy processes there exist u0 	= 0
with η(u0) = 0. For such u0 the condition (μ̂1 − μ̂0)/η ∈ L1(R) in (1.5) thus
requires a decay of μ̂1(u) − μ̂0(u) as u → u0.

While Bertoin and Le Jan [5] deal with necessary and sufficient conditions for
the solvability of the Skorokhod embedding problem for, in particular, certain Lévy
processes and μ0 = δ0 (see above), sufficient conditions for different types of Lévy
processes and μ0 = δ0 were also obtained in [19] and [21]. Namely, Monroe [19]
addresses symmetric α-stable Lévy processes with α ∈ (1,2] and Obłój and Pisto-
rius [21] the case of spectrally negative Lévy processes. In a more abstract setting,
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Falkner and Fitzsimmons [12] provide even necessary and sufficient conditions
for general but transient Markov processes, which cover only partially the class of
Lévy processes. For a relaxed version of the SEP (allowing for randomized stop-
ping times, i.e., allowing for stopping times which are measurable w.r.t. a larger
filtration than the natural filtration generated by the underlying Markov process)
Rost [25] shows necessary and sufficient conditions for general Markov processes.
A discussion about differences between randomized and non-randomized solutions
to the SEP can be found for instance in [12].

REMARK 1.3. All results about the Skorokhod embedding problem are pre-
sented for Lévy processes for the sake of clarity. However, we believe that most ar-
guments can be extended to more general Markov processes under rather unhandy
conditions. The main finding of this article reveals a direct connection between
the Skorokhod embedding problem and the existence and positivity/integrability
of solutions to the Poisson equation

A∗H = h1 − h0,(1.7)

where A∗ denotes (if it exists) the formal adjoint operator of the generator A of
the given Markov process L. A sketch is given in Section 1.2 to explain why the
existence of a positive and integrable solution to the Poisson equation contains
exactly the information needed for the finite mean Skorokhod embedding problem
with densities h0 and h1.

In contrast to Remark 1.3, the statement of Theorem 1.1 involves explicit quan-
tities instead of solutions to Poisson equations. This, indeed, is a speciality for
Lévy processes for which the Poisson equation can be solved in Fourier space: To
see this, we recall the Fourier representation Â∗H(u) = η(u)Ĥ (u) of A∗, where
A∗ is the generator of the dual Lévy process −L. To solve (1.7), one takes Fourier
transforms of both sides, solves as Ĥ = (ĥ1 − ĥ0)/η and takes the inverse Fourier
transform. This gives exactly the form of H given in Theorem 1.1. Taking the
inverse Fourier transform is valid thanks to the property Ĥ = (ĥ1 − ĥ0)/η ∈ L1.
This analysis in the context of Lévy processes is carried out in Section 3.1.1; see,
in particular, Proposition 3.1.

REMARK 1.4. Let us compare our results to those of [24] in more detail.
Define the measures μiU by

μiU(A) := Eμi

[∫ ∞
0

1A(Lt)dt

]
, A ∈ B(R).

Under the assumption that μ0U is a σ -finite measure (which is a transience hy-
pothesis; see [12]), [24] proves that a (randomized) stopping time τ̄ such that
Lτ̄ ∼ μ1 under Pμ0 exists if and only if μ0U ≥ μ1U . Since a solution to (SEP) is in
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particular also a randomized stopping time, the necessary and sufficient condition
(1.5) in Theorem 1.1 implies μ0U ≥ μ1U . This property appears to correspond to
nonnegativity of H , whereas the other two conditions in (1.5) seem to correspond
to the additional restrictions posed on the stopping time in (SEP), namely that it
should be nonrandomized (which is implicit in our formulation) and have finite
expected value.

1.1. Regularity assumptions. For different Lévy processes, the necessary and
sufficient conditions for the solvability of the Skorokhod embedding problem
(SEP) provided in Theorem 1.1 require different regularity assumptions on the
initial density h0 and the target density h1. In order to state these assumptions, we
distinguish between the following types of Lévy processes.

DEFINITION 1.5. We say a Lévy process with characteristic exponent η is of
type

S if it is symmetric and
∫ ∞

1
1

|η(u)| du < ∞,
0 if lim infu→∞ |η(u)| ∈ (0,∞],
D if lim infu→∞ |η(u)| = 0.

Notice that these three types cover all Lévy processes as in particular any Lévy
process is either of type 0 or of type D. Based on this classification, we make the
following regularity assumptions on the densities h0, h1.

ASSUMPTION 1.6 (Regularity assumptions).

• If L is of type S, then h0, h1 ∈ C0(R).
• If L is of type 0, then hi ∈ C2

0(R) with h
(k)
i ∈ L1(R) for k = 1,2, i = 0,1, where

h
(k)
i is the kth derivative of hi .

• If L is of type D, then ĥ1 − ĥ0 ∈ Cc(R).

The Lévy processes considered by Bertoin and Le Jan are of type 0 as we will
see in the next remark. The subclass of processes considered in the Appendix of
[5] (for which conditions (1.3) were proved) are even of type S.

REMARK 1.7. In [5], the Lévy processes are assumed to be recurrent and sat-
isfy that 0 is regular for 0. Excluding the compound Poisson case, the last condition
is equivalent to condition (i) of Lemma 1.9 below and

σ 2 > 0 or
∫
R

(|x| ∧ 1
)
ν(dx) = ∞;

see [22], Section I.30. Hence, these processes are of type 0 by Lemma 1.9.

Let us give further examples.
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EXAMPLE 1.8. Type S: Symmetric α-stable Lévy processes with index α ∈
(1,2] are of type S. Indeed, for such processes one has η(u) = −c|u|α for some c >

0 and so
∫ ∞

1 |η(u)|−1 du = (α − 1)/c < ∞ is satisfied. In particular, a Brownian
motion is of type S and so for a Brownian motion Theorem 1.1 provides a solution
to the SEP for any positive, continuous densities h0, h1 ∈ C0(R) which have the
same first moment, finite second moments and which are in convex order.

Type 0: Symmetric α-stable Lévy processes with index α ∈ (0,1] are of type 0,
but not of type S.

Type D: Lattice-type compound Poisson processes are of type D. Other exam-
ples of processes of type D can be found in [4], Exercise I.7, and [28], Exam-
ple 41.23.

In fact, Lévy processes of type 0 form a large class as demonstrated by the
sufficient conditions presented in the next lemma.

LEMMA 1.9. Suppose that either:

(i)
∫
R Re( 1

1−η(ξ)
)dξ < ∞ or

(ii) for some t > 0, the distribution of Lt − L0 has a nontrivial absolutely con-
tinuous part.

Then L is of type 0.

PROOF. We argue by contraposition. Suppose there exists {uk}k∈N ⊂ R such
that limk→∞ |uk| = ∞ and limk→∞ η(uk) = 0. Then condition (ACP) in [28] can-
not be satisfied by the argument used in [28], Example 41.23, which we reproduce
here for convenience: Denoting for q > 0 by V q the q-potential measure

V q(B) = E

[∫ ∞
0

e−qt1B(Lt )dt

]
, B ∈ B(R),

one may use [28], Proposition 37.4, to obtain

lim
k→∞ q̂V q(uk) = lim

k→∞
q

q − η(uk)
= 1 = qV q(R).

Since limk→∞ |uk| = ∞, this shows that q̂V q does not vanish at infinity and so by
the Riemann–Lebesgue theorem qV q does not have an absolutely continuous part.
Thus, condition (ACP) in [28] is indeed not satisfied. Combining this with [28],
Theorem 43.3, and [28], Remark 43.6, condition (i) does not hold. Similarly, for
any t > 0, limk→∞Eμ0[eiuk(Lt−L0)] = 1 and by the Riemann–Lebesgue theorem
it follows that the law of Lt − L0 does not have an absolutely continuous part.
Hence, (ii) does not hold either. �
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1.2. Sketch of the proof. For the convenience of the reader, we give a brief
sketch of the arguments to explain why the existence of a finite mean Skorokhod
embedding for a Markov process is related to the existence of a nonnegative and
integrable solution to the Poisson equation A∗H = h1 − h0. The link to the the-
orem then comes from explicit solvability of the Poisson equation in the case of
Lévy processes as explained below Remark 1.3.

1.2.1. Necessity of the conditions. Suppose there is a finite mean Skorokhod
embedding τ for a Markov process with generator A and adjoint A∗ for the mea-
sures μi(dx) = hi(x)dx. Since τ has finite mean, Dynkin’s formula yields3

Eμ0

[∫ τ

0
Af (Ls)ds

]
= Eμ0

[
f (Lτ )

] −Eμ0
[
f (L0)

]
, f ∈ D(A).

Let us assume for the moment there is a solution H to the Poisson equation A∗H =
h1 − h0. Integrating out the assumed distributions Lτ ∼ μ1 and L0 ∼ μ0 and then
switching to the adjoint operator gives

Eμ0

[∫ τ

0
Af (Ls)ds

]
=

∫
R

f (x)
(
h1(x) − h0(x)

)
dx =

∫
R

f (x)A∗H(x)dx

=
∫
R
Af (x)H(x)dx.

Now suppose the range of A is rich enough to approximate any positive test func-
tion with compact support and constant functions, then one obtains integrability
and nonnegativity for H : The first as Af ≡ 1 gives

∫
R H(x)dx = Eμ0[τ ] < ∞

and the second since the left-hand side is nonnegative whenever Af ≥ 0. Hence,
if the existence of a finite mean Skorokhod embedding also implies solvability of
the Poisson equation, then the solution H is necessarily positive and integrable.

For the existence of H , properties of A∗ need to be studied in detail. In the
case of a Lévy process, we prove (under regularity assumptions on h0, h1) that the
existence of a finite mean Skorokhod embedding implies (μ̂1 − μ̂0)/η ∈ L1(R),
from which it then follows (see the discussion below Remark 1.3) that a solution
H to the Poisson equation exists and is given by the inverse Fourier transform of
(μ̂1 − μ̂0)/η.

REMARK 1.10. The heart of the argument is the use of Dynkin’s formula
which does not assume the underlying process to be Lévy. For the existence of
the solution H to the Poisson equation, our argument does not extend to more
general Markov processes. Nonetheless, we do believe the Poisson equation for
more general processes is solvable as soon as there is a finite mean solution to the
Skorokhod embedding problem.

3See Section 2.2 for the definition of D(A) ⊂ C0(R) and note, for example, C2
c (R) ⊂ D(A).
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1.2.2. Sufficiency of the conditions. Assume there is a solution H to the Pois-
son equation (1.7) which is nonnegative and integrable. The approach presented
in this article is inspired by Bass’ solution [2] to the classical Skorokhod embed-
ding problem for Brownian motion. While the construction of Bass is short and
elegant due to particular properties of Brownian motion, our variant requires more
machinery.

To start with, let us first recall Bass’ strategy. Let W be a Brownian motion
and μ be a centered probability measure on R with finite second moment. Bass’
construction, slightly reinterpreted, can be split into two steps.

Step 1: The first observation is that there is a function g : R → R such that
g(W1) ∼ μ and thus Yt := E[g(W1)|Ft ], t ∈ [0,1], gives a martingale with Y0 = 0
and Y1 ∼ μ. Based on the strong Markov property, the knowledge of the marginal
distributions of the Brownian motion and Itô’s formula, Bass showed that there
exists a function σ : [0,1] × R → [0,∞) such that Y is a weak solution to the
stochastic differential equation

(1.8) dZt = √
σ(t,Zt)dWt with Z0 ∼ δ0 and Z1 ∼ μ.

Step 2: A time-change τ is constructed as the unique solution of the random
ordinary differential equation

τ ′(t) = σ(t,Wτ(t)) with τ(0) = 0

and it is shown that (τ (t))t∈[0,1] is a family of stopping times with respect to the
filtration generated by W . By general time-change arguments (or Dubins–Schwarz
theorem in the Brownian case), (Wτ(t))t∈[0,1] turns out to be a weak solution of
(1.8), and thus (Wτ(t))t∈[0,1] has the same distribution as (Yt )t∈[0,1] if σ has enough
regularity to ensure weak uniqueness to the stochastic differential equation (1.8).
As Y1 ∼ μ by Step 1, τ(1) is a solution to the classical Skorokhod embedding
problem for Brownian motion.

From an analytical point of view, Bass solved in Step 1 an inverse problem for
a second- order partial differential equation. Indeed, given the two marginal distri-
butions δ0 and μ, Bass first writes down a process Y with some marginal distribu-
tions p(t, ·), t ∈ [0,1], that match the prescribed marginals at times 0 and 1. He
then finds a σ such that the Fokker–Planck equation for the time-inhomogeneous
generator σ

2
∂2

∂x2∫
R

f (x)p(t,dx) −
∫
R

f (x)δ0(dx)

=
∫ t

0

∫
R

σ(s, x)
1

2

∂2

∂x2 f (x)p(s,dx)ds, t ∈ [0,1],(1.9)

is solved by the family of marginal distributions. To circumvent the probabilistic
derivation of σ through the clever choice of Y in Step 1 of Bass (which does not
extend to Lévy processes) we directly solve the Fokker–Planck equation (1.9) for



ON SKOROKHOD EMBEDDINGS AND POISSON EQUATIONS 2311

σ with a carefully chosen Ansatz for the marginals p(t, ·), t ∈ [0,1]. A priori, our
Ansatz is not related to a stochastic process Y and we need to work hard to justify
the existence of a process Y with the prescribed marginals. For the special case of
a Brownian motion, our marginals differ from Bass’ marginals so also σ differs
and, as a consequence, our stopping time τ differs from Bass’ stopping time.

REMARK 1.11. The idea we implement stems from implied volatility theory
and goes back to Dupire [9]. The original idea goes as follows: Suppose that in a
Brownian market model dSt = σ(t, St )dBt all European call prices

C(T ,K) = E
[
max{ST − K,0}] =

∫
R

max{x − K,0}φ(T , x)dx

at time 0 for strike K and maturity T are known but σ is only known to exist but not
explicit. Here, φ(t, ·) denotes the marginal density of S at time t . Differentiating
the known call prices C twice with respect to the strike prices gives the key formula
φ(T ,K) = CKK(T ,K). This shows that from the knowledge of all option prices
one can deduce the entire solution φ to the Fokker–Planck equation. In order to
identify the model that implied the observed option prices (i.e., recover σ from the
Fokker–Planck equation) Dupire suggested a formula for σ that we recall below.
A generalization of this idea was carried out in [6] for jump diffusion models.

REMARK 1.12. Similar ideas have been used,for example, in [10, 15] and [7]
to construct (martingale) diffusions that match prescribed marginal distributions at
given (random) times. This provides alternative constructions of Y in Step 1. By
repeating Step 2, such processes could potentially be used to construct alternative
solutions to the classical Skorokhod embedding problem for Brownian motion.
Note that as in the case of Bass [2] these constructions are specific to the case of
Brownian motion and, as we are interested in general Lévy processes, we had to
develop new ideas.

Here, and in what follows, we say σ is the (possibly time-dependent) local speed
function of a process Y , if Y has generator σA for a time-homogeneous generator
A of another (given) Markov process. The corresponding Fokker–Planck equation
satisfied by the densities φ (if they exist) of Y is∫

R
f (x)φ(t, x)dx −

∫
R

f (x)μ0(dx)

=
∫ t

0

∫
R

σ(s, x)Af (x)φ(s, x)dx ds, t ≥ 0,(1.10)

for the starting distribution μ0.
Our approach to the Skorokhod embedding problem takes up the ideas from

implied volatility but is fundamentally different from option pricing at the same
time: Dupire assumes a priori that the solution to the Fokker–Planck equation
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(equivalently all option prices) is implied by some σ and then recovers σ from
the option prices through the Fokker–Planck equation. In particular, the Fokker–
Planck equation is a priori assumed to be well-posed. We proceed differently: We
suggest a family (φ(t, ·))t∈[0,1] of densities and hope to find a σ so that the cor-
responding Fokker–Planck equation has the unique solution φ. Of course, a priori
there is no reason to believe this σ exists and it strongly depends on assumptions
posed upon φ! Comparing with Bass’ approach, instead of deriving φ as densities
of Yt := E[g(W1)|Ft ] we write down an Ansatz for φ:

φ(t, ·) = th1 + (1 − t)h0, t ∈ [0,1],(1.11)

where h0, h1 are the densities from the Skorokhod embedding problem. The
Ansatz for φ looks arbitrary (it is arbitrary, indeed) but below it turns out to work
very nicely. In order to derive a formula for σ in terms of φ, we follow the idea
of Dupire: Assuming such a σ exists, the transition densities φ have to solve the
Fokker–Planck equation (1.10) for nice test functions f . Taking derivatives with
respect to t yields∫

R
f (x)∂tφ(t, x)dx =

∫
R

σ(x, t)Af (x)φ(t, x)dx

=
∫
R

f (x)A∗[
σ(t, ·)φ(t, ·)](x)dx,

where A∗ is the adjoint operator. Hence, σ needs to satisfy the equation

∂tφ(t, x) =A∗[
σ(t, ·)φ(t, ·)](x)

which, solving for σ , gives the “generalized Dupire formula”

σ(t, x) = ((A∗)−1∂tφ(t, ·))(x)

φ(t, x)
.

Plugging-in the choice (1.11) of φ and then using the assumption that there is a
solution H to the Poisson equation A∗H = h1 − h0 yields the formula

(1.12) σ(t, x) = H(x)

φ(t, x)
.

If now for this σ there is a unique Markov process Y with generator σA, then this
is the analogue to the solution to (1.8) in the approach of Bass.

Finally, we obtain from Y the stopping time τ in the same way Bass did in
his Step 2: Solve the random ODE τ ′(t) = σ(t, Yt ) and define τ := τ(1). This
is where the positivity assumption on H enters the proof: A time-change should
be an increasing function. Since by construction Y1 has marginal distribution
φ(1, x)dx = h1(x)dx and Lτ(1) ∼ Y1, τ is a solution to the Skorokhod embed-
ding problem.
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It only remains to show that τ has finite mean, but this is immediate from the
definitions above (integrating out the law Yt ∼ φ(t, x)dx) and the assumed inte-
grability of H :

E
[
τ(1)

] = E

[∫ 1

0
σ(t,Lτ(t))dt

]
= E

[∫ 1

0
σ(t, Yt )dt

]

=
∫ 1

0

∫
R

σ(t, x)φ(t, x)dx dt =
∫
R

H(x)dx.

Here is a summary of our strategy:

μ0,μ1
Ansatz−−−→ φ

Dupire formula−−−−−−−−→ σ
martingale problem−−−−−−−−−−→ σA Markov︸ ︷︷ ︸

replacing Step 1 of Bass

process Y
time-change−−−−−−→ τ = τ(1)︸ ︷︷ ︸

extending Step 2 of Bass

REMARK 1.13. The arguments rely on classical time-change techniques for
Markov processes and existence/uniqueness results for Fokker–Planck equations
with time-inhomogeneous coefficients. In the time-homogeneous case, many of
the results needed can be found in [11]. Results under minimal conditions for the
time-inhomogeneous case are developed in the accompanying article [8]. For con-
venience of the reader, those results from [8] which are required in the proof here
are stated in the next section.

2. Preliminaries. This section starts by stating the notation and definitions
used throughout the article. In the subsequent subsections, we then introduce the
necessary preliminaries about Lévy processes, time-changes and the associated
Fokker–Planck equations.

2.1. Notation and definitions. C0(R) denotes the space of all continuous func-
tions f : R →R satisfying lim|x|→∞ f (x) = 0 and Cb(R) is the space of bounded
continuous functions on R. For n ∈ N, let Cn

0 (R) be the subset of functions f ∈
C0(R) such that f is n-times differentiable and all derivatives of order less or equal
to n belong to C0(R) and we set C∞

0 (R) := ⋂
n∈N Cn

0 (R). The spaces of functions
with compact support Cc(R), Cn

c (R) and C∞
c (R) are defined analogously. The

space DR[0,∞) stands for all maps ω : [0,∞) → R which are right-continuous
and have a left-limit at each point t ∈ [0,∞) (short: RCLL paths). For x ∈ R and
ε > 0, set Bε(x) := {y ∈R : |x − y| < ε}. P(R) (resp., P(DR[0,∞))) denotes the
set of probability measures on (R,B(R)) (resp., on (DR[0,∞),B(DR[0,∞))).
B(R) denotes the space of real-valued, bounded, measurable functions on R and
‖ · ‖ is the sup-norm. For f ∈ C0(R) and a sequence (fn)n∈N with fn ∈ C0(R),
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we say that fn converges to f in C0(R) (and write fn → f in C0(R), etc.), if
limn→∞ ‖fn − f ‖ = 0, that is, fn converges to f uniformly.

Moreover, we denote by Z the coordinate process on DR[0,∞) and make the
following definition (analogous to [11], Chapter 6, Theorem 1.1):

D.1 A measurable map H : R→ [0,∞) is called regular for P ∈P(DR[0,∞))

if P -a.s.

inf
{
s ∈ [0,∞) :

∫ s

0
H(Zu)

−1 du = ∞
}

= ρ and H(Zρ) = 0 on {ρ < ∞}

where ρ := inf{s ∈ [0,∞) : H(Zs) = 0}.
Let D ⊂ Cb(R), A : D → Cb(R) linear and μ ∈ P(R). A solution to the RCLL-

martingale problem for (A,μ) is an R-valued process (Xt)t≥0 with RCLL sample
paths defined on some probability space (�̃, F̃, P̃) such that for each h ∈ D, the
process

h(Xt) − h(X0) −
∫ t

0
Ah(Xs)ds, t ≥ 0,

is a (FX
t )t≥0-martingale and P̃ ◦ X−1

0 = μ, where (FX
t )t≥0 denotes the filtration

generated by X. The RCLL-martingale problem for (A,μ) is said to be well-posed
if there exists a solution and uniqueness holds, that is, if any two solutions X and
X̃ to the RCLL-martingale problem for (A,μ) have the same finite-dimensional
distributions.

2.2. Lévy processes. Recall from the introduction that (α2, γ, ν) denotes the
Lévy triplet and

η(u) = −1

2
α2u2 + iuγ +

∫
R\{0}

(
eiuy − 1 − iuy1{|y|≤1}

)
ν(dy), u ∈ R,

is the characteristic exponent, that is, E[eiuLt ] = etη(u) for u ∈ R and t ≥ 0. In
what follows, we collect the machinery that we need to study the Poisson equation
for Lévy processes in the next section.

For t ≥ 0 and f ∈ C0(R), define the transition semigroup Ptf (x) := E[f (Lt +
x)], x ∈ R, and, for q > 0, f ∈ C0(R) the resolvent operators

Uqf (x) :=
∫ ∞

0
e−qtPtf (x)dt, x ∈ R.

By dominated convergence, f ∈ C0(R) implies Ptf ∈ C0(R) for any t ≥ 0, and
thus

D(A) :=
{
f ∈ C0(R) : lim

t→0
t−1(Ptf − f ) exists in C0(R)

}
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is well-defined. For f ∈ D(A), define Af := limt→0 t−1(Ptf − f ). Then (see
[28], Theorem 31.5) the generator A : D(A) → C0(R) is linear, C2

0(R) ⊂ D(A)

and for u ∈ C2
0(R) it holds that

(2.1)

Au(x) = 1

2
α2u′′(x) + γ u′(x)

+
∫
R\{0}

[
u(x + y) − u(x) − yu′(x)1{|y|≤1}

]
ν(dy), x ∈ R.

Furthermore, C∞
c (R) is a core for A. This means by definition that for any f ∈

D(A), there exists a sequence {fn}n∈N ⊂ C∞
c (R) such that limn→∞ fn = f and

limn→∞Afn = Af in C0(R). In particular, we note the following.

LEMMA 2.1. Suppose L is a Lévy process with Lévy triplet (α2, γ, ν) and
initial distribution μ0. Set D := C∞

c (R) and define A : D → C0(R) as (2.1) for
u ∈ D. Then the following hold:

(i) D is dense in C0(R) and an algebra in C0(R),
(ii) there exists {φn}n∈N ⊂ D such that supn ‖φn‖ < ∞, supn ‖Aφn‖ < ∞ and

lim
n→∞φ(x) = 1 and lim

n→∞Aφn(x) = 0 for x ∈ R,

(iii) for any μ ∈P(R), the RCLL-martingale problem for (A,μ) is well-posed,
(iv) L is a solution to the RCLL-martingale problem for (A,μ0).

Note that the properties (i)–(iii) imply that Assumption 2.7 in [8] is satisfied.

PROOF. This follows by general theory (as explained in Example 2.8 of [8])
since the transition semigroup is a positive, strongly continuous contraction semi-
group on C0(R) by [28], Theorem 31.5, and since D is a core (see above) for
the infinitesimal generator of (Pt )t≥0. One could also verify (ii) by hand by tak-
ing φ ∈ C∞

c (R) with φ(x) = 1 for x ∈ [−1,1] and φ(x) = 0 for x /∈ [−2,2] and
setting φn(x) := φ(x/n) for x ∈R, n ∈ N. �

Two objects which are less popular in the study of Lévy processes, but central
for our purposes, are the potential operator and the adjoint, both of which we intro-
duce next. From [28], Remark 31.10, or [27], Theorem 4.1, it follows that the Lévy
process admits a potential operator. By definition,4 this means that A is injective,
the domain D(V ) := {Af : f ∈ D(A)} of the potential operator V := −A−1 is
dense in C0(R) and, for f,g ∈ C0(R),

(2.2) g ∈ D(V ) and Vg = f ⇐⇒ Uqg → f in C0(R) as q → 0.

4More precisely, if (Pt )t≥0 admits a potential operator, then V = −A−1 and D(V ) is dense in
C0(R) by [27], Theorem 2.3, and (2.2) holds by definition of V (cf. equation (1.3) in [27]). In [27],
Theorem 4.1, it is proved that the semigroup (Pt )t≥0 associated to L indeed admits a potential
operator.



2316 DÖRING, GONON, PRÖMEL AND REICHMANN

Furthermore, for t ≥ 0, set L∗
t := −Lt . Then L∗ is also a Lévy process, called

the dual Lévy process, and its Lévy triplet is given by (α2,−γ, ν∗) where ν∗(A) :=
ν({−x : x ∈ A}) for A ∈ B(R). In other words, the characteristic exponent η∗ of
L∗ is given for u ∈ R as η∗(u) = η(−u) where η is the characteristic exponent
(1.2) of L. Since L∗ is also a Lévy process, the transition semigroup, resolvent
operator, infinitesimal generator and potential operator have been defined above.
We will denote them by P ∗

t , (Uq)∗, A∗ and V ∗, respectively.
For example, we denote by A∗ the infinitesimal generator associated to the

dual Lévy process L∗ and refer to it as the dual of A. Recall from the above that
C2

0(R) ⊂ D(A∗) and for u ∈ C2
0(R),

(2.3)

A∗u(x) = 1

2
α2u′′(x) − γ u′(x)

+
∫
R\{0}

[
u(x − y) − u(x) + yu′(x)1{|y|≤1}

]
ν(dy), x ∈ R.

REMARK 2.2. The semigroup (Pt )t≥0 and the operator A are defined on (a
subset of) C0(R) in the present context. We define A∗ also on C0(R) (and not on
the dual space of C0(R) as in [27]). The next lemma justifies the ∗-notation.

The following lemma is immediate; it identifies the dual generator A∗ as the
adjoint operator of A. For the proof of Theorem 1.1, we will not need all the cases,
but we have included the other ones for completeness.

LEMMA 2.3. Suppose L is a Lévy process with Lévy triplet (α2, γ, ν) and
denote by A its infinitesimal generator A : D(A) → C0(R) and A∗ : D(A∗) →
C0(R) the infinitesimal generator of −L. Then

(2.4)
∫
R
Af (x)g(x)dx =

∫
R

f (x)A∗g(x)dx,

for any f ∈ D(A), g ∈ D(A∗) such that either f,g ∈ L1(R) or f,Af ∈ L1(R) or
g,A∗g ∈ L1(R) or Af,A∗g ∈ L1(R).

PROOF. Case 1, f,g ∈ L1(R): for t ≥ 0 and x ∈ R, denote by P ∗ the tran-
sition semigroup of −L, that is, P ∗

t g(x) = E[g(x − Lt)]. By Fubini’s theorem,
g ∈ L1(R) implies P ∗

t g ∈ L1(R) for any t ≥ 0. By [4], Chapter II, Proposition 1,
for any t ≥ 0 it holds that

(2.5)
∫
R

Ptf (x)g(x)dx =
∫
R

f (x)P ∗
t g(x)dx.

To be precise, in [4], Chapter II, Proposition 1, f and g are assumed nonnega-
tive, but by considering positive and negative parts separately and using g ∈ L1(R)

and P ∗
t g ∈ L1(R), [4], Chapter II, Proposition 1, implies (2.5).
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Using the definition of A, f ∈ D(A) and g ∈ L1(R) to apply dominated conver-
gence in the first step and g ∈ D(A∗) and f ∈ L1(R) in the last step, one obtains∫

R
Af (x)g(x)dx = lim

t→0

1

t

∫
R

(
Ptf (x) − f (x)

)
g(x)dx

(2.5)= lim
t→0

1

t

∫
R

f (x)
(
P ∗

t g(x) − g(x)
)

dx

=
∫
R

f (x)A∗g(x)dx

and so (2.4) has been established under the assumption f,g ∈ L1(R).
Case 2, f,Af ∈ L1(R) or g,A∗g ∈ L1(R): Suppose g,A∗g ∈ L1(R), the other

case can be treated by the same argument. Since C∞
c (R) is a core for A, there exists

{fn}n∈N ⊂ C∞
c (R) with limn→∞ fn = f and limn→∞Afn = Af in C0(R), that

is, uniformly. But fn, g ∈ L1(R) and so (2.4) holds for fn and g for any n ∈ N.
Furthermore, the assumptions g,A∗g ∈ L1(R) allow us to apply dominated con-
vergence and so (2.4) also holds for f and g, as desired.

Case 3, Af , A∗g ∈ L1(R): For the proof of the last part, denote by V and V ∗
the potential operators associated to A and A∗, respectively. We claim that for any
f̃ ∈ D(V ), g̃ ∈ D(V ∗) with f̃ , g̃ ∈ L1(R) it holds that

(2.6)
∫
R

V f̃ (x)g̃(x)dx =
∫
R

f̃ (x)V ∗g̃(x)dx.

Once this is established, we may set f̃ := Af , g̃ := A∗g and apply (2.6) to deduce
(2.4).

So assume f̃ ∈ D(V ), g̃ ∈ D(V ∗) and f̃ , g̃ ∈ L1(R). For q > 0 and x ∈ R,

denote by (Uq)∗ the resolvent operator of −L, that is, (Uq)∗g̃(x) = ∫ ∞
0 e−qt ×

P ∗
t g̃(x)dt where P ∗ is the transition semigroup of −L as above. By Fubini’s

theorem, g̃ ∈ L1(R) implies (Uq)∗g̃ ∈ L1(R) for any q > 0. By [4], Chapter II,
Proposition 1, for any q > 0 it holds that

(2.7)
∫
R

Uqf̃ (x)g̃(x)dx =
∫
R

f̃ (x)
(
Uq)∗

g̃(x)dx.

By the same argument as in Case 2, [4], Chapter II, Proposition 1, implies (2.7).
Using (2.2), f̃ ∈ D(V ) and g̃ ∈ L1(R) one may let q → 0 and apply dominated

convergence to obtain that the left-hand side of (2.7) converges to the left-hand side
of (2.6) and analogously for the right-hand side. Thus (2.6) is indeed established.

�

2.3. Fokker–Planck equations with time-dependent coefficients. The proof of
Theorem 1.1 relies on time-change arguments and uniqueness results for time-
inhomogeneous Fokker–Planck equations as developed in the accompanying paper
[8]. To facilitate the reading of the present article, we now collect the results that
we need, but we refer the reader to [8] for the proofs.
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Recall that A is the generator of a one-dimensional Lévy process L defined
on a probability space (�,F,Pμ0) and L is adapted to the complete and right-
continuous filtration (Ft ). As outlined in Section 1.2, we aim at constructing a
time-change δ characterized by the random Carathéodory differential equation

(2.8) δ(s) =
∫ s

0
σ(r,Lδ(r))dr, s ∈ [0,1],

such that the marginal distributions of the time-changed process Xs := Lδ(s) are
given by the linear interpolation (1.11). We will write σ in the form σ(t, x) =
H(x)/φ(t, x) = H(x)σ̃ (t, x) as in (1.12), where H is the solution to the Poisson
equation (1.7), φ is defined as in (1.11) and σ̃ (t, x) := 1/φ(t, x). In this factoriza-
tion form, we can distinguish assumptions on the Lévy process (captured in H )
and assumptions on the densities h0, h1 (captured in σ̃ ).

In the following assumptions on the involved objects are formulated, which
guarantee the solvability of equation (2.8) and which are sufficient to prove ex-
istence and uniqueness results for the Fokker–Planck equation associated to the
operator σA. Lemma 2.1 above shows that L, D := C∞

c (R) and A defined by
(2.1) indeed fall within the framework of [8]. We divide the assumptions in such
a way that allows to distinguish as good as possible between assumptions on the
Lévy process L and the ingredients coming form the densities h0, h1:

A.1 Regularity of σ : Let σ : [0,∞) × R → [0,∞) be of the form σ(t, x) :=
H(x)σ̃ (t, x) for (t, x) ∈ [0,∞)×R with σ̃ (t, x) ≡ 0 for t > 1 and such that

(i) H : R→ [0,∞) is measurable,
(ii) σ̃ : [0,1] ×R → (0,∞) is measurable and satisfies the following: For

each compact set K ⊂ R, there exists C1,C2,C3 > 0 such that∣∣σ̃ (t, x) − σ̃ (s, x)
∣∣ ≤ C1|t − s| and C2 ≤ σ̃ (t, x) ≤ C3,

for all s, t ∈ [0,1] and for all x ∈ K .

A.2 Boundedness of σ : σ : [0,∞) ×R→ [0,∞) is bounded.
A.3 Regularity of H : Let H : R→ [0,∞) measurable. Assume that for any x ∈ R,

H is regular for P in the sense of Definition D.1, where P is the law on
DR[0,∞) of L under Pδx .

2.3.1. Time-inhomogeneous random time-changes. The next proposition en-
sures that the random Carathéodory differential equation (2.8) indeed provides a
suitable time-change δ under regularity assumption of σ and H . Moreover, it ver-
ifies that (δ(s))s∈[0,1] are stopping times with respect to the filtration generated by
the Lévy process L.

PROPOSITION 2.4. Assume that:

• σ = Hσ̃ is given as in Assumption A.1,
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• H is regular for P in the sense of Definition D.1, where P the law on DR[0,∞)

of L under Pμ0 ,
• Assumption A.2 holds.

Then the family of random times (δ(s))s∈[0,1] given by

(2.9) δ(s) := inf
{
t ∈ [0, ρ) : �(t) ≥ s

} ∧ ρ, s ∈ [0,1],
is well-defined, where � is the unique solution to the Carathéodory differential
equation

(2.10) �(t) =
∫ t

0
σ

(
�(r),Lr

)−1 dr, t ∈ [0, δ(1))

and

(2.11) ρ := inf
{
s ∈ [0,∞) :

∫ s

0
H(Lu)

−1 du = ∞
}
.

Furthermore:

(i) δ : [0,1] → [0,∞) is nondecreasing and absolutely continuous, Pμ0 -a.s.,
(ii) δ(1) is finite, Pμ0 -a.s.,

(iii) δ solves the Carathéodory differential equation (2.8),
(iv) For any s ∈ [0,1], δ(s) is an (Ft )-stopping time.

Additionally, we present a useful condition for verifying the regularity of H (cf.
Definition D.1) as required in order to apply Proposition 2.4.

PROPOSITION 2.5. Let μ0 ∈ P(R), denote by P the law on DR[0,∞) of L

under Pμ0 and let H ∈ D(A) with H ≥ 0. Then H is regular for P .

2.3.2. Existence and uniqueness for the Fokker–Planck equation associated to
σA. The nondecreasing stopping times constructed in Proposition 2.4 can be
used to define the time-changed process Xs := Lδ(s), s ∈ [0,1]. The next result
shows that the marginal distributions of X satisfy the Fokker–Planck equation as-
sociated to the operator σA.

PROPOSITION 2.6. Let μ0 ∈ P(R) and let σ , δ be given as in Proposition 2.4.
For s ≥ 0, denote by p(s, ·) the law of Xs = Lδ(s), where δ(s) := δ(1) for s > 1.
Then one has:

(i) for any g ∈ B([0,∞) ×R) the function

(2.12) s �→
∫
E

g(s, x)p(s,dx) is measurable.
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(ii) (p(s,dx))s∈[0,1] satisfies the Fokker–Planck equation, that is, for any f ∈
C∞

c (R),

(2.13)

∫
R

f (x)p(t,dx) −
∫
R

f (x)μ0(dx)

=
∫ t

0

∫
R

σ(s, x)Af (x)p(s,dx)ds, t ∈ [0,1].

Finally, we provide a uniqueness result for the Fokker–Planck equation (2.13)
associated to the operator σA. In other words, the sufficient conditions provided
in Theorem 2.7 below guarantee that the one-dimensional marginal laws of X· =
Lδ(·), (which satisfy (2.13) by Proposition 2.6) are the only family of probability
measures that satisfy (2.13) for all f ∈ C∞

c (R).

THEOREM 2.7. Suppose σ = Hσ̃ satisfies Assumptions A.1, A.2 and A.3.
Then uniqueness holds for (2.13): If (q(t, ·))0≤t≤1 and (p(t, ·))0≤t≤1 are two fam-
ilies of probability measures on R which both satisfy (2.12) and (2.13) for all
f ∈ C∞

c (R) and q(0, ·) = μ0 = p(0, ·), then q(s, ·) = p(s, ·) for all s ∈ [0,1],
where μ0 ∈ P(R).

3. Proofs. In this section, we prove Theorem 1.1. The exposition is structured
as follows: First, in Section 3.1 preliminary results on Lévy processes and the
associated Poisson equation are presented. Second, in Section 3.2 it is proved that
(1.5) is indeed necessary for the existence of a finite mean Skorokhod embedding.
Finally, in Section 3.3 it is proved that τ in Theorem 1.1 is a finite mean solution
to the Skorokhod embedding problem (SEP), thereby also proving sufficiency of
(1.5).

3.1. The Poisson equation for Lévy processes. In this section, we lay the foun-
dation for the proof of Theorem 1.1. As sketched in Section 1.2, it is crucial to
understand the solvability of the Poisson equation A∗H = h1 − h0 and properties
of the solution H . As sketched below Remark 1.3, the Poisson equation for Lévy
processes can be tackled with Fourier transforms. Throughout this section, we take
μ0 := δ0 and set P := Pμ0 .

3.1.1. Solving the Poisson equation using the Fourier transform. By definition
of the potential operator V ∗ = −(A∗)−1 in the Section 2.2, for g ∈ D(V ∗) the
function H = −V ∗g is the unique solution to the Poisson equation

(3.1) A∗H = g

in C0(R). In this section, we study the solvability of (3.1) and further properties of
solutions.



ON SKOROKHOD EMBEDDINGS AND POISSON EQUATIONS 2321

The first proposition justifies the heuristic given in the introduction below Re-
mark 1.3 and, hence, the occurrence of the function H in Theorem 1.1. Note that
the appearing assumption g ∈ L1(R) will not pose any restriction as in our appli-
cations g = h1 − h0 and h0, h1 are probability densities.

PROPOSITION 3.1. If g ∈ C0(R) ∩ L1(R) and ξ �→ ĝ(ξ)
η(ξ)

∈ L1(R), then there
is a unique solution H ∈ D(A∗) ⊂ C0(R) to the Poisson equation A∗H = g and

(3.2) H(x) = 1

2π

∫
R

ĝ(ξ)

η(ξ)
e−ixξ dξ, x ∈ R.

PROOF. We start with some preliminary facts that do not use the assumption
of the proposition. Note that g ∈ C0(R) ∩ L1(R) implies g ∈ L∞(R) ∩ L1(R).
Hence, one can use Fubini’s theorem to see that for any q > 0, (Uq)∗g(x) =∫ ∞

0 e−qtP ∗
t g(x)dt is in L1(R). Taking the Fourier transform, we obtain (see, e.g.,

[4], Chapter I, Proposition 9) for any q > 0

(3.3) ̂(Uq
)∗

g(ξ) = (
q − η(ξ)

)−1
ĝ(ξ), ξ ∈R.

By (1.1), it holds that |eη(ξ)| = |E[eiξL1]| ≤ 1, and thus

(3.4) Re
(
η(ξ)

) ≤ 0 for any ξ ∈ R,

where Re(z) denotes the real part of z ∈ C. In particular, the right-hand side of
(3.3) is indeed well-defined and

(3.5) ∀ξ ∈ R, q > 0 : ∣∣η(ξ)
∣∣ ≤ ∣∣q − η(ξ)

∣∣.
By assumption, the inverse Fourier transform of ξ �→ ĝ(ξ)

η(ξ)
, given by H in (3.2), is

well-defined. Furthermore, by (3.5) and our assumption, for any q > 0 the right-
hand side of (3.3) is integrable and so, as (Uq)∗g ∈ C0(R) ∩ L1(R) and ̂(Uq)∗g ∈
L1(R), by Fourier inversion and (3.3), (Uq)∗g can be represented as

(3.6)
(
Uq)∗

g(x) = 1

2π

∫
R

ĝ(ξ)e−ixξ

q − η(ξ)
dξ, x ∈ R.

Thus, one has

sup
x∈R

∣∣−H(x) − (
Uq)∗

g(x)
∣∣ = sup

x∈R

∣∣∣∣ 1

2π

∫
R

ĝ(ξ)e−ixξ

(
1

η(ξ)
+ 1

q − η(ξ)

)
dξ

∣∣∣∣
≤ 1

2π

∫
R

∣∣ĝ(ξ)
∣∣∣∣∣∣ 1

η(ξ)
+ 1

q − η(ξ)

∣∣∣∣ dξ.

However, by (3.5) the last integrand is bounded from above by ξ �→ 2ĝ(ξ)/η(ξ),
which is integrable by assumption, and so we can let q → 0 and apply dominated
convergence to conclude (Uq)∗g → −H as q → 0 in C0(R). By (2.2) (for the
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dual Lévy process L∗), this implies g ∈ D(V ∗) and V ∗g = −H or, in other words,
A∗H = g. �

In the next proposition, we show that under the assumptions of Theorem 1.1, it
holds that H ∈ D(A∗) ∩ D(A). This property will be crucial to guarantee unique-
ness for the time-change in the proof of sufficiency of Theorem 1.1 and forces us
to assume that the densities h0, h1 are “sufficiently smooth” in the next sections.

PROPOSITION 3.2. Suppose h0, h1 are as in Theorem 1.1 and (1.5) holds with
H as in (1.6). Then H ∈ D(A) ∩ D(A∗).

PROOF. Set g := h1 − h0. By Proposition 3.1, H ∈ D(A∗) and so we only
need to verify H ∈ D(A). If L is of type S, then it is symmetric. In particular, A =
A∗, and hence the claim. If L is of type 0 or D, then (as established in the proof of
Lemma 3.6 below), ĝ ∈ L1(R) and we now show that this implies H ∈ D(A).

Since the complex conjugate of η(ξ) is given by η(−ξ) for all ξ ∈ R and since
ĝ ∈ L1(R), the function

f (x) := 1

2π

∫
R

ĝ(ξ)η(−ξ)

η(ξ)
e−ixξ dξ, x ∈R,

is well-defined and, by the Riemann–Lebesgue theorem, f ∈ C0(R). Inserting
(3.2) in the definition, applying Fubini’s theorem and using (1.1) and the definition
of f yields

sup
x∈R

∣∣∣∣1

t

(
PtH(x) − H(x)

) − f (x)

∣∣∣∣
= sup

x∈R

∣∣∣∣1

t

(
E

[
H(Lt + x)

] − H(x)
) − f (x)

∣∣∣∣
= sup

x∈R

∣∣∣∣ 1

2πt

∫
R

ĝ(ξ)

η(ξ)

(
E

[
e−iLt ξ

] − 1
)
e−ixξ dξ − f (x)

∣∣∣∣
≤ 1

2π

∫
R

|ĝ(ξ)|
|η(ξ)|

∣∣∣∣etη(−ξ) − 1

t
− η(−ξ)

∣∣∣∣ dξ,

which tends to 0 as t ↓ 0, by dominated convergence. By definition, this implies
H ∈ D(A) and AH = f . To see that dominated convergence can be applied, recall
(3.4) and so for all ξ ∈ R, t > 0,

|ĝ(ξ)|
|η(ξ)|

∣∣∣∣etη(−ξ) − 1

t
− η(−ξ)

∣∣∣∣ ≤ 2
∣∣ĝ(ξ)

∣∣. �

The rest of this section may be skipped on first reading, all following proposi-
tions are not needed for the proof of Theorem 1.1.
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We give conditions on g and η so that Proposition 3.1 implies the existence of
the solution H , conditions that imply H ∈ L1(R) and that H is Lipschitz con-
tinuous. For future applications, those might be useful to verify the conditions of
Theorem 1.1.

PROPOSITION 3.3. Assume the nondegeneracy condition η(u) 	= 0 for all u 	=
0 (i.e., L is nonlattice) and either ν 	= 0 or α 	= 0. If g ∈ C0(R) ∩ L1(R), x �→
xig(x) ∈ L1(R) for i = 1,2,

(3.7)
∫
R

g(x)xj dx = 0, j = 0,1,

and there exists R > 0 such that

(3.8)
∫
|ξ |>R

|ĝ(ξ)|
|η(ξ)| dξ < ∞,

then ξ �→ ĝ(ξ)
η(ξ)

∈ L1(R).

PROOF. First, note that in the present one-dimensional setup, the law of L1 is
degenerate (in the sense of [28], Definition 24.16) if and only if there exists a ∈ R

with L1 = a, P-a.s. Since we have assumed α 	= 0 or ν 	= 0, this is not the case here
(see [28], Theorem 24.3). In particular, we may apply [28], Proposition 24.19, and
obtain that there exist ε′ > 0 and c > 0 such that

(3.9)
∣∣E[

eiξL1
]∣∣ ≤ 1 − c|ξ |2 for |ξ | < ε′.

By (1.1), the left-hand side of (3.9) is greater or equal than eRe(η(ξ)), and thus there
exist C > 0 and ε > 0 such that

(3.10) −Re
(
η(ξ)

) ≥ − log
(
1 − c|ξ |2) ≥ C|ξ |2

for all ξ ∈ Bε(0).
On the other hand, for g 	= 0 (if g = 0, then the claim trivially holds), we may

decompose g = g+ − g− with g+ ≥ 0, g− ≥ 0. Setting c0 := ∫
R g+(x)dx, (3.7)

with i = 0 implies c0 = ∫
R g−(x)dx, and thus c0 > 0. Setting h1 := g+/c0 and

h0 := g−/c0, both h0 and h1 are probability densities and so we may apply [28],
Proposition 2.5 (ix), to h0 and h1 to obtain that, by our moment assumptions, ĝ ∈
C2(R) and, by (3.7), ĝ(0) = ĝ′(0) = 0. Taylor expanding around 0, we therefore
obtain

(3.11)
∣∣ĝ(ξ)

∣∣ ≤ C0ξ
2

for some C0 > 0 and all ξ ∈ Bε(0). Combining (3.10) and (3.11) yields∣∣ĝ(ξ)
∣∣ ≤ C0ξ

2 ≤ −Re
(
η(ξ)

)C0

C
≤ C0

C

∣∣η(ξ)
∣∣

for all ξ ∈ Bε(0), and thus ξ �→ ĝ(ξ)
η(ξ)

is locally bounded at zero. Since η(u) 	= 0

for u 	= 0 and ĝ and η are continuous, it follows that ξ �→ ĝ(ξ)
η(ξ)

is bounded on any
compact subset of R. Combining this with (3.8) yields the claim. �
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PROPOSITION 3.4. Suppose g and H are as in Proposition 3.1. If in addition
for some R > 0,

(3.12)
∫
|ξ |>R

|ξ ||ĝ(ξ)|
|η(ξ)| dξ < ∞,

then H is Lipschitz continuous.

PROOF. By assumption,∫
|ξ |≤R

|ξ ||ĝ(ξ)|
|η(ξ)| dξ ≤ R

∫
R

|ĝ(ξ)|
|η(ξ)| dξ < ∞

and combining this with (3.12) yields

(3.13) L :=
∫
R

|ξ ||ĝ(ξ)|
|η(ξ)| dξ < ∞.

On the other hand, precisely as in the proof of Proposition 3.1 we may apply
Fourier inversion to write, for any q > 0, (Uq)∗ as (3.6). Using |eiu −eiv| ≤ |u−v|
for u, v ∈ R yields∣∣(Uq)∗

g(x) − (
Uq)∗

g(y)
∣∣

(3.6)= 1

2π

∣∣∣∣
∫
R

ĝ(ξ)(e−ixξ − e−iyξ )

q − η(ξ)
dξ

∣∣∣∣ ≤ 1

2π
|x − y|

∫
R

|ξ ||ĝ(ξ)|
|q − η(ξ)| dξ

(3.5)≤ 1

2π
|x − y|

∫
R

|ξ ||ĝ(ξ)|
|η(ξ)| dξ

(3.13)= L

2π
|x − y|

for any q > 0 and x, y ∈ R. Letting q → 0 and using that (Uq)∗g → V ∗g point-
wise (even in C0(R)) by (2.2), this last estimate implies the result. �

The next result shows that if a solution of the Poisson equation exists (e.g., if the
conditions of Proposition 3.1 hold, but here we impose a slightly weaker assump-
tion), then H ≥ 0 implies H ∈ L1(R). This is useful for verifying the conditions
of Theorem 1.1.

PROPOSITION 3.5. If g ∈ C0(R) ∩ L1(R), ξ �→ ĝ(ξ)
η(ξ)

is locally bounded at
zero, there is a solution H ∈ C0(R) to the Poisson equation A∗H = g and H ≥ 0,
then H ∈ L1(R).

PROOF. Using (3.3) which did not rely on the stronger assumptions of Propo-
sition 3.1 and the local boundedness of ξ �→ ĝ(ξ)

η(ξ)
in the first and (3.5) in the second

inequality, there is some ε > 0 and C > 0 with

(3.14)
∣∣ ̂(Uq

)∗
g(ξ)

∣∣ ≤ C
∣∣(q − η(ξ)

)∣∣−1∣∣η(ξ)
∣∣ ≤ C for ξ ∈ Bε(0).
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Let us take a function ϕ such that

(3.15) ϕ ∈ L1(R) satisfies ϕ = 0 on R \ Bε(0), ϕ ≥ 0, ϕ̂ ∈ L1(R) and ϕ̂ ≥ 0.

Since ϕ, ϕ̂, (Uq)∗g ∈ L1(R), see the beginning of the proof of Proposition 3.1,
Fubini’s theorem gives

(3.16)

∫
R

(
Uq)∗

g(x)ϕ̂(x)dx =
∫
R

∫
R

(
Uq)∗

g(x)eiξxϕ(ξ)dξ dx

=
∫
R

̂(Uq
)∗

g(ξ)ϕ(ξ)dξ.

Furthermore, Hϕ̂ ≥ 0 and Hϕ̂ ∈ L1(R) since H ∈ C0(R) and we have assumed
H ≥ 0 and (3.15). Thus, recalling H = −V ∗g, we may estimate

(3.17)

0 ≤
∫
R

H(x)ϕ̂(x)dx
(2.2)= − lim

q→0

∫
R

(
Uq)∗

g(x)ϕ̂(x)dx

(3.16)= − lim
q→0

∫
R

̂(Uq
)∗

g(ξ)ϕ(ξ)dξ
(3.14)≤ C

∫
R

ϕ(ξ)dx,

where the first equality uses dominated convergence and the last step relies on our
assumption (3.15) that ϕ = 0 outside Bε(0).

We now claim that there exists {ϕn}n∈N ⊂ L1(R) and I ∈ (0,∞) such that for
each n, ϕn satisfies (3.15) and limn→∞ ϕ̂n(x) = I for any x ∈ R. Assuming that
such a sequence can indeed be constructed, the following argument will complete
the proof: Inserting ϕn in (3.17), letting n → ∞ and using Fatou’s lemma yields

0 ≤
∫
R

H(x)dx = 1

I

∫
R

lim inf
n→∞ H(x)ϕ̂n(x)dx

≤ lim inf
n→∞

1

I

∫
R

H(x)ϕ̂n(x)dx

≤ lim inf
n→∞

C

I

∫
R

ϕn(x)dx = lim inf
n→∞

C

I
ϕ̂n(0) = C < ∞

and, therefore, indeed H ∈ L1(R).
Thus, the remainder of the proof will be devoted to construct a sequence

{ϕn}n∈N ⊂ L1(R) with the desired properties. Take χ0 ∈ C∞
c (R)\ {0} with χ0 ≥ 0,

χ0(−x) = χ0(x) for all x ∈ R and χ0(x) = 0 for x /∈ Bε/3(0). Set χ(y) :=∫
R χ0(y − x)χ0(x)dx = χ0 ∗ χ0(y). Then χ(y) = 0 for y /∈ Bε(0) and since

the Fourier transform turns convolution into products, χ̂ (ξ) = (χ̂0(ξ))2 for all
ξ ∈ R. In particular, χ̂ ≥ 0. Furthermore, χ̂0 	= 0 implies that I := ∫

R χ̂ (ξ)dξ =∫
R(χ̂0(ξ))2 dξ satisfies I > 0. Since the Fourier transform maps the space S of

rapidly decreasing functions into itself, χ0 ∈ C∞
c (R) ⊂ S implies χ̂0 ∈ S ⊂ L2(R).

Thus χ̂ = (χ̂0)
2 is integrable and we obtain I ∈ (0,∞). Finally, since χ̂ ∈ L1(R),

Fourier inversion gives χ(x) = (2π)−1 ˆ̂χ(−x) for all x ∈ R (see [28], Proposi-
tion 37.2).
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For n ∈ N, define

ϕn(x) := 2πnχ(−x) exp
(
−1

2
n2x2

)
, x ∈ R,

and note that ϕn(x) = ˆ̂χ(x)nψ̂n(x), where ψn(x) := 1
n
√

2π
exp(−x2/(2n2)) is the

density of a normal with mean zero and variance n. In particular, ϕn = n ̂(χ̂ ∗ ψn)

and using ˆ̂
f (x) = f (−x) for f ∈ L1(R) with f̂ ∈ L1(R), as above we obtain

(3.18)

ϕ̂n(ξ) = n
̂̂

(χ̂ ∗ ψn)(ξ) = nχ̂ ∗ ψn(−ξ)

= 1√
2π

∫
R

χ̂ (y) exp
(
− 1

2n2 (ξ + y)2
)

dy.

Thus, for any n ∈ N, ϕn indeed satisfies (3.15) and applying dominated conver-
gence (and noting that the integrand on the right-hand side converges pointwise to
χ̂ ) in (3.18) gives for any ξ ∈ R, limn→∞ ϕ̂n(ξ) = I as desired. �

3.2. Necessity of conditions. In this section, we assume that τ is a finite
mean solution for the Skorokhod embedding problem corresponding to μi(dx) =
hi(x)dx and study the associated Poisson equation A∗H = h1 −h0. We show that:

• there is a solution H . Using Proposition 3.1 we need to show (ĥ1 − ĥ0)/η ∈
L1(R). Integrability at infinity is only a consequence of the smoothness as-
sumption on h0, h1 (Lemma 3.6) without using τ . Integrability at zero is a
consequence of Dynkin’s formula and the existence of τ (Lemma 3.7).

• H ≥ 0 and H ∈ L1(R). This is a consequence of Dynkin’s formula and the
Riesz representation theorem.

The first lemma is the source of our assumptions on the regularity for h0 and h1.

LEMMA 3.6. Under Assumption 1.6 on h0 and h1 (as in Theorem 1.1), we
have ∫

|u|>R

∣∣∣∣ ĥ1(u) − ĥ0(u)

η(u)

∣∣∣∣ du < ∞

for some R > 0.

PROOF. We consider all cases listed in Assumption 1.6 separately.
Type S: Since |ĥi(u)| ≤ 1 for i = 0,1, for R ≥ 1 one can use symmetry and the

integrability assumption for 1/η to estimate∫
|u|>R

∣∣∣∣ ĥ1(u) − ĥ0(u)

η(u)

∣∣∣∣ du ≤
∫
|u|>R

2

|η(u)| du ≤ 4
∫ ∞
R

1

|η(u)| du < ∞.



ON SKOROKHOD EMBEDDINGS AND POISSON EQUATIONS 2327

Type 0: By assumption, there exists R > 0, C > 0 with

(3.19)
∣∣η(u)

∣∣ ≥ C for |u| ≥ R.

On the other hand, the regularity assumptions for type 0 guarantee that h
(2)
i ∈

L1(R) and so standard Fourier analysis gives

(3.20)
∣∣u2(

ĥ1(u) − ĥ0(u)
)∣∣ = ∣∣ĥ(2)

1 (u) − ĥ
(2)
0 (u)

∣∣ ≤ C̃

for all u ∈ R, where C̃ := ∫
R |h(2)

1 (x)| + |h(2)
0 (x)|dx.

Using (3.19) in the first and (3.20) in the second step yields∫
|u|>R

∣∣∣∣ ĥ1(u) − ĥ0(u)

η(u)

∣∣∣∣ du ≤ 1

C

∫
|u|>R

∣∣ĥ1(u) − ĥ0(u)
∣∣ du

≤ C̃

C

∫
|u|>R

1

|u|2 du < ∞.

Type D: By assumption, there exists R > 0 such that ĥ1(u) − ĥ0(u) = 0 for all
|u| > R and so the integral is 0. �

Lemma 3.6 was independent of the Skorokhod embedding problem whereas
the integrability around the origin indeed is a consequence of the SEP. The crucial
ingredient of the proof is the use of Dynkin’s formula for the complex exponential
function.

LEMMA 3.7. Suppose τ is a finite mean solution to the Skorokhod embedding
problem for μi(dx) = hi(x)dx. Then

η(u)Eμ0

[∫ τ

0
eiuLs ds

]
= ĥ1(u) − ĥ0(u)(3.21)

for all u ∈ R and ∫
|u|≤R

∣∣∣∣ ĥ1(u) − ĥ0(u)

η(u)

∣∣∣∣ du < ∞
for any R > 0.

PROOF. Let f,g ∈ Cb(R) be such that

M
f
t := f (Lt) − f (L0) −

∫ t

0
g(Ls)ds, t ≥ 0,

is a martingale. The optional sampling theorem implies that also (M
f
t∧τ )t≥0 is a

martingale. In particular, for any t ≥ 0,

Eμ0

[∫ τ∧t

0
g(Ls)ds

]
= Eμ0

[
f (Lτ∧t )

] −Eμ0
[
f (L0)

]
.
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Since Pμ0(τ < ∞) = 1 and L is quasi-left continuous, it holds that
Pμ0(limt→∞ Lτ∧t = Lτ ) = 1. Using dominated convergence, Eμ0[τ ] < ∞ and
f,g ∈ Cb(R), one may let t → ∞ to obtain Dynkin’s formula,

(3.22) Eμ0

[∫ τ

0
g(Ls)ds

]
= Eμ0

[
f (Lτ )

] −Eμ0
[
f (L0)

]
.

For u ∈R, set

Mu
t := eiuLt − eiuL0 − η(u)

∫ t

0
eiuLr dr, t ≥ 0.

Then Mu is (Ft )t≥0-adapted and for any t ≥ 0, Mu
t is a bounded random variable.

Furthermore,

Eμ0
[
Mu

t − Mu
s |Fs

] = eiuLsEμ0

[
eiu(Lt−Ls) − 1 − η(u)

∫ t

s
eiu(Lr−Ls) dr

∣∣∣Fs

]

(1.1)= eiuLs

(
e(t−s)η(u) − 1 − η(u)

∫ t

s
e(r−s)η(u) dr

)

= 0

and, therefore, Mu is a complex-valued (Ft )t≥0-martingale. Thus Dynkin’s for-
mula (3.22) can be applied to f (x) := eiux , g(x) := η(u)f (x) and so

η(u)Eμ0

[∫ τ

0
eiuLr dr

]
= Eμ0

[∫ τ

0
g(Lr)dr

]
= Eμ0

[
f (Lτ )

] −Eμ0
[
f (L0)

]
= Eμ0

[
eiuLτ

] −Eμ0
[
eiuL0

]
.

This proves the first claim of the lemma. We can now deduce that (ĥ1 − ĥ0)/η is
integrable in compact sets. By the above, we obtain

∣∣ĥ1(u) − ĥ0(u)
∣∣ =

∣∣∣∣η(u)Eμ0

[∫ τ

0
eiuLr dr

]∣∣∣∣ ≤ ∣∣η(u)
∣∣Eμ0[τ ],

and this implies

∫
|u|≤R

∣∣∣∣ ĥ1(u) − ĥ0(u)

η(u)

∣∣∣∣ du ≤ 2REμ0[τ ] < ∞. �

Combining the previous lemmas we proved that a finite mean solution to the
Skorokhod embedding problem for “sufficiently smooth” densities implies (ĥ1 −
ĥ0)/η ∈ L1(R) which, solving in Fourier domain, implies there is a solution H to
the Poisson equation A∗H = h1 − h0.

Now we can complete the proof by showing that existence of a finite mean
solution to the Skorokhod embedding problem implies H ≥ 0 and H ∈ L1(R).
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PROOF OF THEOREM 1.1 (NECESSITY). We showed that (ĥ1 − ĥ0)/η ∈
L1(R) so the Poisson equation A∗H = h1 −h0 can be solved using Proposition 3.1
as

H(x) = 1

2π

∫
R

ĥ1(ξ) − ĥ0(ξ)

η(ξ)
e−ixξ dξ, x ∈ R.

It remains to prove H ≥ 0 and H ∈ L1(R):
Define the functional � : Cc(R) →R by

�(g) := Eμ0

[∫ τ

0
g(Ls)ds

]
.

Then �(g) ≥ 0 for g ≥ 0, � is linear and |�(g)| ≤ ‖g‖∞Eμ0[τ ]. By the Riesz
representation theorem (e.g., [26], Theorem 2.14), there exists a measure ν on
B(R) such that for all g ∈ Cc(R),

(3.23) Eμ0

[∫ τ

0
g(Ls)ds

]
= �(g) =

∫
R

g(x)ν(dx).

Choosing {gn}n∈N ⊂ Cc(R), increasing monotonically to 1 with gn ≥ 0 and
applying monotone convergence gives

ν(R) = lim
n→∞

∫
R

gn(x)ν(dx) = lim
n→∞Eμ0

[∫ τ

0
gn(Ls)ds

]
= Eμ0[τ ] < ∞.

Thus ν is a finite measure and by dominated convergence, (3.23) holds for all
g ∈ Cb(R). Inserting g(x) := eiux for u ∈ R in (3.23) and using (3.21) yields

ν̂(u) =
∫
R

eiuxν(dx) = Eμ0

[∫ τ

0
eiuLs ds

]
= ĥ1(u) − ĥ0(u)

η(u)
,

which is integrable by Lemma 3.6 and Lemma 3.7. Hence, for example, by [28],
Proposition 2.5(xii), ν is absolutely continuous with respect to the Lebesgue mea-
sure and has a (nonnegative) bounded continuous density given by

x �→ 1

2π

∫
R

ĥ1(ξ) − ĥ0(ξ)

η(ξ)
e−ixξ dξ, x ∈ R.

But this function is identical to H , and thus ν(dx) = H(x)dx. In particular, H ≥ 0
and H ∈ L1(R). �

3.3. Sufficiency of conditions. Under the assumptions of Theorem 1.1, we now
construct a finite mean stopping time with Lτ ∼ h1(x)dx under the initial condi-
tion L0 ∼ h0(x)dx. We refer the reader to the sketch in Section 1.2.2 to follow
more easily the construction of τ . During the proof, we refer to the time-change
arguments and uniqueness results for Fokker–Planck equations from Section 2.3.
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Let D := C∞
c (R) and define the action of the Lévy generator A : D → C0(R)

for u ∈ D via (2.1). Furthermore, taking into account the definitions from Theo-
rem 1.1, let

φ(t, x) := (1 − t)h0(x) + th1(x),(3.24)

σ(t, x) := H(x)

(1 − t)h0(x) + th1(x)
, (t, x) ∈ [0,1] ×R,(3.25)

and, under Pμ0 ,

(3.26) δ(s) := inf
{
t ∈ [0, ρ) : �(t) ≥ s

} ∧ ρ, s ∈ [0,1],
where

(3.27) �(t) := 1 − eG(t) +
∫ t

0
e(G(t)−G(r)) h1(Lr)

H(Lr)
dr, t ∈ [0, ρ),

with

ρ := inf
{
t ∈ [0,∞) : H(Lt) = 0

}
and

G(t) :=
∫ t

0

h1(Lr) − h0(Lr)

H(Lr)
dr.

(3.28)

The proof is split in two main steps: First, we assume in addition that h0 and h1
are such that σ is bounded and argue as in Section 1.2.2. Then, for σ unbounded,
we approximate hi by h

(ε)
i with associated σ (ε) bounded and deduce Theorem 1.1.

PROOF OF THEOREM 1.1 (SUFFICIENCY if σ is bounded). For the proof, the
following statements are established:

(i) (δ(s))s∈[0,1] constitutes a family of (Ft )t≥0-stopping times satisfying Pμ0 -
a.s.,

(3.29) δ(s) =
∫ s

0
σ(u,Lδ(u))du, s ∈ [0,1],

(ii) for any s ∈ [0,1], the law of Lδ(s) under Pμ0 is φ(s, x)dx,
(iii) Eμ0[δ(1)] = ∫

R H(x)dx < ∞.

Theorem 1.1 can then be deduced from (i)–(iii) by setting τ := δ(1) because
φ(1, ·) = h1 by construction. Note that the stopping time looks slightly different
here than in the statement of Theorem 1.1. Both representations are equal because
from (3.27) one obtains

�(t) ≥ 1 ⇐⇒ −eG(t) +
∫ t

0
e(G(t)−G(r)) h1(Lr)

H(Lr)
dr ≥ 0

⇐⇒
∫ t

0
e−G(r) h1(Lr)

H(Lr)
dr ≥ 1,
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and hence, the claimed representation of τ = δ(1) as generalized inverse in Theo-
rem 1.1 and in (3.26) are equal.

The proof of (i)–(iii) proceeds roughly as follows: Having verified in Lemma 2.1
that L, D and A fall within the framework of [8], one may rely on the results
from Section 2.3. Then, first, it is proved that L and σ satisfy the assumptions of
Proposition 2.4 and that (3.27) is the solution to the differential equation (2.10),
so Proposition 2.4 implies (i). Based on Proposition 2.6, one then verifies that
(φ(s, x)dx)s∈[0,1] and the marginals of Lδ(·) are solutions to the Fokker–Planck
equation (2.13). Then from the uniqueness result Theorem 2.7 it follows that Lδ(s)

indeed has the law φ(s, x)dx, that is, (ii). Combining the representation of δ(1)

established in (i) with (ii) and the fact that σ(t, x)φ(t, x) = H(x) for all t ∈ [0,1]
and x ∈R one easily obtains (iii).

Verification of (i): The claim is a consequence of Proposition 2.4 (compare
(2.10) and (2.9) for the formula of δ in terms of �). We only need to verify the con-
ditions of Proposition 2.4 and then solve (2.10) for our choice of σ from (3.25). It
is the particular form of the denominator which allows us to solve (2.10) explicitly
and get the formula for � as in (3.27).

By Proposition 3.1, H ∈ D(A∗) ⊂ C0(R), where A∗ : D(A∗) → C0(R) denotes
the adjoint (see Section 2.2 and (2.3)). Since also H ∈ D(A) by Proposition 3.2,
H is regular for (the law of) L by Proposition 2.5. Since h0 and h1 are assumed
positive and continuous, for any K ⊂ R compact, there exist C0,C1 > 0 such that

(3.30) C0 ≤ hi(x) ≤ C1, x ∈ K, i = 0,1.

Set σ̃ (t, x) := 1/φ(t, x) for (t, x) ∈ [0,1] × K . Then (3.30) implies 1/C1 ≤
σ̃ (t, x) ≤ 1/C0 and∣∣σ̃ (t, x) − σ̃ (s, x)

∣∣ = 1

φ(s, x)φ(t, x)

∣∣φ(s, x) − φ(t, x)
∣∣

≤ 2C1

C2
0

|t − s|, (t, x) ∈ [0,1] × K.

This is precisely what Assumption A.1(ii) asks for our σ written as σ = Hσ̃ . Since
σ is also assumed to be bounded in this first part of the proof, Proposition 2.4 can
be applied. The lemma implies that the random times defined by (2.9) are stopping
times and that (2.8) holds. As the definitions (2.9) and (3.26) coincide, in order
to show (i), it thus suffices to show that ρ and � in (3.26) coincide Pμ0 -a.s. with
(2.11) and (2.10).

Since H is regular for the law of L (as argued above), ρ in (3.26) (resp., (3.28))
is equal to (2.11) (see Definition D.1). Furthermore, as shown in Proposition 2.4,
the solution to the Carathéodory differential equation (2.10) is Pμ0 -a.s. unique.
Thus it suffices to show that Pμ0 -a.s., � defined by (3.27) is a solution to (2.10),
that is, that Pμ0 -a.s.

(3.31) �(t) =
∫ t

0
σ

(
�(r),Lr

)−1 dr, t ∈ [0, δ(1)),
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holds. Inserting (3.25) in (3.31) yields

(3.32) �(t) =
∫ t

0

�(r)(h1(Lr) − h0(Lr))

H(Lr)
dr +

∫ t

0

h0(Lr)

H(Lr)
dr, t ∈ [0, δ(1)).

On the other hand, δ(1) ≤ ρ and Pμ0 -a.s. the candidate solution � in (3.27) is
absolutely continuous on every closed subinterval of [0, ρ) and

�̇(t) = −Ġ(t)eG(t) + Ġ(t)

∫ t

0
e(G(t)−G(r)) h1(Lr)

H(Lr)
dr + h1(Lt )

H(Lt )

= Ġ(t)
(
�(t) − 1

) + h1(Lt )

H(Lt )

= �(t)
h1(Lt ) − h0(Lt )

H(Lt)
+ h0(Lt )

H(Lt)
,

for almost every t ∈ [0, ρ). This is equivalent to (3.27) being a solution to (3.32)
on [0, ρ) as desired.

Verification of (ii): First, in (i) it has been verified that Assumption A.1 holds.
Second, Assumption A.2 holds and, as argued above, Assumption A.3 is sat-
isfied. Thus, Proposition 2.6 and Theorem 2.7 can be applied. This shows that
(p̃(s, ·))s∈[0,1] is the unique solution to the Fokker–Planck equation (2.13), where
p̃(s, ·) is the law of Lδ(s) under Pμ0 . Thus, in order to establish (ii), it suffices
to verify that (p(s, ·))s∈[0,1] with p(s,dx) = φ(s, x)dx also satisfies the Fokker–
Planck equation (2.13).

Inserting p(s,dx) = φ(s, x)dx with φ from (3.24) into the left-hand side of
(2.13), using H ∈ D(A∗), A∗H = h1 − h0 (by (1.6) and Proposition 3.1) and
H ∈ L1(R), h1 − h0 ∈ L1(R) (by assumption), Lemma 2.3 gives∫

R
f (x)p(t,dx) −

∫
R

f (x)μ0(dx)
(3.24)=

∫
R

f (x)t (h1 − h0)(x)dx

=
∫ t

0

∫
R
A∗H(x)f (x)dx ds

(2.4)=
∫ t

0

∫
R

H(x)Af (x)dx ds

=
∫ t

0

∫
R

σ(s, x)Af (x)p(s,dx)ds,

where the last step is just the definition (3.25) and (3.24). Hence, by Theorem 2.7
and our argument above we may indeed conclude (ii).

Verification of (iii): Having verified that the marginals of Lδ(·) are given as in
(3.24), we may apply the representation of δ as solution to an integral equation
(established in (i)), Tonelli’s theorem and the definition of σ and φ to see, us-
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ing (3.29),

Eμ0
[
δ(1)

] = Eμ0

[∫ 1

0
σ(u,Lδ(u))du

]
=

∫ 1

0
Eμ0

[
σ(u,Lδ(u))

]
du

=
∫ 1

0

∫
R

σ(u, x)φ(u, x)dx du =
∫
R

H(x)dx.

The right-hand side is finite by assumption and so τ = δ(1) has finite mean. �

PROOF OF THEOREM 1.1 (SUFFICIENCY). To complete the proof of suffi-
ciency, we need to remove the assumption that h0 and h1 are such that σ = H/φ is
bounded using a truncation procedure. For this sake, we shift the densities in order
to shift down φ.

Approximate stopping times δ(ε): Since H ∈ L1(R) by assumption, C :=∫
R H(x)dx is well-defined and p := H/C is a probability density on R. For any

ε ∈ (0,1), we define

h
(ε)
i (x) := (1 − ε)hi(x) + εp(x), i = 0,1,

φ(ε)(t, x) := (1 − t)h
(ε)
0 (x) + th

(ε)
1 (x),(3.33)

H(ε)(x) := (1 − ε)H(x),

for (t, x) ∈ [0,1] × R, and the approximation to σ by σ (ε) := H(ε)

φ(ε) . Then, for any

ε ∈ (0,1), φ(ε) ≥ εp and so, for any t ∈ [0,1] and x ∈ R with H(x) 	= 0,

σ (ε)(t, x) ≤ H(ε)(x)

εp(x)
= (1 − ε)C

ε
.

Thus, for any ε ∈ (0,1), σ (ε) is bounded. Furthermore, h
(ε)
i ∈ C0(R), h

(ε)
i (x) > 0

and

(3.34) h
(ε)
1 (x) − h

(ε)
0 (x) = (1 − ε)

(
h1(x) − h0(x)

)
for any x ∈ R, i = 0,1 and ε ∈ [0,1). In particular, H(ε) satisfies the Poisson
equation A∗H(ε) = h

(ε)
1 − h

(ε)
0 . Since H(ε) = (1 − ε)H , the following properties

are inherited from H : H(ε) is nonnegative, H(ε) ∈ L1(R) and H(ε) ∈ D(A) by
Proposition 3.2.

Thus, Step (i) of the bounded case applied with h
(ε)
0 , h(ε)

1 instead of h0, h1 shows
that, for any ε ∈ (0,1),

(3.35) δ(ε)(s) := inf
{
t ∈ [0, ρ) : �(ε)(t) ≥ s

} ∧ ρ, s ∈ [0,1],
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constitutes a family of (Ft )t≥0-stopping times, where

ρ(ε) := inf
{
t ∈ [0,∞) : H(ε)(Lt ) = 0

}
,

�(ε)(t) := 1 − eG(ε)(t) +
∫ t

0
e(G(ε)(t)−G(ε)(r)) h

(ε)
1 (Lr)

H(ε)(Lr)
dr,(3.36)

G(ε)(t) :=
∫ t

0

h
(ε)
1 (Lr) − h

(ε)
0 (Lr)

H(ε)(Lr)
dr,

for t ∈ [0, ρ) and we note that ρ = ρ(ε), since H(ε) = (1 − ε)H .
Some simplifications: The choice of δ(ε) is very convenient as the mean and �(ε)

simplify in a neat way. By Step (ii) of the bounded case, for any ε ∈ (0,1), Lδ(ε)(s)

has law φ(ε)(s, x)dx under Pμ0 , for any s ∈ [0,1] and by (iii),

(3.37) Eμ0
[
δ(ε)(1)

] =
∫
R

H(ε)(x)dx = (1 − ε)

∫
R

H(x)dx.

Next, (3.34) and H(ε) = (1 − ε)H imply that G(ε) = G, and thus from (3.36)
one obtains, for any t ∈ [0, ρ), a simple formula for �(ε):

(3.38)

�(ε)(t) = 1 − eG(t) +
∫ t

0
e(G(t)−G(r)) h

(ε)
1 (Lr)

(1 − ε)H(Lr)
dr

(3.33)= 1 − eG(t) +
∫ t

0
e(G(t)−G(r)) h1(Lr)

H(Lr)
dr

+ ε

(1 − ε)C
eG(t)

∫ t

0
e−G(r) dr

= �(t) + ε

(1 − ε)C
eG(t)

∫ t

0
e−G(r) dr.

Limiting stopping time δ: Set �(0) := � and δ(0) := δ (from (3.26)). We need to
show that δ(0) is a stopping time and we need to compute the distribution of Lδ .

Since f : [0,1) → R, f (x) := x/(1 − x), is increasing and f (0) = 0 the last
decomposition of �(ε) shows that Pμ0 -a.s. for any 0 ≤ ε < ε̃ < 1 and all t ∈ [0, ρ),
�(ε)(t) ≤ �(ε̃)(t), and hence, from (3.35), δ(ε)(s) ≥ δ(ε̃)(s) for all s ∈ [0,1]. In
particular, for any s ∈ [0,1], (δ( 1

n
)(s))n∈N is a sequence of stopping times with

δ( 1
n
)(s) ≤ δ( 1

n+1 )(s) ≤ δ(s) for any n ∈ N. Thus, δ̃(s) := limn→∞ δ( 1
n
)(s) ∈ [0,∞]

exists Pμ0 -a.s. and δ̃(s) ≤ δ(s). Since (Ft )t≥0 is right-continuous, δ̃(s) is an
(Ft )t≥0-stopping time. By (3.37) and monotone convergence,

(3.39) Eμ0
[
δ̃(1)

] = lim
n→∞Eμ0

[
δ( 1

n
)(1)

] =
∫
R

H(x)dx < ∞.

In particular, δ̃(s) ≤ δ̃(1) < ∞, Pμ0 -a.s.
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If δ̃(s) ≥ ρ, then δ(s) ≤ ρ and δ̃(s) ≤ δ(s) imply δ̃(s) = δ(s). Otherwise, δ̃(s) <

ρ and thus

(3.40)
∫ δ̃(s)

0

1

H(Ls)
ds < ∞.

Using continuity and the decomposition (3.38), one obtains

(3.41)

�
(
δ̃(s)

) = lim
n→∞�

(
δ( 1

n
)(s)

)

= lim
n→∞

(
�( 1

n
)(δ( 1

n
)(s)

) − eG(δ( 1
n )(s)) 1

n

(1 − 1
n
)C

∫ δ( 1
n )(s)

0
e−G(r) dr

)
≥ s,

where the last inequality follows from �( 1
n
)(δ( 1

n
)(s)) ≥ s (by definition), the fact

that on {δ̃(s) < ρ}, G is bounded on the compact interval [0, δ̃(s)] (which follows

directly from (3.40)) and δ( 1
n
)(s) ≤ δ̃(s) for all n ∈ N. The definition (3.26) and

inequality (3.41) imply δ̃(s) ≥ δ(s) also on {δ̃(s) < ρ}. We conclude that Pμ0 -a.s.,

δ̃(s) = δ(s) and the sequence of stopping times {δ( 1
n
)(s)}n∈N increases monotoni-

cally to δ(s). Hence, δ(0) = δ is a stopping time and by quasi-left continuity of L,
[11], Chapter 4, Theorem 3.12, implies

lim
n→∞L

δ( 1
n )(s)

= Lδ(s), Pμ0-a.s.

In particular, for any f ∈ C0(R),

Eμ0
[
f (Lδ(s))

] = lim
n→∞Eμ0

[
f (L

δ( 1
n )(s)

)
] = lim

n→∞

∫
R

f (x)φ( 1
n
)(s, x)dx

=
∫
R

f (x)φ(s, x)dx,

which implies that (ii) (and (iii), as seen from (3.39)) has been established also
without the assumption that σ is bounded. �
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