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CONTINUITY OF THE OPTIMAL STOPPING BOUNDARY FOR
TWO-DIMENSIONAL DIFFUSIONS

BY GORAN PESKIR

The University of Manchester

We first show that a smooth fit between the value function and the gain
function at the optimal stopping boundary for a two-dimensional diffusion
process implies the absence of boundary’s discontinuities of the first kind (the
right-hand and left-hand limits exist but differ). We then show that the smooth
fit itself is satisfied over the flat portion of the optimal stopping boundary aris-
ing from any of its hypothesised jumps. Combining the two facts we obtain
that the optimal stopping boundary is continuous whenever it has no discon-
tinuities of the second kind. The derived fact holds both in the parabolic and
elliptic case under the sole hypothesis of Hölder continuous coefficients, thus
improving upon all known results in the parabolic case, and establishing the
fact for the first time in the elliptic case. The method of proof relies upon
regularity results for the second-order parabolic/elliptic PDEs and makes use
of the local time-space calculus techniques.

1. Introduction. A challenging question in problems of optimal stopping is to
establish regularity of the optimal stopping boundary separating the continuation
set from the stopping set in the problem. By regularity we mean continuity, Lip-
schitz/Hölder continuity, differentiability, and/or a higher degree of smoothness.
The problem has a long history and we refer to [14] and [7] for further historical
facts/details and references.

In this paper we consider a general optimal stopping problem for a two-
dimensional diffusion process and focus on the question of establishing continuity
of the optimal stopping boundary. This is motivated by the fact that in recent years
several specific problems of this kind have appeared in the literature (cf. [5, 8, 10,
12, 16, 17]) and further ones are on their way. Often these papers are motivated by
real-world applications where dimension two (or higher) plays a crucial role (cf.
[16, 17]). This necessitates in establishing general results implying continuity of
the optimal stopping boundary that would be applicable in these and similar other
problems. Moreover, the known uniqueness arguments [22], Chapters VI–VIII,
originally established in [19] and further refined in [11], extend to this fully two-
dimensional case as well (cf. [5, 8, 12, 16, 17]) and this enables one to characterise
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the optimal stopping boundary as the unique solution to a nonlinear integral equa-
tion in the class of continuous functions (with the value function being expressed
in terms of the optimal stopping boundary itself). This characterisation of the opti-
mal stopping boundary is known to be sufficient for practical purposes of optimal
stopping (using Picard iteration for numerics for instance) and higher degrees of
regularity can then be studied subsequently as/if needed. The question of continu-
ity is also of interest in itself due to its deep connections to the interplay between
probability (stochastic processes) and analysis (differential equations) yielding the
combined results presented at the end of the paper.

Despite the fact that continuity of the optimal stopping boundary has been es-
tablished in quite a few specific optimal stopping problems studied in the literature,
often the arguments used are ad hoc and a more systematic approach yielding gen-
eral results of this kind has not been fully developed in the literature. An early
paper of this kind, addressing higher degrees of regularity, is due to Friedman [14]
(see also [3] and [4], Chapter 8, for related results in higher dimensions). A re-
cent paper of this kind, addressing continuity of the optimal stopping boundary, is
due to De Angelis [7]. Both papers deal only with the case when the infinitesimal
generator of the process is parabolic while in the elliptic case there are only a few
isolated examples (see, e.g., [5] and [8] among others).

The purpose of the present paper is to fill in this gap in the literature. In contrast
to [7] where the method of proof makes use of the adjoint infinitesimal generator,
and thus requires a higher degree of smoothness on the coefficients, we develop
a new method of proof which relies upon regularity results for the second-order
parabolic/elliptic PDEs and requires only Hölder continuous coefficients. More-
over, unlike [7] we connect the continuity problem to the principle of smooth fit
(stating that the first-order partial derivatives of the value function and the gain
function coincide at the optimal stopping boundary). The reason for invoking this
connection is twofold. First, the smooth fit is known to be a key variational princi-
ple with the power of determining the optimal stopping boundary uniquely among
all admissible candidates. In the light of this fact, we show that the smooth fit itself
implies the continuity of the optimal stopping boundary whenever it has no discon-
tinuities of the second kind. Second, regularity of the points at the optimal stopping
boundary (for the stopping set) is known to imply the smooth fit under further reg-
ularity conditions on the process (cf. [9]). Given that any hypothesised jumps of
the first kind correspond to flat portions of the optimal stopping boundary which
therefore ought to be regular for the stopping set, we show that the smooth fit itself
is satisfied in this setting. To avoid imposing the additional regularity conditions on
the process mentioned above, we derive this fact differently by making use of the
(semimartingale) local time-space calculus techniques instead. Combining the two
facts we obtain that the optimal stopping boundary is continuous whenever it has
no discontinuities of the second kind. The derived fact holds both in the parabolic
and elliptic case under the sole hypothesis of Hölder continuous coefficients, thus
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improving upon all known results in the parabolic case, and establishing the fact
for the first time in the elliptic case.

More specifically, the paper is organised as follows. In Section 2 we introduce
the setting of the problem and explain its background in terms of general hypothe-
ses. These hypotheses are further refined in the following sections. In Section 3 we
show that a horizontal smooth fit between the value function and the gain function
at the optimal stopping boundary implies the absence of boundary’s discontinuities
of the first kind (the right-hand and left-hand limits exist but differ). The method
of proof in the parabolic case relies upon regularity results for the second order
parabolic PDEs that make it possible to calculate the vertical partial derivatives
of the value function along the flat portion of the optimal stopping boundary aris-
ing from any of its hypothesised jumps. This argument breaks down for elliptic
equations due to the existence of the second horizontal derivative in that case. The
method of proof in the elliptic case relies upon a trick which makes it possible to
apply Hopf’s boundary point lemma for elliptic equations in the perpendicular di-
rection to the flat portion of the optimal stopping boundary arising from any of its
hypothesised jumps. It is interesting to note that this argument in turn breaks down
for parabolic equations due to the absence of an interior sphere condition in that
direction. In the parabolic case we also derive a general sufficient condition for the
absence of boundary’s discontinuities of the first kind that goes beyond smooth fit.
In Section 4 we show that a horizontal smooth fit between the value function and
the gain function is satisfied over the flat portion of the optimal stopping bound-
ary arising from any of its hypothesised jumps. In essence this can be seen as a
consequence of the fact that points at the flat boundary ought to be regular for the
stopping set. In this section we develop a different line of argument in the elliptic
case and show that this can be also derived under weaker hypotheses from the fact
that the first component of the process develops a nontrivial (semimartingale) local
time having a square-root growth at zero after starting at the flat boundary. This
argument relies upon the change-of-variable formula with local times on surfaces
[21] and has been used in an earlier proof of [19], page178, when the infinitesimal
generator is parabolic. Given that this formula holds for ‘semimartingale’ surfaces
(whose points are not necessarily regular for the stopping set) the local time argu-
ment itself highlights an interesting connection between the regularity of boundary
points and the existence of a nontrivial local time (cf. [2], page 216). The paper
concludes with corollaries obtained by merging the results of Sections 3 and 4.

2. Optimal stopping problem. In this section we introduce the setting of the
problem and explain its background in terms of general hypotheses. These hy-
potheses will be further refined in the next section.

1. We consider the optimal stopping problem

(2.1) V (x, y) = sup
τ

Ex,y

[
e−�τ G(Xτ ,Yτ ) +

∫ τ

0
e−�t H(Xt , Yt ) dt

]
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where (X,Y ) is a two-dimensional diffusion process solving

dXt = μ1(Xt , Yt ) dt + σ11(Xt , Yt ) dB1
t + σ12(Xt , Yt ) dB2

t(2.2)

dYt = μ2(Xt , Yt ) dt + σ21(Xt , Yt ) dB1
t + σ22(Xt , Yt ) dB2

t(2.3)

with (X0, Y0) = (x, y) in R
2 under the probability measure Px,y where B =

(B1,B2) is a standard two-dimensional Brownian motion. Setting Z = (Z1,Z2) :=
(X,Y ), we see that the system (2.2)+(2.3) can be written in a compact matrix form
as

(2.4) dZt = μ(Zt) dt + σ(Zt) dBt

where μ = (μ1,μ2) denotes the drift vector and σ = (σ11 σ12 ; σ21 σ22) denotes
the diffusion coefficient matrix (written as a sequence of two of its rows). We will
assume that Z is a unique weak solution to (2.4) so that Z is a strong Markov
process with respect to the underlying filtration that makes B a standard two-
dimensional Brownian motion. The assumption that Z solves (2.4) is not crucial
and on more careful inspection one can see that the results below hold for gen-
eral continuous (strong) Markov processes with drift μ and diffusion coefficient σ

given that the other hypotheses (on μ and σ ) introduced below are satisfied.
2. The supremum in (2.1) is taken over all stopping times τ of Z = (X,Y ) ( i.e.,

stopping times with respect to the natural filtration of Z), or equivalently, over all
stopping times τ with respect to a filtration that makes Z a strong Markov process
(as in the weak solution description of Z above). All stopping times considered
throughout are assumed to be finite valued, and we impose no upper bound on τ

in the optimal stopping problem (2.1), that is, its horizon is infinite unless μ1 ≡ 1
and σ11 = σ12 ≡ 0 (when Z is a time-space diffusion process) in which case the
horizon can also be finite. The functional � in (2.1) is defined by

(2.5) �t =
∫ t

0
λ(Xs,Ys) ds

where λ is a continuous function with values in [0,∞). The real-valued functions
G and H are also assumed to be continuous. Under these hypotheses it is known
(cf. [22], page 46, and [24], page 127) that the first entry time of Z into the (stop-
ping) set D where V equals G is optimal in (2.1) provided that G(Z) and H(Z)

satisfy mild integrability conditions. This is true, for example, if λ > 0 and both G

and H are bounded but this sufficient condition can be considerably strengthened
(see [22] and [24] for details). The (continuation) set where V is strictly larger than
G will be denoted by C. The (optimal stopping) boundary between the sets C and
D will be denoted by ∂C. Moreover, we will assume that G satisfies

(2.6)
Ex,y

[
e−�τ G(Xτ ,Yτ )

] = G(x,y)

+ Ex,y

[∫ τ

0
e−�t (LZG−λG)(Xt , Yt ) dt + Aτ

]
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for all (bounded) stopping times τ of Z and all (x, y) in the state space of Z. The
symbol LZ in (2.6) denotes the infinitesimal generator of Z given by

(2.7) LZ = α∂xx + 2β∂xy + γ ∂yy + μ1∂x + μ2∂y

where by (2.2)+(2.3) one can verify using Itô’s calculus that

(2.8) α = 1

2

(
σ 2

11+σ 2
12

)
, β = 1

2
(σ11σ21+σ12σ22) , γ = 1

2

(
σ 2

21+σ 2
22

)
in the state space of Z. The process A in (2.6) is assumed to be continuous with
A0 = 0 (under each Px,y), adapted to the natural filtration of Z, and satisfying
that for every z ∈ ∂C and ε > 0 there exist z′ ∈ b(z, ε) ∩ ∂C and ε′ > 0 (small
enough) such that A is constant (zero) while Z is in b(z′, ε′) [throughout the paper
b(c, r) denotes the open ball in Euclidean topology with centre at c and radius
r]. Itô’s formula and the optional sampling theorem imply that (2.6) holds (with
A ≡ 0) when G is C2. Using the change-of-variable formula with local time on
curves/surfaces (see [20] and [21]) one sees that (2.6) holds with A satisfying the
specified conditions (as the integral with respect to a local time) even when Gx ,
Gy , Gxx , Gyy have discontinuities (of the first kind) over finitely many continuous
curves which intersect ∂C in b(z, r) at finitely many points for z ∈ ∂C and r > 0
sufficiently small.

3. Due to (2.6) we know that the Bolza formulated problem (2.1) can be refor-
mulated in the Lagrange form (see [22], page 141, for the terminology). This is
obtained by setting

(2.9) Ĥ := LZG − λG + H

and considering the optimal stopping problem

(2.10) V̂ (x, y) = sup
τ

Ex,y

[∫ τ

0
e−�t Ĥ (Xt , Yt ) dt + Aτ

]

where the supremum is taken over all stopping times τ of Z = (X,Y ) and (x, y)

belongs to the state space of Z. From (2.1) and (2.6) we then see that

(2.11) V̂ (x, y) = V (x, y) − G(x,y)

for all (x, y) in the state space of Z and a stopping time is optimal in (2.1) if and
only if it is optimal in (2.10). We thus focus on the optimal stopping problem (2.10)
in the sequel.

4. The functions μi and σij in (2.2) and (2.3) are assumed to be continuous
and σij is assumed to be nonnegative for i, j = 1,2. Although some σij can be
zero we always assume that tr(σ ) = σ11 +σ12 +σ21 +σ22 > 0 [i.e., at least one
of the Brownian motions B1 and B2 will be driving at least one of the equations
(2.2) and (2.3)]. Note that this includes the case when X is of bounded variation
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(i.e., σ11 = σ12 ≡ 0) as well as the case of a time-space diffusion (t, Yt )t≥0 (when
μ1 ≡ 1 as well). Moreover, from (2.7)+(2.8) we see that

(2.12) β2 − αγ = −1

4

(
det(σ )

)2 ≤ 0

which shows that the partial differential operator (2.7) is of parabolic type when
det(σ ) = 0 and elliptic type when det(σ ) 	= 0. In the former (parabolic) case, there
is no restriction in assuming that α ≡ 0 and β ≡ 0. Indeed, this can be achieved
by passage to the canonical equation. For this, consider the characteristic curves
equation dy/dx = β/α and [upon assuming that y 
→ (β/α)(x, y) is locally Lip-
schitz] write down its general solution in the form S(x, y) = c where c is an ar-
bitrary constant. Changing then variables as x′ = S(x, y) and y′ = y it can be
verified using (2.8) above that the diffusion coefficient matrix of the resulting pro-
cess Z′ = (X′, Y ′) yields α′ ≡ 0 and β ′ ≡ 0 as claimed. In the latter (elliptic) case,
there is no restriction in assuming that α ≡ γ and β ≡ 0. Indeed, this can be sim-
ilarly achieved by passage to the canonical equation. For this, consider the char-
acteristic curves equation dy/dx = (β ±√

β2−αγ )/α and [upon assuming that
y 
→ ((β ±√

β2−αγ )/α)(x, y) is locally Lipschitz] write down its general solu-
tion as S±(x, y) = c± where c± is an arbitrary constant. Changing then variables
as x′ = S+(x, y)+S−(x, y) and y′ = √−1 (S+(x, y)−S−(x, y)), it can be veri-
fied using (2.8) above that the diffusion coefficient matrix of the resulting process
Z′ = (X′, Y ′) yields α′ ≡ γ ′ and β ′ ≡ 0 as claimed. We will see in the proof below
however that the passage to the canonical equation is not needed in the elliptic
case.

5. The optimal stopping boundary ∂C in (2.1) can generally take various shapes
and forms. In this paper we will focus on the case when ∂C can be locally repre-
sented as the graph of a function b in the state space of Z = (X,Y ). This fact is
known to be satisfied in specific problems of optimal stopping and leads to char-
acterisations of the optimal stopping boundaries as unique solutions to nonlinear
integral equations (cf. Section 1). Without loss of generality we will assume that
b is a function of the first coordinate x belonging to a (sufficiently small) open
interval I . The problem then arises to determine whether the function b is con-
tinuous at a given point x0 in I . The first step in this direction may consist of
showing that the function b has no discontinuities of the second kind. In specific
optimal stopping problems this fact is frequently established by showing that the
function b is (locally) monotone or (locally) of bounded variation. The question
of finding general conditions under which b has no discontinuities of the second
kind at x0 will not be considered in the present paper (see [14] for general re-
sults of this kind). The second step in deriving the continuity of b then reduces
to showing that b has no discontinuities of the first kind at x0. This amounts to
disproving the existence of vertical segments in the state space of Z which form
part of the optimal stopping boundary ∂C. Indeed, if b has a discontinuity of the
first kind at x0, it means that both b(x0−) and b(x0+) exist but b(x0−) 	= b(x0+).
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FIG. 1. (A boundary discontinuity of the first kind). A rectangle R := [a, b]×[c, d] in the state
space of (X,Y ) obtained by choosing a < b sufficiently close to b and [c, d] sufficiently small with
c < d so that [a, b)×[c, d] ⊆ C with {b}×[c, d] ⊆ D.

The segment {x0}×[b(x0−) ∧ b(x0+),b(x0−) ∨ b(x0+)] then forms part of the
optimal stopping boundary which vertically separates the continuation set C from
the stopping set D. Without loss of generality (due to the general sign of μ1 in
the parabolic case) we will assume that the points on the left from the segment
locally belong to C and the points on the right from the segment locally belong to
D. Renaming x0 to b (which now denotes a real number and should not be con-
fused with the entire function b itself) this yields a rectangle R := [a, b]×[c, d]
in the state space of Z obtained by choosing a < b sufficiently close to b and
[c, d] ⊆ [b(x0−)∧ b(x0+),b(x0−)∨ b(x0+)] sufficiently small with c < d so that
[a, b)×[c, d] ⊆ C with {b}×[c, d] ⊆ D (see Figure 1) and A from (2.10) is con-
stant (zero) while Z is in R. Due to a local character of the continuity question
under consideration, we will see below that for the latter reason there is no re-
striction in assuming that A ≡ 0 when referring to the optimal stopping problem
(2.10).

6. The problem of showing that b has no discontinuities of the first kind there-
fore reduces to disproving the existence of a rectangle R with the properties spec-
ified above. To this end, in the parabolic case at least, we could also assume that
Ĥ (z) 	= 0 for at least one z in {b}×[c, d]. Since Ĥ is continuous and the interval
[c, d] can be taken arbitrarily small (with c 	= d), we see that this assumption is
equivalent to assuming that

(2.13) Ĥ 	= 0 on {b}×[c, d]
where we recall that {b}×[c, d] is contained in ∂C. The latter assumption cannot
generally be improved in the parabolic case. Indeed, the example discussed in [6],
Remark 17, shows that the optimal stopping boundary b can have discontinuities
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of the first kind when Ĥ equals zero on {b}×[c, d]. Moreover, if Ĥ is strictly
positive at some z ∈ {b}×[c, d], then the first exit time from a sufficiently small
ball with the centre at z would produce a larger value in (2.10) than stopping at
once, which contradicts the fact that z belongs to D. This shows that we could also
assume that Ĥ < 0 in (2.13) but this will not be needed in the sequel.

7. In addition to the regularity hypotheses imposed throughout this section we
will also assume that V is continuous (on R). This fact can normally be estab-
lished in specific examples of optimal stopping problems without difficulty and
the question of specifying general conditions under which the value function V is
continuous will not be considered in the present paper. Recalling that G is contin-
uous we see that this is equivalent to assuming that

(2.14) V̂ ∈ C(R)

where C(R) denotes the family of continuous real-valued functions on R.
8. When the standard regularity hypotheses discussed in this section (including

any of the sufficient conditions) are satisfied, we will say that the optimal stop-
ping problem (2.1) is well posed. This will be a standing premise for the rest of
the paper. The assumptions (2.13) and (2.14) will always be invoked explicitly in
statements of the results below when needed.

3. Smooth fit implies continuity. Consider the optimal stopping problem
(2.1) upon assuming that it is well posed as discussed in the previous section.
In this section we show that a horizontal smooth fit between the value function V

and the gain function G at the optimal stopping boundary implies the absence of
boundary’s discontinuities of the first kind.

1. To formulate the results we will first introduce some definitions. For z1 =
(x1, y1) and z2 = (x2, y2) in R

2 we define the distance function

dσ (z1, z2) =
{(|x1−x2| + |y1−y2|2)1/2 if det(σ ) = 0(|x1−x2|2 + |y1−y2|2)1/2 if det(σ ) 	= 0

(3.1)

where there is no loss of generality in assuming that σ11 = σ12 = 0 when det(σ ) =
0. Let S be a subset of R

2 and let F : S → R be a function. We say that F is
(uniformly) Hölder continuous on S (with exponent p > 0) if there exists K > 0
such that

(3.2)
∣∣F(z1)−F(z2)

∣∣ ≤ K
(
dσ (z1, z2)

)p
for all z1, z2 ∈ S. We say that F is locally Hölder continuous on S (with exponent
p > 0) if for every z ∈ S there exist r > 0 and Kr > 0 such that

(3.3)
∣∣F(z1)−F(z2)

∣∣ ≤ Kr

(
dσ (z1, z2)

)p
for all z1, z2 ∈ b(z, r) ∩ S. The family of all (uniformly) Hölder continuous func-
tions on S (with exponent p > 0) will be denoted by Cp(S).
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2. Parabolic case. If det(σ ) = 0 (parabolic equation), then there is no loss
of generality in assuming that the infinitesimal generator of Z = (X,Y ) solving
(2.2)–(2.4) is given by

(3.4) LZ = γ ∂yy + μ1∂x + μ2∂y

as discussed in Section 2 [recall that γ > 0 is given by (2.8) above]. Recalling
further that R := [a, b]×[c, d] let ∂pR denote the parabolic boundary of R given
by

∂pR =
⎧⎨
⎩

([a, b]×{c, d}) ∪ ({b}×[c, d]) if μ1 > 0 on R({a}×[c, d]) ∪ ([a, b]×{c, d}) if μ1 < 0 on R .
(3.5)

For z ∈ R we define its dσ-distance to the parabolic boundary ∂pR by

(3.6) dσ (z, ∂pR) = inf
{
dσ

(
z, z′) | z′ ∈ ∂pR

}
.

In the sequel we set R0 := int(R) = (a, b)×(c, d) and R1 := (a, b]×(c, d). Note
that R1 includes the vertical flat portion {b}×(c, d) of the optimal stopping bound-
ary ∂C. Let Cp,q(R

0) denote the family of locally Hölder continuous functions F

on R0 (with exponent p > 0) satisfying the two conditions

sup
z∈R0

(
dσ (z, ∂pR)

)q ∣∣F(z)
∣∣ < ∞(3.7)

sup
z1,z2∈R0

(
dσ (z1, ∂pR) ∧ dσ (z2, ∂pR)

)p+q |F(z1)−F(z2)|
(dσ (z1, z2))p

< ∞(3.8)

for q ≥ 0 given and fixed. Note that F from Cp,q(R
0) can explode at the parabolic

boundary ∂pR when q > 0. Recalling that C1,2(R0) denotes the family of contin-
uous real-valued functions on R0 such that Fx,Fy,Fyy exist and are continuous
on R0, we let C

1,2
p,2(R

0) denote the family of functions F in C1,2(R0) satisfying

(3.9) F ∈ Cp,0
(
R0)

,Fx ∈ Cp,2
(
R0)

,Fy ∈ Cp,1
(
R0)

,Fyy ∈ Cp,2
(
R0)

for p > 0 given and fixed.

DEFINITION 1. We say that a horizontal smooth fit holds at (b, e) ∈ ∂C if
[a, b)×{e} ⊆ C for some a < b sufficiently close to b and we have

(3.10)
∂V̂

∂x
(b−, e) = 0 .

Note that this condition is equivalent to

(3.11)
∂V

∂x
(b−, e) = ∂G

∂x
(b−, e) .

Clearly this is a horizontal smooth fit from the left (which we treat) and one can
analogously define (and treat) a horizontal smooth fit from the right.
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DEFINITION 2. We say that the optimal stopping boundary ∂C has a discon-
tinuity of the first kind at b ∈ R if [a, b)×[c, d] ⊆ C and {b}×[c, d] ⊆ D for some
a < b sufficiently close to b and some sufficiently small [c, d] with c < d (see
Figure 1).

The main result of this section in the parabolic case can now be stated as follows
(see also Remark 4 and Corollary 5 below).

THEOREM 3. Consider the optimal stopping problem (2.1) when det(σ ) = 0
upon assuming that it is well posed so that (2.13) and (2.14) are satisfied. Assume
moreover that we have

(3.12) γ,μ1,μ2, λ, Ĥ ∈ Cp

([a, b]×[c, d])
for some p > 0 with some a < b and c < d such that [a, b)×[c, d] ⊆ C and
{b}×[c, d] ⊆ D. If the horizontal smooth fit holds at (b, e) ∈ ∂C, then the optimal
stopping boundary ∂C has no discontinuity of the first kind at b.

PROOF. 1. Setting R := [a, b]×[c, d] and noting that Cp(R) ⊆ Cp,q(R
0) for

all q ≥ 0 we see from (3.12) that Ĥ ∈ Cp,2(R
0). Moreover, since the horizontal

sides of R are graphs (constants) of C2 functions on [a, b], and V̂ is continuous
on R, by the existence and uniqueness result for parabolic equations based on
the a priori interior estimates of Schauder type [13], Theorem 9, page 69, we can
conclude using (3.12) that the initial-boundary value problem

γ Ṽyy + μ1Ṽx + μ2Ṽy − λṼ = −Ĥ on R0(3.13)

Ṽ = V̂ on ∂pR(3.14)

has a unique solution Ṽ in C1,2(R0) ∩ C(R) that moreover belongs to C
1,2
p,2(R

0).
2. Letting τ1 = inf { t ≥ 0 | Zt ∈ ∂pR } denote the first entry time of Z to ∂pR, by

Itô’s formula applied to e−�Ṽ (Z) stopped at τ1 and the optional sampling theorem
(recalling also that A from (2.6) stopped at τ1 equals zero), we find using (3.13)
and (3.14) that

Ṽ (z) = Ez

[
e−�τ1 Ṽ (Zτ1)

] + Ez

[∫ τ1

0
e−�t Ĥ (Zt ) dt

]

= Ez

[
e−�τ1 V̂ (Zτ1)

] + Ez

[∫ τ1

0
e−�t Ĥ (Zt ) dt

]
= V̂ (z)

(3.15)

for all z ∈ R0 where in the final equality we use that (e−�t∧τ1 V̂ (Zt∧τ1) +∫ t∧τ1
0 e−�s Ĥ (Zs) ds)t≥0 is a (bounded) martingale as is well known from the

general optimal stopping theory for strong Markov processes since τ1 ≤ τD and
((�t ,

∫ t
0 e−�s Ĥ (Zs) ds,Zt))t≥0 is a strong Markov process (see [22], (2.2.12) and
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(6.0.6)). This shows that V̂ = Ṽ on R and hence V̂ belongs to both C1,2(R0) ∩
C(R) and C

1,2
p,2(R

0).
3. Moreover, we claim that

(3.16) V̂ ∈ C1,2(
R1)

where we recall that R1 = (a, b]× (c, d). Indeed, if μ1 < 0 at one point from
{b}×(c, d) at least, this follows from the fact that V̂ ∈ C

1,2
p,2(R

0) since {b}×(c, d)

does not intersect the parabolic boundary ∂pR in this case. On the other hand, if
μ1 ≥ 0 on {b}×(c, d) then since μ1 is continuous it follows that 0 ≤ μ1 ≤ K/2 on
R for some K > 0 sufficiently large. We can then rewrite (3.13)+(3.14) as

γ Ṽyy + μ̃1Ṽx + μ2Ṽy − λṼ = −H̃ on R0(3.17)

Ṽ = V̂ on ∂pR(3.18)

where we set μ̃1 := μ1 −K < 0 and H̃ := Ĥ +KV̂x on R. Recalling what we
established above, we see that γ, μ̃1,μ2, λ ∈ Cp(R) and Ĥ ∈ Cp,2(R

0). Moreover,
from (3.16) we see that V̂x belongs to Cp,1(R

0) ⊆ Cp,2(R
0) so that H̃ := Ĥ+KV̂x

belongs to Cp,2(R
0) as well. This shows that the existence and uniqueness result

for parabolic equations based on the a priori interior estimates of Schauder type
([13], Theorem 9, page 69) is applicable to (3.17)+(3.18) implying the existence
of a unique solution Ṽ in C1,2(R0) ∩ C(R) that moreover belongs to C

1,2
p,2(R

0).
Since however μ̃1 < 0 on R, we see that {b}×(c, d) does not intersect the parabolic
boundary ∂pR and hence using the same argument as above we can conclude that
Ṽ ∈ C1,2(R1). Noting on the other hand that V̂ itself solves (3.17)+(3.18) and
belongs to C1,2(R0) ∩ C(R), we see by the uniqueness claim in the result above
that V̂ = Ṽ , and hence (3.16) holds in this case too as claimed.

4. Summarising the facts derived above, we know that V̂ solves

(3.19) γ V̂yy + μ1V̂x + μ2V̂y − λV̂ = −Ĥ on R0

and belongs to C1,2(R1) ∩ C(R) as established in (3.16) above. Since V̂ = 0
on {b}× (c, d), we see that V̂y = V̂yy = 0 on {b}× (c, d). Hence using the fact
that V̂ ∈ C1,2(R1) and taking any sequence bn ↑ b as n → ∞ we see that
limn→∞ V̂ (bn, e) = limn→∞ V̂y(bn, e) = limn→∞ V̂yy(bn, e) = 0. If moreover
the horizontal smooth fit holds at (b, e) as assumed, then in addition to the pre-
ceding limit relations we also have that limn→∞ V̂x(bn, e) = 0. Thus evaluating
both sides in (3.19) at (bn, e) ∈ R0 and letting n → ∞ we obtain 0 = −Ĥ (b, e)

which contradicts that fact that Ĥ (b, e) 	= 0 as stated in (2.13) above. Hence the
optimal stopping boundary ∂C cannot have a discontinuity of the first kind at b as
claimed. �

REMARK 4. It can be shown using the methods/hypotheses from [9] that when
μ1 > 0 at (b, e) ∈ ∂C then the horizontal smooth fit (from the left) holds at (b, e)
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so that the conclusion of Theorem 3 that the optimal stopping boundary ∂C has
no discontinuity of the first kind at b is always satisfied in this case [note that this
also follows from (3.20) below since V̂x(b−, e) ≤ 0 and Ĥ (b, e) < 0 as explained
following (2.13) above]. Moreover, we will see in Example 14 below that the hor-
izontal smooth fit can break down at (b, e) ∈ ∂C when μ1 < 0 and the optimal
stopping boundary ∂C has a discontinuity of the first kind at b in this case.

The following extract from the proof above addresses all signs of μ1 simultane-
ously with no reference to smooth fit being in place.

COROLLARY 5. Consider the optimal stopping problem (2.1) when det(σ ) =
0 upon assuming that it is well posed so that (2.14) is satisfied. Assume moreover
that (3.12) holds as stated above and that the following condition is satisfied

(3.20) μ1(b, e)V̂x(b−, e) 	= −Ĥ (b, e)

for at least one point e ∈ (c, d). Then the optimal stopping boundary ∂C has no
discontinuity of the first kind at b.

PROOF. Proceeding as in the proof of Theorem 3 above and evaluating both
sides in (3.19) at (bn, e) for bn ↑ b as n → ∞ and e ∈ (c, d) at which (3.20) holds,
we find that μ1V̂x = −Ĥ at (b, e). This conclusion, however, contradicts (3.20)
itself and completes the proof. �

REMARK 6. The result of Corollary 5 contains the results of Theorems 3.1–
3.3 in [7] under weaker hypotheses and different proof. Indeed, in Theorem 3.1
and Theorem 3.2 we have μ1 ≡ 1 and Ĥ < 0 on {b}×(c, d) so that (3.20) holds
since V̂x(b−, e) ≤ 0 for e ∈ (c, d). Similarly, in Theorem 3.3 we have μ ≡ −1,
V̂y ≥ 0 and Ĥy ≥ ε > 0 on [a, b]× (c, d). Thus if (3.20) would not hold, then
μ1V̂x = −V̂x = −H on {b}×(c, d) and hence V̂xy = Ĥy on {b}×(c, d). By con-
tinuity up to {b}× (c, d) (obtained analogously to (3.16) upon applying ∂y in
(3.13)+(3.14) above) this implies that V̂yx = V̂xy ≥ ε/2 on [a, b]×(c, d) for a < b

sufficiently close to b. But then ε(b−a)/2 ≤ ∫ b
a V̂yx(x, e) dx = −Vy(a, e) ≤ 0 for

e ∈ (c, d) which is a contradiction. Thus (3.20) holds in this case as well and hence
by Corollary 5 we can conclude that the optimal stopping boundary is continu-
ous whenever increasing as concluded in Theorems 3.1–3.3. Note moreover that
Corollary 5 includes numerous other cases that are not covered by those theorems.

3. Elliptic case. If det(σ ) 	= 0 (elliptic equation), then the infinitesimal generator
of Z = (X,Y ) solving (2.2)–(2.4) is given by

(3.21) LZ = α∂xx + 2β∂xy + γ ∂yy + μ1∂x + μ2∂y

where α > 0, β ≥ 0 and γ > 0 are given by (2.8) above. If S is a subset of R2,
then recalling that C1(S) denotes the family of continuous real-valued functions
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F on S such that Fx and Fy exist and are continuous on S, we let C1
p(S) denote the

family of functions F in C1(S) satisfying F,Fx,Fy ∈ Cp(S) for p > 0. Similarly,
recalling that C2(S) denotes the family of continuous real-valued functions F on S

such that Fx,Fy,Fxx,Fxy,Fyy exist and are continuous on S, we let C2
p(S) denote

the family of functions F in C2(S) satisfying F,Fx,Fy,Fxx,Fxy,Fyy ∈ Cp(S) for
p > 0.

Recalling Definitions 1 and 2 above, the first main result of this section in the
elliptic case can now be stated as follows (see also Corollary 18 below).

THEOREM 7. Consider the optimal stopping problem (2.1) when det(σ ) 	= 0
upon assuming that it is well posed so that (2.14) is satisfied. Assume moreover
that we have

(3.22) α,β, γ,μ1,μ2, λ, Ĥ ∈ Cp

([a, b]×[c, d])
for some p > 0 with some a < b and c < d such that [a, b)×[c, d] ⊆ C and
{b}×[c, d] ⊆ D, and that either of the two conditions is satisfied

V̂xx(b−, e) 	= −Ĥ (b, e)

α(b, e)
(3.23)

V̂yy(b−, e) 	= 0
(
or V̂y(b−, e) 	= 0

)
(3.24)

for at least one point e ∈ (c, d). If the horizontal smooth fit holds on {b}×(c, d),
then the optimal stopping boundary ∂C has no discontinuity of the first kind at b.

PROOF. 1. Setting R := [a, b]×[c, d] we see from (3.22) that α,γ ∈ C([a, b]×
[c, d]). Due to α and γ being strictly positive, it is therefore clear that the differ-
ential operator LZ −λI is strictly elliptic on R0 [in the sense that (σz, z) ≥ k |z|2
for all z 	= 0 in R0 with some k > 0 given and fixed]. Moreover, noting that an
exterior sphere condition holds at every point z ∈ ∂R [i.e., there exist w ∈ Rc and
r > 0 such that b(w, r) ⊆ Rc and z ∈ ∂(b(w, r))] and recalling that V̂ is contin-
uous on R, by the existence and uniqueness result for elliptic equations based on
the a priori interior estimates of Schauder type [15], Theorem 6.13, page 106, we
can conclude using (3.22) that the boundary value problem

αṼxx + 2βṼxy + γ Ṽyy + μ1Ṽx + μ2Ṽy − λṼ = −Ĥ on R0(3.25)

Ṽ = V̂ on ∂R(3.26)

has a unique solution Ṽ in C2
p(R0) ∩ C(R).

2. Letting τ1 = inf { t ≥ 0 | Zt ∈ ∂R } denote the first entry time of Z to ∂R, and
using exactly the same arguments as in (3.15) above, we find that V̂ = Ṽ on R,
and hence V̂ belongs to C2

p(R0) ∩ C(R).
3. Moreover, we claim that

(3.27) V̂ ∈ C2
p

(
R1)
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where we recall that R1 = (a, b]×(c, d). Indeed, this follows from the fact that the
flat boundary portion {b}×(c, d) is the graph of a constant function which evidently
belongs to C2

p((c, d)), while V̂ belongs to C2(R0) ∩ C(R), solves the boundary
value problem (3.25)+(3.26), and at the flat boundary portion {b}×(c, d) coincides
with the zero function which evidently belongs to C2

p(R) (see [15], Lemma 6.18,
page 111).

4. Summarising the facts derived above, we know that V̂ solves

(3.28) αV̂xx + 2βV̂xy + γ V̂yy + μ1V̂x + μ2V̂y − λV̂ = −Ĥ on R0

and belongs to C2
p(R1) ∩ C(R) as established in (3.27) above. Since V̂ =

0 on {b} × (c, d) we see that V̂y = V̂yy = 0 on {b} × (c, d) which contra-
dicts (3.24) if satisfied. Moreover, if the horizontal smooth fit holds on {b}×
(c, d), then V̂x = 0 on {b} × (c, d) so that V̂xy = 0 on {b} × (c, d) as well.
Hence using the fact that V̂ ∈ C2(R1) and taking any sequence bn ↑ b as n →
∞ we see that limn→∞ V̂ (bn, e) = limn→∞ V̂y(bn, e) = limn→∞ V̂yy(bn, e) =
limn→∞ V̂x(bn, e) = limn→∞ V̂xy(bn, e) = 0. Thus evaluating both sides in (3.25)
at (bn, e) ∈ R0 and letting n → ∞ we obtain α(b, e)V̂xx(b−, e) = −Ĥ (b, e) which
contradicts (3.23) if satisfied. Hence if either (3.23) or (3.24) holds then the opti-
mal stopping boundary ∂C cannot have a discontinuity of the first kind at b as
claimed. �

Recalling the arguments following (2.13) above, we know that there is no re-
striction in the setting of Theorem 7 to assume that Ĥ ≤ 0 on {b}×[c, d]. We will
now show that if Ĥ = 0 on R = [a, b]×[c, d] with a < b sufficiently close to b

then the optimal stopping boundary cannot have a discontinuity of the first kind at
b (see also Corollary 19 below). This stands in sharp contrast with the parabolic
case where this is possible (cf. [6], Remark 17).

COROLLARY 8. Consider the optimal stopping problem (2.1) when det(σ ) 	=
0 upon assuming that it is well posed so that (2.14) is satisfied. Assume moreover
that (3.22) holds for some p > 0 and that Ĥ ≥ 0 on [a, b]×[c, d] with a < b

and c < d such that [a, b)×[c, d] ⊆ C and {b}×[c, d] ⊆ ∂C (so that Ĥ = 0 on
{b}×[c, d] at least). If the horizontal smooth fit holds at (b, e) for some e ∈ (c, d),
then the optimal stopping boundary ∂C has no discontinuity of the first kind at b.

PROOF. Proceeding as in the proof of Theorem 7 above we know from (3.28)
that V̂ belongs to C2(R0) and solves LZV̂ −λV̂ = −Ĥ on R0 where LZ is given
by (3.21) above and we recall that R0 = (a, b)×(c, d). Since α,β, γ,μ1,μ2, λ ∈
C(R) with α and γ being strictly positive, we see that the differential operator
LZ − λI is uniformly elliptic on R0 [in the sense that k |z|2 ≤ (σz, z) ≤ K |z|2 for
all z 	= 0 in R0 with some 0 < k < K < ∞ given and fixed]. Since Ĥ ≥ 0 on R0,
it follows that LZV̂ −λV̂ ≤ 0 on R0. Moreover, we know that V̂ is continuous at
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(b, e) ∈ ∂R and satisfies V̂ (x, y) > V̂ (b, e) = 0 for all (x, y) ∈ R0. Finally, it is
evident that an interior sphere condition holds at z := (b, e) ∈ ∂R [i.e., there exist
w ∈ R0 and r > 0 such that b(w, r) ⊆ R0 and z ∈ ∂(b(w, r))]. These facts show
that Hopf’s boundary point lemma for elliptic equations (see, e.g., [15], Lemma
3.4, page 34) is applicable in this setting, and hence the outer normal derivative of
V̂ at z = (b, e) must be strictly negative. In other words, we have V̂x(b−, e) < 0
which contradicts the assumption that a horizontal smooth fit holds at z = (b, e).
Hence the optimal stopping boundary ∂C cannot have a discontinuity of the first
kind at b as claimed. �

REMARK 9. The proof above shows that the second derivative conditions
(3.23) and (3.24) are equivalent to each other when both the horizontal smooth
fit V̂x(b, e) = 0 and the vertical smooth fit V̂y(b, e) = 0 hold. In view of (3.24)
therefore the result of Theorem 7 tells us that the optimal stopping boundary ∂C

has no discontinuity of the first kind at b whenever the ‘proper’ smooth fit holds in
the vertical direction at b [i.e., V̂y(b, e) = 0 but V̂yy(b, e) 	= 0].

While the second derivative conditions (3.23) and (3.24) can be verified in some
specific examples, establishing either of them may also be more challenging in
general. For this reason, it is desirable to obtain sufficient conditions expressed in
terms of the first partial derivatives which are easier to verify. The following theo-
rem derives such sufficient conditions under more regularity on the coefficients in
(3.22) above (see also Corollary 20 below).

THEOREM 10. Consider the optimal stopping problem (2.1) when det(σ ) 	= 0
upon assuming that it is well posed so that (2.14) is satisfied. Assume moreover
that we have

(3.29) α,β, γ,μ1,μ2, λ, Ĥ ∈ C1
p

([a, b]×[c, d])
for some p > 0 with some a < b and c < d such that [a, b)×[c, d] ⊆ C and
{b}×[c, d] ⊆ D, and that either of the two conditions is satisfied

∂yV̂ ≥ 0 on (a, b)×(c, d) & ∂y

(
Ĥ

α

)
> 0 on {b}×[c, d](3.30)

∂yV̂ ≤ 0 on (a, b)×(c, d) & ∂y

(
Ĥ

α

)
< 0 on {b}×[c, d] .(3.31)

If the horizontal smooth fit holds on {b}×(c, d), then the optimal stopping bound-
ary ∂C has no discontinuity of the first kind at b.

PROOF. Proceeding as in the proof of Theorem 7 above, we know that V̂

belongs to C2
p(R0) ∩ C(R) and solves (3.28) on R0. Due to (3.29), we can use
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the interior regularity theorem (see [15], Theorem 6.17, page 109) and conclude
that V̂ belongs to C3

p(R0) ∩ C(R). Moreover, we have established in the proof of
Theorem 7 above that V̂ belongs to C2

p(R1) using the fact that the flat boundary
portion {b}×(c, d) is the graph of a constant function which moreover belongs to
C3

p((c, d)), while V̂ belongs to C2(R0) ∩ C(R), solves the boundary value prob-
lem (3.25)+(3.26), and at the flat boundary portion {b}×(c, d) coincides with the
zero function which thus belongs to C3

p(R). Strengthening the argument of [15],
Lemma 6.18, page 111, used in the proof of Theorem 7 and employing [15], The-
orem 6.19, page 111, instead (see also the remark following its proof) we can
conclude that V̂ belongs to C3

p(R1). Taking the partial derivative ∂y on both sides
of (3.28), we find that

α(V̂y)xx + 2β(V̂y)xy + γ (V̂y)yy

= −Ĥy − αyV̂xx − (2βy +μ1)V̂xy − (γy+μ2)V̂yy

− (μ1)yV̂x − (
(μ2)y − λ

)
V̂y + λyV̂ on R0 .

(3.32)

Setting L̃Z = α∂xx + 2β∂xy + γ ∂yy and defining Ṽ (x, y) = V̂y(x, y) ± ε(x−b)2

for (x, y) ∈ R0 with the plus sign if (3.30) holds and the minus sign if (3.31) holds,
we see from (3.32) that Ṽ belongs to C2(R0) and solves

L̃ZṼ = − Ĥy − αyV̂xx − (2βy +μ1)V̂xy − (γy+μ2)V̂yy(3.33)

− (μ1)yV̂x − (
(μ2)y − λ

)
V̂y + λyV̂ ± 2εα on R0 .

Since α,β, γ ∈ C(R) with α and β being strictly positive, we see that the differ-
ential operator L̃Z is uniformly elliptic on R0. Recalling from the proof of The-
orem 7 that V̂xx(b−, y) = −Ĥ (b, y)/α(b, y) and that V̂y(b−, y) = V̂yy(b−, y) =
V̂xy(b−, y) = 0 due to V̂ (b−, y) = 0 with V̂x(b−, y) = 0 by the horizontal smooth
fit assumption for y ∈ (c, d), we see that evaluating both sides of (3.33) at (bn, y)

with bn ↑ b as n → ∞ the right-hand side in (3.33) tends to

−α(z)∂y

(
H

α

)
(z) ± 2εα(z)(3.34)

where we set z = (b, y) for y ∈ (c, d). Since z 
→ −α(z)∂y(
H
α

)(z) is continuous
on the compact set {b}×[c, d], we see that this function attains its strictly negative
maximum on {b}×[c, d] when (3.30) holds and its strictly positive minimum on
{b}×[c, d] when (3.31) holds. Choosing ε > 0 sufficiently small, we thus see by
continuity that the entire expression in (3.34) remains either strictly negative on
{b}×[c, d] when (3.30) holds or strictly positive on {b}×[c, d] when (3.31) holds.
Choosing a < b sufficiently close to b, and [c, d] with c < d sufficiently small, we
see by continuity that the right-hand side in (3.33) remains either (strictly) neg-
ative on (a, b)× (c, d) when (3.30) holds or (strictly) positive on (a, b)× (c, d)

when (3.31) holds. Recalling that R0 = (a, b) × (c, d) we therefore see from
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(3.33) that L̃ZṼ ≤ 0 on R0 when (3.30) holds and L̃ZṼ ≥ 0 on R0 when (3.31)
holds. Moreover, fixing e ∈ (c, d) we know that Ṽ is continuous at (b, e) ∈ ∂C

and satisfies Ṽ (x, y) > Ṽ (b, e) = 0 for all (x, y) ∈ R0 when (3.30) holds and
Ṽ (x, y) < Ṽ (b, e) = 0 for all (x, y) ∈ R0 when (3.31) holds. Finally, it is evident
that an interior sphere condition holds at (b, e) ∈ ∂C. These facts show that Hopf’s
boundary point lemma for elliptic equations (see, e.g., [15], Lemma 3.4, page 34)
is applicable in this setting and hence the outer normal derivative of Ṽ at (b, e)

must be strictly negative when (3.30) holds and must be strictly positive when
(3.31) holds. In other words, we must either have Ṽx(b−, e) = V̂xy(b−, e) < 0 or
Ṽx(b−, e) = V̂xy(b−, e) > 0 respectively. This conclusion, however, contradicts
the fact that a horizontal smooth fit holds at (b, e) so that V̂xy(b−, e) = 0 in both
cases due to V̂ ∈ C2(R1). Hence the optimal stopping boundary ∂C cannot have a
discontinuity of the first kind at b as claimed. �

REMARK 11. Note that the result of Theorem 10 implies continuity of the op-
timal stopping boundary studied in the simpler setting of [8], pages 15–19, where
an ad-hoc argument based on the Feynman–Kac formula was used instead.

The monotonicity conditions (3.30) and (3.31) are usually verifiable in specific
examples unless A 	≡ 0 in (2.10) when such a verification may be more challeng-
ing (due to the presence of local times). In the latter case it may be possible to
exploit the (local) convexity/concavity of the value function instead. The follow-
ing theorem accomplishes that aim by extending the rationale of Theorem 10 to
the second partial derivatives (in the vertical direction) under additional regularity
on the coefficients in (3.29) above (see also Corollary 21 below).

THEOREM 12. Consider the optimal stopping problem (2.1) when det(σ ) 	= 0
upon assuming that it is well posed so that (2.14) is satisfied. Assume moreover
that we have

(3.35) α,β, γ,μ1,μ2, λ, Ĥ ∈ C2
p

([a, b]×[c, d])
for some p > 0 with some a < b and c < d such that [a, b)×[c, d] ⊆ C and
{b}×[c, d] ⊆ D, and that either of the two conditions is satisfied

∂yyV̂ ≥ 0 on (a, b)×(c, d) & ∂yy

(
Ĥ

α

)
> 0 on {b}×[c, d](3.36)

∂yyV̂ ≤ 0 on (a, b)×(c, d) & ∂yy

(
Ĥ

α

)
< 0 on {b}×[c, d] .(3.37)

If the horizontal smooth fit holds on {b}×(c, d), then the optimal stopping bound-
ary ∂C has no discontinuity of the first kind at b.
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PROOF. Arguing in exactly the same way as in the proof of Theorem 10 upon
using (3.35) in place of (3.29), we can conclude that V̂ solves (3.28) and belongs
to C4

p(R1). Taking the partial derivative ∂y on both sides of (3.32), we find that

α(V̂yy)xx + 2β(V̂yy)xy + γ (V̂yy)yy

= −Ĥyy − αyyV̂xx − 2αy(V̂xx)y − (4βy +μ1)V̂xyy

− (2γy +μ2)V̂yyy − (
γyy +2(μ2)y−λ

)
V̂yy

− 2
(
βyy +(μ1)y

)
V̂xy − (μ1)yyV̂x

− (
(μ2)yy −2λy

)
V̂y + λyyV̂ on R0 .

(3.38)

Setting L̃Z = α∂xx + 2β∂xy + γ ∂yy and defining Ṽ (x, y) = V̂yy(x, y) ± ε(x−b)2

for (x, y) ∈ R0 with the plus sign if (3.36) holds and the minus sign if (3.37) holds,
we see from (3.38) that Ṽ belongs to C2(R0) and solves

L̃ZṼ = − Ĥyy − αyyV̂xx − 2αy(V̂xx)y − (4βy +μ1)V̂xyy − (2γy +μ2)V̂yyy

− (
γyy +2(μ2)y −λ

)
V̂yy − 2

(
βyy +(μ1)y

)
V̂xy − (μ1)yyV̂x(3.39)

− (
(μ2)yy −2λy

)
V̂y + λyyV̂ ± 2εα on R0 .

Arguing in exactly the same way as following (3.33) above, we see that evaluating
both sides of (3.39) at (bn, y) with bn ↑ b as n → ∞ the right-hand side in (3.33)
tends to

−α(z)∂yy

(
H

α

)
(z) ± 2εα(z)(3.40)

where we set z = (b, y) for y ∈ (c, d). Proceeding then in exactly the same way
as following (3.34) above, we find by Hopf’s boundary point lemma that either
Ṽx(b−, e) = V̂xyy(b−, e) < 0 if (3.36) holds or Ṽx(b−, e) = V̂xyy(b−, e) > 0 if
(3.37) holds. This conclusion however contradicts the fact that a horizontal smooth
fit holds at (b, e) so that V̂xyy(b−, e) = 0 in both cases due to V̂ ∈ C3(R1). Hence
the optimal stopping boundary ∂C cannot have a discontinuity of the first kind at
b as claimed. �

REMARK 13. The results of Theorem 10 and Theorem 12 do not exhaust all
possibilities and further refinements of the main argument in the proof are possible
in specific examples. For instance, if ∂y(Ĥ /α) in (3.30)/(3.31) or ∂yy(Ĥ /α) in
(3.36)/(3.37) equals zero and all the terms but the first two on the right-hand side
of (3.32) or all the terms but the first three on the right-hand side of (3.38) produce
a nonpositive/nonnegative sum, then on careful examination of the proofs above
(by letting ε be zero) one sees that the conclusion of Theorem 10 or Theorem 12
is still valid if one has that ∂yV̂ in (3.30)/(3.31) or ∂yyV̂ in (3.36)/(3.37) is strictly
positive/strictly negative respectively (note that this also leads to extensions of
Corollary 20 and Corollary 21 below using Theorem 12 below).
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4. Regularity implies smooth fit. Consider the optimal stopping problem
(2.1) upon assuming that it is well posed as discussed in Section 2 above. In this
section we show that a horizontal smooth fit between the value function V and the
gain function G is satisfied over the flat portion of the optimal stopping bound-
ary arising from any of its hypothesised jumps. This fact holds in the elliptic case
[det(σ ) 	= 0] while the parabolic case [det(σ ) = 0] is settled by Corollary 5 as we
show first.

1. Parabolic case. If det(σ ) = 0 (parabolic equation) and μ1 > 0 at (b, e) ∈ ∂C,
then as stated in Remark 4 we know by (3.20) and the result of Corollary 5 that
the optimal stopping boundary ∂C has no discontinuity of the first kind at b. The
same argument also applies to the case μ1 = 0 on {b}×[c, d] whenever Ĥ 	= 0
at one point form {b}×[c, d]. We will now show, as indicated in Remark 4, that
the horizontal smooth fit can break down at (b, e) ∈ ∂C when (i)μ1(b, e) < 0 and
(ii) the optimal stopping boundary ∂C has a discontinuity of the first kind at b. In
other words, in the absence of a horizontal smooth fit it is possible that the optimal
stopping boundary develops discontinuities of the first kind, thus confirming that
the two phenomena are intimately related.

EXAMPLE 14. Consider the optimal stopping problem

(4.1) V = sup
0≤τ≤1

E
[ |Bτ |2−√

2τ
]

where the supremum is taken over stopping times τ of a standard Brownian motion
B . (Note that (t,Bt ) = (Xt , Yt ) for t ∈ [0,1] in the notation of Section 2 above.)
Enabling the process to start at arbitrary points, and making use of the optional
sampling theorem, we find that

V (t, x) = sup
0≤τ≤1−t

E
[ |x+Bτ |2−√

2(t+τ)
]

= x2− t + sup
0≤τ≤1−t

E
[
(t+τ)−√

2(t+τ)
] =: x2− t + Ṽ (t)

(4.2)

for (t, x) ∈ [0,1]×R. Defining the gain function of Ṽ by G̃(t) = t −√
2t for

t ∈ [0,1], we see that G̃ takes value 0 at 0, is strictly decreasing on (0,1/2), is
strictly increasing on (1/2,1), and satisfies G̃(b) = G̃(1) = 1−√

2 < 0 where we
set b := 3−2

√
2 ∈ (0,1/2). This shows that the stopping set D for Ṽ (and thus

V too) equals [0, b]×R and the continuation set C for Ṽ (and thus V too) equals
(b,1)×R. Note that this is the parabolic setting considered in Sections 2 and 3
above when μ1 < 0 (as the process moves away from the optimal stopping set).
It follows from the descriptions of C and D that Ṽ (t) = t−√

2t if 0 ≤ t ≤ b and
Ṽ (t) = 1−√

2 if b ≤ t ≤ 1. Inserting this back into (4.2), and noting that the gain
function of V is given by G(t, x) = x2−√

2t for (t, x) ∈ [0,1]×R, we find that

(4.3) −1 = Vt(b+, x) 	= Gt(b, x) = − 1√
2b
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for x ∈R. This shows that the horizontal smooth fit breaks down at the vertical flat
portion of the optimal stopping boundary as claimed.

2. Elliptic case. If det(σ ) 	= 0 (elliptic equation), then a horizontal smooth fit
between the value function V and the gain function G is satisfied over the flat
portion of the optimal stopping boundary whenever proper in the sense described
below. The first step in the proof consists of showing that the first component X

of the process Z = (X,Y ) develops a nontrivial local time having a square-root
growth at zero after starting at the flat boundary.

Recall that the (semimartingale) local time of X at b in R is defined by

(4.4) �b
t (X) = P−lim

ε↓0

1

2ε

∫ t

0
I (b−ε < Xs < b+ε) d〈X,X〉s

for t ≥ 0 where the convergence takes place in probability and 〈X,X〉 denotes the
quadratic variation process of X (cf. [23], Chapter 6). In addition to R = [a, b]×
[c, d] for a < b and c < d in R we also set R1 = [a, b1]×[c, d] for a < b < b1 in
R. Throughout this section we let ρ1 denote the first exit time of Z = (X,Y ) from
R1 given by

(4.5) ρ1 = inf
{
t ≥ 0 | Zt = (Xt , Yt ) /∈ R1

}
under Pb,e with e ∈ (c, d) given and fixed.

LEMMA 15. We have

(4.6) Eb,e

[
�b
t∧ρ1

(X)
] ≥ c

√
t

for all t ∈ (0, t1) with some c > 0 and t1 > 0.

PROOF. Without loss of generality we may assume that b = e = 0 and write E
in place of Eb,e throughout. By the Itô–Tanaka formula (cf. [23], page 223) using
(2.2) we get

(4.7) |Xt | =
∫ t

0
sign(Xs) dXs + �0

t (X) = At + Mt + �0
t (X)

where At = ∫ t
0 sign(Xs)μ1(Zs) ds is a continuous process of bounded variation

and Mt = ∫ t
0 sign(Xs)σ11(Zs) dB1

s +∫ t
0 sign(Xs)σ12(Zs) dB2

s is a continuous local
martingale for t ≥ 0. By Skorokhod’s lemma (cf. [23], page 239) we can conclude
from (4.7) that

(4.8) �0
t (X) = sup

0≤s≤t

(−As−Ms)

for t ≥ 0. Setting Āt := ∫ t
0 |μ1(Zs)|ds and using that μ1 is continuous on the

compact set R1 we see from (4.8) that

(4.9)

�0
t∧ρ1

(X) = sup
0≤s≤t∧ρ1

(−As −Ms) ≥ −Āt∧ρ1

+ sup
0≤s≤t∧ρ1

(−Ms) ≥ −c1 t + sup
0≤s≤t∧ρ1

(−Ms)
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for t ≥ 0 with some c1 > 0. By the Dambis–Dubins–Schwarz theorem (cf. [23],
pages 181–182) we know that the continuous local martingale −M can be repre-
sented as a time-changed standard Brownian motion B in the sense that −Mt =
B〈M,M〉t for t ≥ 0. Moreover, since σ 2

11+σ 2
12 > 0 is continuous on the compact set

R1 it follows that

(4.10) 〈M,M〉t∧ρ1 =
∫ t∧ρ1

0

(
σ 2

11(Zs)+σ 2
12(Zs)

)
ds ≥ c(t ∧ ρ1)

for t ≥ 0 with some c > 0. This shows that

sup
0≤s≤t∧ρ1

(−Ms) = sup
0≤s≤t∧ρ1

B〈M,M〉s = sup
0≤s≤〈M,M〉t∧ρ1

Bs

≥ sup
0≤s≤c(t∧ρ1)

Bs ≥
(

sup
0≤s≤ct

Bs

)
I (t<ρ1)

= sup
0≤s≤ct

Bs −
(

sup
0≤s≤ct

Bs

)
I (ρ1≤t)

(4.11)

for t ≥ 0. Using that sup0≤s≤ct Bs ∼ |Bct | ∼ √
ct |B1| and taking expectations in

(4.9) and (4.11) we find that

(4.12) E
[
�0
t∧ρ1

(X)
] ≥ −c1 t + c2

√
t − E

[(
sup

0≤s≤ct

Bs

)
I (ρ1≤t)

]

for t ≥ 0 with c1 > 0 and c2 = √
2c/π > 0. Finally, by the Hölder inequality we

find that

(4.13)
E

[(
sup

0≤s≤ct

Bs

)
I (ρ1 ≤ t)

]
≤

√
E

(
sup

0≤s≤ct

Bs

)2 √
P(ρ1≤t)

= √
ct

√
P(ρ1≤t)

for t ≥ 0. Combining (4.12) and (4.13), and using that P(ρ1≤t) → 0 as t ↓ 0, we
obtain

(4.14) lim inf
t↓0

1√
t

E
[
�0
t∧ρ1

(X)
] ≥ c2 > 0 .

This establishes (4.6) and completes the proof. �

REMARK 16. Note that some precision is needed in the proof [see (4.11)
above] to establish the inequality (4.6) since the nonmodulus Burkholder–Davis–
Gundy inequalities [to be applied to (4.8) or its time-changed version] generally
break down for the power one (see [18], page 540) while we wish to impose no
lower or upper bound on σ 2

11+σ 2
12 globally (thus going beyond uniformly elliptic

PDEs). Note also that the known (Burkholder–Davis–Gundy-type) inequalities for
the semimartingale local times usually contain another supremum (over all b) un-
der the expectation sign in (4.6) (see [1]). The lower bound established in (4.6) is
of a different kind and cannot be derived from these maximal inequalities.
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THEOREM 17. Consider the optimal stopping problem (2.1) when det(σ ) 	= 0
upon assuming that it is well posed so that (2.14) is satisfied. Assume moreover
that (3.22) holds for some p > 0 and that the optimal stopping boundary ∂C has
a discontinuity of the first kind at b ∈ R in the sense that [a, b)×[c, d] ⊆ C and
[b, b1]×[c, d] ⊆ D for some a < b and b1 > b sufficiently close to b and some
sufficiently small [c, d] with c < d . Then the horizontal smooth fit holds at (b, e)

for every e ∈ (c, d).

PROOF. 1. We have seen in the proof of Theorem 7 that under (3.22) the value
function V̂ belongs to C2(R1) where R1 = (a, b]×(c, d). Moreover, from (2.11)
we know that V̂ equals zero on R2 := [b, b1)×(c, d) and thus belongs to C2(R2).
It follows therefore that the change-of-variable formula with local time on surfaces
[21], Equation (2.6), is applicable to e� V̂ (Z) stopped at ρ1 where we recall that
Z = (X,Y ) and ρ1 is defined by (4.5) above with R1 = [a, b1]×[c, d]. Moreover,
since σ 2

11+σ 2
12 > 0 is continuous and therefore bounded below by a strictly positive

constant on the compact set R1, we see from the existence of the local time in
(4.4) that Z = (X,Y ) stopped at ρ1 does not spend any time on {b}×(c, d) in the
sense that Eb,e[∫ ρ1

0 I (Xs =b)ds] = 0 for any e ∈ (c, d). This shows that the first
three terms in [21], equation (2.6), reduce to the classical Itô terms so that after
regrouping we obtain

e−�t∧ρ1 V̂ (Zt∧ρ1)

= V̂ (z) +
∫ t∧ρ1

0
e−�s (LZV̂ −λV̂ )(Zs) ds + Mt∧ρ1

+
∫ t∧ρ1

0
e−�s

[
V̂x(b+, Ys)−V̂x(b−, Ys)

]
d�b

s (X)

(4.15)

where Mt∧ρ1 = ∫ t∧ρ1
0 e−�s V̂x(Zs)σ11(Zs) dB1

s +∫ t∧ρ1
0 e−�s V̂x(Zs)σ12(Zs) dB2

s is
a continuous (local) martingale for t ≥ 0 and z = (b, e) ∈ ∂C is given and fixed for
some e ∈ (c, d). Taking Ez on both sides in (4.15), upon recalling that V̂ solves
(3.13) on R0 ⊆ C and equals zero on R2 ⊆ D, we find that

Ez

[
e−�t∧ρ1 V̂ (Zt∧ρ1)

] = −Ez

[∫ t∧ρ1

0
e−�s Ĥ (Zs)I (Zs ∈C)ds

]

+ Ez

[∫ t∧ρ1

0
e−�s�V̂x(b,Ys) d�b

s (X)

](4.16)

where we set �V̂x(b,Ys) := V̂x(b+, Ys)−V̂x(b−, Ys) = −V̂x(b−, Ys) ≥ 0 for 0 ≤
s ≤ t .

2. Returning back to the definition of V̂ in (2.10), we may recall from the dis-
cussion following (2.8) that the process A takes the form

(4.17) At =
n∑

i=1

∫ t

0
e−�sJi(Zs) dLi

s
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for t ≥ 0 where Ji equals either �Gx or �Gy and Li equals either �bi (X) or
�bi (Y ) respectively upon letting bi denote the continuous semimartingale curves
off which G is C2 (see [21], Remark 2.2, for further details). Recall that if G is C2

globally then A equals zero. Using (2.10) and applying the strong Markov property
of Z at t ∧ ρ1 we see that

e−�t∧ρ1 V̂ (Zt∧ρ1)

= e−�t∧ρ1 EZt∧ρ1

(∫ τD

0
e−�s Ĥ (Zs) ds +

n∑
i=1

∫ τD

0
e−�sJi(Zs) dLi

s

)

= Ez

(∫ t∧ρ1+τD◦θt∧ρ1

0
e−�s Ĥ (Zs) ds(4.18)

+
n∑

i=1

∫ t∧ρ1+τD◦θt∧ρ1

0
e−�sJi(Zs) dLi

s | FZ
t∧ρ1

)

−
∫ t∧ρ1

0
e−�s Ĥ (Zs) ds −

n∑
i=1

∫ t∧ρ1

0
e−�sJi(Zs) dLi

s

for t ≥ 0 where θ denotes the shift operator. Taking Ez on both sides we get

Ez

[
e−�t∧ρ1 V̂ (Zt∧ρ1)

]
= Ez

[∫ t∧ρ1+τD◦θt∧ρ1

0
e−�s Ĥ (Zs) ds + At∧ρ1+τD◦θt∧ρ1

]

− Ez

[∫ t∧ρ1

0
e−�s Ĥ (Zs) ds

]
≤ −Ez

[∫ t∧ρ1

0
e−�s Ĥ (Zs) ds

](4.19)

for t ≥ 0 where the equality follows since the final term in (4.18) can be made
zero (by narrowing R1 if needed) and the inequality follows due to z ∈ ∂C so that
V̂ (z) = 0 while t ∧ ρ1 + τD ◦ θt∧ρ1 is a stopping time (not necessarily optimal).

3. Combining (4.16) and (4.19) we obtain

(4.20)

Ez

[∫ t∧ρ1

0
e−�s�V̂x(b,Ys) d�b

s (X)

]

≤ Ez

[∫ t∧ρ1

0
e−�s (−Ĥ )(Zs)I (Zs ∈D)ds

]

for t ≥ 0. If the horizontal smooth fit would not hold at z = (b, e) then by continu-
ity of V̂x (and λ) on the compact set R1 (and narrowing R1 if needed) we see that
e−�s�V̂x(b,Ys) ≥ c1 > 0 for 0 ≤ s ≤ t ∧ ρ1 with c1 > 0. Similarly, by continuity
of Ĥ on R1 we see that (−Ĥ )(Zs) ≤ c2 for 0 ≤ s ≤ t ∧ρ1 with c2 > 0. Combining
these facts in (4.20) we get

(4.21) c1 Ez

[
�b
t (X)

] ≤ c2 t
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for t ≥ 0. This conclusion contradicts the inequality (4.6) established in Lemma 15
above and thus the horizontal smooth fit must hold on {b}×(c, d) as claimed. �

Note that the hypotheses in Theorem 17 differ from the hypotheses of The-
orem 7 where a nontrivial rectangle to the right from the boundary point is not
assumed to be contained in the stopping set. Adding this hypothesis implies the
horizontal smooth fit and therefore can replace it. The same argument applies in
the setting of Corollary 8, Theorem 10 and Theorem 12. In this way we obtain the
following combined results.

COROLLARY 18. Consider the optimal stopping problem (2.1) when det(σ ) 	=
0 upon assuming that it is well posed so that (2.14) is satisfied. Assume moreover
that we have

(4.22) α,β, γ,μ1,μ2, λ, Ĥ ∈ Cp

([a, b]×[c, d])
for some p > 0 with some a < b and c < d such that [a, b)×[c, d] ⊆ C and
{b}×[c, d] ⊆ D, and that either of the two conditions is satisfied

V̂xx(b−, e) 	= −Ĥ (b, e)

α(b, e)
(4.23)

V̂yy(b−, e) 	= 0
(
or V̂y(b−, e) 	= 0

)
(4.24)

for at least one point e ∈ (c, d). If [b, b1]×[c, d] is contained in D for some b1 > b,
then the optimal stopping boundary ∂C has no discontinuity of the first kind at b.

PROOF. The proof follows by combining the results of Theorem 7 and Theo-
rem 17. �

COROLLARY 19. Consider the optimal stopping problem (2.1) when det(σ ) 	=
0 upon assuming that it is well posed so that (2.14) is satisfied. Assume moreover
that (3.22) holds for some p > 0 and that Ĥ ≥ 0 on [a, b]×[c, d] with a < b

and c < d such that [a, b)×[c, d] ⊆ C and {b}×[c, d] ⊆ ∂C. If [b, b1]×[c, d] is
contained in D for some b1 > b, then the optimal stopping boundary ∂C has no
discontinuity of the first kind at b.

PROOF. The proof follows by combining the results of Corollary 8 and Theo-
rem 17. �

COROLLARY 20. Consider the optimal stopping problem (2.1) when det(σ ) 	=
0 upon assuming that it is well posed so that (2.14) is satisfied. Assume moreover
that we have

(4.25) α,β, γ,μ1,μ2, λ, Ĥ ∈ C1
p

([a, b]×[c, d])
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for some p > 0 with some a < b and c < d such that [a, b)×[c, d] ⊆ C and
{b}×[c, d] ⊆ D, and that either of the two conditions is satisfied

∂yV̂ ≥ 0 on (a, b)×(c, d) & ∂y

(
Ĥ

α

)
> 0 on {b}×[c, d](4.26)

∂yV̂ ≤ 0 on (a, b)×(c, d) & ∂y

(
Ĥ

α

)
< 0 on {b}×[c, d] .(4.27)

If [b, b1]×[c, d] is contained in D for some b1 > b, then the optimal stopping
boundary ∂C has no discontinuity of the first kind at b.

PROOF. The proof follows by combining the results of Theorem 10 and The-
orem 17. �

COROLLARY 21. Consider the optimal stopping problem (2.1) when det(σ ) 	=
0 upon assuming that it is well posed so that (2.14) is satisfied. Assume moreover
that we have

(4.28) α,β, γ,μ1,μ2, λ, Ĥ ∈ C2
p

([a, b]×[c, d])
for some p > 0 with some a < b and c < d such that [a, b)×[c, d] ⊆ C and
{b}×[c, d] ⊆ D, and that either of the two conditions is satisfied

∂yyV̂ ≥ 0 on (a, b)×(c, d) & ∂yy

(
Ĥ

α

)
> 0 on {b}×[c, d](4.29)

∂yyV̂ ≤ 0 on (a, b)×(c, d) & ∂yy

(
Ĥ

α

)
< 0 on {b}×[c, d] .(4.30)

If [b, b1]×[c, d] is contained in D for some b1 > b, then the optimal stopping
boundary ∂C has no discontinuity of the first kind at b.

PROOF. The proof follows by combining the results of Theorem 12 and The-
orem 17. �
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