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Abstract: Recent experimental techniques produce thousands of data of
single cell growth, consequently stochastic models of growth can be val-
idated on true data and used to understand the main mechanisms that
control the cell cycle. A sequence of growing cells is usually modeled by
a suitable Markov chain. In this framework, the most interesting goal is
to infer the distribution of the doubling time (or of the added size) of a
cell given its initial size and its elongation rate. In the literature, these dis-
tributions are described in terms of the corresponding conditional hazard
function, referred as division hazard rate. In this work we propose a simple
but effective way to estimate the division hazard by using extended Cox
modeling. We investigate the convergence to the stationary distribution of
the Markov chain describing the sequence of growing cells and we prove
that, under reasonable conditions, the proposed estimators of the division
hazard rates are asymptotically consistent. Finally, we apply our model to
study some published datasets of E-Coli cells.

MSC 2010 subject classifications: Primary 60J05, 62N02, 62P10; sec-
ondary 62F12, 62M05.
Keywords and phrases: Asymptotic consistency, cell size growth in bac-
teria, Cox partial likelihood, division hazard rate, extended Cox model,
positive Harris recurrent Markov chains.

Received September 2016.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2932
2 Extended Cox Markov models for cell size growth data . . . . . . . . 2935

2.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . 2935
2.2 Timer and adder Cox models . . . . . . . . . . . . . . . . . . . . 2937
2.3 Inference and consistency results . . . . . . . . . . . . . . . . . . 2938

3 Existence of the stationary distribution . . . . . . . . . . . . . . . . . 2940
3.1 Sufficient condition for Harris positivity in the time increment

representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2941

∗Supported by PRIN2015 (2015SNS29B002) and INDAM-GNAMPA Project 2017

2931

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/17-EJS1306
mailto:federico.bassetti@unipv.it
mailto:ilenia.epifani@polimi.it
mailto:lucia.ladelli@polimi.it


2932 F. Bassetti et al.

3.2 Sufficient condition for Harris positivity in the space increment
representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2943

4 Applicability of the theoretical results . . . . . . . . . . . . . . . . . . 2944

4.1 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2945

4.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2946

5 Statistical analysis of some cell size growth data . . . . . . . . . . . . 2947

5.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . 2948

5.2 Goodness of fit by Cox-Snell residuals . . . . . . . . . . . . . . . 2948

5.3 Comparison between simulated processes and empirical observa-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2950

5.4 Pure adder versus concerted control adder . . . . . . . . . . . . . 2953

5.5 Modeling the dependence between η and XF . . . . . . . . . . . 2956

A Proofs of Section 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2960

B Proofs of Section 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2968

C Some definitions and properties of homogenous Markov chains . . . . 2973

D Supplementary Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . 2974

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2975

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2976

1. Introduction

The understanding of the cell cycle is a classic topic in biology. Most bacteria,
such as the Escherichia coli and Bacillus subtilis, divide when they have ap-
proximately doubled their volume, but there is always a range of variability of
cell sizes. In order to explain this variability, many models for cell size regula-
tion have been introduced in the literature. The key idea is that cells need a
feedback mechanism that controls their size distribution and that leads to size
homeostasis.

Most of the models proposed for the control of the cell size can be grouped
in three major paradigms: sizer, when the cell monitors its size and triggers
the cell cycle once it reaches a critical size [14]; timer, when the cell attempts
to grow for a specific amount of time before the division [14]; adder, when the
cell attempts to add a constant volume to its newborn size [12]. It is possible
also to imagine various combinations of the previous models to describe more
complex mechanisms. A proposal in this direction is contained in [9], where a
mechanism operating concertedly on the size and the age of the cell is discussed.
Other recent proposals that lie between the timer and the adder are contained
in [1, 7]. We will refer to these kind of models generically as concerted control
models.

Using the experimental technique called mother machine of [17], it is possible
nowadays to follow thousands Gram-negative Escherichia coli and Gram-positive
Bacillus subtilis cells for hundreds of generations under various growth condi-
tions and hence it is now feasible to infer the main mechanism of the growth
process in cells.
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Experimental evidence (see, for example, [12] II. A. and [17]) suggests that
cell volume grows exponentially for various bacteria, that is the size Xi(s) of a
cell i at age s is given by

Xi(s) := XI,ie
αis, (1.1)

where XI,i is the initial (newborn) size of the cell and αi its growth (elongation)
rate. Assuming (1.1), the interdivision (doubling) time τi between two divisions
is related to the final size XF,i of cell i by XF,i = XI,ie

αiτi . The picture is
completed by a division law, which gives the size of the two newborn cells in
term of the final size of the mother cell. Focusing only on one of the two newborn
cells, the division law describes the ratio ηi between its size and the size of its
mother, i.e. ηi = XI,i+1/XF,i.

Since the variables XI,i, αi, τi and XF,i are related by XF,i = XI,ie
αiτi , they

can be reduced to three. In this paper, we model the history of a sequence of
cells, in which the i-th cell is the ancestor of the (i + 1)-th cell, by a Markov
chain (XI,i, αi, τi)i≥0 taking values in R

3
+, with R+ := (0,+∞). The dynamic

is the following:

(a) given the final size XF,i of the i-th cell, the size XI,i+1 of its daughter cell
is given by XI,i+1 = ηiXF,i where ηi is a random number on (0, 1), whose
conditional density given XF,i is fη(·|XF,i);

(b) αi+1 is assumed to be drawn from the density fα independently of all the
other variables;

(c) conditionally on αi+1 andXI,i+1, the interdivision time τi+1 is drawn from
the density fτ (·|αi+1, XI,i+1).

An alternative way of describing the growth process considers the Markov
chain (XI,i, αi,Δi)i≥0, where

Δi := XF,i −XI,i = XI,i(e
αiτi − 1)

is the size increment for the i-th cell. The dynamic of the new triplet is the
same as the one described above, where fτ (·|αi+1, XI,i+1) in (c) is replaced by
the conditional density fΔ(·|αi, XI,i+1) of Δi+1 given (XI,i+1, αi+1).

From a biological point of view the most interesting goal is to understand
the doubling time (or the increment size) distribution, that is the distribution
of τi (or equivalently Δi), given the initial size XI,i and the elongation rate
αi, see [1, 7, 9, 12]. These distributions are typically described in terms of
the corresponding hazard functions, sometimes referred as division hazard rate
functions. An important point is to understand the shape of the hazard function
and its dependency on the other variables of interest, such as cell instantaneous
and initial size, added volume, elapsed time from the previous cell division, and
growth rate. Different dependencies correspond to different paradigms: sizer,
timer, adder and various forms of concerted control.

For example, [9] considers a concerted control model on τi and the inference
on the division hazard rate is performed by first choosing a specific parametric
form for the conditional hazard hτ of τi, and then estimating the parameters by
best fitting of the empirical (conditional) hazard.
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Recently, [11] and [12] have shown that data are well reproduced by adder
models, where the division rate depends on the added size Δi. In particular, [12]
suggests a complete independence of the increment Δi from any other variables.
Specifically, the model proposed in [12] to explain the cell growth is a perfect
adder, i.e. the conditional hazard of Δi has the form

hΔ(δ|XI,i, αi) = hΔ,0(δ).

The empirical distribution of the Δi’s is used to infer the shape of the division
hazard rate hΔ. However the authors admit that there is no strong evidence
against a more complex concerted control mechanism.

The partially contradictory results of the previous studies show the impor-
tance of studying efficient and rigorous statistical procedures to infer the shape
of the hazard and to validate or reject the proposed models.

The aim of this paper is to propose a new effective method for estimating
the division hazard rate using Cox modeling. In particular we shall consider a
concerted control timer Cox model with hazard of the type

hτ (t|XI,i, αi) = h0(t)e
Z(t|XI,i,αi)β0 (1.2)

or, alternatively, a concerted control adder Cox model with hazard of the type

hΔ(δ|XI,i, αi) = h0(δ)e
Z(δ|XI,i,αi)β0 , (1.3)

where both Z(t|XI,i, αi) and Z(δ|XI,i, αi) are possibly non constant covariates.
Clearly, if β0 is zero, we recover the pure timer model in the former case and
the pure adder mode of [12] in the latter. Provided β0 �= 0, a correction to the
pure timer (pure adder, respectively) is set in, giving rise to particular forms of
concerted control models.

We propose to estimate the regression parameter β0 and the baseline hazard
h0 from data using the classic Cox partial-likelihood and Breslow estimator. It is
worth noticing that the Cox model usually considers conditionally independent
observations and exogenous covariates, whereas here we extend it to Markovian
observations and endogenous covariates depending on αi and XI,i. The main
theoretical contribution of this paper is the asymptotic consistency of the pro-
posed estimators in this Markovian framework, see Propositions 2.1 and 2.3. A
crucial assumption for consistency turns out to be the positive Harris recurrence
of the growth process chain. For this reason we investigate some conditions for
positive Harris recurrence, see Propositions 3.4 and 3.7. These results are of
their own interest, since the convergence of the growth process to a stationary
distribution ensures size homeostasis.

We applied our estimation methodology to investigate the size regulation
mechanism of Escherichia coli, analyzing some real data taken from [4] and [17]
and we explored what kinds of hypotheses the data support. We found that a
Cox model applied to the increments Δi (i.e. the concerted control adder Cox
model) better explains the data, confirming the fact that the adder paradigm
can be a valid choice for modeling the growth mechanism of cells. We compared
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a pure adder model (which in our context plays the role of the null model)
with the concerted control adder Cox model. In almost all the sets of data we
analyzed, we found that the model with the hazard depending on the initial
size of the cell produces a better fit than the pure incremental model. We also
observed that the stationary distribution of the estimated growth process is not
very sensitive to the particular choice of the distribution of the elongation rates
αi, while a good estimate of the distribution of the ratios ηi is important to well
reproduce the empirical distributions of the data. More precisely, allowing the
distribution of ηi to depend on the final size of the mother cell improves the
fitting in presence of filaments (exceptionally long cells).

Some recent studies claim the need for more refined stochastic models that
consider the dynamics in cell-cycle sub-periods related to DNA replication and
segregation (see [10] and the reference therein). Until now measures of the length
of these sub-periods are available only for a small number of cells. However, it is
believed that these data will be more and more accessible in the next years. A
natural approach to model a growth processes with sub-periods might consider
a concatenation of Markovian processes similar to the ones we are proposing for
a single-period model.

The rest of the paper is organized as follows. In Section 2 we detail the
Markov chain for the growth process of a sequence of cells. In the same section,
we propose a Cox model for the hazard rate of the interdivision times or of
the size increments, we construct the estimators of the regression parameter
and of the baseline cumulative hazard and, finally, we prove their asymptotic
consistency. In Section 3 we studied the Positive Harris recurrence of the growth
process chain. Section 4 is devoted to the applicability of our theoretical results
to some specific Cox models selected for the data analysis. In Section 5 we
develop an accurate statistical analysis of the cell data.

The Appendix contains all the proofs and some additional tables. In more
details, Appendix A contains the proofs of the results stated in Section 2, while
Appendix B contains the proofs of the results stated in Section 3. Some ele-
mentary properties and results on Markov chains are recalled in Appendix C.
Finally, Appendix D collects some supplementary tables.

2. Extended Cox Markov models for cell size growth data

In this section we face the problem of using an extended Cox model to estimate
the conditional hazard either of the interdivision times τi or, alternatively, of the
size increments Δi, and we establish the asymptotic consistency of the proposed
estimators.

2.1. Model description

From now on, we shall briefly refer to (XI,i, αi, τi)i≥0 as the time increment rep-
resentation of the growth process and to (XI,i, αi,Δi)i≥0 as the space increment
representation.
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To simplify the presentation, we start noticing that these two chains share
the same probabilistic structure. In order to see this, observe that the dynamic
(a)-(c) described in the introduction corresponds to the transition rule

P{XI,i ∈ dx, αi ∈ da,τi ∈ dt|XI,i−1, αi−1, τi−1}
= fXI

(x|XI,i−1e
αi−1τi−1)fα(a)fτ (t|x, a) dxdadt,

(2.1)

where fXI
is the conditional density of XI,i given XF,i−1, fα is as in (b) and fτ

as in (c). As for the initial condition, we assume (XI,0, α0, τ0) = (x0, a0, t0).
Analogously, the transition kernel of the chain (XI,i, αi,Δi)i≥0 is

P{XI,i ∈ dx, αi ∈ da,Δi ∈ dδ|XI,i−1, αi−1,Δi−1}
= fXI

(x|XI,i−1 +Δi−1)fα(a)fΔ(δ|x, a) dxdadδ.
(2.2)

Hence, if one sets Yi = (XI,i, αi) and Ti is either τi in the time increment
representation or Δi in the space increment representation, it follows that in
both cases (Yi, Ti)i≥0 is a Markov chain with transition kernel

P{Yi ∈ dy, Ti ∈ dt|Yi−1 = ȳ, Ti−1 = t̄} = f(t|y)g(y|ȳ, t̄)dydt (2.3)

for suitable transition densities f(·|·) and g(·|·).
In order to introduce the Cox model, it is useful to express the conditional

survival function of the positive r.v.’s Ti in terms of the conditional hazard
λT (u|y), i.e., for every t > 0, we set

S(t|y) := P{Ti > t|Yi = y} =

∫ +∞

t

f(s|y)ds = exp
{
−

∫ t

0

λT (s|y)ds
}
. (2.4)

The hazard function λT (·|·) : R+×R
2
+ → R+ is such that

∫ +∞
0

λT (s|y)ds = +∞
for every y ∈ R

2
+. Moreover, we shall denote by ΛT (t|y) =

∫ t

0
λT (s|y)ds the

corresponding cumulative conditional hazard. Thus, in the case of the time
increment representation, one has for y = (x, a)

hτ (t|x, a) =
fτ (t|x, a)∫ +∞

t
fτ (s|x, a)ds

= λT (t|y),

Hτ (t|x, a) :=
∫ t

0

hτ (s|x, a)ds = ΛT (t|y).
(2.5)

Analogously, for the space increment representation, one has

hΔ(δ|x, a) =
fΔ(δ|x, a)∫ +∞

δ
fΔ(u|x, a)du

= λT (δ|y),

HΔ(δ|x, a) :=
∫ δ

0

hΔ(u|x, a)du = ΛT (δ|y).
(2.6)

Our proposal is to model the conditional hazard of the variable Ti with a Cox
model with covariate process {Zi(t) = Z(t|Yi) : 0 ≤ t ≤ Ti}. In other words, we
assume that the conditional cumulative hazard of the variable Ti is
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ΛT (t|y) =
∫ t

0

λ0(u)e
β0Z(u|y)du,

where λ0 is a suitable unknown baseline hazard function, β0 an unknown real
number and Z(·|·) a given covariate function. If we apply this construction to the
time increment representation, this leads to the following form for the survival
function:

Sτ (t|x, a) = exp
{
−

∫ t

0

h0,τ (s)e
β0Z(s|x,a)ds

}
. (2.7)

Analogously, the survival function for the space increment representation turns
out to be

SΔ(δ|x, a) = exp
{
−

∫ δ

0

h0,Δ(u)e
β0Z(u|x,a)du

}
. (2.8)

It is worth noticing that specifying either the conditional law of Δi or of τi
by a Cox model leads to non equivalent laws for the growth process.

2.2. Timer and adder Cox models

In our framework the model for the cell growth is specified once fα, fη and the
hazards HΔ or Hτ are given. We assume that there are no parameters shared by
fα, fη and HΔ, Hτ , thus neither fα nor fη are involved in the estimation pro-
cedure of the hazards. Hence, we classify the models in terms of the conditional
hazard, introducing six different choices of the covariate process Z. This leads
to six families of models that we will apply to the cell growth data in Section 5.
In all the cases we shall consider, the covariate process Z is built starting from
a given function Z : R+ → R+.

Some remarks on fη and on the shape of Z are presented in Section 4, with a
view to verifying the conditions for stationarity of the chain and the consistency
of the estimators proposed in the following.

The model [τ |XI ] This model is a special case of concerted control depending
only on the initial size of the cell. Here, Z(t|x, a) = Z(x) and hence

hτ (t|x, a) = h0,τ (t) exp{Z(x)β0}.

In this case the covariate is independent of t and the model reduces to a Cox
model with time independent covariates.

The model [τ |XF ] Also this model is a special case of concerted control.
Here the conditional law of the interdivision time depends on the current size
of the cell, but it does not depend directly on the growth rate. More precisely,
we choose Z(t|x, a) = Z(xeat) and, in terms of hazard, we get

hτ (t|x, a) = h0,τ (t) exp{Z(xeat)β0}. (2.9)

The model [τ |Δ] In the model [τ |Δ], the conditional law of the interdivi-
sion time depends on the current increment size of the cell, that is Z(t|x, a) =
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Z(x(eat − 1)) and hence

hτ (t|x, a) = h0,τ (t) exp{Z(x(eat − 1))β0}. (2.10)

The model [Δ|XI ] The model [Δ|XI ] is a concerted control model for the size
increments, where the conditional law of the increment depends on the initial
size of the cell, that is Z(δ|x, a) = Z(x) and hence

hΔ(δ|x, a) = h0,Δ(δ) exp{Z(x)β0}.

The model [Δ|τ ] The model [Δ|τ ] is a concerted control model, where the
conditional law of the size increment depends on the time variable, i.e. Z(δ|x, a)=
Z(log(1+δ/x)/a). Note that log(1+δ/x)/a is the time elapsed till an increment
δ is attained by a cell of initial size x. In this case

hΔ(δ|x, a) = h0,Δ(δ) exp{Z(log(1 + δ/x)/a))β0}.

The model [Δ|null] For the sake of comparison we shall also consider the
null model hΔ(δ|x, a) = h0,Δ(δ), that corresponds to a pure adder model.

2.3. Inference and consistency results

We now deal with the problem of estimating the parameters of the Cox model
and we describe the estimation procedure for the process (Yi, Ti)i≥0 defined by
(2.3) and (2.4).

We need to estimate β0 and λ0 as Z is supposed assigned. The classic partial
likelihood estimator β̂n of β0, based on n observations (Y1, T1), . . . , (Yn, Tn), is
defined by

β̂n ∈ argmaxβ

n∏
i=1

eβZ(Ti|Yi)∑
j:Tj≥Ti

eβZ(Ti|Yj)

and the Breslow estimator of Λ0(t) :=
∫ t

0
λ0(s)ds is

Λ̂0,n(t) :=
∑

i:Ti≤t

1∑
j:Tj≥Ti

eβ̂nZ(Ti|Yj)
.

Typically the partial likelihood approach is used for independent failures (given
the covariates), see e.g. [5] and the references therein. Since here we use the
partial likelihood and Breslow estimators for a class of Markovian data, we have
to investigate under which assumptions these estimators are consistent. The
result is stated in Proposition 2.1 below.

We assume that the reader is familiar with basic notions of the theory of
homogeneous Markov chains. However, for the sake of completeness, some defi-
nitions and basic results are included in Appendix C. An important hypothesis
we need for proving consistency is the Harris positivity of the chain (Yi, Ti)i≥0.
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In particular, if (Yi, Ti)i≥0 is ϕ-irreducible positive Harris, then it is easy to see
that its unique invariant distribution π can be disintegrated as

π(dydt) = πY (dy)f(t|y)dt

with πY the first marginal distribution of π. See Lemma A.1 in Appendix A.
Denote by πT the second marginal distribution, i.e. πT (dt) :=

∫
R

2
+
π(dydt),

and define

c(t|β) :=
∫
R

2
+

∫
{s≥t}

eβZ(t|y)π(dyds),

M(β) := (β − β0)

∫
R

2
+×R+

Z(t|y)π(dydt)−
∫
R+

log
( c(t|β)
c(t|β0)

)
πT (dt).

(2.11)

Under the assumptions (a)-(d) of the next proposition, one can prove that
c(t|β) > 0 for every t and β (see Lemma A.3 in Appendix A) and hence the
function M(β) is well defined.

Proposition 2.1. Assume that:

(a) (Yi, Ti)i≥0 is ϕ-irreducible positive Harris with stationary distribution π;
(b) (t, y) �→ Z(t|y) is a bounded function;
(c) t �→ Z(t|y) is continuous for every y;

(d)
∫ t̄

0
λ0(t)dt < +∞ for every t̄ < +∞;

(e)
d2

dβ2
M(β0) < 0.

Then β̂n converges a.s. to β0 and Λ̂0,n(t) converges to Λ0(t) for every t > 0 a.s..

In Section 3 we shall discuss reasonable conditions under which assumption
(a) holds true. Hypotheses (b)-(d) are, in general, easy to check and the next
proposition provides a sufficient condition for the validity of (e).

Proposition 2.2. If there exists an interval [a, b] ⊂ R+ with πT ([a, b]) > 0,
such that πY {y : Z(t|y) = c} < 1 for every constant c and almost all t ∈ [a, b],

then
d2

dβ2
M(β0) < 0.

Finally, the next proposition concerns the asymptotic behavior of the Breslow
estimator of the cumulative hazard ΛT (t|y), i.e.

Λ̂n(t|y) :=
∫
(0,t]

eβ̂nZ(s|y)Λ̂0,n(ds) =
∑

i:Ti≤t

eβ̂nZ(Ti|y)∑
j:Tj≥Ti

eβ̂nZ(Ti|Yj)
,

and the Cox-Snell residuals, i.e.

R̂i := Λ̂n(Ti|Yi). (2.12)

The residuals R̂i turn out to be very useful for checking the overall fit of the
model.
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Proposition 2.3. Under the assumptions of Proposition 2.1, Λ̂n(t|y) converges
to ΛT (t|y) for every t and y in R+ a.s.. Furthermore, the Cox-Snell residuals R̂i

converge a.s. to ΛT (Ti|Yi) and are asymptotically independent and exponentially
distributed with mean one.

3. Existence of the stationary distribution

The aim of this section is to provide simple criteria in order to ensure that the
growth process is a positive Harris Markov chain, both in the time and in the
space increment representation. As we have seen in the previous section, this is
a fundamental assumption to prove the consistency of the estimators of β0 and
Λ0. Moreover, the convergence of a growth process to a steady state is important
also from a biological point of view. Indeed, if one shows that a steady state is
reached, then homeostasis is guaranteed.

First of all, let us note that the special form of the transition kernel essentially
reduces the study of the asymptotic behavior of the whole growth process to
the study of the embedded chain of the initial sizes (XI,i)i≥0. Apropos of this,
in the space increment representation, it will be useful to consider the XI,i’s as
random variables taking values in [0,+∞). In point of fact, the space increment
representation is well-defined even if XI,i = 0, provided that the conditional law
of Δi given XI,i = 0 is properly assigned. Clearly, the case XI,i = 0 and Δi > 0
is not consistent with (1.1), so that the space increment representation and the
time increment representation are no longer equivalent. Although the situation
in which XI,i = 0 has not biological interest, it will be considered below in order
to simplify the study of the Harris recurrence. Thus, in this section, we assume
the embedded chain (XI,i)i≥0 to be a sequence taking values in R+ = (0,+∞),
when we deal with the time increment representation, and in [0,+∞), when
we consider the space increment representation. In the first case, the embedded
chain has kernel

K(x, dy) =
(∫

R
2
+

1

xeat
fη

( y

xeat

∣∣∣xeat)fτ (t|x, a)dtfα(a)da)dy,
while, in the case of the space increment representation, the kernel of the em-
bedded chain is

K∗(x, dy) =
(∫

R
2
+

1

x+ δ
fη

( y

x+ δ

∣∣∣x+ δ
)
fΔ(δ|x, a)dδfα(a)da

)
dy ,

and fΔ(·|0, a) is assumed to be well defined for every a > 0.
By direct computations, it is easy to see that, if πX is an invariant probability

measure for the embedded chain (XI,i)i≥0, then πX is absolutely continuous
with respect to the Lebesgue measure and the Markov chain (XI,i, αi, τi)i≥0

has invariant probability measure

π(dxdadt) = πX(dx)fα(a)dafτ (t|x, a)dt. (3.1)
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Analogous considerations hold for the chain (XI,i, αi,Δi)i≥0 in the space incre-
ment representation. In this case the stationary distribution is

π∗(dxdadδ) = πX(dx)fα(a)dafΔ(δ|x, a)dδ.

Similar results hold for irreducibility and, under some additional assumptions,
also for Harris recurrence, as it is stated in the following proposition.

Proposition 3.1. If (XI,i)i≥0 is ϕ-irreducible for some measure ϕ, then the
sequence (XI,i,αi, τi)i≥0 is an irreducible Markov chain with respect to some
suitable (σ-finite non trivial) measure. If moreover (XI,i)i≥0 is positive Harris
and irreducible with respect to the Lebesgue measure, then (XI,i, αi, τi)i≥0 is pos-
itive Harris too. The same statement holds in the space increment representation
for the chain (XI,i, αi,Δi)i≥0.

Note that the restriction of the kernel K∗ to (0,+∞) is a kernel too and it is
absolutely continuous with respect to the restriction of the Lebesgue measure to
(0,+∞). As already noted, if an invariant probability measure exists then it is
absolutely continuous with respect to the Lebesgue measure, thus the restriction
of the invariant probability measure to (0,+∞) is still an invariant probability
measure for the kernel restricted to (0,+∞). This shows that also the Harris
positivity is preserved by the restricted chain (see Corollary 1 in [13]). From
now on, we denote by L both the Lebesgue measure on (0,+∞) and on [0,+∞),
according to the considered representation. Moreover, by L-irreducible chain we
mean a chain irreducible with respect to the Lebesgue measure L.

In the light of the previous considerations, in order to prove that the entire
growth process is a positive Harris Markov chain, it is sufficient to prove that
the kernel K (or K∗) of the embedded chain (XI,i)i≥0 is positive Harris and L-
irreducible. A classic strategy to prove that a chain (XI,i)i≥0 is positive Harris
is to show that: (i) it is ϕ-irreducible with the support of ϕ which has non empty
interior, (ii) it is weakly Feller, (iii) it satisfies the so called drift condition. See
Appendix C.

3.1. Sufficient condition for Harris positivity in the time increment
representation

The following proposition gives a sufficient condition for L-irreducibility.
Proposition 3.2. If there are u1(x), u2(x), t1(x), t2(x), a1(x), a2(x), with
0 ≤ u1(x) < u2(x) ≤ 1, 0 ≤ t1(x) < t2(x) ≤ +∞, 0 < a1(x) < a2(x) ≤ +∞,

u1(x) ≤
1− ε

ea2(x)t2(x)
<

1 + ε

ea1(x)t1(x)
≤ u2(x),

for every x > 0 and some 0 < ε < 1, such that L ⊗ L(Bx) > 0 for

Bx :=
{
(t, a), t ∈ (t1(x), t2(x)), a ∈ (a1(x), a2(x))

∣∣ fτ (t|x, a)fα(a) > 0
}

and fη

(
u|xeat

)
> 0 for every u ∈ (u1(x), u2(x)), t ∈ (t1(x), t2(x)) and a ∈

(a1(x), a2(x)), then K is L-irreducible.
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Remark 1. Note that, if fτ (t|x, a) > 0 for all (t, x, a), then it is easy to see that
the assumptions of Proposition 3.2 are satisfied provided that for some ε̃ > 0
and for every x > 0 there is u∗ = u∗(x) satisfying fη(u|xeat) > 0 for every
u ∈ (u∗(1− ε̃), u∗(1 + ε̃)).

In the next proposition we consider simple hypotheses yielding that the kernel
of the embedded chain is weakly Feller.

Proposition 3.3. Assume that one of the following conditions holds:

(c1) x �→ fη(yx
−1e−at)|xeat)fτ (t|x, a) is a continuous function for every (a, t, y)

in R
3
+;

(c2) x �→ fη(u|xeat)fτ (t|x, a) is a continuous function for every (a, t, u) in
R

2
+ × (0, 1) and for every x̄ > 0 there is an open set Ux̄ and a func-

tion cx̄ such that fη(u|xeat)fτ (t|x, a) ≤ cx̄(a, t, u) for every x in Ux̄ and∫
R

2
+×(0,1)

cx̄(a, t, u)fα(a)dadtdu < +∞.

Then, the transition kernel of the embedded chain is weakly Feller.

Finally, an application of the drift condition in Proposition C.1 (Appendix C)
gives the next result.

Lemma 3.1. Let the transition kernel of the embedded chain (XI,i)i≥0 be weakly
Feller and L-irreducible. If

lim sup
x→+∞

E[log2(XI,i+1)− log2(x)|XI,i = x] < 0

lim sup
x→0+

E[log2(XI,i+1)− log2(x)|XI,i = x] < 0

sup
x∈(δ,1/δ)

|E[log2(XI,i+1)− log2(x)|XI,i = x]| < +∞ for every δ ∈ (0, 1) ,

(3.2)

then the chain (XI,i)i≥0 is positive Harris.

Remark 2. Recall that in the time increment representation XI,i+1 =
XI,ie

αiτiηi. It is useful to note that if

lim sup
x→+∞

E[log(eαiτiηi)|XI,i = x] < 0, lim inf
x→0

E[log(eαiτiηi)|XI,i = x] > 0,

sup
x>0

E[log2(eαiτiηi)|XI,i = x] < +∞,

(3.3)

then condition (3.2) holds true.

We focus now on time increment models in which the conditional survival
function of τ is specified by an extended Cox model, i.e. we assume that Sτ (·|·)
is given by (2.7) with baseline survival function

S0,τ (t) := e−
∫ t
0
h0,τ (s)ds.

Applying Lemma 3.1 and Remark 2 one obtains the following criterion to check
the Harris positivity for the time increment Cox model.
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Proposition 3.4. Let (2.7) hold true with Z(·|·) bounded on (0,+∞)3. Assume
that, for every t > 0 and a > 0, there exist

lim
x→0

Z(t|x, a) = z0, lim
x→∞

Z(t|x, a) = z∞. (3.4)

Assume also that, for z− := inft,x,a β0Z(t|x, a),

sup
x

E

[
log2(ηi)

∣∣∣XI,i = x
]
< +∞,

∫
R+

a2fα(a)da

∫
R+

tS0,τ (t)
ez−dt < +∞,

(3.5)

lim sup
x→+∞

E

[
log(ηi)

∣∣∣XI,i = x
]
< −

∫
R+

afα(a)da

∫
R+

S0,τ (t)
eβ0z∞

dt,

lim sup
x→0+

E

[
log

( 1

ηi

)∣∣∣XI,i = x

]
<

∫
R+

afα(a)da

∫
R+

S0,τ (t)
eβ0z0

dt.

(3.6)

If in addition K is weakly Feller and L−irreducible, then the chain (XI,i)i≥0 is
positive Harris recurrent.

3.2. Sufficient condition for Harris positivity in the space
increment representation

Let us now consider the growth model in its space increment representation.

Proposition 3.5. Assume that there is ε > 0 such that for every x ≥ 0 one
can determine u1(x), u2(x) with 0 ≤ u1(x) < u2(x) ≤ 1, d1(x), d2(x) with
0 ≤ d1(x) < d2(x) ≤ +∞ and Ax ⊂ R+ such that: if x = 0 then u1(0) = 0,
ε < u2(0)d1(0), L ⊗ L(B∗

0) > 0 for

B∗
0 :=

{
(δ, a), δ ∈ (d1(0), d2(0)), a ∈ A0

∣∣ fΔ(δ|0, a)fα(a) > 0
}

and fη(u| δ) > 0 for every u ∈ (0, u2(0)) and δ ∈ (d1(0), d2(0)); if x > 0 then
u1(x) ≤ (1− ε)/(1 + d2(x)) < (1 + ε)/(1 + d1(x)) ≤ u2(x), L ⊗ L(B∗

x) > 0 for

B∗
x :=

{
(δ, a), δ ∈ (xd1(x), xd2(x)), a ∈ Ax

∣∣ fΔ(δ|x, a)fα(a) > 0
}

and fη(u|x+δ) > 0 for every u ∈ (u1(x), u2(x)) and δ ∈ (xd1(x), xd2(x)). Then,
K∗ is L-irreducible.
Remark 3. Following the same steps of the proof of Proposition 3.5, if, for all
(δ, x, a), fΔ(δ|x, a) > 0, it is easy to prove the L-irreducibility of K∗ provided
the following request is satisfied: there exists ε∗ > 0 such that for every x ≥ 0
one can determine u∗ = u∗(x) satisfying fη(u|x+ δ) > 0 for every u ∈ (u∗(1−
ε∗), u∗(1 + ε∗)).

Sufficient conditions in order to ensure that the embedded chain is weakly
Feller are contained in the next proposition.

Proposition 3.6. Assume that one of the following conditions holds:
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(c3) x �→ fη(y(x+ δ)−1|x + δ)fΔ(δ|x, a) is a continuous function on [0,+∞)
for every (a, δ, y) in R

3
+;

(c4) x �→ fη(u|x + δ)fΔ(δ|x, a) is a continuous function for every (a, δ, u) in
R

2
+ × (0, 1) and for every x̄ ≥ 0 there is an open set Ux̄ and a function

cx̄ such that fη(u|x + δ)fΔ(δ|x, a) ≤ cx̄(a, δ, u) for every x in Ux̄ and∫
R

2
+×(0,1)

cx̄(a, δ, u)fα(a)dadδdu < +∞.

Then, the transition kernel of the embedded chain is weakly Feller.

As for the drift condition one can use the next

Lemma 3.2. Let the transition kernel K∗ of the embedded chain (XI,i)i≥0 be
weakly Feller and L-irreducible. Assume that for some γ ∈ (0, 1]

sup
x≥0

E[Δγ
i |XI,i = x] < +∞ (3.7)

and that
lim sup
x→+∞

E[ηi|XI,i = x] < 1. (3.8)

Then, the chain (XI,i)i is positive Harris recurrent.

Let us consider the baseline survival function

S0,Δ(δ) = e−
∫ δ
0
h0,Δ(u)du,

then the next proposition summarizes the main result for the space increment
Cox model.

Proposition 3.7. Let (2.8) hold true with Z(·|·) bounded on [0,+∞)3 and
define z− = infδ>0,x≥0,a>0 β0Z(δ|x, a). Assume that for some γ in (0, 1]∫ +∞

0

uγ−1S0,Δ(u)
ez−du < +∞, (3.9)

and that (3.8) holds true. If in addition K∗ is weakly Feller and L−irreducible,
then the chain (XI,i)i≥0 is positive Harris recurrent.

4. Applicability of the theoretical results

In this section we discuss the applicability of the theoretical results, concerning
the existence of a stationary distribution and the asymptotic consistency of the
estimators, to the timer and adder Cox models in Subsection 2.2 under the
following conditions:

(H1) Z(x) = xp
I{x ≤ M}+Mp

I{x > M} for a suitable M > 1 and p > 0;

(H2) the density fη does not depend on the final size of the cell.

Furthermore, we assume that condition (d) in Proposition 2.1 holds, i.e. for
every s,

∫ s

0
hτ,0(u)du < +∞ and

∫ s

0
hΔ,0(u)du < +∞ for timer and adder

models, respectively.
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4.1. Stationarity

Let us investigate conditions for recurrence, Feller continuity and Harris posi-
tivity.

The models [τ |XI ], [τ |XF ], [τ |Δ] First observe that, in the case of the Cox
model, given t > 0, fτ (t|x, a) > 0 for every (x, a) if and only if h0,τ (t) >
0, and this simplifies the task of verifying the sufficient conditions for the L-
irreducibility stated in Proposition 3.2. As

∫ t

0
h0,τ (s)ds < +∞ for every t > 0

and
∫ +∞
0

h0,τ (s)ds = +∞, one can always find 0 ≤ t1 < t2 ≤ +∞, with t1 and
t2 as big as one likes, and 0 ≤ a1 < a2 ≤ +∞ such that

L ⊗ L(B) > 0 for B :=
{
(t, a), t ∈ (t1, t2), a ∈ (a1, a2)

∣∣ h0,τ (t)fα(a) > 0
}
.

If in addition there exist u1 and u2 such that

fη(u) > 0 for 0 ≤ u1 < u < u2 ≤ 1 and u1e
a2t2 < 1 < u2e

a1t1

then it is easy to show that the assumptions of Proposition 3.2 are satisfied and
hence the L-irreducibility is guaranteed for all the timer Cox models.

Moreover, under (H1) and (H2), by Proposition 3.3 the embedded chain
turns out to be weakly Feller. To see this, for example, let us consider the
[τ |XI ] model. In this case

fτ (t|x, a) = h0,τ (t)e
β0Z(x) exp

{
−eβ0Z(x)

∫ t

0

h0,τ (s)ds
}

and the first part of condition (c2) is satisfied since Z is continuous. Moreover,
for every x, we may take

cx(a, t, u) = Ch0,τ (t)e
z− exp

{
−ez−

∫ t

0

h0,τ (s)ds
}

for a suitable positive constant C and z− = min{β0M
p, 0}. Hence also the

second part of (c2) is satisfied and the chain is weakly Feller.
Finally the assumptions of Proposition 3.4 simplify as follows. One has z0 = 0

and z∞ = Mp, hence the conditions in (3.6) become

−
∫
R+

S0,τ (t)dt <
E[log(ηi)]

E[αi]
< −

∫
R+

Seβ0Mp

0,τ (t)dt,

which is possible only if β0 > 0. On the other hand, if β0 > 0, then (3.5) is
satisfied when

E[log2(ηi)] < +∞, E[α2
i ] < +∞,

∫
R+

tS0,τ (t)dt < +∞.

The models [Δ|XI ], [Δ|τ ] Let us now consider the space increment repre-
sentation. Thanks to (H2), reasoning in a way analogous to the time represen-
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tation, one can show that the sufficient conditions of Proposition 3.5 for the
L-irreducibility are satisfied if

∃ a > 0 such that fη(u) > 0 ∀ 0 < u < a. (4.1)

Again z− = min{β0M
p, 0} and one easily checks that condition (c3) is satisfied

and hence by Proposition 3.6 the weakly Feller property always holds true.
Furthermore, notice that condition (3.8) is trivially satisfied. Thus, in order to
apply Proposition 3.7, it remains to verify condition (3.9).

The null models Finally we treat separately the null model in time [τ |null]
and in space [Δ|null], i.e. the limit case in a timer and adder Cox model when
the parameter β0 = 0.

In the model [τ |null] the kernel is

K(x, dy) = g(yx−1)x−1dy

with

g(u) =

∫
R

2
+

e−atfη(ue
−at)fτ (t)fα(a)dtda.

Hence an invariant probability measure πX for K should solve the distributional
equation

X
D
= XY

where X and Y are independent, X has law πX and Y has density g. We have
already noticed that, if a stationary distribution πX exists, it must be absolutely
continuous with respect to L. In this case it is easy to see that this equation do
not have solutions. Thus, the chain XI,i has no invariant probability measure.
For this reason, the model [τ |null] has not been included in Subsection 2.2 and
will not be considered in the data analysis.

In the case of the model [Δ|null], if a stationary distribution of the process
(XI,i)i≥0 exists, then it is a perpetuity, see e.g. [3]. More precisely, it is a solution
of the distributional equation

X∞
D
= η(Δ +X∞)

where X∞ and (η,Δ) are independent and (η,Δ) has the same distribution of
each (ηi,Δi). By Theorem 3.1 and Corollary 4.1 in [3], if E[log+(ηΔ)] < +∞, the
previous equation has a unique solution (in law) and hence K∗ has a stationary
distribution. Under condition (4.1), the kernel K∗ is L-irreducible and, since
for every x, K∗(x, ·) is absolutely continuous with respect to L, it follows from
Proposition C.2 that K∗ is positive Harris recurrent.

4.2. Consistency

We now deal with the applicability of Proposition 2.1 in order to obtain the
consistency of the estimators. Assumptions (b) and (c) are an immediate con-
sequence of (H1). If in addition, we assume (H2) and (d), the properties of
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Harris positivity and L-irreducibility of the chain (XI,i)i, which imply (a), are
discussed in Subsection 4.1. Below, we study the validity of (e) by means of
Proposition 2.2.

The models [τ |XI ], [τ |XF ], [τ |Δ] Under (H1) it follows immediately that
πY {y : Z(t|y) = c} = πY {∅} = 0 if c < 0 or c > Mp. Suppose now 0 ≤ c ≤ Mp,
and, for t > 0, set γt(a) = 1 under the model [τ |XI ], γt(a) = eat under [τ |XF ]
and γt(a) = eat − 1 under [τ |Δ]. With this position,

{y : Z(t|y) = c} =

{
{y = (x, a) ∈ R

2
+ : xγt(a) = c1/p} if 0 ≤ c < Mp

{y = (x, a) ∈ R
2
+ : xγt(a) ≥ c1/p} if c = Mp.

Now choose γ̄ such that
∫
{a:γt(a)<γ̄} fα(a)da > 0 and note that

{
y = (x, a) ∈ R

2
+ : x <

c1/p

γ̄
, γt(a) < γ̄

}
⊆ {y : Z(t|y) �= c}.

Hence, in order to show that πY {y : Z(t|y) = c} < 1, it suffices to prove that

πY

{
y = (x, a) ∈ R

2
+ : x <

c1/p

γ̄
, γt(a) < γ̄

}
> 0.

The last claim follows easily since by (3.1) one can write πY (dxda) =
πX(dx)fα(a)da and then

πY

{
y = (x, a) ∈ R

2
+ : x <

c1/p

γ̄
, γt(a) < γ̄

}

= πX

{
0 < x <

c1/p

γ̄

}∫
{a:γt(a)<γ̄}

fα(a)da.

To conclude, note that if the assumptions discussed in the previous subsection
hold, the chain (XI,i)i is L-irreducible and hence L is absolutely continuous with
respect to πX (see Appendix C), which yields that πX{0 < x < c1/p/γ̄} > 0.

The models [Δ|XI ], [Δ|τ ], [Δ|null] As for the models [Δ|XI ] and [Δ|τ ], the
study of the validity of (e) follows the same lines of the previous paragraph.

In the case of the model [Δ|null], conditions (a) and (d) are sufficient to
guarantee the consistency of the estimator

Λ̂n(t|y) = Λ̂0,n(t) =
∑

i:Ti≤t

1∑
j I{Tj≥Ti}

.

5. Statistical analysis of some cell size growth data

In this section we apply the proposed extended Cox models to analyse some cell
growth data taken from [4], [9] and [17].
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5.1. Data description

The data in [9] have been elaborated from the publicly available dataset [17]. The
original crude sample consists of measurements of size (length, width and pro-
jected area) at each time frame of 1 min from segmented images of cells growing
in steady exponential conditions in a microfluidic device made of micron-sized
channels. All the data correspond to the strain E. coli MG1655. To reduce the
noise in the size measurements, the Authors in [9] extracted the cell size at a
given time point from the fit of exponential cell growth, instead of using the
value obtained for cell size at that frame. To this end, a linear fit was performed
on the log of cell size against the time, by the least-squares method. This proce-
dure uniquely associates to each cell its initial size X0 (expressed in μm), final
size XF (in μm), doubling time τ (in minutes) and growth rate α. For more
details the reader is referred to the supplementary material of [9]. We perform
our analysis on three datasets, each of 10000 cells, from now on denoted by
MG-A, MG-B, MG-C. All the data refer to the so called old-pole cells, i.e. the
cells at the closed end of each channel in the mother machine.

The second group of data are taken from [4] and have been obtained by
using agarose pad microscopy under varying nutrient quality. We consider four
datasets corresponding to two different strains (referred to as P5-ori and MRR),
and three media (denoted by LB, CAA and Glc). For details on the strains and
the media see [4]. In the following the four datasets are denoted by CAA-P5ori,
Glc-P5ori, Glc-MRR, LB-MRR and contain 5905, 979, 2073, 2296 observations,
respectively. As a first approximation, we treated each dataset as a unique se-
quence of mother-daughter cells.

5.2. Goodness of fit by Cox-Snell residuals

Let us recall that in all the models we assume that the growth rates αi are in-
dependent and identically distributed and that there are no parameters shared
by the densities of α and η and the hazards of Δ and τ . Hence, as noted in
the previous section, neither fα nor fη are involved in the estimation procedure
of the hazards HΔ and Hτ , which we are mainly interested in. For this reason,
at a first stage, we may not specify fα and fη. As for the function Z, in line
with hypothesis (H1) of Section 4, in order to satisfy assumption (b) of Propo-
sition 2.1 we choose Z(x) = min(x,M), with M = 350. As a matter of fact, the
truncation at 350 is fictitious, because both the final size and the doubling time
of every cell are less than 80. Moreover, other functions have been considered,
in particular polynomial and logarithmic Z, and the results are very similar to
those obtained under Z(x) = min(x,M).

In order to assess the fit of each alternate model listed in Subsection 2.2,
we first estimated the hazard functions and then we computed the Cox-Snell
residuals R̂i as in (2.12). Then, we checked whether the residuals R̂i’s behave
as a sample from a unit exponential distribution, by means of the Kolmogorov-
Smirnoff test. Indeed, thanks to Proposition 2.3, if a Cox model fits the data,
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then the one-sample Kolmogorov-Smirnov test should fail to reject the null
hypothesis that the residuals are exponentially distributed with mean one and
the corresponding p-value should be high. Tables 1 and 2 report p-values and
Kolmogorov-Smirnoff statistics for the datasets MG-A, MG-B, MG-C and CAA-
P5ori, Glc-P5ori, Glc-MRR, LB-MRR, respectively.

Concerning the datasets MG-A, MG-B and MG-C, the summaries in Table 1
suggest that both models [Δ|XI ] and [Δ|τ ] fit the data well, whereas all the
Cox models for the doubling time τ , i.e. [τ |Δ], [τ |XI ] and [τ |XF ], fit the data
badly (p-value < 0.05). This supports the idea that the Cox model behaves quite
well when applied to the increments Δi. We also computed the Nelson-Aalen
estimator of the cumulative hazard rate for each of the candidate Cox models
and compared them to the unit exponential cumulative hazard rate. Results
give similar evidence (plots not shown).

Table 1

Kolmogorov-Smirnoff test to check if the estimated Cox-Snell residuals of each model listed
in the first row are exponential with rate one for the three datasets: MG-A,MG-B and

MG-C.

dataset [Δ|XI ] [Δ|τ ] [τ |Δ] [τ |XI ] [τ |XF ]

MG-A
D-statistic 0.0099 0.0100 0.0152 0.0173 0.0160
p-value 0.2823 0.2676 0.0201 0.0050 0.0118

MG-B
D-statistic 0.0075 0.0093 0.0168 0.0201 0.0177
p-value 0.6312 0.3576 0.0073 0.0006 0.0037

MG-C
D-statistic 0.0096 0.0071 0.0267 0.0276 0.0238
p-value 0.3158 0.6893 0.0000 0.0000 0.0000

Table 2

Kolmogorov-Smirnoff test to check if the estimated Cox-Snell residuals of each model listed
in the first row are exponential with rate one for CAA-P5ori, Glc-P5ori, Glc-MRR,

LB-MRR datasets.

dataset sample size [Δ|XI ] [Δ|τ ] [τ |Δ] [τ |XI ] [τ |XF ]

CAA-P5ori 5905
D-statistic 0.0089 0.0333 0.0334 0.0740 0.0578
p-value 0.7413 0.0000 0.0000 0.0000 0.0000

Glc-MRR 2703
D-statistic 0.0141 0.0395 0.0253 0.0456 0.0396
p-value 0.6538 0.0004 0.0635 0.0000 0.0004

Glc-P5ori 979
D-statistic 0.0042 0.0096 0.0186 0.0503 0.0547
p-value 1.0000 1.0000 0.8886 0.0141 0.0057

LB-MRR 2296
D-statistic 0.0090 0.0080 0.0190 0.0197 0.0180
p-value 0.9922 0.9987 0.3775 0.3366 0.4463

As regards Cox-Snell residuals for the data CAA-P5ori, Glc-P5ori, Glc-MRR,
LB-MRR reported in Table 2, it is worth noticing that their sample sizes are
smaller than in the previous datasets and that they are more noisy. The Cox-
Snell residuals of this second group of data do not lead to an interpretation as
clean as for the first group. Only the model [Δ|XI ] adequately fits all datasets.
Conversely, the Cox models [τ |XI ] and [τ |XF ] badly fit all datasets with the
exception of LB-MRR. Lastly, the models [τ |Δ] and [Δ|τ ] are essentially equiv-
alent in term of Cox-Snell residuals, although none of them exhibits a good fit
uniformly on this group of data.
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To summarize, if one looks for a Cox model that works for all datasets, then
the model [Δ|XI ] is the only one that we do never reject by the Cox-Snell
residual test.

5.3. Comparison between simulated processes and empirical
observations

In the perspective of deselecting poor models, as a further measure of fit, we
compare the actual marginal empirical distributions of the interdivision times
τi, the increments Δi, the initial sizes XI,i and the final sizes XF,i with the
corresponding empirical distributions of an artificial dataset generated from the
estimated models [Δ|XI ], [Δ|τ ], [τ |XI ], [τ |XF ] and [τ |Δ]. As a competing model,
we also consider the pure adder model [Δ|null]. These comparisons relay on the
stationarity of both the actual and simulated data.

It is important to note that in order to get a sample from an estimated model
one needs to take into account the distributions of α and η. According to (H2)
in Section 4, the simplest choice assumes η independent of the final size XF . In
this way one can estimate the laws of α and η by the corresponding empirical
distributions. As mentioned in the introduction, the law of α is quite peaked,
hence another possibility is to estimate it by a (truncated) gaussian distribution
with the sample mean and variance as parameters. Apropos of this, let us recall
that [9] assumes a gaussian model for α. Indeed, an exploratory analysis of the
growth rates αi shows that, if one excludes the extreme values (around 0.1%
of the largest and 0.1% of the smallest ones), then a gaussian model fits the
data. Once fα and fη has been estimated, we generated the artificial dataset
and computed the two-sample Kolmogorov-Smirnoff distance between the actual
and the simulated data. As the actual and simulated samples are Markovian,
we do not perform a homogeneity Kolmogorov-Smirnoff test.

The results in Table 3 confirm that the incremental Cox models fit better the
datasets MG-A, MG-B and MG-C than the interdivision time Cox models, for α
and η generated from the empirical distributions. Note that the models [τ |XI ],
[τ |XF ] and [τ |Δ] give small values of the Kolmogorov-Smirnoff statistics only
for the variable τ . In all the three datasets, the concerted control model [Δ|XI ]
is slightly better than both the pure adder model [Δ|null] and the model [Δ|τ ].
All these findings are confirmed by the plots of the histograms of the actual
data compared with the ones of the artificial data. Figures 1(a), 1(b) and 3(a)
show the plots for MG-A, MG-B and MG-C datasets, respectively.

It is worth mentioning that the comparison between artificial and actual
data are not very sensitive to the choice of the law of α. For example, Table 8
in Appendix D reports similar values for Kolmogorov-Smirnoff distances under
a gaussian fit of α. Conversely, the results are more affected by the choice of the
law of η. For instance, the fit is considerably worse if one generates η from a
(truncated) gaussian distribution with sample mean and variance as parameters.

As regards the datasets CAA-P5ori, Glc-P5ori, Glc-MRR, LB-MRR from [4],
the comparison between simulated and true observations is less easy to interpret.
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Fig 1. Histograms of the actual and simulated MG-A datasets in Figure 1(a) and of the
actual and simulated MG-B datasets in Figure 1(b). (Artificial α and η sampled from the
corresponding empirical distributions).
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Table 3

Values of the Kolmogorov-Smirnoff statistic for comparing empirical versus simulated data
in MG-A, MG-B and MG-C cases. (Artificial α and η sampled from the corresponding

empirical distributions).

dataset variable [Δ|null] [Δ|XI ] [Δ|τ ] [τ |Δ] [τ |XI ] [τ |XF ]

MG-A

XI 0.108 0.073 0.073 0.252 0.220 0.200
XF 0.095 0.053 0.058 0.262 0.228 0.212
τ 0.118 0.073 0.076 0.048 0.041 0.046
Δ 0.010 0.011 0.011 0.205 0.176 0.163

MG-B

XI 0.103 0.067 0.111 0.245 0.220 0.239
XF 0.086 0.043 0.081 0.254 0.223 0.250
τ 0.113 0.076 0.100 0.052 0.039 0.046
Δ 0.010 0.010 0.006 0.217 0.175 0.190

MG-C

XI 0.125 0.101 0.170 0.363 0.323 0.362
XF 0.107 0.078 0.130 0.342 0.296 0.335
τ 0.104 0.080 0.120 0.082 0.086 0.088
Δ 0.011 0.011 0.017 0.244 0.185 0.224

First of all, it turns out that the fitting is strongly affected by the variance of the
simulated η. In particular, for all models listed in Subsection 2.2, we get better
results under a constant η equal to the empirical mean, than for η simulated
from the empirical distribution. This may be due to the unexpected high value
of η’s variance, probably caused by the presence of outliers and errors in the
reconstruction of the genealogy of the cells.

In Table 4 we report the two-sample Kolmogorov-Smirnoff statistics, when
the artificial ηi’s are equal to the empirical mean and the artificial αi’s are
sampled from the empirical distribution. The model [Δ|XI ] confirms a good fit
for all four datasets.

Table 4

Values of the Kolmogorov-Smirnoff statistic for comparing empirical versus simulated data
in CAA-P5ori, Glc-P5ori, Glc-MRR, LB-MRR cases. (Artificial α sampled from the

corresponding empirical distributions, η constant and equal to the corresponding empirical
mean).

dataset variable [Δ|null] [Δ|XI ] [Δ|τ ] [τ |Δ] [τ |XI ] [τ |XF ]

CAA-P5ori

XI 0.114 0.101 0.091 0.211 0.257 0.146
XF 0.086 0.073 0.060 0.195 0.238 0.124
τ 0.134 0.133 0.072 0.081 0.140 0.091
Δ 0.014 0.013 0.024 0.134 0.142 0.090

Glc-MRR

XI 0.085 0.060 0.066 0.231 0.228 0.214
XF 0.096 0.070 0.064 0.202 0.198 0.183
τ 0.115 0.101 0.085 0.068 0.093 0.082
Δ 0.009 0.010 0.027 0.151 0.132 0.132

Glc-P5ori

XI 0.090 0.090 0.085 0.153 0.451 0.174
XF 0.051 0.051 0.045 0.139 0.451 0.164
τ 0.067 0.061 0.069 0.065 0.143 0.086
Δ 0.007 0.007 0.015 0.099 0.287 0.122

LB-MRR

XI 0.087 0.093 0.228 0.567 0.487 0.518
XF 0.082 0.074 0.167 0.512 0.428 0.458
τ 0.099 0.085 0.154 0.105 0.120 0.115
Δ 0.016 0.007 0.018 0.366 0.276 0.311
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For the CAA-P5ori and Glc-MRR data, the two-sample Kolmogorov-Smirnoff
statistics under the models [Δ|τ ] and [Δ|XI ] are very similar, even if the model
[Δ|τ ] is rejected by the Cox-Snell test (see Table 2). Thus, also for these second
group of datasets the Cox model seems to behave quite well when applied to
the increments Δi, while it does not work for the interdivision time τi.

Table 9 in Appendix D gives the two-sample Kolmogorov-Smirnoff statistics
when both α and η are generated from the empirical distributions. Similar con-
clusions can be drawn, even if the Kolmogorov-Smirnoff values are in general
higher, indicating a worse fit.

As for the null incremental model [Δ|null], we observe that the two-sample
Kolmogorov-Smirnoff statistics are very similar to those obtained with the non-
null models [Δ|XI ] and [Δ|τ ], regardless of the choice of η. In particular, [Δ|null]
and [Δ|XI ] essentially yield identical results for Glc-P5ori dataset. As one can

seen in Table 10 in Appendix D, this fact is consistent with the β̂n estimate that
is very close to zero, one order of magnitude less than the β̂n estimates for the
remaining datasets.

5.4. Pure adder versus concerted control adder

As mentioned in the introduction, from a biological point of view it is interesting
to understand if a pure adder mechanism explains the growth process or if a
more complex mechanism, as a generalized Cox model, is needed. On the basis
of the results of Subsection 5.3, it is not clear if the null model can be rejected.
Indeed, the simulated samples from a pure adder model reasonably reproduce
the marginal distributions of all the variables of interest. Hence in this section
we compare the null model [Δ|null] with the competing [Δ|XI ] one by means
of suitable statistics which take into account the dependence between XI,i and
Δi. To this aim, we consider the conditional mean of Δi given XI,i. We focus
on the [Δ|XI ] model because, on the one hand, it gives both good Cox-Snell
residuals and good fit for the simulated data in all the datasets, on the other
hand it is the simplest model which is not the null one.

Let M[Δ|null](x) denote the conditional mean E[Δi|XI,i = x] under the null
model and M[Δ|XI ](x) the conditional mean under the [Δ|XI ] model. Therefore

M[Δ|null](x) = E[Δi] and M[Δ|XI,i](x) =

∫ +∞

0

S0,Δ(δ)
eβ0Z(x)

dδ,

for almost all x. Then we estimate the L1 error

Lmodel := Eπ

[∣∣Mmodel(XI,i)− E[Δi|XI,i]
∣∣] ,

where model stands for [Δ|null] or [Δ|XI ] and Eπ denotes the expectation with
respect to the stationary distribution of the process.

We estimated M[Δ|null] by the empirical mean M̂[Δ|null] = n−1
∑n

i=1 Δi and
M[Δ|XI ](x) by

M̂[Δ|XI ](x) =

∫ +∞

0

Ŝ0,Δ,n(δ)
eβ̂nZ(x)

dδ,
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where Ŝ0,Δ,n(δ) = exp{−Ĥ0,Δ,n(δ)}, Ĥ0,Δ,n is the Breslow estimator of H0,Δ

and β̂n is the estimator of β0 (see [19]). Lastly, we estimated the “true” condi-
tional mean E[Δi|XI,i = x] non-parametrically by the Nadaraya-Watson esti-
mator

M̂ker(x) =

n∑
i=1

ΔiG

(
x−XI,i

b

)/ n∑
i=1

G

(
x−XI,i

b

)
,

with G a bounded symmetric kernel density with bandwidth b (see [18]). Here
we assumed the Epanechnikov kernel G(ν) = (3/4)(1 − ν2)+ and we chose the
bandwidth b given in Equation (5.5) page 127 in [16]. In this way we obtained
the following plug-in estimator

L̂model =
1

n

n∑
i=1

|M̂ker(XI,i)− M̂model(XI,i)|.

The estimates M̂[Δ|XI ](x) and M̂ker(x) may be very poor in the tail of the
empirical distribution of the XI,i’s and, as a consequence, the empirical estimate
of Lmodel turns out to be sensitive to few extreme XI,i values. To alleviate this
problem, we considered the following truncated version

L̂model(p) =
1

n

�np	∑
i=1

|M̂ker(X(i))− M̂model(X(i))|,

where X(i) is the i-th order statistic of the XI,i’s, p ∈ (0, 1) and �np� is the

integer part of np. Note that L̂model(p) is a plug-in estimator of Lmodel(p) =
Eπ

[∣∣Mmodel(XI,i)−E[Δi|Xi]
∣∣I{XI,i ≤ qp}

]
, where qp is the p-th quantile of the

stationary distribution of the XI,i’s.
Table 5 collects the results for the MG-A, MG-B, MG-C datasets with p =

0.985, 0.990, 0.995 and under different choices of Z. Analogous results for CAA-
P5ori, Glc-MRR, LB-MRR, Glc-P5ori datasets are reported in Table 6. In par-
ticular, the third column in both tables shows L̂[Δ|null], while the fourth one

reports L̂[Δ|XI ] in the case Z(x) = min(x, 350) =: Z1(x). Comparing these two
columns, we conclude that the model [Δ|XI ] works better than the null model,
except for Glc-P5ori. It seems that the values of L̂model for Glc-P5ori are not
affected by the choice of any model. This matches the fact that the β̂n estimate
under [Δ|XI ] is very close to zero, suggesting that [Δ|null] is the true model for
Glc-P5ori.

We performed the same analysis with Z(x) = min(xγ , 350γ) for different
choices of γ, without observing significant differences. For the MG datasets
all these choices give an estimated conditional mean M̂[Δ|XI ] that is close to

M̂ker(x) for x smaller than a suitable threshold (between 4 and 5), while they are
not completely satisfactory for larger values. See, e.g., black and blue triangle-
lines in Figure 2(a). For the group of data CAA-P5ori, Glc-MRR, LB-MRR
and Glc-P5ori, the behavior of M̂ker(x) is more irregular. The estimated con-
ditional mean of Glc-MRR exhibits a pattern similar to the MG datasets. The
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Table 5

Empirical estimates of the truncated L1 errors for MG-A, MG-B and MG-C datasets:
L̂[Δ|null] values are shown in the third column, L̂[Δ|XI ]

’s with Z(x) = min(x, 350) =: Z1(x)

in the fourth column , L̂[Δ|XI ]
’s with

Z(x) = q̂0.015I[0,q̂0.015](x) + xI(q̂0.015,q̂0.985)(x) + q̂0.985I[q̂0.985,+∞)(x) =: Z2(x) in the fifth

column and L̂[Δ|XI ]
’s with Z(x) = xI(0,q̂0.98)(x) + q̂0.98I[q̂0.98,+∞)(x) =: Z3(x) in the sixth

column.

L̂[Δ|XI ]

dataset p L̂[Δ|null] Z1 Z2 Z3

MG-A
0.985 0.2669 0.0760 0.0505 0.0493
0.990 0.2742 0.0776 0.0538 0.0514
0.995 0.2820 0.0968 0.0572 0.0545

MG-B
0.985 0.3160 0.1127 0.0849 0.0735
0.990 0.3225 0.1304 0.1005 0.0788
0.995 0.3289 0.1601 0.1159 0.0842

MG-C
0.985 0.2561 0.0937 0.0926 0.0918
0.990 0.2688 0.0947 0.0933 0.0927
0.995 0.2763 0.1007 0.0977 0.0966

Table 6

Empirical estimates of the truncated L1 errors for CAA-P5ori, Glc-MRR, LB-MRR and
Glc-P5ori datasets: L̂[Δ|null] values are shown in the third column, L̂[Δ|XI ]

’s with

Z(x) = min(x, 350) =: Z1(x) in the fourth column , L̂[Δ|XI ]
’s with

Z(x) = q̂0.015I[0,q̂0.015](x) + xI(q̂0.015,q̂0.985)(x) + q̂0.985I[q̂0.985,+∞)(x) =: Z2(x) in the fifth

column and L̂[Δ|XI ]
’s with Z(x) = xI(0,q̂0.98)(x) + q̂0.98I[q̂0.98,+∞)(x) =: Z3(x) in the sixth

column.

L̂[Δ|XI ]

dataset p L̂[Δ|null] Z1 Z2 Z3

CAA-P5ori
0.985 0.1473 0.1029 0.0969 0.0971
0.990 0.1475 0.1041 0.0983 0.0981
0.995 0.1477 0.1057 0.0999 0.0993

Glc-MRR
0.985 0.3074 0.1660 0.1360 0.1340
0.990 0.3101 0.1757 0.1452 0.1403
0.995 0.3104 0.1951 0.1560 0.1484

LB-MRR
0.985 0.1940 0.1756 0.1892 0.1881
0.990 0.2002 0.1819 0.1954 0.1942
0.995 0.2069 0.1875 0.2010 0.1999

Glc-P5ori
0.985 0.0636 0.0637 0.0636 0.0649
0.990 0.0713 0.0714 0.0713 0.0727
0.995 0.0748 0.0748 0.0747 0.0762

estimated conditional mean of Glc-P5ori is essentially constant, while the pat-
terns of CAA-P5ori and LB-MRR are quite oscillatory. In order to save space, in
Figure 2(b) we display the parametric and non-parametric estimates of the con-
ditional mean of Glc-MRR dataset only. Summarizing, at least for the MG group
of data, M̂ker is monotonic in the range corresponding to the 90-95% smallest
XI,i’s (the percentage depending on the dataset), while for the remaining val-

ues of x the behavior is more irregular. Although the estimates M̂ker(x) are less
reliable for large x, they suggest that the “true” conditional mean E[Δ|XI ](x)
is bounded. On the contrary, one can easily see that if β0 < 0 and Z is strictly
increasing, then the conditional mean is strictly increasing with x; the opposite



2956 F. Bassetti et al.

is true if β0 > 0. Here all the β̂n estimates are negative and coherently the cor-
responding estimates M̂[Δ|XI ](x) are strictly increasing. Unfortunately, this fact
is supported neither by the data nor by biological considerations. In the light of
these findings, we explored the impact of a “real” truncation in Z, and we con-
sidered Z(x) = mI[0,m](x)+xI(m,M)(x)+MI[M,+∞)(x). As a rule of thumb, we
choosed m and M based on some suitable quantiles of the XI,i’s. For instance,
the results shown on the fifth column in Tables 5 and Table 6 are based on a
truncation at m equal to the 0.015 empirical quantile of the XI,i’s and at M
equal to the 0.985 quantile, i.e. Z(x) = q̂0.015I[0,q̂0.015](x) + xI(q̂0.015,q̂0.985)(x) +
q̂0.985I[q̂0.985,+∞)(x) =: Z2(x). In addition, the sixth column of each table con-
tains the results for Z = xI(0,q̂0.98)(x)+ q̂0.98I[q̂0.98,+∞)(x) =: Z3(x). Actually, we

observe that the corresponding estimated errors L̂[Δ|XI ] decrease; even a visual
inspection of the plots of the estimated conditional means in Figure 2 confirms
these findings. We computed the Cox-Snell residuals of the model [Δ|XI ] with
such truncated Z’s functions and we found that the corresponding p-values are
smaller than those from the non truncated case, although they are bigger than
0.05. See Table 11 in Appendix D.

We can conclude that the non-null model [Δ|XI ] behaves better than the null
model [Δ|null] in all considered datasets with the exception of Glc-P5ori.

5.5. Modeling the dependence between η and XF

In some growth conditions and for some strains, exceptionally long cells (fila-
ments) can be observed. These cells produce a second minor mode in the dis-
tribution of cell size, as can be clearly seen for the MG-C dataset in Figure 3.
But this second peak is definitely not reproduced by the models of the previous
subsections, as in those applications we assumed the independence of η from
the final size of the cell. Already in [17] it has been observed that filaments are
probably related to aging, an effect that cannot be captured by any homogenous
Markov model. Nevertheless, there is another interesting feature that one can
try and take into account in the models we are considering: there is a strik-
ing difference in the division patterns of the cells depending on their final size.
In the note accompanying the datasets of [17], it is pointed out that filaments
longer than 15μm never divide at the midcell but at the quarter positions. This
is evident for all the MG datasets, see for example Figure 4 for MG-C. This fact
suggests that, in modeling the law of η, one should account for some dependence
on XF .

Roughly speaking, the η’s behave in different manners as the final size XF in-
creases and, in particular, for final size bigger than 13μm we observe a bimodal-
shaped distribution of η with modes around 0.25 and 0.75. In order to bring
this feature into our model as simply as possible, we assume that

fη(u|x) =
K∑
j=1

I{x̃j−1 ≤ x < x̃j}fη,j(u)
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Fig 2. Estimates of the conditional means for MG-A dataset in Figure 2(a) and for Glc-
MRR dataset in Figure 2(b). (Black) up-pointing triangle-line corresponds to the esti-

mate M̂[Δ|XI ]
(x) with Z(x) = min(x, 350) =: Z1(x), (red) down-pointing triangle-line to

M̂[Δ|XI ]
(x) with Z(x) = q̂0.015I[0,q̂0.015](x) + xI(q̂0.015,q̂0.985)(x) + q̂0.985I[q̂0.985,+∞)(x) =:

Z2(x), (blue) solid dotted line to the non-parametric Nadaraya-Watson estimator M̂ker(x)
and, (brown) horizontal line to the empirical mean of the increments Δ.
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Fig 3. Histograms of the actual and simulated MG-C datasets in Figure 3(a) with both ar-
tificial α and η sampled from the corresponding empirical distributions, and of the actual
and simulated MG-C datasest in Figure 3(b) with artificial α sampled from the corresponding
empirical distributions and artificial η simulated from the XF -dependent density fη.
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Fig 4. Clustering procedure applied to MG-C dataset.

where x̃0 = 0 < x̃1 < · · · < x̃K = +∞ and fη,j(u) is a density on the unit
interval. In what follows K = 3, fη,j(u) = N[0,1],μj ,σj

(u) for j = 1, 2 and
fη,3(u) = p3N[0,1],μ31,σ31

(u) + (1− p3)N[0,1],μ32,σ32
(u), where N[0,1],a,b denotes a

gaussian density with mean a and standard deviation b truncated on [0, 1] and
0 < p3 < 1.

The estimation of the parameters (x̃1, x̃2, μ1, μ2, μ31, μ32, σ1, σ2, σ31, σ31, p3)
is obtained in the following way. Given a set of data (XF,i, ηi)i, we start by
identifying four clusters as follows.

Step 1 Using the k-means algorithm, we first split the data into three clusters:
cl1 corresponding to small values of XF,i, cl2 corresponding to the medium
ones and cl3 corresponding to the large ones.

Step 2 As the third cluster cl3 highlights two point-clouds, apparently based
on the values of ηi, we perform another k-means algorithm with k = 2 to
the only ηi’s of the data in cl3 and denote by cl31, cl32 the clusters induced
in cl3 by the last 2-means classification of the ηi’s.

The result of the above clustering procedure applied to MG-C dataset is shown
in Figure 4. Hence we take x̃1 and x̃2 equal to the maximum values attained by
the XF,i’s in cl1 and cl2, respectively, and we set p3 equal to the proportion of
the data in cl3 belonging to cl31. Finally, we estimate μj by the sample mean
and σj by the sample variance of the ηi’s such that the couple (ηi, XF,i) belongs
to clj , whereas μ3j and σ3j are estimated by the sample mean and variance of
ηi’s such that (ηi, XF,i) is in cl3j , for j = 1, 2.

We performed the validation procedure described in Subsection 5.3 using this
estimate of the conditional density fη, for the MG datasets. The corresponding



2960 F. Bassetti et al.

two-sample Kolmogorov-Smirnoff distances between actual and simulated data
are collected in Table 7. Even with this choice of fη, Cox models applied to the

Table 7

Values of the Kolmogorov-Smirnoff statistic for comparing empirical versus simulated data
in MG-A,MG-B and MG-C cases. (Artificial α sampled from the corresponding empirical

distributions, artificial η simulated from the XF -dependent density fη)

dataset variable [Δ|null] [Δ|XI ] [Δ|τ ] [τ |Δ] [τ |XI ] [τ |XF ]

MG-A

XI 0.091 0.041 0.046 0.196 0.208 0.188
XF 0.096 0.040 0.043 0.203 0.228 0.206
τ 0.100 0.065 0.061 0.087 0.087 0.091
Δ 0.013 0.013 0.009 0.160 0.179 0.159

MG-B

XI 0.093 0.034 0.018 0.185 0.174 0.170
XF 0.091 0.031 0.021 0.188 0.177 0.185
τ 0.107 0.067 0.065 0.078 0.066 0.082
Δ 0.013 0.010 0.017 0.160 0.142 0.157

MG-C

XI 0.066 0.038 0.029 0.194 0.166 0.174
XF 0.073 0.033 0.038 0.196 0.171 0.174
τ 0.076 0.053 0.050 0.059 0.050 0.055
Δ 0.005 0.012 0.008 0.154 0.133 0.136

increments Δi fit better than Cox models for times τi, and [Δ|XI ] and [Δ|τ ]
are preferable to [Δ|null]. Moreover, a comparison between Table 3 and Table 7
points out that the introduction of a dependence between η and XF improves
the fitting of all the marginal distributions for all the MG datasets. In particular,
the strongest improvement is obtained for the MG-C dataset, which contains
the highest percentage of filaments (8.5% of cells longer than 13μm versus 1.7%
in MG-A and 2.8% in MG-B).

The histograms of actual and simulated MG-C data in Figure 3(a) (for η
sampled from the empirical distribution) and in Figure 3(b) (for η sampled from
the distribution described above) reveal that the Δ-models with η dependent
on XF reproduce more accurately the tails of the true data. In particular, the
resulting distributions forXI and τ turn out to be more peaked and the marginal
distribution of XF better mimics the second minor mode of the true data. We
did not apply this statistical analysis to the datasets CAA-P5ori, Glc-P5ori,
Glc-MRR, LB-MRR, since they are not large enough to contain a non-negligible
number of filaments.

Appendix A: Proofs of Section 2

The proof of Proposition 2.1 follows the same line of the analogous results in [2]
and it will be carried out in a series of lemmata. The proofs of Proposition 2.2
and Proposition 2.3 are given at the end of this section.

Proof of Proposition 2.1. Let

Mn(β) := An(β)−Bn(β)
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where

An(β) =
1

n

n∑
i=1

Z(Ti|Yi)(β − β0)

Bn(β) =
1

n

n∑
i=1

log
( 1

n

∑n
j=1 I{Tj ≥ Ti}eβZ(Ti|Yj)

1
n

∑n
j=1 I{Tj ≥ Ti}eβ0Z(Ti|Yj)

)
.

In order to show that β̂n converges to β0 P-a.s., one observes that that Mn

is a concave function and β̂n ∈ argmaxMn(β) (see Lemma A.2). Then one
shows that Mn(β) converges P-a.s. to M(β) for all β (see Lemma A.6) and that
β �→ M(β) has a unique maximum in β0 (see Lemma A.4). At this stage the
first part of the thesis follows by Thm. 7.7 in [6]. The second part of the thesis
is proved in Lemma A.7.

Lemma A.1. If (Yi, Ti)i≥0 is ϕ-irreducible positive Harris, then there exists a
probability measure πY on B(R2

+) such that

π(dydt) = πY (dy)f(t|y)dt (A.1)

is the unique invariant distribution for (Yi, Ti)i≥0 and

lim
n→+∞

1

n

n∑
i=1

ψ(Yi, Ti) =

∫
R

2
+×R+

ψ(y, t)π(dydt)

almost surely for every ψ such that
∫
R

2
+×R+

|ψ(y, t)|π(dydt) < +∞ and for every

initial condition.

Proof. If (Yi, Ti)i≥0 is ϕ-irreducible and positive Harris, this means that there
is a (unique) invariant probability measure π, that is

π(dydt) =

∫
f(t|y)dtg(dy|ȳ, t̄)π(dȳdt̄) = f(t|y)dt

∫
g(dy|ȳ, t̄)π(dȳdt̄).

Hence (A.1) is true with

πY (dy) =

∫
g(dy|ȳ, t̄)π(dȳdt̄). (A.2)

The second part of the thesis is the law of large number for a (ϕ-irreducible
and) positive Harris Markov chain. See Appendix C.

Lemma A.2. Mn is a concave (random) function and β̂n ∈ argmax Mn(β).

Proof. First observe that Mn(β) = n−1(log(PLn(β))− log(PLn(β0)) and hence

β̂n ∈ argmaxMn(β). The concavity of Mn follows by showing that d2

dβ2Mn(β) ≤
0. Since An(β) is a linear function of β, then d2

dβ2Mn(β) = − d2

dβ2Bn(β) and an
easy computation gives
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− d2

dβ2
Bn(β) = − 1

n

n∑
i=1

(∑n
j=1 I{Tj ≥ Ti}Z2(Ti|Yj)e

βZ(Ti|Yj)∑n
j=1 I{Tj ≥ Ti}eβZ(Ti|Yj)

−
(∑n

j=1 I{Tj ≥ Ti}Z(Ti|Yj)e
βZ(Ti|Yj)∑n

j=1 I{Tj ≥ Ti}eβZ(Ti|Yj)

)2
⎞
⎠

Finally, each term of the first sum is positive in view of the Cauchy-Schwarz
Inequality.

Setting

cn(t|β) =
1

n

n∑
j=1

I{Tj ≥ t}eβZ(t|Yj)

and Nn(dt) := n−1
∑n

i=1 δTi(dt) we can write

Bn(β) =

∫
R+

log
( cn(t|β)
cn(t|β0)

)
Nn(dt).

Notice that the above integral is well defined since cn(Ti|β) > 0 for all β and
i = 1, . . . n.

Furthermore, as f(t|y) = S(t|y, β0)e
β0Z(t|y)λ0(t), one gets from (A.2) and

(2.11) that

c(t|β) =
∫
R

2
+

S(t|y, β0)e
βZ(t|y)πY (dy) and

πT (dt) =
(∫

R
2
+

S(t|y, β0)e
β0Z(t|y)πY (dy)

)
λ0(t)dt = c(t|β0)λ0(t)dt =: fT (t)dt.

(A.3)

Lemma A.3. Under assumptions (a)-(d) of Proposition 2.1, πT [t̄,+∞) > 0 for
every t̄ < +∞. Moreover, for every β, 0 < k−(β)πT [t̄,+∞) ≤ c(t|β) ≤ k+(β) <
+∞ for every t ∈ [0, t̄] and for suitable functions k−(β) and k+(β).

Proof. Let k+(β) := sup(t,y) e
Z(t|y)β < +∞ and k−(β) := inf(t,y) e

Z(t|y)β > 0.

Clearly 1 ≥ S(t|y, β0) ≥ exp{−k+(β0)
∫ t

0
λ0(s)ds} and hence, recalling (A.3):

fT (t) ≥ λ0(t)k
−(β0)

∫
(R2

+)2
e−k+(β0)

∫ t
0
λ0(s)dsπY (dy)

= λ0(t)k
−(β0)e

−k+(β0)
∫ t
0
λ0(s)ds .

But, since
∫ t

0
λ0(s)ds < +∞ for every t and

∫ +∞
0

λ0(s)ds = +∞, then it follows

immediately that πT [t̄,+∞) =
∫ +∞
t̄

fT (t)dt > 0 for every t̄ < +∞. Finally,
c(t|β) ≤ k+(β) and, recalling (A.3), c(t|β) ≥ k−(β)πT [t̄,+∞) for every t ≤
t̄.

Lemma A.4. Under assumptions (b)-(e) of Proposition 2.1, the function M
has a unique minimum in β0.
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Proof. First, in view of Lemma A.3, c(t|β) > 0 for every t, β and, by (b), one
can differentiate under the integral sign to get

d

dβ
M(β) =

∫
Z(t|y)π(dtdy)−

∫ ∂
∂β c(t|β)
c(t|β) fT (t)dt

=

∫
Z(t|y)π(dtdy)−

∫ ∫
Z(t|y)S(t|y, β0)e

βZ(t|y)πY (dy)

c(t|β) fT (t)dt

and

− d2

dβ2
M(β) =

∫ (∫
Z2(t|y)S(t|y, β0)e

βZ(t|y)πY (dy)

c(t|β)

−
(∫

Z(t|y)S(t|y, β0)e
βZ(t|y)πY (dy)

c(t|β)
)2)

fT (t)dt.

For β = β0 one has fT (t)/c(t|β) = λ0(t), so that

∫ ∫
Z(t|y)S(t|y, β0)e

β0Z(t|y)πY (dy)

c(t|β) fT (t)dt

=

∫ ∫
Z(t|y)S(t|y, β0)e

β0Z(t|y)πY (dy)λ0(t)dt =

∫
Z(t|y)π(dtdy),

hence d
dβM(β)|β=β0 = 0. Moreover, as

∫
S(t|y, β0)e

βZ(t|y)πY (dy)

c(t|β) = 1,

then the Chauchy-Schwarz inequality gives d2

dβ2M(β) ≤ 0 and, by assump-

tion (e), d2

dβ2M(β0) < 0, which yields that β0 is the unique maximum of M .

Lemma A.5. If assumption (a)-(d) of Proposition 2.1 are in force, then

sup
0≤t≤t̄

|cn(t|β)− c(t|β)| → 0 P-a.s. (A.4)

for every 0 < t̄ < +∞ and every β.

Proof. Set ζn(t) := n−1
∑n

j=1 I{Tj ≥ t} and define

ζ(t) := πT [t,+∞),

�(δ, y, β) := sup
s,t≤t̄,|s−t|≤δ

|eZ(t|y)β − eZ(s|y)β |,

H(δ, β) :=

∫
�(δ, y, β)πY (dy).

Now observe that t �→ ζ(t) and t �→ c(t|β) are continuous functions, see (A.3),
and hence they are uniformly continuous on [0, t̄]. Moreover, it follows by (a)
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and (c) that �(δ, y, β) ≤ 2eβ‖Z‖∞ and that limδ→0 �(δ, y, β) = 0 for every y, β.
Hence, limδ→0 H(δ, β) = 0. Putting all together, for every ε there is δ such that

sup
s,t≤t̄,|s−t|≤δ

|c(t|β)− c(s|β)| ≤ ε (A.5)

sup
s,t≤t̄,|s−t|≤δ

|ζ(t)− ζ(s)| ≤ ε (A.6)

H(δ, β) ≤ ε. (A.7)

Now choose t0, . . . , tm such that 0 = t0 < · · · < tm = t̄ and ti− ti−1 ≤ δ. Hence,

sup
0≤t≤t̄

|cn(t|β)− c(t|β)|

≤ max
i

sup
ti−1≤t≤ti

{
|cn(t|β)− cn(ti|β)|+ |cn(ti|β)− c(ti|β)|+ |c(ti|β)− c(t|β)|

}
.

By (A.5)

sup
0≤t≤t̄

|cn(t|β)− c(t|β)| ≤ max
i

sup
ti−1≤t≤ti

|cn(t|β)− cn(ti|β)|+ J1,n(δ) + ε

with J1,n(δ) = maxi=1,...,m |cn(ti|β) − c(ti|β)|. Now consider ti−1 ≤ t ≤ ti.
Clearly I{Tj ≥ t} ≥ I{Tj ≥ ti}, so that

|cn(t|β)− cn(ti|β)| ≤
∣∣∣ 1
n

n∑
j=1

(I{Tj ≥ t} − I{Tj ≥ ti})eZ(t|Yj)β
∣∣∣

+
1

n

n∑
j=1

|eZ(t|Yj)β − eZ(ti|Yj)β |

≤ k+(β)|ζn(t)− ζn(ti)|+
1

n

n∑
j=1

�(δ, Yj , β)

≤ k+(β)|ζn(ti−1)− ζn(ti)|+
1

n

n∑
j=1

�(δ, Yj , β)

≤ k+(β)(|ζn(ti−1)− ζ(ti−1)|+ |ζ(ti−1)− ζ(ti)|+ |ζ(ti)− ζn(ti)|)

+
1

n

n∑
j=1

�(δ, Yj , β)

for k+(β) = sup(t,y) e
Z(t|y)β < +∞. Therefore, using (A.6),

max
i

sup
ti−1≤t≤ti

|cn(t|β)− cn(ti|β)| ≤ 2k+(β)J2,n(δ) + k+(β)ε+
1

n

n∑
j=1

�(δ, Yj , β)

with J2,n(δ) = maxi=1,...,m |ζn(ti)− ζ(ti)|. We have proved that

sup
0≤t≤t̄

|cn(t|β)− c(t|β)| ≤ Jn(δ) + (k+(β) + 1)ε+Hn(δ, β)
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with Jn(δ) = J1,n(δ)+2k+(β)J2,n(δ) and Hn(δ, β) = n−1
∑n

j=1 �(δ, Yj , β). Now
by Lemma A.1, Jn(δ) converges almost surely to zero and Hn(δ, β) converges
almost surely to H(δ, β) with H(δ, β) ≤ ε by (A.7). This gives (A.4).

Lemma A.6. Assume (a)-(d) of Proposition 2.1. Then, for every β, Mn(β)
converges P-a.s. to M(β).

Proof. Let us fix β. Using Lemma A.2 it follows immediately that An(β) con-
verges a.s. to (β − β0)

∫
R

2
+×R+

Z(t|y)π(dydt). Using assumption (b) it follows

that

0 < c−(β) :=
k−(β)

k+(β0)
≤ cn(t|β)

cn(t|β0)
≤ c+(β) :=

k+(β)

k−(β0)
< +∞

for all t, n, ω such that ζn(t)=n−1
∑n

j=1 I{Tj ≥ t} > 0. Moreover, by Lemma A.3
one has 0 < k−(β)πT [t̄,+∞) ≤ c(t|β) ≤ k+(β) < +∞ for every t ∈ [0, t̄]. In the
light of these facts and (A.4), one can show that for every t̄ < +∞ and every β

sup
0≤t≤t̄

| log(cn(t|β))− log(c(t|β))|→0 P-a.s..

Indeed, since inft∈[0,t̄] c(t|β) ≥ δ > 0, then cn(t|β) ≥ δ/2 for every t ∈ [0, t̄] and

every n ≥ n̄(ω, t̄), on a set of probability one. As | log(x)−log(y)| = |
∫ x

y
t−1dt| ≤

|x− y|L for x, y ≥ L−1, it follows that

sup
0≤t≤t̄

| log(cn(t|β))− log(c(t|β))| ≤ 2

δ
sup

0≤t≤t̄

|cn(t|β)− c(t|β)|

for every n ≥ n̄(ω, t̄). The claim follows.
To summarize, for every t̄ < +∞ and every β, we proved that

sup
0≤t≤t̄

∣∣∣ log ( cn(t|β)
cn(t|β0)

)
− log

( c(t|β)
c(t|β0)

)∣∣∣→0 P-a.s.. (A.8)

Recall that Nn(dt) := n−1
∑n

i=1 δTi(dt) and observe that ζn(Ti) > 0 for every
n, i. Hence, setting c̄(β) := max(| log(c−(β))|, | log(c+(β))|), one can write, for
every t̄ < +∞,

|Bn(β)−
∫

log
( c(t|β)
c(t|β0)

)
πT (dt)| ≤ c̄(β)[Nn([t̄,+∞)) + πT ([t̄,+∞))]

+
∣∣∣ ∫

[0,t̄)

log
( cn(t|β)
cn(t|β0)

)
Nn(dt)−

∫
[0,t̄)

log
( c(t|β)
c(t|β0)

)
πT (dt)

∣∣∣
≤ c̄(β)[Nn([t̄,+∞))+πT ([t̄,+∞))]+

∫
[0,t̄)

∣∣∣ log ( cn(t|β)
cn(t|β0)

)
−log

( c(t|β)
c(t|β0)

)∣∣∣Nn(dt)

+
∣∣∣ ∫

[0,t̄)

log
( c(t|β)
c(t|β0)

)
[Nn(dt)− πT (dt)]

∣∣∣
≤ c̄(β)[Nn([t̄,+∞)) + πT ([t̄,+∞))] + sup

0≤t≤t̄

∣∣∣ log ( cn(t|β)
cn(t|β0)

)
− log

( c(t|β)
c(t|β0)

)∣∣∣
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+
∣∣∣ ∫

[0,t̄)

log
( c(t|β)
c(t|β0)

)
[Nn(dt)− πT (dt)]

∣∣∣ =: R1,n(t̄) +R2,n(t̄) +R3,n(t̄).

Now let t̄ such that πT ([t̄,+∞)) ≤ ε(2c̄(β))−1. Using Lemma A.1 one gets that
R1,n(t̄) converges a.s. to 2c̄(β)πT ([t̄,+∞))] ≤ ε. Moreover, by (A.8), R2,n(t̄)
converges a.s. to 0 and, by Lemma A.1, R3,n(t̄) converges a.s. to 0. This shows

that Bn(β) converges a.s. to
∫
log

(
c(t|β)
c(t|β0)

)
πT (dt) and the thesis follows.

Lemma A.7. If assumptions (a)-(e) of Proposition 2.1 are in force then β̂n →
β0 P-a.s. and Λ̂0,n(t) converges to

∫
(0,t]

λ0(s)ds for every t > 0 P-a.s..

Proof. Combining Thm. 7.7 in [6] with Lemmata A.2, A.4 and A.6, one gets

that β̂n → β0 a.s. Note that this proves the first part of Proposition 2.1. Now
observe that

Λ̂0,n(t) =

∫
(0,t]

1

cn(s|β̂n)
Nn(ds).

Once again, by Lemma A.3, for every 0 < t < +∞, infs∈[0,t] c(s|β0) ≥ δ =
δ(t) > 0 and hence infs∈[0,t] cn(s|β0) ≥ δ/2 for every n ≥ n̄(ω, t) on a set of
probability one. So that, for every n ≥ n̄(ω, t)

sup
s∈(0,t]

∣∣∣ 1

cn(s|β0)
− 1

c(s|β0)

∣∣∣ = sup
s∈(0,t]

∣∣∣cn(s|β0)− c(s|β0)

cn(s|β0)c(s|β0)

∣∣∣
≤ 2

δ2
sup

s∈(0,t]

|cn(s|β0)− c(s|β0)|.
(A.9)

Now ∣∣∣ ∫
(0,t]

1

cn(s|β̂n)
Nn(ds)−

∫
(0,t]

1

c(s|β0)
πT (ds)

∣∣∣
≤

∣∣∣ ∫
(0,t]

1

cn(s|β̂n)
Nn(ds)−

∫
(0,t]

1

cn(s|β0)
Nn(ds)

∣∣∣
+

∫
(0,t]

∣∣∣ 1

cn(s|β0)
− 1

c(s|β0)

∣∣∣Nn(ds)

+
∣∣∣ ∫

(0,t]

1

c(s|β0)
Nn(ds)−

∫
(0,t]

1

c(s|β0)
πT (ds)

∣∣∣
=: I1,n + I2,n + I3,n.

By Taylor expansion of β �→
∫
(0,t]

c−1
n (s|β)Nn(ds), one gets

I1,n = |β̂n − β0|
∣∣∣ ∫

(0,t]

∂
∂β cn(s|β∗

n)

c2n(s|β∗
n)

Nn(ds)
∣∣∣

for some β∗
n in the segment connecting β̂n and β0, i.e. |β∗

n − β0| ≤ |βn − β0|.
Since β∗

n = β∗
n − β0 + β0 ≥ −|β∗

n − β0|+ β0, then

cn(t|β∗
n) ≥ cn(t|β0)e

−|β∗
n−β0|‖Z‖∞
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and hence
1

cn(t|β∗
n)

≤ e|β
∗
n−β0|‖Z‖∞

cn(t|β0)
. (A.10)

Therefore

∂
∂β cn(s|β∗

n)

c2n(s|β∗
n)

≤ e2|β
∗
n−β0|‖Z‖∞

c2n(t|β0)
‖Z‖∞e|β

∗
n|‖Z‖∞ ≤ 4

δ2
‖Z‖∞e|β

∗
n|‖Z‖∞e2|β

∗
n−β0|‖Z‖∞ .

Since β̂n → β0 a.s. and hence β∗
n → β0, it follows that I1,n converges a.s. to 0.

As regards I2,n, by (A.9)

I2,n ≤ 2

δ2
sup

s∈(0,t]

|cn(s|β0)− c(s|β0)|.

By Lemma A.5 we know that (A.4) holds and then also I2,n converges a.s. to
zero. Finally, using again infs∈[0,t] c(s|β0) ≥ δ(t) > 0 and the strong law of large
numbers of Lemma A.1, I3,n converges a.s. to zero. We have proved that∫

(0,t]

1

cn(s|β̂n)
Nn(ds) →

∫
(0,t]

1

c(s|β0)
πT (ds) =

∫
(0,t]

λ0(s)ds = Λ0(t) P-a.s..

As Λ̂0,n are increasing processes, the thesis follows.

Proof of Proposition 2.2. From the expression of d2

dβ2M(β0) one gets

d2

dβ2
M(β0) = −

∫
Var(Z(t|Yt))fT (t)dt

where, for any fixed t > 0, Yt is a random variable with distribution

S(t|y, β0)e
β0Z(t|y)πY (dy)

c(t|β0)
.

Hence

P (Z(t|Yt) �= c) =

∫
{y:Z(t|y) �=c}

S(t|y, β0)

c(t|β0)
eβ0Z(t|y)πY (dy)

≥ k−(β0)

k+(β0)
e−k+(β0)

∫ t
0
λ0(s)dsπY ({y : Z(t|y) �= c}),

for every t and c, and the last term is greater than zero if and only if

πY ({y : Z(t|y) = c}) < 1.

Thus, if the last condition is true for every c and for almost all t ∈ [a, b] with

πT ([a, b]) =
∫ b

a
fT (u)du > 0, then

d2

dβ2
M(β0) < 0.
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Proof of Proposition 2.3. Thanks to Proposition 2.1 there exists Ω0 such that
P(Ω0) = 0 and for a fixed ω ∈ Ωc

0 it follows that β̂n → β0 and Λ̂0,n(t) →∫
(0,t]

λ0(s)ds for every t > 0. Then, for every K > 0 and t ≤ K,

|Λ̂n(t|y)−
∫
(0,t)

eβ0Z(s|y)λ0(s)ds|= |
∫
(0,t]

eβ̂nZ(s|y)Λ̂0,n(ds)−
∫
(0,t)

eβ0Z(s|y)λ0(s)ds|

≤
∫
(0,t]

|eβ̂nZ(s|y) − eβ0Z(s|y)|Λ̂0,n(ds)

+ |
∫
(0,t]

eβ0Z(s|y)Λ̂0,n(ds)−
∫
(0,t)

eβ0Z(s|y)λ0(s)ds|

≤ C(|β̂n − β0|Λ̂0,n(K) + |Λ̂0,n(K)−
∫
(0,K)

λ0(s)ds|)

for n ≥ n0(ω) and a suitable constant C, since Z is a bounded function of s and
y. By Lemma A.7 the last term of the inequality tends to zero and hence the first
part of the corollary is proved. As a consequence, R̂i = Λ̂n(Ti|Yi) → ΛT (Ti|Yi) =∫
(0,Ti)

eβ0Z(s|Yi)λ0(s)ds a.s.. If one denotes by Λ−1
T (·|y) a (generalized) inverse

function of ΛT (·|y), then, for every positive u, one has

P

{
Ti > Λ−1

T (u|Yi)
∣∣∣Yi = y

}
= exp{−ΛT (Λ

−1
T (u|y)|y)} = e−u. (A.11)

Using this fact, one can easily prove that the ΛT (Ti|Yi)’s are independent and
exponentially distributed with mean 1 and the second part of the proposition
follows.

Appendix B: Proofs of Section 3

Proof of Proposition 3.1. Define

ρ(x̄; dxdadt) : =

(∫
R+2

fXI
(x|x̄eāt̄)fτ (t̄|x̄, ā)fα(ā)dādt̄

)
fα(a)fτ (t|x, a)dxdadt

= P{XI,n ∈ dx, αn ∈ da, τn ∈ dx|XI,n−1 = x̄},

for n = 1, . . . and

ϕ̃(dxdadt) :=

∫
R+

ϕ(dx̄)ρ(x̄; dxdadt) .

Then for any measurable subset C of R
3
+ such that ϕ̃(C) > 0 there exists

X0 ⊂ R+, with X0 = X0(C) measurable set satisfying ϕ(X0) > 0 and ρ(x̄;C) > 0
for every x̄ ∈ X0. On the other hand, the ϕ-irreducibility of the embedded
Markov Chain (XI,n)n≥0 yields

∑
n≥1

P{XI,n ∈ X0|XI,0 = x} 1

2n
> 0 (B.1)
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for every x ∈ R+ see e.g. Proposition 4.2.1 in [8]. We now claim that (B.1)
implies ∑

n≥1

P{(XI,n+j , αn+j , τn+j) ∈ C|XI,j = x} 1

2n
> 0 (B.2)

for every x ∈ R+ and j = 0, 1, . . .. Because of the homogeneity of the chain
(XI,n, αn, τn), it is sufficient to prove that (B.1) implies (B.2) when j = 0. To
see this, note that

∑
n≥1

P{(XI,n, αn, τn) ∈ C|XI,0 = x} 1

2n
=

ρ(x;C)

2
+

+
1

2

∫
R+

∑
n≥1

P{(XI,n+1, αn+1, τn+1)∈C|XI,n = x̄}P{XI,n ∈ dx̄|XI,0 = x} 1

2n

≥ 1

2

∫
X0

∑
n≥1

P{(XI,n+1, αn+1, τn+1)∈C|XI,n = x̄}P{XI,n ∈ dx̄|XI,0 = x} 1

2n

=
1

2

∫
X0

ρ(x̄;C)
∑
n≥1

P{XI,n ∈ dx̄|XI,0 = x} 1

2n
> 0

by (B.1). Finally,

∑
n≥1

P{(XI,n, αn, τn) ∈ C|(XI,0, α0, τ0) = (x0, a0, t0)}
1

2n

≥ 1

2

∑
n≥1

P{(XI,n+1, αn+1, τn+1) ∈ C|(XI,0, α0, τ0) = (x0, a0, t0)}
1

2n

=
1

2

∫
R+

⎡
⎣∑
n≥1

P{(XI,n+1, αn+1, τn+1) ∈ C|XI,1 = x} 1

2n

⎤
⎦

×P{XI,1 ∈ dx|(XI,0, α0, τ0) = (x0, a0, t0)}

≥ 1

2

∫
R+

⎡
⎣∑
n≥1

P{(XI,n+1, αn+1, τn+1) ∈ C|XI,1 = x} 1

2n

⎤
⎦ fXI

(x|x0e
a0t0)dx > 0

by (B.2) and the ϕ̃-irreducibility of (XI,n, αn, τn)n≥0 follows.

Let now (XI,i)i≥0 be ϕ-irreducible and positive Harris. Then there exists a
(unique) invariant probability measure πX , and it follows from the first part of
the proof that (XI,i, αi, τi)i≥0 is ϕ̃-irreducible with invariant probability mea-
sure π given by (3.1). Hence by Proposition C.2 it suffices to show that for
all x K(x, ·) is absolutely continuous with respect to π. To this aim consider
A ∈ B(R+) such that

0 = π(A) =

∫
A

fα(a)fτ (t|x, a)πX(dx)dadt =

∫
I(x)πX(dx)
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where I(x) =
∫
{(a,t)∈R

2
+ | (x,a,t)∈A} fα(a)fτ (t|x, a)dadt. Then I(x) = 0 πX -a.s..

Since (XI,i)i≥0 is L-irreducible, then L is absolutely continuous with respect to
πX (see Appendix C) and then I(x) = 0 a.s.. It follows that

K((x̄, ā, t̄), A) =

∫
A

fXI
(x|x̄eāt̄)fα(a)fτ (t|x, a)dxdadt

=

∫
fXI

(x|x̄eāt̄)I(x)dx = 0, ∀(x̄, ā, t̄),

which completes the proof.
The statement for the chain (XI,n, αn,Δn)n≥0 can be proved in a similar

way.

Lemma B.1. Let k(x, y) be the density kernel of K(x, dy) with respect to the
Lebesgue measure L. If there exist ε > 0 and N ⊂ R+ such that L(N) = 0 and

k(x, y) > 0 for all x ∈ R+ and every y ∈ (x(1− ε), x(1 + ε)) ∩N c (B.3)

then K is L-irreducible. Analogously, if the density kernel k∗ of K∗ is such that
for some ε′ > ε > 0 and N ⊂ [0,+∞) with L(N) = 0

k∗(0, y) > 0 for every y ∈ (0, ε′) ∩N c

k∗(x, y) > 0 for all x ∈ R+ and every y ∈ (x(1− ε), x(1 + ε)) ∩N c

then K∗ is L-irreducible.
Proof. By induction it is easy to show that for every x ∈ N c and every y ∈
(x(1 − ε)n, x(1 + ε)n) ∩ N c, one has kn(x, y) > 0. Indeed, assume x ∈ N c

and kn(x, y) > 0 for every y ∈ (x(1 − ε)n, x(1 + ε)n) ∩ N c and, for any y ∈
(x(1−ε)n+1, x(1+ε)n+1)∩N c, set Ay := (x(1−ε)n, x(1+ε)n)∩(y(1+ε)−1, y(1−
ε)−1)∩N c. Note that, since y(1 + ε)−1 < x(1 + ε)n and x(1− ε)n < y(1− ε)−1,
then L(Ay) > 0. Now if z ∈ Ay then kn(x, z) > 0 and k(z, y) > 0, hence

kn+1(x, y) ≥
∫
Ay

kn(x, z)k(z, y)dz > 0.

This shows that, for every x > 0, y > 0 and x, y /∈ N , there is n = n(x, y) such
that kn(x, y) > 0, so that∑

n≥1

kn(x, y) > 0 ∀x, y > 0,

which gives the thesis of the first part of the lemma. The second part can be
proved in a similar way.

Proof of Proposition 3.2. Recall that the kernel K of the imbedded chain
(XI,i)i≥0 in the time increment representation is

K(x, dy) =
(∫

R
2
+

1

xeat
fη

( y

xeat

∣∣∣xeat)fτ (t|x, a)dtfα(a)da)dy
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and hence, for every x and almost all y, its kernel density k satisfies

k(x, y) ≥
∫
Bx

1

xeat
fη

( y

xeat

∣∣∣xeat)fτ (t|x, a)dtfα(a)da.
Thanks to the assumptions and the definition of Bx, if y ∈ (x(1 − ε), x(1 + ε))
the integrand is positive on Bx and so does k(x, y). The L-irreducibility of the
imbedded chain follows by Lemma B.1.

Proof of Proposition 3.3. Using the continuity assumption (c1) and the Scheffé’s
theorem, one gets that for every measurable set A the function x �→ P{XI,i+1 ∈
A|XI,i = x} is continuous on R+ and hence the chain is strongly (and a for-
tiori weakly) Feller. Alternatively, if (c2) holds, the dominated convergence
yields that limx→x̄

∫
g(y)K(x, dy) =

∫
g(y)K(x̄, dy), for every x̄ > 0 and every

bounded continuous function g. Thus the chain is weakly Feller.

Proof of Lemma 3.1. Condition (3.2) yields the drift condition (C.1) of Proposi-
tion C.1 in Appendix C for the chain Wn = XI,n, for suitable positive constants
ε and C, a compact set A = [a, b] in R+ and the test function V (x) = log2(x). As
the Lebesgue measure L on R+ has support with non-empty interior, L[a, b] > 0
if a < b, and the sub-levels of V are clearly compact sets, then the thesis fol-
lows.

Proof of Proposition 3.4. Set c∗ := ez− . Noting that Sτ (t|x, a) ≤ S0,τ (t)
c∗ , one

has

E[α2
i τ

2
i |XI,i = x] =

∫
R+×R+

a22tSτ (t|x, a)dtfα(a)da

≤ 2

∫
R+

a2fα(a)da

∫
R+

tS0,τ (t)
c∗dt.

Hence, since log(ηie
αiτi) = log(ηi) + αiτi, assumption (3.5) yields that

sup
x>0

E[log2(ηie
αiτi)|XI,i = x] < +∞.

Now

lim sup
x→+∞

E[log(ηie
αiτi)|XI,i = x] ≤ lim sup

x→+∞
E[log(ηi)|XI,i = x]

+ lim sup
x→+∞

E[αiτi|XI,i = x].

Since Sτ (t|x, a) ≤ S0,τ (t)
c∗ one can use (3.5) and dominated convergence to

write

lim
x→+∞

E[αiτi|XI,i = x] = lim
x→+∞

∫
aSτ (t|x, a)dtfα(a)da

=

∫
a lim
x→+∞

Sτ (t|x, a)dtfα(a)da



2972 F. Bassetti et al.

=

∫
R+

afα(a)da

∫
R+

S0,τ (t)
eβ0z∞

dt.

The first of the two conditions (3.6) yields lim supx→+∞ E[aiτi|XI,i = x] < 0.
Analogously, by dominated convergence

lim
x→0+

E[αiτi|XI,i = x] = lim
x→0+

∫
R+×R+

afα(a)daSτ (t|x, a)dtda

=

∫
R+×R+

afα(a) lim
x→0+

Sτ (t|x, a)dtda

=

∫
R+

afα(a)da

∫
R+

S0,τ (t)
eβ0z0

dt.

Hence the second of the two conditions (3.6) yields lim infx→0+ E[aiτi|XI,i =
x] > 0. This proves (3.3) and, in its turn, (3.2). The thesis follows by Lemma 3.1.

Proof of Proposition 3.5. Recall that the kernel K∗ of the imbedded chain
(XI,i)i≥0 in the space increment representation is

K∗(x, dy) =
(∫

R
2
+

1

x+ δ
fη

( y

x+ δ

∣∣∣x+ δ
)
fΔ(δ|x, a)dδfα(a)da

)
dy

and hence, for every x and almost all y, its kernel density k∗ satisfies

k∗(x, y) ≥
∫
B∗

x

1

x+ δ
fη

( y

x+ δ

∣∣∣x+ δ
)
fΔ(δ|x, a)dδfα(a)da.

Thanks to the assumptions and the definition of Bx, if y ∈ (0, u2(0)d1(0)) and
x = 0 or if y ∈ (x(1 − ε), x(1 + ε)) and x > 0, the integrand is positive on B∗

x

and so does k∗(x, y). The L-irreducibility of the imbedded chain follows again
by Lemma B.1.

Proof of Proposition 3.6. The proof follows the same lines of the proof of Propo-
sition 3.3.

Proof of Lemma 3.2. We shall apply Proposition C.1 in Appendix C to the
chain Wn = XI,n for V (x) = xγ . Since the Lebesgue measure L on [0,+∞)
has support with non-empty interior and the sub-levels of V are compact sets,
it is enough to verify (C.1) for a suitable closed interval A. As 0 < γ < 1 and
0 ≤ ηn ≤ 1 a.s., one has

E[Xγ
I,n+1|XI,n = x]− xγ = E[

(
(x+Δn)ηn

)γ |XI,n = x]− xγ

≤ xγ(E[ηγn|XI,n = x]− 1) + C

with C := supx≥0 E[Δn|XI,n = x] < +∞ by (3.7). Now E[ηγn|XI,n = x]− 1 ≤ 0
for every x ≥ 0 and E[ηγn|XI,n = x]− 1 ≤ −ε for x large enough by (3.8).



Cox Markov models for estimating single cell growth 2973

Proof of Proposition 3.7. It is enough to note that

E[Δγ
i |XI,i = x] =

∫ +∞

0

∫ +∞

0

γuγ−1SΔ(δ|x, a)dδfα(a)da

≤ γ

∫ +∞

0

uγ−1S0,Δ(δ)
ez−dδ

and hence condition (3.8) is satisfied. The thesis follows by Lemma 3.2.

Appendix C: Some definitions and properties of homogenous
Markov chains

A homogeneous Markov chain (Wn)n≥0 taking values in a measurable space
(U,U) with transition kernel K(u0, du) = P{Wn+1 ∈ du|Wn = u0} is said
to be ϕ-irreducible if there is a (σ-finite non trivial) measure ϕ such that∑

n≥1 Kn(u0, A) > 0 for every u0 ∈ U and A ∈ U with ϕ(A) > 0.
A ϕ-irreducible Markov chain with kernel K is said to be Harris recurrent

if, for every A such that ψ(A) =
∫ ∑

n≥0 Kn(x,A)2−(n+1)ϕ(dx) > 0 and every
u0 ∈ A, P(Wn ∈ A i.o. |W0 = u0) = 1. Finally a ϕ-irreducible Markov chain
is said to be positive Harris if it is Harris recurrent and it admits an invariant
probability measure, that is if there is a probability measure πW such that
πW (A) =

∫
K(u,A)πW (du) for every A ∈ U . In point of fact, if K is positive

Harris, the invariant probability measure πW is unique and every irriducibility
measure ϕ is absolutely continuous with respect to π. See e.g. Thm. 10.4.4 and
Thm. 10.4.9 in [8].

If a ϕ−irredicible Markov chain (Wn)n≥0 is positive Harris, then it satisfies
the strong law of large numbers, i.e. for every initial condition W0 = u0

1

n

n∑
i=1

g(Wi) →
∫

g(u)πW (du) Pu0 -a.s.

whenever
∫
|g(u)|πW (du) < +∞. See, e.g. Thm. 17.0.1 in [8].

Furthermore, recall that if (U,U) is a topological space with the Borel σ−field,
the chain (Wn)n≥0, or equivalently its transition kernel K, is said to be weakly
Feller if K maps Cb(U) in Cb(U) that is w →

∫
K(w, du)g(u) is continuous for

every bounded and continuous function g. Analogously, (Wn)n≥0, or equivalently
its transition kernel K, is said to be strongly Feller if w →

∫
K(w, du)g(u) is

continuous for every bounded and measurable function g.
Let now suppose that the homogenous Markov chain (Wn)n≥0 takes values

in a Borel subset of R
n and let K denote its transition kernel as above. A

sufficient condition for (Wn)n≥0 to be Harris positive is the following version of
the so-called “drift” criteria.

Proposition C.1. Let the chain (Wn)n≥0 be weakly Feller and ϕ-irreducible
with ϕ such that the support of ϕ has non-empty interior. If the drift conditions

E[V (Wn+1)|Wn = w]− V (w) ≤ −ε ∀w ∈ Ac

E[V (Wn+1)|Wn = w]− V (w) ≤ C ∀w ∈ A
(C.1)
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hold for some compact set A with ϕ(A) > 0, some constants ε > 0 and C < +∞,
and some non-negative, measurable function V such that the sets {w : V (w) ≤
λ} are compact sets for every λ > 0, then (Wn)n≥1 (or equivalently K) is positive
Harris.

Proof. Since the chain is weakly Feller and in view of the property of the ir-
reducibility measure ϕ, it follows from Thm. 6.0.1 and Thm. 6.2.7 in [8] that
every compact set is petite. Hence, the function V satisfies that {w : V (w) ≤ λ}
is petite for every λ > 0, i.e. V are unbounded off petite sets (see p. 191 in [8]).
As (C.1) implies that

ΔV (w) :=

∫
V (u)K(w, du)− V (w) ≤ 0 ∀w ∈ Ac (C.2)

with A compact and hence petite set, then by Thm. 8.4.3 and Prop. 9.1.7 (ii)
in [8] we obtain that the chain (Wn)n≥1 is Harris recurrent. Finally, by Thm.
11.0.1 in [8], the drift conditions (C.1) imply that the invariant measure has
finite total mass, i.e. up to a constant it is a probability measure. That is the
chain (Wn)n≥1 is positive Harris.

Finally, let us recall Corollary 1 in [13], which gives a sufficient condition
for Harris recurrence of the kernel K when there exists an invariant σ-finite
measure.

Proposition C.2. Suppose K is π-irreducible with πK = π. If K(x, ·) is abso-
lutely continuous with respect to π for all x, then K is Harris recurrent.

Appendix D: Supplementary Tables

Table 8

Values of the Kolmogorov-Smirnoff statistic for comparing empirical versus simulated data
in MG-A, MG-B and MG-C cases. (Artificial α sampled from gaussian distributions,

artificial η from the corresponding empirical distributions).

dataset variable [Δ|null] [Δ|XI ] [Δ|τ ] [τ |Δ] [τ |XI ] [τ |XF ]

MG-A

XI 0.126 0.071 0.076 0.234 0.216 0.208
XF 0.112 0.059 0.061 0.244 0.226 0.221
τ 0.113 0.071 0.080 0.048 0.035 0.032
Δ 0.009 0.012 0.011 0.193 0.174 0.171

MG-B

XI 0.087 0.059 0.114 0.165 0.244 0.250
XF 0.077 0.039 0.086 0.172 0.249 0.256
τ 0.113 0.076 0.094 0.042 0.048 0.051
Δ 0.008 0.013 0.013 0.149 0.199 0.197

MG-C

XI 0.119 0.094 0.190 0.370 0.323 0.319
XF 0.100 0.070 0.152 0.347 0.297 0.291
τ 0.097 0.081 0.122 0.088 0.084 0.086
Δ 0.011 0.009 0.020 0.246 0.194 0.188
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Table 9

Values of the Kolmogorov-Smirnoff statistic for comparing empirical versus simulated data
in CAA-P5ori, Glc-P5ori, Glc-MRR, LB-MRR cases. (Artificial α and η sampled from the

corresponding empirical distributions).

dataset variable [Δ|null] [Δ|XI ] [Δ|τ ] [τ |Δ] [τ |XI ] [τ |XF ]

CAA-P5ori

XI 0.120 0.140 0.151 0.251 0.246 0.177
XF 0.055 0.089 0.095 0.235 0.243 0.146
τ 0.145 0.130 0.103 0.044 0.119 0.065
Δ 0.008 0.021 0.041 0.179 0.142 0.118

Glc-MRR

XI 0.098 0.128 0.157 0.252 0.222 0.212
XF 0.056 0.065 0.092 0.228 0.194 0.176
τ 0.122 0.110 0.113 0.040 0.058 0.040
Δ 0.011 0.016 0.051 0.168 0.143 0.125

Glc-P5ori

XI 0.147 0.149 0.148 0.191 0.443 0.233
XF 0.091 0.092 0.089 0.172 0.459 0.231
τ 0.082 0.085 0.084 0.063 0.157 0.112
Δ 0.007 0.009 0.015 0.109 0.301 0.137

LB-MRR

XI 0.167 0.184 0.202 0.321 0.304 0.276
XF 0.110 0.119 0.131 0.299 0.283 0.260
τ 0.113 0.103 0.105 0.045 0.045 0.055
Δ 0.008 0.017 0.019 0.223 0.207 0.180

Table 10

β̂n estimates of the regression parameter β0 under the Cox models listed in Section 2.2 with
Z(x) = min(x, 350), for the seven datasets under study.

dataset size [Δ|XI ] [Δ|τ ] [τ |Δ] [τ |XI ] [τ |XF ]
MG-A 10000 -0.3532 0.0750 0.3047 0.3129 0.1657
MG-B 10000 -0.2657 0.0620 0.2823 0.2633 0.1530
MG-C 10000 -0.108 0.0292 0.2353 0.2633 0.1387
CAA-P5ori 5905 -0.2540 0.0445 0.6884 1.0694 0.5773
Glc-MRR 2703 -0.2679 0.0444 0.3531 0.4547 0.2527
Glc-P5ori 979 -0.0281 -0.0039 1.7775 0.6192 1.0320
LB-MRR 2296 -0.1076 0.0313 0.1807 0.2246 0.11237

Table 11

p-values of the Kolmogorov-Smirnoff test to check if the estimated Cox-Snell residuals of the
Cox model [Δ|XI ] are exponential with rate one for MG-A, MG-B, MG-C, CAA-P5ori,
Glc-P5ori, Glc-MRR, LB-MRR datasets under Z(x) = min(x, 350) = Z1(x) on the first

row, Z(x) = q̂0.015I[0,q̂0.015](x) + xI(q̂0.015,q̂0.985)(x) + q̂0.985I[q̂0.985,+∞)(x) = Z2(x) on the
second row and Z(x) = xI(0,q̂0.98)(x) + q̂0.98I[q̂0.98,+∞)(x) = Z3(x) on the third row.

MG-A MG-B MG-C CAA-P5ori Glc-MRR Glc-P5ori LB-MRR
Z1 0.2823 0.6312 0.3158 0.7413 0.6538 1.0000 0.9922
Z2 0.0724 0.1393 0.2132 0.5611 0.1571 1.0000 0.9802
Z3 0.0752 0.0778 0.2063 0.5686 0.1481 1.0000 0.9726
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