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Abstract: The primal problem of multinomial likelihood maximization
restricted to a convex closed subset of the probability simplex is studied.
A solution of this problem may assign a positive mass to an outcome with
zero count. Such a solution cannot be obtained by the widely used, simpli-
fied Lagrange and Fenchel duals. Related flaws in the simplified dual prob-
lems, which arise because the recession directions are ignored, are identified
and the correct Lagrange and Fenchel duals are developed.

The results permit us to specify linear sets and data such that the empir-
ical likelihood-maximizing distribution exists and is the same as the multi-
nomial likelihood-maximizing distribution. The multinomial likelihood ra-
tio reaches, in general, a different conclusion than the empirical likelihood
ratio.

Implications for minimum discrimination information, Lindsay geome-
try, compositional data analysis, bootstrap with auxiliary information, and
Lagrange multiplier test, which explicitly or implicitly ignore information
about the support, are discussed.

A solution of the primal problem can be obtained by the PP (perturbed
primal) algorithm, that is, as the limit of a sequence of solutions of per-
turbed primal problems. The PP algorithm may be implemented by the
simplified Lagrange or Fenchel dual.
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1. Introduction

Zero counts are a source of difficulties in the maximization of the multinomial
likelihood for log-linear models. A considerable literature has been devoted to
this issue, culminating in the recent papers by Fienberg and Rinaldo [14] and
Geyer [16]. In these studies, convex analysis considerations play a key role.

Less well recognized is that the zero counts also cause difficulties in the max-
imization of the multinomial likelihood under linear constraints, or, in general,
when the cell probabilities are restricted to a convex closed subset of the prob-
ability simplex; see Section 2 for a formal statement of the considered primal
optimization problem P. Though in this case the nature of the difficulties is
different than in the log-linear case, the convex analysis considerations are im-
portant here as well, because they permit developing a correct solution of P –
one of the main objectives of the present work.

The problem of finding the maximum multinomial likelihood under linear
constraints dates back to, at least, Smith [45], and continues through the work
of Aitchison and Silvey [4], Gokhale [18], Klotz [28], Haber [21], Stirling [46],
Pelz and Good [36], Little and Wu [32], El Barmi and Dykstra [12, 13], to the
recent studies by Agresti and Coull [2], Lang [29], and Bergsma et al. [9], among
others. Linear constraints on the cell probabilities appear naturally in marginal
homogeneity models, isotonic cone models, mean response models, multinomial-
Poisson homogeneous models, and many others; cf. Agresti [1], Bergsma et al. [9].
They also arise in the context of estimating equations.

A solution of P may assign a positive weight to an outcome with zero count;
cf. Theorem 2. This fact affects the Lagrange and Fenchel dual problems to P.

The restricted maximum of the multinomial likelihood defined through the
primal problem P is not amenable to asymptotic analysis, and the primal form
is not ideal for numerical optimization. Thus, it is common to consider the
Lagrange dual problem instead of the primal problem. This permits the asymp-
totic analysis (cf. Aitchison and Silvey [4]), and reduces the dimension of the
optimization problem, because the number of linear constraints is usually much
smaller than the cardinality of the sample space. Smith [45, Sects. 6, 7] has
developed a solution of the Lagrange dual problem, under the hidden assump-
tion that every outcome from the sample space appears in the sample at least
once; that is, ν > 0, where ν is the vector of the observed relative frequency
of outcomes. The same solution was later considered by several authors; see,
in particular, Haber [21, p. 3], Little and Wu [32, p. 88], Lang [29, Sect. 7.1],
Bergsma et al. [9, p. 65]. It remained unnoticed that, if the assumption ν > 0
is not satisfied, then the solution of Smith’s Lagrange dual problem does not
necessarily lead to a solution of the primal problem P.

El Barmi and Dykstra [12] studied the maximization of the multinomial like-
lihood under more general, convex set constraints, where it is natural to replace
the Lagrange duality with the Fenchel duality. When the feasible set is defined by
the linear constraints, El Barmi and Dykstra’s (BD) dual B reduces to Smith’s
Lagrange dual. The BD-dual B leads to a solution of the primal P if ν > 0. The
authors overlooked that this is not necessarily the case if a zero count occurs.
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Taken together, the decisions obtained from El Barmi and Dykstra’s simpli-
fied Fenchel dual B can be severely compromised. It is thus important to know
the correct Fenchel dual F to P . This is provided by Theorem 6, which also char-
acterizes the solution set of F . It is equally important to know the conditions
under which the BD-dual B leads to a solution of P. The answer is provided by
Theorem 16. An analysis of directions of recession is crucial for establishing the
theorem.

The findings have implications for the empirical likelihood. Recall that ‘in
most settings, empirical likelihood is a multinomial likelihood on the sample’;
cf. Owen [35, p. 15]. As the empirical likelihood inner problem E (cf. Section 7) is
a convex optimization problem, it has its Fenchel dual formulation. If the feasible
set is given by linear equality constraints, then the Fenchel dual to E is equivalent
to El Barmi and Dykstra’s dual B to E . Thanks to this connection, Theorem 16
provides conditions under which the solution set SP of the multinomial likelihood
primal problem P and the solution set SE of the empirical likelihood inner
problem E are the same, and the maximum L̂ of the multinomial likelihood is
equal to the maximum L̂E of the empirical likelihood. Consequently:

• If C is an H-set or a Z-set with respect to the type ν (for the definition, see
Section 4.3), the maximum empirical likelihood does not exist, though the
maximum multinomial likelihood exists. The notion of H-set corresponds
to the convex hull problem (cf. Owen [34, Sect. 10.4]) and the notion of
Z-set corresponds to the zero likelihood problem (cf. Bergsma et al. [8]).
By Theorem 16, these are the only ways the empirical likelihood inner
problem may fail to have a solution; cf. Section 7. Note, that also the
empirical likelihood outer problem may have no solution; cf. the empty
set problem, Grendár and Judge [19].

• If any of conditions (i)–(iv) in Theorem 16(b) are not satisfied, then
L̂E < L̂, and the empirical likelihood may lead to different inferential and
evidential conclusions than those suggested by the multinomial likelihood.

Fisher’s [15] original concept of the likelihood carries the discordances be-
tween the multinomial and empirical likelihoods also into the continuous iid
setting; cf. Section 7.1.

The findings also affect other methods, such as the minimum discrimination
information, compositional data analysis, Lindsay geometry of multinomial mix-
tures, bootstrap with auxiliary information, and Lagrange multiplier test, which
explicitly or implicitly ignore information about the support and are restricted
to the observed outcomes.

Despite its flawed relation to the primal, the BD-dual may be utilized in an
algorithm for obtaining a solution of the primal P. The PP algorithm forms a
sequence of perturbed primal problems. Theorem 20 demonstrates that the PP
algorithm epi-converges to a solution of P. Even stronger, pointwise convergence
can be established for a linear constraint set; see Theorem 21. The convergence
theorems imply that the common practice of replacing the zero counts by a
small, arbitrary value can be supplanted by a sequence of perturbed primal
problems, where the δ−perturbed relative frequency vectors ν(δ) > 0 are such
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that limδ↘0 ν(δ) = ν. Because each ν(δ) is strictly positive, the PP algorithm
can be implemented through the BD-dual to the perturbed primal. The strict
positivity also allows using the Fisher scoring algorithm, Gokhale’s algorithm
[18], or similar methods, for implementing the PP algorithm.

1.1. Organization of the paper

The multinomial likelihood primal problem P and its characterization (cf. The-
orem 2) are presented in Section 2. The Fenchel dual problem F to P is in-
troduced in Section 3. A Lagrange dual formulation of the convex conjugate
(cf. Theorem 5) serves as a ground for Theorem 6, one of the main results,
which provides a relation between the solutions of P and F . If the feasible set
C is polyhedral, a solution of F can be obtained also from a different Lagrange
dual to P ; cf. Section 3.1. A special case of the single inequality constraint is dis-
cussed in detail in Section 3.2, where a flaw in Klotz’s [28] Theorem 1 is noted.
In Section 4.1, El Barmi and Dykstra’s [12] dual B is recalled; Section 4.1.1
introduces its special case, the Smith dual problem. Theorem 2.1 of El Barmi
and Dykstra [12], and its flaws are presented in Section 4.2, where they are also
illustrated by simple examples. Section 4.3 studies the scope of validity of the
BD-dual B; cf. Theorem 16. Sequential, active-passive dualization is proposed
and analyzed in Section 5. Perturbed primal problem Pδ is introduced in Sec-
tion 6, where the epi-convergence of a sequence of the perturbed primals for a
general, convex C, and the pointwise convergence for the linear C are formu-
lated (cf. Theorems 20, 21) and illustrated. Implications of the results for the
empirical likelihood method are discussed in Section 7. A brief discussion of
implications of the findings for the minimum discrimination information, com-
positional data analysis, Lindsay geometry of multinomial mixtures, bootstrap
with auxiliary information and Lagrange multiplier test is contained in Sec-
tion 8. Some of the computational and applied aspects of the presented results
are summarized in Section 9. Finally, Section 10 comprises detailed proofs of
the results.

An R code and data to reproduce the numerical examples can be found in [20].

2. Multinomial likelihood primal problem P

Annotation. The primal problem P is formulated and a basic characterization
of its solution is given. The primal has always a solution. Its active coordinates
are unique. A solution of P may assign positive mass to passive letter(s).

Let X denote a finite alphabet (sample space) consisting of m letters (out-
comes) and ΔX denote the probability simplex

ΔX �
{
q ∈ R

m : q ≥ 0,
∑

q = 1
}
;

identify R
m with R

X . Suppose that (ni)i∈X is a realization of the closed multi-
nomial distribution Pr((ni)i∈X ;n, q) = n!

∏
qni
i /ni! with parameters n ∈ N and
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q = (qi)i∈X ∈ ΔX . Then the multinomial likelihood kernel L(q) = Lν(q) �
e−n �(q), where Kerridge’s inaccuracy [27] � = �ν : ΔX → R̄, is

�(q) � −〈ν, log q〉 , (2.1)

and ν � (ni/n)i∈X is the type (the vector of the relative frequency of outcomes).
The conventions log 0 = −∞, 0 · (−∞) = 0 apply; R̄ denotes the extended
real line [−∞,∞] and 〈a, b〉 is the scalar product of a, b ∈ R

m. Functions and
relations on vectors are taken component-wise; for example, log q = (log qi)i∈X .
For x ∈ R

m,
∑

x is a shorthand for
∑

i∈X xi.

Consider the problem P of minimization of �, restricted to a convex closed
set C ⊆ ΔX :

�̂P � inf
q∈C

�(q), SP � {q̂ ∈ C : �(q̂) = �̂P}. (P)

The goal is to find the solution set SP as well as the infimum �̂P of the objective
function � over C. The problem P will be called themultinomial likelihood primal
problem, or primal, for short.

Special attention is paid to the class of polyhedral feasible sets C

C = {q ∈ ΔX : 〈q, uh〉 ≤ 0 for h = 1, 2, . . . , r}, (2.2)

or to its subclass of sets C given by (a finite number of) linear equality con-
straints

C = {q ∈ ΔX : 〈q, uh〉 = 0 for h = 1, 2, . . . , r}, (2.3)

where uh are vectors from R
m. These feasible sets are particularly interesting

from the applied point of view and permit to establish stronger results.

Without loss of generality it is assumed that X is the support supp(C) of C,
that is, for every i ∈ X there is q ∈ C with qi > 0; in other words, the structural
zeros (cf. Baker et al. [6, p. 34]) are excluded. Due to the convexity of C this
is equivalent to the existence of q ∈ C with q > 0. Under this assumption,
Theorem 2 gives a basic characterization of the solution set of P . Before stating
it, some useful notions are introduced.

Definition 1. For a type ν (or, more generally, for any ν ∈ ΔX ), the active
and passive alphabets are

X a = X a
ν � {i ∈ X : νi > 0} and X p = X p

ν � {i ∈ X : νi = 0}.

The elements of X a,X p are called active, passive letters, respectively.

Put ma � cardX a > 0, mp � cardX p ≥ 0. Let πa : R
m → R

ma , πp :
R

m → R
mp be the natural projections; identify R

ma with R
Xa

and R
mp with

R
Xp

. Note that if X p = ∅ then mp = 0 and R
mp = {0}. For x ∈ R

m, xa and
xp are the shorthands for πa(x) and πp(x), respectively. (If no ambiguity can
occur, the elements of Rma ,Rmp will be denoted also by xa, xp.) Identify R

m
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with R
ma × R

mp , so that it is possible to write x = (xa, xp) for every x ∈ R
m.

Finally, for a subset M of Rm and x ∈ M let

Ma � πa(M) and Ma(xp) � {xa ∈ R
ma : (xa, xp) ∈ M}

be the active projection and the xp-slice of M ; analogously define Mp and
Mp(xa).

Theorem 2 (Primal problem). Let ν ≥ 0 be from ΔX . Let C be a convex

closed subset of ΔX with support X . Then �̂P is finite, SP is compact, and there
is q̂aP ∈ Ca, q̂aP > 0, such that

SP = {q̂aP} × Cp(q̂aP).

Moreover,

(a) If
∑

q̂aP = 1 then Cp(q̂aP) = {0p} and SP = {(q̂aP , 0p)} is a singleton.
(b) If

∑
q̂aP < 1 then 0p �∈ Cp(q̂aP), and SP is a singleton if and only if the

q̂aP-slice Cp(q̂aP) of C is a singleton.

Thus the primal has always a solution q̂P . Its active coordinates q̂
a
P are unique

and the passive coordinates q̂pP are arbitrary such that q̂P ∈ C. It is worth
stressing that Cp(q̂aP) need not be equal to {0p}, that is, a solution of P may
assign positive mass to passive letter(s). The following couple of simple examples
illustrates the points; see also the examples in Section 4.2. In the first example
SP is a segment, in the second one SP is a singleton. Hereafter X denotes a
random variable supported on X .

Example 3. Take X = {−1, 0, 1} and C = {q ∈ ΔX : Eq(X
2) =

∑
i∈X i2qi =

1/2}. Let ν = (0, 1, 0), so that X a = {0} and X p = {−1, 1}. Then C = {q ∈
ΔX : q0 = 1/2}, the minimum of � over C is �̂P = log 2, and SP = C. Here,
q̂aP = 1/2 is (trivially) unique and Cp(q̂aP) = {(a, 1/2− a) : a ∈ [0, 1/2]}.
Example 4 (E4). Motivated by Wets [47, p. 88], let X = {1, 2, 3}, C = {q ∈
ΔX : q1 ≤ q2 ≤ q3} and ν = (0, 1, 0). Then X a = {2}, X p = {1, 3}. Since
SP = {(0, 1, 1)/2}, the positive weight 1/2 is assigned to the passive, unobserved
letter 3.

The Fisher scoring algorithm which is commonly used to solve P when C
is a linear set may fail to converge when the zero counts are present; cf. Stir-
ling [46]. Other numerical methods, such as the augmented Lagrange multiplier
methods, which are used to solve the convex optimization problem under poly-
hedral and/or linear C may have difficulties to cope with large m. Moreover, the
primal is not amenable for asymptotic analysis. Thus, it is desirable to approach
P from the side of the convex duality.

3. Fenchel dual problem F to P

Annotation. The Fenchel dual problem F to P is introduced. A Lagrange dual
formulation of the convex conjugate (cf. Theorem 5) serves as a ground for
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Theorem 6 which provides a relation between the solutions of P and F . If the
feasible set C is polyhedral, a solution of F can be obtained also from a different
Lagrange dual to P ; cf. Section 3.1. A special case of the single inequality
constraint is discussed in detail in Section 3.2 where also the concept of the
base solution is introduced. As a minor point, a flaw in Klotz’s [28] Theorem 1
is also noted there.

Consider the Fenchel dual problem F to the primal P:

�̂F � inf
y∈C∗

�∗(−y), SF � {ŷ ∈ C∗ : �∗(−ŷ) = �̂F}, (F)

where
C∗ � {y ∈ R

m : 〈y, q〉 ≤ 0 for every q ∈ C}
is the polar cone of C and

�∗ : Rm → R̄, �∗(z) � sup
q∈ΔX

(〈q, z〉 − �(q))

is the convex conjugate of � (in fact, the convex conjugate of �̃ : Rm → R̄ given
by �̃(x) = �(x) for x ∈ ΔX and �̃(x) = ∞ otherwise).

The Fenchel dual F is often more tractable than the primal P , in particular
when C is given by linear equality and/or inequality constraints. This is the
case of the models for contingency tables, mentioned in Introduction. Also an
estimating equations model CΘ leads to a linear feasible set Cθ, when θ ∈ Θ is
fixed. The model is CΘ �

⋃
θ∈Θ Cθ, where

Cθ �
r⋂

h=1

{q ∈ ΔX : 〈q, uh(θ)〉 = 0} , (3.1)

and uh : Θ → R
m, h = 1, 2, . . . , r, are the estimating functions. There θ ∈ Θ ⊆

R
d and d need not be equal to r. Since r is usually much smaller than m, F

may be easier to solve numerically than P.
Observe that the convex conjugate itself is defined through an optimization

problem, the convex conjugate primal problem (cc-primal, for short), whose so-
lution set is

Scc(z) � {q ∈ ΔX : 〈q, z〉 − �(q) = �∗(z)}. (3.2)

The structure of Scc(z) is described by Proposition 36. The conjugate �∗ can be
evaluated by means of the Lagrange duality, where the Lagrange function is

Kz(x, μ) = 〈x, z〉 − �(x)− μ
(∑

x− 1
)
.

It holds that (cf. Lemma 34)

�∗(z) = inf
μ∈R

kz(μ), where kz(μ) = sup
x≥0

Kz(x, μ).

For every μ ∈ R and a, b ∈ R
ma , a > 0, b > −μ, define

Iμ(a ‖ b) �
〈
a, log

a

μ+ b

〉
.
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Theorem 5 (Convex conjugate by Lagrange duality). Let ν ∈ ΔX and z ∈ R
m.

Then
�∗(z) = −1 + μ̂(z) + Iμ̂(z)(ν

a ‖ − za),

where
μ̂(z) � max{μ̄(za),max(zp)}, (3.3)

and μ̄(za) is the unique solution of

∑ νa

μ− za
= 1, μ ∈ (max(za),∞). (3.4)

The key point is that the μ̄(za), which solves (3.4), is not always the μ̂(z)
which minimizes kz(μ). They are the same if and only if μ̄(za) ≥ max(zp). As
it will be seen in Theorem 6, if z ∈ SF then this inequality decides whether the
solution of primal P is supported only on the active letters, or some probability
mass is placed also to the passive letter(s).

Theorem 5 serves as a foundation for Theorem 6, which states the relation
between the Fenchel dual and the primal.

Theorem 6 (Relation between F and P). Let ν, C, q̂aP be as in Theorem 2.
Then

�̂F = −�̂P ,

SF is a nonempty convex compact set, SF ⊥ SP , and μ̂(−ŷF) = 1 for every
ŷF ∈ SF . Moreover, if we put

ŷaF � νa

q̂aP
− 1a, (3.5)

then (ŷaF ,−1p) ∈ SF and the following hold:

(a) If
∑

q̂aP = 1 then μ̄(−ŷaF) = 1 and

SF = {ŷaF} × {yp ∈ C∗p(ŷaF) : min(yp) ≥ −1}.

(b) If
∑

q̂aP < 1 then μ̄(−ŷaF) < 1 and

SF = {ŷaF} × {yp ∈ C∗p(ŷaF) : min(yp) = −1}.

Thus, in the active coordinates, the solution of F is unique and is related
to q̂aP by (3.5). Together with Theorem 2 this yields

SP =

{
νa

1 + ŷaF

}
× Cp

(
νa

1 + ŷaF

)
.

The structure of the solution set of F in the passive letters is determined by
the relation of μ̄(−ŷaF) to 1 = μ̂(−ŷF).

In the case (a), μ̄(−ŷaF) = μ̂(−ŷF), and the passive projections ŷpF of the
solutions satisfy ŷpF ≥ −1. Then it suffices to solve the primal solely in the
active letters and SP is a singleton. This happens for instance if ν > 0.
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In the case (b), μ̄(−ŷaF) < μ̂(−ŷF), and ŷpF satisfy min(ŷpF) = −1. Then every
solution of the primal assigns the positive probability to at least one passive
letter.

To sum up, the Fenchel dual problem, once solved, permits to find q̂aP through
(3.5) and this way it incorporates C∗ into q̂aP . In the case of linear or polyhe-
dral C the dual may reduce dimensionality of the optimization problem, yet
the numerical solution of F is somewhat hampered by the need to obey (3.3).
Moreover, q̂pP remains to be found; in this respect see Proposition 47.

Example 4 is used to illustrate the results.

Example 4 (cont’d). Since the set C is polyhedral, a solution of F has the form
ŷF =

∑
h α̂huh, h = 1, 2, where u1 = (1,−1, 0), u2 = (0, 1,−1), and α̂ ∈ R

2
+

minimizes −1+μ̂(−
∑

h αhuh)+Iμ̂(−
∑

h αhuh)(ν
a ‖
∑

h αhu
a
h); cf. Thm. 5. Recall

that μ̂(·) is defined by (3.3) and note that the equation (3.4) involves a one-
dimensional zero finding.

Taken together, finding a solution of F for a polyhedral set is not numeri-
cally demanding. It is even simpler for a linear C, as it involves unconstrained
minimization over α ∈ R

r.
Here, α = (0, 1), and �̂F = − log(2). Thus, �̂F = −�̂P . Using (3.5), q̂a = 1/2.

Consequently, a positive weight must be assigned to at least one of the passive
letters. By Propositions 47 and 36, if ŷpi �= 1, then the passive letter is assigned
the zero weight. Here, ŷp = (0, 1), so q̂1 = 0. Thus, q̂3 = 1/2.

3.1. Polyhedral and linear C

In the polyhedral case (2.2)

C = {q ∈ ΔX : 〈q, uh〉 ≤ 0 for h = 1, 2, . . . , r},

a solution of the Fenchel dual F can also be obtained from the saddle points of
the following Lagrange function

L(q, α) � −
∑
h

αh 〈q, uh〉 − �(q) (q ∈ ΔX , α ∈ R
r
+).

Indeed, it holds that

�̂F = inf
α≥0

sup
q∈ΔX

L(q, α) = sup
q∈ΔX

inf
α≥0

L(q, α) = −�̂P .

Hence (q̂, α̂) is a saddle point of L(q, α) if and only if q̂ ∈ SP and
∑

h α̂huh ∈ SF ;
cf. Bertsekas [10, Prop. 2.6.1].

The vectors from SF of the form
∑

h α̂huh will be called the base solutions
of F . From the Farkas lemma (cf. Bertsekas [10, Prop. 3.2.1]) and the mono-
tonicity of �∗ (Lemma 37) it follows that, for a polyhedral C, there always exists
a base solution, and every solution of F is a sum of a base solution and a vector
from R

m
− � {z ∈ R

m : z ≤ 0}; that is,

SF = {ŷF + (0a, zp) : ŷF is a base solution, zp ≤ 0, ŷpF + zp ≥ −1} .
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There may exist many base solutions. However, if ua
1 , . . . , u

a
r are linearly inde-

pendent then the base solution is unique, since then the system of equations∑
h α̂hu

a
h = ŷaF has a unique solution α̂.

Analogous claim holds for a linear C (cf. (2.3)), but in this case α ∈ R
r, by

the Farkas lemma.

3.2. Single inequality constraint and Klotz’s Theorem 1

To illustrate the base solution in connection with Theorem 6, consider

C = {q ∈ ΔX : 〈q, u〉 ≤ 0},

given by a single inequality constraint. By the Farkas lemma, C∗ = {αu : α ≥
0} + R

m
− . If up ≥ 0 the case (a) of Theorem 6 applies (for if not, there is a

base solution α̂Fu and, by Theorem 6(b), min(α̂Fu
p) should be −1; this is not

possible since min(α̂Fu
p) ≥ 0).

Assume that min(up) < 0 and the case (b) of Theorem 6 applies. Take any
base solution α̂Fu. Then, by Theorem 6(b), min(α̂Fu

p) = −1; so

α̂F = − 1

min(up)
and q̂aP =

νa

1− ua

min(up)

. (3.6)

Further, by Theorem 2, q̂pP is arbitrary from Cp(q̂aP). If u
p attains the minimum

at a single letter, then the solution of the primal P is always unique.
To sum up, the case (b) of Theorem 6 happens if and only if

min(up) < 0 and
∑ νa

1− 1
min(up)u

a
< 1. (3.7)

The primal problem P with this C was considered by Klotz [28]. Theorem 1
of [28] asserts that the solution of P takes the form

q̂K � ν

1 + α̂Ku

if 〈ν, u〉 > 0 and min(ua) < 0; see Klotz’s condition (3.1b). There, α̂K is the
unique root of∑ ν

1 + αu
= 1 such that α ∈ (0,−1/min(ua)).

Thus, under Klotz’s condition (3.1b), the solution of P should assign zero weight
to any passive letter. This is not the case, as the following example demonstrates.

Example 7 (Base solution of F , one inequality constraint). Take X = {−2,−1, 0,
1, 2}, u = (−2,−1, 0, 1, 2) and ν = (0, 3, 0, 0, 7)/10. Here Klotz’s condition
(3.1b) is satisfied and an easy computation yields α̂K = 11/20; thus q̂K =
(0, 2, 0, 0, 1)/3 and �(q̂K) = 0.890668. However, the primal is solved by q̂P =
(1, 12, 0, 0, 7)/20, so a positive mass is placed also to the passive letter −2;
�(q̂P) = 0.888123. Since min(up) = −2 and

∑
q̂aP < 1, the condition (3.7) is

satisfied and q̂aP is just that given by (3.6).
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In a similar way it is possible to analyze a single equality constraint. For
more than one equality/inequality constraint the condition guaranteeing that∑

q̂aP < 1 cannot be given in such a simple form as (3.7).

4. El Barmi-Dykstra dual problem B to P

Annotation. The simplified Fenchel dual developed by El Barmi and Dykstra
is recalled in Section 4.1. Its shortcomings are illustrated by simple examples
in Section 4.2. Finally, the scope of validity of El Barmi and Dykstra’s dual is
studied in Section 4.3.

4.1. BD-dual B to P

El Barmi and Dykstra [12] consider a simplified Fenchel dual problem B (the
BD-dual, for short)

�̂B � inf
y∈C∗

�∗B(y), SB � {ŷ ∈ C∗ : �∗B(ŷ) = �̂B}, (B)

where

�∗B : Rm → R̄, �∗B(y) �

⎧⎨
⎩I1(ν

a ‖ ya) =
〈
νa, log

νa

1 + ya

〉
if ya > −1,

∞ otherwise,

will be called the BD conjugate of �. Note that the BD-dual B is easier to solve
than F , as in the former μ̂ is fixed to 1.

If C is polyhedral then, in analogy with the concept of the base solution of F ,
the vectors from SB of the form

∑
α̂B,huh are called the base solutions of B.

As above, every solution of B can be written as a sum of a base solution and a
vector from R

m
− .

4.1.1. Smith dual problem

By the Farkas lemma, for the feasible set C = {q ∈ ΔX : 〈q, uh〉 = 0, h =
1, 2, . . . , r} given by r linear equality constraints, the polar cone is C∗ = {y =∑

h αhuh : α ∈ R
r}+ R

m
− . Then the BD-dual becomes

inf
α∈Rr

I1

(
νa
∥∥∥∑

h

αhu
a
h

)
, (4.1)

which is equivalent to the simplified Lagrange dual problem (the Smith dual,
for short) considered by Smith [45, Sect. 6] and many other authors; see, in
particular, Haber [21, p. 3], Little and Wu [32, p. 88], Lang [29, Sect. 7.1],
and Bergsma et al. [9, p. 65]. It is worth noting that (4.1) is an unconstrained
optimization problem.
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4.2. Flaws of BD-dual B

In [12, Thm. 2.1] El Barmi and Dykstra state the following relationship be-
tween P and B.

Theorem 8 (Theorem 2.1 of [12]). Let C be a convex closed subset of ΔX .

(B → P) If �̂B is finite, then SB is nonempty and �̂B = −�̂P . Moreover, for
every ŷB ∈ SB, q̂B � ν

1+ŷB
belongs to SP .

(P → B) If �̂P is finite, then �̂B = −�̂P . Moreover, if q̂P ∈ SP , then ŷB � ν
q̂P

−1

belongs to SB. (There, 0/0 = 0 convention applies.)

Though �̂P is always finite, �̂B may be infinite, leaving the solution set SP

inaccessible through (B → P) of [12, Thm. 2.1]. Moreover, the claims (B → P)
and (P → B) of the theorem are not always true. In fact, there are three
possibilities (cf. Theorem 16):

1. �̂B = −∞;
2. �̂B is finite, but there is a BD-duality gap, that is, �̂B < −�̂P ;
3. �̂B = −�̂P (no BD-duality gap).

To illustrate them, we give below six simple examples: one where the BD-duality
works and the other five where it fails. In Examples 9, 10, 13, 14 the set C is
linear, whereas Example 11 presents a nonlinear C, and in Example 12 the set
C is defined by linear inequalities.

Example 9 (No BD-duality gap). Let X = {−1, 0, 1} and C = {q ∈ ΔX :
EqX = 0}; that is, C is given by (2.3) with u = (−1, 0, 1). Let ν = (1, 0, 1)/2.
Thus X a = {−1, 1}, X p = {0}, and Ca(0p) = {(1, 1)/2}. By the Farkas lemma,
C∗ = {y = αu : α ∈ R} + R

3
−. For the considered optimization problems, the

following hold:

• P: SP = {(1, 0, 1)/2} and �̂P = log 2.

• F : Since α̂F = 0, the base solution of F is (0, 0, 0) and �̂F = − log 2.
Further, (3.5) implies that q̂aP = νa/(1 + ŷaF); thus, q̂

a
P = νa.

In this setting, no BD-duality gap occurs:

• B→P : �∗B(αu) ∝ −1/2[log(1−α)+log(1+α)]. Thus α̂B = 0, �̂B = − log 2 =

−�̂P . Since q̂B = (1, 0, 1)/2, it indeed solves P.

• P→B: �̂B = −�̂P by the previous case. Since the base solution of B is
(0, 0, 0) and ŷB = (0, 0, 0), ŷB ∈ SB.

Example 10 (H-set). Let X , C be as in Example 9 and ν = (1, 0, 0). Thus
X a = {−1}, X p = {0, 1}, and Ca(0p) = ∅.

• P: SP = {(1, 0, 1)/2} and �̂P = log 2.

• F : Since α̂F = −1, the base solution of F is (1, 0,−1) and �̂F = − log 2.
Thus, from (3.5) it follows that q̂aP = (1/2).
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• B→P : �∗B(αu) ∝ − log(1− α), which does not have finite infimum.

• P→B: �̂B is not finite and SB = ∅. Thus ŷB = (1,−1,−1) �∈ SB.

Example 11 (nonlinear C, H-set). Let X = {2, 3, 4}, C = {q ∈ ΔX :
∑

i∈X i q2i ≤
1}, and ν = (1, 0, 0). Thus X a = {2}, X p = {3, 4}, and Ca(0p) = ∅.

• P: Write C =
⋃

k∈[0,1] Ck, where Ck � {q ∈ ΔX :
∑

i∈X i q2i = k}. On Ck,

7q3 = 4 − 4q2 ±
√
−12 + 24q2 − 26q22 + 7k and the nonnegativity of the

term under the square-root implies that q2 should belong to the interval
[6/13− 1/26

√
−168 + 182k, 6/13+1/26

√
−168 + 182k)]. This in turn im-

plies that q̂2(k) = 6/13 + 1/26
√
−168 + 182k. The function q̂2(k) attains

its maximum at k = 1, for which q̂2 = 0.6054. The other two elements of
q̂P are determined uniquely. Thus, q̂P = (0.6054, 0.2255, 0.1691).

• B: As shown above, q2 ≤ (12 +
√
24)/26 � c < 1 for every q ∈ C. Put

d = c/(1− c). Then, for every α ≥ 0, y � α(1,−d,−d) ∈ C∗ and �∗B(y) =

− log(1 + α). Hence the BD-dual problem has �̂B = −∞.

Example 12 (monotonicity, H-set). Let X = {1, 2, 3}, C = {q ∈ ΔX : q1 ≤
q2 ≤ q3}, and ν = (0, 1, 0), as in Example 4. Thus X a = {2}, X p = {1, 3},
and Ca(0p) = ∅. The polyhedral set C is given by (2.2) with u1 = (1,−1, 0),
u2 = (0, 1,−1).

• P: SP = {(0, 1, 1)/2} and �̂P = log 2.
• F : Since α̂F = (0, 1), the base solution is ŷF = (0, 1,−1). Thus q̂aP = 1/2

by (3.5).
• B → P: For every α ≥ 0, αu2 ∈ C∗ and �∗B(αu2) = − log(1 + α). Thus

�̂B = −∞.
• P → B: Since SB = ∅, ŷB = (−1, 1,−1) �∈ SB.

Example 13 (Z-set). Motivated by Example 4 of Bergsma et al. [8], let X , C
be as in Example 9 and let ν = (1, 1, 0)/2. Thus X a = {−1, 0}, X p = {1}, and
Ca(0p) = {(0, 1)}.

• P: SP = {(1, 2, 1)/4} and �P = (1/2) log 8.

• F : Since α̂F = −1, the base solution of F is (1, 0,−1) and �̂F =−(1/2) log 8.
Thus, by (3.5), q̂aP = (1, 2)/4.

• B→P : �∗B(αu) ∝ −(1/2) log(1− α), hence �̂B = −∞.
• P→B: Since SB = ∅, ŷB = (1, 0,−1) �∈ SB.

Observe that Theorem 2.1 of [12] implies that q̂pB = 0p, provided that �̂B is
finite. However, Cp(q̂a) may be different than {0p}; in such a case q̂pP has a
strictly positive coordinate and the BD-duality gap occurs.

Example 14 (BD-duality gap). Let X = {−1, 1, 10}, C = {q ∈ ΔX : EqX = 0},
so that u = (−1, 1, 10), and ν = (3, 2, 0)/5. Thus X a = {−1, 1}, X p = {10}, and
Ca(0p) = {(1, 1)/2}.

• P: SP = {(54, 44, 1)/99} and �̂P = 0.6881.

• F : Since α̂F = −1/10, the base solution of F is (1,−1,−10)/10 and �̂F =
−0.6881. From (3.5), it follows that q̂aP = (54, 44)/99.
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• B→P : �∗B(αu) ∝ −[ν−1 log(1 − α) + ν1 log(1 + α)]. Since α̂B = −1/5 and

ŷB = α̂Bu, thus q̂B = ν/(1+ ŷB) = (1, 1, 0)/2, �̂B = −0.6931, and �̂B < −�̂P .

• P→B: Since �̂P is finite, it should hold that �̂P = −�̂B, but it does not.
Moreover, ŷB = (1,−1,−10)/10 = −(1/10)u �∈ SB.

4.3. Scope of validity of BD-dual B

The correct relation of the BD-dual B to the primal P is stated in Theorem 16. In
order to formulate the conditions under which �̂B is infinite (cf. Theorem 16(a))
the notions of H-set and Z-set are introduced. They are implied by the recession
cone considerations of B.

Definition 15. If a nonempty convex closed set C ⊆ ΔX and a type ν are such
that Ca(0p) = ∅, then we say that C is an H-set with respect to ν. The set C is
called a Z-set with respect to ν if Ca(0p) is nonempty but its support is strictly
smaller than X a.

Note that Ca(0p) comprises (active projections of) those q ∈ C which are
supported on the active letters. Thus, C is neither an H-set nor a Z-set if and
only if there is q ∈ C with qa > 0, qp = 0.

Clearly, in Example 10, C is an H-set with respect to the ν. The same set C
becomes a Z-set with respect to the ν considered in Example 13. And it is neither
an H-set nor a Z-set with respect to the ν studied in Example 9. Further, the
feasible set C considered in Example 14 is neither an H-set nor a Z-set with
respect to the particular ν. In Examples 11 and 12, C is an H-set with respect
to the ν.

Theorem 16 (Relation between B and P). Let ν, C, q̂aP , ŷ
a
F be as in Theorems 2

and 6.

(a) If C is either an H-set or a Z-set with respect to ν then

�̂B = −∞ and SB = ∅.

(b) If C is neither an H-set nor a Z-set then �̂B is finite, �̂B ≤ �̂F , and there
is ŷaB ∈ C∗a such that μ̄(−ŷaB) = 1 and

SB = {ŷaB} × C∗p(ŷaB).

Moreover, there is no BD-duality gap, that is,

�̂B = −�̂P ,

if and only if any of the following (equivalent) conditions hold:

(i)
∑

q̂aP = 1 (that is, SP = {(q̂aP , 0p)});
(ii) ŷaB = ŷaF (that is, νa/(1 + ŷaB) = q̂aP);
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(iii) �(q̂B) + �∗(−ŷB) = 0 ( extremality relation) for some ŷB ∈ SB, where

q̂B �
(

νa

1 + ŷaB
, 0p
)
;

(iv) (ŷaB,−1p) ∈ C∗.

Informally put, Theorem 16(a) demonstrates that the BD-dual breaks down
if C is either an H-set or a Z-set with respect to the observed type ν. Then the
(B → P) part of Theorem 8 does not apply. At the same time the (P → B)
part of Theorem 8 does not hold, as SP �= ∅, yet SB = ∅. This is illustrated by
Examples 10–13.

Part (b) of Theorem 16 captures the other discomforting fact about the BD-
dual: if the solution of B exists, it may not solve the primal problem P . By (i)
this happens whenever the solution q̂P of P assigns a positive weight to at least
one of the passive letters (provided that SB �= ∅). See Example 14.

At least, for ν > 0 the BD-dual works well.

Corollary 17. If ν > 0 then SP = {q̂P}, SF = {ŷF}, SB = {ŷB} are singletons,

�̂B = �̂F = −�̂P , ŷB = ŷF =
ν

q̂P
− 1, and q̂P ⊥ ŷB.

The corollary justifies the use of the BD-dual for solving P when ν > 0. Recall
that in the case of linear C the BD-dual is just Smith’s simplified Lagrange dual
problem (4.1), which is an unconstrained optimization problem. It can be solved
numerically by standard methods for unconstrained optimization or by El Barmi
& Dykstra’s [12] cyclic ascent algorithm.

Finally, it is worth noting that the solution sets SP and SF are always compact
but SB, if nonempty, is compact if and only if ν > 0, that is, there is no passive
letter. If ν �> 0 and SB �= ∅, then SB is unbounded from below.

4.3.1. Base solution of B and no BD-duality gap

The case (iv) of Theorem 16(b) provides a way to find out whether a solution
of P assigns the zero weights to the passive letters or not. First, determine
whether C is neither an H-set nor a Z-set with respect to ν. Then, solve the
BD-dual B and find a solution ŷB of it. Finally, verify that (ŷaB,−1p) belongs to
the polar cone C∗. For example, if ŷpB ≥ −1 then this is satisfied automatically.

On the other hand, in order to have q̂pP = 0p (that is, to have no BD-duality
gap), ŷpB ≥ −1 must be satisfied by some ŷpB ∈ SB. In the case when C is
polyhedral, there must exist a base solution ŷpB =

∑
h α̂huh of B with ŷpB ≥ −1.

The next Example illustrates the point.

Example 18 (Base solution of B). Let X = {−1, 1, a, b}, where b > a > 1. Let
C = {q ∈ ΔX : Eq X = 0}, so that u = (−1, 1, a, b). Let ν = (ν−1, ν1, 0, 0);
hence X a = {−1, 1}, X p = {a, b}, and Ca(0p) = {(1, 1)/2}. For what values of
ν1 the solution of P assigns zero weights to the passive letters? First, α̂B solves
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〈q̂aB, ua〉 = 0, where q̂aB = νa

1+α̂Bua . This gives α̂B = 2ν1 − 1. Thus, α̂B < 0 when

ν1 < 1/2. Then, in order to have q̂pP = 0p, the condition ŷpB ≥ −1 gives that
ν1 ≥ b−1

2b . In the other case (α̂B ≥ 0) the condition is not binding, hence q̂pP = 0p

for ν1 ≥ 1/2. Taken together, for ν1 < b−1
2b it holds that q̂B �= q̂P , since q̂pP has a

positive coordinate and q̂pB = 0p. To give a numeric illustration, let a = 2, b = 5,
and ν1 = 3/10 < 4/10. Then q̂P = (14, 9, 0, 1)/24, that is, a positive weight
is assigned to a passive letter. For ν1 = 9/20, which is above the threshold,
q̂P = (1, 1, 0, 0)/2.

To sum up, El Barmi and Dykstra’s dual may fail to lead to the solution of
the multinomial likelihood primal P in different ways. For a particular type ν
the feasible set C may be an H-set or a Z-set, and then the BD-dual fails to
attain finite infimum. Even if this is not the case B may fail to provide a solution
of P, due to the BD-duality gap. Theorem 16(b) states equivalent conditions
under which the BD-dual is in the extremality relation with P and leads to a
solution of P; see also Lemma 58.

In the next two sections other possibilities of solving P are explored. First, an
active-passive dualization is considered. Then, a perturbed primal problem and
the PP algorithm are studied. Interestingly, a solution of the perturbed primal
problem may be obtained from the BD-dual problem.

5. Active-passive dualization

Annotation. Sequential, active-passive dualization is proposed and analyzed. Its
working is illustrated by solving Example 13, where the BD-dual fails due to
the Z-set.

The active-passive dualization is based on a reformulation of the primal P as
a sequence of partial minimizations

�̂P = inf
qp∈Cp

inf
qa∈Ca(qp)

�(qa, qp).

Assume that qp is such that the slice Ca(qp) has support X a (this is not a
restriction, since otherwise the inner infimum is ∞). Since νa > 0, Corollary 17
gives that a solution of the inner (active) primal problem Aκ

�̂P(q
p) � inf

qa∈Ca(qp)
�(qa, qp),

SP(q
p) � {q̂a ∈ Ca(qp) : �(q̂a, qp) = �̂P(q

p)},
(Aκ)

can be obtained from its BD-dual problem Bκ

�̂B(q
p) � sup

ya∈(Ca(qp))∗
Iκ(ν

a ‖ ya),

SB(q
p) � {ŷa ∈ (Ca(qp))∗ : Iκ(ν

a ‖ ŷa) = �̂B(q
p)},

(Bκ)

where κ = κ(qp) � 1/(1−
∑

qp).
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Theorem 19 (Relation between Bκ and Aκ). Let qp ∈ Cp be such that the
support of Ca(qp) is X a. Then there is a unique solution ŷa(qp) of Bκ, and

q̂a(qp) � νa

κ(qp) + ŷa(qp)
(5.1)

is the unique member of SP(q
p). Moreover, q̂a(qp)⊥ ŷa(qp) and �̂B(q

p) = −�̂P(q
p).

Thanks to (5.1) and the extremality relation between Aκ and Bκ, the active-
passive (AP) dual form of the active-passive primal is

sup
qp∈Cp

sup
ya∈(Ca(qp))∗

Iκ(ν
a ‖ ya).

The active-passive dualization is illustrated by the following example.

Example 13 (cont’d). Here Cp = [0, 1/2] and the AP dual can be written in the
form

q̂p1 = argmax
qp1∈Cp

sup
α∈R

Iκ(qp1 )(ν
a ‖αva),

where va = ua + (κ(qp1) q
p
1u

p
1)1

a. The inner optimization gives

α̂(qp1) =
1− 3qp1

2qp1(2q
p
1 − 1)

.

This α̂(qp1), plugged into Iκ(qp1 )(ν
a ‖αva), yields

(1/2) log [1 + α̂(qp1)(2q
p
1 − 1)] + (1/2) log [1 + α̂(qp1)q

p
1 ] − log[1− qp1 ],

which has to be maximized over qp1 ∈ Cp = [0, 1/2]. The maximum is attained
at q̂p1 = 1/4. Thus α̂(q̂p1) = −1, κ(q̂p1) = 4/3, va−1 = −2/3, and va0 = 1/3;
since q̂a(q̂p1) = νa/(κ(q̂p1) + α̂(q̂p1)v

a) by (5.1), q̂a−1 = 1/4 and q̂a0 = 1/2. Hence,
q̂ = (1, 2, 1)/4.

In the outer, passive optimization, it is possible to exploit the structure of
SP (cf. Theorem 2), and this way reduce the dimension of the problem. This is
the case, for instance, when C is polyhedral.

6. Perturbed primal Pδ and PP algorithm

Annotation. Perturbed primal problem Pδ and the PP algorithm are introduced.
The epi-convergence of a sequence of the perturbed primals for a general, con-
vex C, and the pointwise convergence for the linear C are formulated (cf. The-
orems 20, 21) and illustrated.

For δ > 0 let ν(δ) ∈ ΔX be a perturbation of the type ν; we assume that

ν(δ) > 0 and lim
δ↘0

ν(δ) = ν. (6.1)
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The perturbation activates passive, unobserved letters. For every δ > 0 consider
the perturbed primal problem Pδ

�̂P(δ) � inf
q∈C

�δ(q) = inf
q∈C

−〈ν(δ), log q〉 ,

SP(δ) � {q̂ ∈ C : �δ(q̂) = �̂P(δ)},
(Pδ)

where �δ � �ν(δ).
Since the activated type ν(δ) has no passive coordinate, the perturbed primal

problem Pδ can be solved, for instance, via the BD-dualization; recall Corol-
lary 17. Thus, for every δ > 0,

SP(δ) = {q̂P(δ)}, SF(δ) = SB(δ) = {ŷB(δ)}, q̂P(δ) =
ν(δ)

1 + ŷB(δ)
. (6.2)

How is q̂P(δ) related to SP , and �̂P(δ) to �̂P? Theorem 20 asserts that �Cδ epi-
converges to �Cν when δ ↘ 0. (There, for a map f : D → R̄ and a set C ⊆ D, the
map fC : Rm → R̄ is given by fC(x) = f(x) if x ∈ C, and fC(x) = ∞ if x �∈ C.)
The epi-convergence (cf. Rockafellar and Wets [42, Chap. 7]) is used in convex
analysis to study a limiting behavior of perturbed optimization problems. It is
an important modification of the uniform convergence (cf. Kall [26], Wets [47]).

Theorem 20 (Epi-convergence of Pδ to P). Assume that C is a convex closed
subset of ΔX with support X , ν ∈ ΔX , and (ν(δ))δ>0 is such that (6.1) is true.
Then

�Cδ epi-converges to �Cν for δ ↘ 0.

Consequently,

lim
δ↘0

inf
q̂P∈SP

d(q̂P(δ), q̂P) = 0

and the active coordinates of solutions of Pδ converge to the unique point q̂aP
of Sa

P :

lim
δ↘0

q̂aP(δ) = q̂aP ∈ Sa
P .

Moreover, if SP is a singleton (particularly, if ν > 0) then also the passive
coordinates converge and

lim
δ↘0

q̂P(δ) ∈ SP .

Thus, if δ is small enough, the (unique) solution q̂P(δ) of the perturbed pri-
mal Pδ is close to a solution of the primal problem P. Theorem 20 also states
that in the active coordinates the convergence is pointwise, to the unique q̂aP
of Sa

P . The next theorem demonstrates that if C is given by linear constraints
and ν(δ) is defined in a ‘uniform’ way in δ, also the passive coordinates of q̂P(δ)
converge pointwise.

Theorem 21 (Convergence of Pδ to P , linear C). Let C be given by (2.3),
ν ∈ ΔX , and (ν(δ))δ>0 be such that (6.1) is true. Further, assume that ν(·)
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is continuously differentiable and that there is a constant c > 0 such that, for
every i ∈ X p,

|ϑ′
i(δ)| ≤ c ϑi(δ), where ϑi(δ) � νi(δ)∑

j∈Xp νj(δ)
. (6.3)

Then
lim
δ↘0

q̂P(δ) exists and belongs to SP .

Notice that the condition (6.3) is satisfied if νi(δ) = νj(δ) for every i, j ∈ X p;
for example if

ν(δ) =
1

1 + δmp
(ν + δξ), (6.4)

where ξ � (0a, 1p) is the vector with ξi = 1 if i ∈ X p and ξi = 0 if i ∈ X a. This
corresponds to the case when every passive coordinate is ‘activated’ by equal
weight.

The following example demonstrates that without the assumption (6.3) the
convergence in passive letters need not occur.

Example 22 (Divergent q̂P(δ)). Consider the setting of Example 3. That is,
X = {−1, 0, 1} and

C = {q ∈ ΔX : 〈q, u〉 = 0} = {(a, 1/2, 1/2− a) : a ∈ [0, 1/2]},

where u = (1,−1, 1). For ν = (0, 1, 0), SP = C. Define the perturbed types ν(δ)
in such a way that

ν(δ) =

{
(δ, 1− 3δ, 2δ) if δ ∈ {1/(2n) : n ∈ N},
(2δ, 1− 3δ, δ) if δ ∈ {1/(2n+ 1) : n ∈ N},

and ν(·) is C1 on (0, 1). Then, for every n ∈ N,

q̂P(1/(2n)) = (1/6, 1/2, 1/3) and q̂P(1/(2n+ 1)) = (1/3, 1/2, 1/6);

so the limit lim q̂P(δ) does not exist. Note that in this case the condition (6.3) is
violated. Indeed, ϑ1(1/(2n)) = 2/3 and ϑ1(1/(2n+1)) = 1/3 for every n; hence,
by the mean value theorem, for every n there is ζn ∈ (1/(2n+ 1), 1/(2n)) such
that ϑ′

1(ζn) = 2n(n+ 1)/3. Since 0 < ϑ1(ζn) ≤ 1, limn ϑ
′
1(ζn)/ϑ1(ζn) = ∞.

In Examples 10, 13, 14, with ν(δ) given by (6.4), the pointwise convergence
can be demonstrated analytically.

Example 10 (cont’d). Here ŷB(δ) = α̂B(δ)u, where α̂B(δ) =
δ−1
δ+1 . So, lim α̂B(δ) =

−1 and lim q̂P(δ) = (1, 0, 1)/2 ∈ SP .

Example 13 (cont’d). First, ŷB(δ) = α̂B(δ)u and

α̂B(δ) = argmax
α∈R

[ν−1(δ) log(1− α) + ν0(δ) log 1 + ν1(δ) log(1 + α)] ;

this leads to α̂B(δ) =
2δ−1
2δ+1 . Thus, lim α̂B(δ) = −1 and, since q̂P(δ) =

ν(δ)
1+α̂B(δ)u ,

lim q̂P(δ) = (1, 2, 1)/4 ∈ SP .
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Example 14 (cont’d). Here ŷB(δ) = α̂B(δ)u with α̂B(δ) = −3−
√
1+392δ+400δ2

20(1+δ) .

Thus, lim α̂B(δ) = −1/10, and lim q̂B(δ) = (54, 44, 1)/99 ∈ SP .

The next example provides a numeric illustration of the pointwise conver-
gence of a sequence of perturbed primals to P . The perturbed primal solutions
are obtained through their BD-duals. It is worth stressing that B to Pδ is, for a
linear C, an unconstrained optimization problem; cf. Section 4.1.1.

Example 23 (Qin and Lawless [38], Ex. 1). Consider a discrete-case analogue of
Example 1 from Qin and Lawless [38]. Let X = {−2,−1, 0, 1, 2} and

Cθ = {q ∈ ΔX : Eq(X − θ) = 0,Eq(X
2 − 2θ2 − 1) = 0},

where θ ∈ Θ = [−2, 2]. Then CΘ =
⋃

θ∈Θ Cθ is the estimating equations model;
cf. (3.1). Clearly, u1(θ) = (−2 − θ,−1 − θ,−θ, 1 − θ, 2 − θ) and u2(θ) = (3 −
2θ2,−2θ2,−1− 2θ2,−2θ2, 3− 2θ2). Let ν = (0, 0, 7, 3, 0)/10.

For a fixed θ ∈ Θ and a perturbed type ν(δ), the BD-dual to the perturbed
primal Pδ is (equivalent to)

α̂B(δ) = argmin
α∈R2

I1(ν
a ‖ 〈α, u(θ)〉)

and the corresponding q̂B(δ) =
ν(δ)

1+〈α̂(δ),u(θ)〉 . For θ = 0 and ν(δ) given by (6.4)

with δ = 10−j (j = 3, 5, 7, 9), Table 1 illustrates the pointwise convergence of

q̂B(δ) to q̂P , −�̂B(δ) to �̂P .
The optimal α̂B(δ)’s were computed by optim of R [39]. The rightmost three

columns in Table 1 state orders of the precision 10−γ of satisfaction of the con-
straints Eq̂(δ) X = 0, Eq̂(δ)(X

2 − 1) = 0, and
∑

q̂(δ)− 1 = 0. The solution of P,
obtained by solnp from the R library Rsolnp (cf. Ghalanos and Theussl [17];

based on Ye [48]), is q̂P = (0.1625, 0, 0.525, 0.3, 0.0125) and �̂P = 0.812242.

Table 1

The pointwise convergence of Pδ to P.

j q̂B(δ) −�̂B(δ) γ1 γ2 γ3

3 0.161439 0.001013 0.528326 0.294553 0.014669 0.823788 7 7 8
5 0.162488 0.000010 0.525041 0.299936 0.012525 0.812404 7 7 6
7 0.162501 1e-7 0.525000 0.299999 0.012500 0.812242 6 6 6
9 0.162501 1e-8 0.525000 0.300000 0.012502 0.812242 5 5 6

For j > 9 the numerical effects become noticeable. For instance, for j = 20,
the precision of the constraints satisfaction is of the order 10−1.

As an aside, note that for this type ν the BD-dual to the original, unperturbed
primal P breaks down, since Cθ is an H-set. In fact, it is an H-set with respect
to this ν for any θ ∈ Θ; cf. the empty set problem in Grendár and Judge [19].

The convergence theorems suggest that the practice of replacing the zero
counts by an ‘ad hoc’ value can be superseded by the PP algorithm; i.e., by a
sequence of the perturbed primal problems, for ν(δ) > 0 such that limδ↘0 ν(δ) =
ν. Since each ν(δ) > 0, the PP algorithm can be implemented through the BD-
dual to Pδ, by the Fisher scoring algorithm, or by the Gokhale algorithm [18],
among other methods.
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7. Implications for empirical likelihood

Annotation. Consequences of the presented results for the empirical likelihood
(EL) method (cf. Owen [34]) are pointed out. It is noted that the distribution
that maximizes empirical likelihood differs, in general, from the distribution that
maximizes multinomial likelihood. The multinomial likelihood ratio may lead
to different inferential and evidential conclusions than the empirical likelihood
ratio. The case of continuous data is discussed in Section 7.1, where Fisher’s
original notion of likelihood is recalled.

In most settings, including the discrete one, empirical likelihood is ‘a multi-
nomial likelihood on the sample’, Owen [35, p. 15]. It is usually applied to an
empirical estimating equations model, which is in the discrete setting defined as
CΘ,νa �

⋃
θ∈Θ Cθ,νa , where

Cθ,νa � {p ∈ ΔXa : 〈p, ua
h(θ)〉 = 0 for h = 1, 2, . . . , r}

and ua
h : Θ → R

ma are the empirical estimating functions. The empirical likeli-
hood estimator is defined through

inf
θ∈Θ

inf
p∈Cθ,νa

−〈νa, log p〉 . (7.1)

For a fixed θ ∈ Θ, the data-supported feasible set Cθ,νa is a convex set and the
inner optimization in (7.1) is the empirical likelihood inner problem

�̂E � inf
p∈Cθ,νa

�(p), SE � {p̂E ∈ Cθ,νa : �(p̂E) = �̂E}. (E)

Since Cθ,νa is just the 0p-slice Ca
θ (0

p) of Cθ (given by (3.1)), the EL inner
problem E can equivalently be expressed as

�̂E = inf
qa∈Ca

θ (0
p)
�(qa).

Its dual is

inf
α∈Rr

I1

(
νa
∥∥∥∑

h

αhu
a
h(θ)

)
. (7.2)

Note that (7.2) is just Smith’s simplified Lagrangean (4.1), that is, the BD-
dual B to the multinomial likelihood primal problem P , for the linear set Cθ.
This connection implies, through Theorem 16, that the maximum of empirical
likelihood does not exist if Cθ is either an H-set or a Z-set with respect to ν.
The two possibilities are recognized in the literature on EL, where an H-set is
referred to as the convex hull problem (cf. Owen [35, Sect. 10.4]), and a Z-set is
known as the zero likelihood problem (cf. Bergsma et al. [8]). Theorem 16 also
implies that these are the only ways the EL inner problem may fail to have a
solution. Note that E may fail to have a solution for any θ ∈ Θ; cf. the empty
set problem, Grendár and Judge [19].

In addition, Theorem 16 implies that, besides failing to exist, the EL inner
problem E may have different solution than the multinomial likelihood primal
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problem P . If Cθ is neither an H-set nor a Z-set then, by Theorem 16(b), it is
possible that

1. either �̂P = −�̂B (no BD-duality gap), or

2. �̂P < −�̂B (BD-duality gap).

Since �̂B = −�̂E , in the latter case �̂P < �̂E and SP �= SE . This happens when
any of the conditions (i)–(iv) from Theorem 16(b) is not satisfied. Then the dis-
tribution that maximizes empirical likelihood differs from the distribution that
maximizes multinomial likelihood. Moreover, the multinomial likelihood ratio
may lead to different inferential and evidential conclusions than the empirical
likelihood ratio. The points are illustrated in the next example.

Example 24 (LR vs. ELR). Let X = {−2,−1, 0, 1, 2}, Θ = {θ1, θ2} with θ1 =
1.01 and θ2 = 1.05. Let Cθj = {q ∈ ΔX : Eq(X

2) = θj}. Clearly, u(θj) =
(4− θj , 1− θj ,−θj , 1− θj , 4− θj) for j = 1, 2. Let ν = (6, 3, 0, 0, 1)/10.

The solution of P is

• q̂P(θ1) = (0.1515, 0.3030, 0.52025, 0, 0.02525), for θ1,
• q̂P(θ2) = (0.1575, 0.3150, 0.50125, 0, 0.02625), for θ2.

Note that each of the solutions assigns a positive weight to the unobserved out-
come 0. Such a solution cannot be obtained by the BD dual, due to the presence
of the BD-duality gap. Recall that there is no BD-gap if ŷpB ≥ −1; cf. Theorem 16
and Sect. 4.3.1. For θ1, α̂B(θ1) = 69.8997, hence ŷpB(θ1) = (−70.5987,−0.6990),
thus the BD-gap is present. Similarly for θ2, where α̂B(θ2) = 13.8983, hence
ŷpB(θ2) = (−14.5932,−0.6949).

As the two solutions are very close, the multinomial likelihood ratio is

• LR21 = exp (n[�(q̂P(θ1))− �(q̂P(θ2))]) = 1.4746,

which indicates inconclusive evidence.

However, the empirical likelihood ratio leads to a very different conclusion.
Note that the active letters are X a = {−2,−1, 2}, and Cθ is neither an H-set
nor a Z-set with respect to the observed type ν, for the considered θj (j = 1, 2).
Hence for both θ’s the solution of E exists and it is

• q̂E(θ1) = (0.00286, 0.996̄, 0.00048), for θ1,
• q̂E(θ2) = (0.01429, 0.983̄, 0.00238), for θ2.

The weights given by EL to −2 are very different in the two models; the same
holds for 2. The empirical likelihood ratio is

• ELR21 = exp (n[�(q̂E(θ1))− �(q̂E(θ2))]) = 75031.31,

which indicates decisive support for θ2; cf. Zhang [50].

The BD-duality gap thus implies that in the discrete iid setting, when C
is given by linear equality constraints, EL-based inferences from finite samples
may be grossly misleading.
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7.1. Continuous case and Fisher likelihood

As far as the continuous random variables are concerned, due to the finite preci-
sion of any measurement ‘all actual sample spaces are discrete, and all observable
random variables have discrete distributions’, Pitman [37, p. 1]. Already Fisher’s
original notion of the likelihood [15] (see also Lindsey [31, p. 75]) reflects the
finiteness of the sample space. For an iid sample Xn

1 � (X1, X2, . . . , Xn) and a
finite partition A = {Al}m1 of a sample space X , the Fisher likelihood LA(q;X

n
1 )

which the data Xn
1 provide to a pmf q ∈ ΔX is

LA(q;X
n
1 ) �

∏
Al∈A

en(Al) log q(Al),

where n(Al) is the number of observations in Xn
1 that belong to Al. Thus, this

view carries the discordances between the multinomial and empirical likelihoods
also to the continuous iid setting.

Example 25 (FL with estimating equations). To give an illustration of the
Fisher likelihood as well as yet another example that q̂E may be different than
q̂P , consider the setting of Example 23 with X = {−4,−3.9, . . . , 3.9, 4} and
θ ∈ Θ = [−4, 4]. The letters of the alphabet are taken to be the representa-
tive points of the partition A � {(−∞,−3.95), [−3.95,−3.85), . . . , [3.85, 3.95),
[3.95,∞)} of R. This way the alphabet captures the finite precision of mea-
surements of a continuous random variable. The type ν exhibited at the panel
c) of Figure 1 is induced by a random sample of size n = 100 from the A-
quantized standard normal distribution. The EL estimate of θ is −0.052472 and
the associated EL-maximizing distribution q̂E is different than the multinomial
likelihood maximizing distribution q̂P , which is associated with the estimated
value 0.000015 and assigns a positive weight also to the passive letters −4 and 4.

Fig 1. Panel a) the multinomial likelihood maximizing distribution q̂P ; panel b) the empirical
likelihood maximizing distribution q̂E ; and panel c) the observed type ν.
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8. Implications for other methods

Annotation. Besides the empirical likelihood, the minimum discrimination infor-
mation, Lindsay geometry, compositional data analysis, bootstrap in the pres-
ence of auxiliary information, and Lagrange multiplier test ignore information
about the alphabet, and are restricted to the observed data. Thus, they are
affected by the above findings.

8.1. Contingency tables with given marginals and MDI

In the analysis of contingency tables with given marginals, the minimum dis-
crimination information (MDI) method by Ireland and Kullback [25] is more
popular than the maximum multinomial likelihood method. This is because the
former is more computationally tractable, thanks to the generalized iterative
scaling algorithm (cf. Ireland et al. [24]). MDI minimizes I0(q ‖ ν) over q, so
that a solution of the MDI problem must assign a zero mass to a passive, unob-
served letter. Thus, MDI is effectively an empirical method. This implies that
the MDI-minimizing distribution restricted to a convex closed set C may not
exist; however, the multinomial likelihood-maximizing distribution always exists
(cf. Theorem 2), and may assign a positive mass to an unobserved outcome(s).

Example 26 (Contingency table with given marginals). Consider a 3 × 3 con-
tingency table with given marginals. Let X = {1, 2, 3} × {1, 2, 3}, and let the
observed bi-variate type ν have all the mass concentrated to (1, 1); the remain-
ing eight possibilities have got zero counts. Let the column and raw marginals
be fc = (1, 2, 7)/10, fr = (5, 4, 1)/10, respectively. One of the multinomial like-
lihood maximizing distributions q̂P is displayed in Table 2. In the active letter
q̂aP = 0.1 is unique, in the passive letters q̂pP ∈ Cp(qaP). The table exhibits the
q̂pP which can also be obtained by the PP algorithm with the uniform activa-
tion (6.4). Note that Ca(0p) = ∅, so that the MDI-minimizing distribution does
not exist.

Table 2

A solution of P.

q̂P

0.1000 0.0000 0.0000
0.0945 0.0800 0.0255
0.3055 0.3200 0.0745

It is worth stressing that the PP algorithm makes the multinomial likelihood
primal problem P computationally feasible. In particular, the BD-dual imple-
mentation of the PP algorithm can be used to reduce dimensionality of the
optimization problem from cardX to the number of the given marginals.

Example 26 (cont’d). A reviewer suggested to consider the above example with
a type having 1/3 assigned to ν11, ν12, and ν32. One of the solutions of P,
obtained by solnp from the R library Rsolnp with the uniform initialization, is
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presented in Table 3. The same solution can be obtained by the PP algorithm
with the uniform activation.

Table 3

A solution of P.

q̂P

0.0535 0.0465 0.0000
0.1710 0.0000 0.0290
0.2755 0.3535 0.0710

The same active components of the solution are obtained by the Fenchel
dual. As C is linear, a solution of F takes the form

∑
h α̂huh, where α̂ =

(6.2291, 0.0001,−0.0004, 0.9417), and uh’s are stacked row-wise into

U =

⎛
⎜⎜⎝

9 9 9 −1 −1 −1 −1 −1 −1
−2 −2 −2 8 8 8 −2 −2 −2
5 −5 −5 5 −5 −5 5 −5 −5
−4 6 −4 −4 6 −4 −4 6 −4

⎞
⎟⎟⎠ 1

10
.

By (3.5), the corresponding q̂aP = (0.0535, 0.0465, 0.3537). In the passive com-
ponents, a solution belongs to Cp(qaP). Furthermore, since ŷpi �= 1 implies that
q̂i = 0, the letters (1, 3) and (2, 2) are assigned the zero weight.

8.2. Marginal homogeneity in contingency tables

As a real-life example, requested by a reviewer, consider the marginal homo-
geneity model for the data on patient histology for two imaging modalities,
studied by Sharma et al. [43]. The data form a two-way, 5×5 contingency table,
displayed in Table 4.

Table 4

Type, corresponding to the data from Table 1 in [43],
concerning an agreement of examinations of patients with
Barrett’s oesophagus by the High-definition White Light

Endoscopy and by the Narrow Band Imaging.

HD-WLE

NBI No IM IM LGD HGD OAC

No IM 0.0813 0.0488 0.0244 0.0000 0.0000
IM 0.0650 0.3577 0.0894 0.0081 0.0000
LGD 0.0000 0.1463 0.0732 0.0081 0.0000
HGD 0.0081 0.0081 0.0244 0.0325 0.0000
OAC 0.0000 0.0000 0.0000 0.0163 0.0081

The marginal homogeneity model (cf. Bishop, Fienberg and Holland [11])
assumes that the marginals of the bi-variate q are equal. The model can be
represented as a system of linear constraints on the vectorized q. Thus, the
problem of finding the maximum multinomial likelihood estimate of q under the
marginal homogeneity constraints is an instance of the P problem.
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There are nine cells with zero counts in Table 4. In the presence of zero-counts
Simth’s dual (cf. Sect. 4.1.1), considered in Madansky [33] or Bishop, Fienberg
and Holland [11, p. 294], may not lead to the solution of P. A solution of P
obtained by the PP algorithm is exhibited in Table 5. Note that a positive weight
is assigned to one of the nine passive letters. The solution cannot be obtained
by Smith’s simplified Lagrange dual. The marginal distribution, induced by the
solution, is (0.1547, 0.5451, 0.2176, 0.0648, 0.0178).

Table 5

The maximum multinomial likelihood estimate of the
sampling distribution under the marginal homogeneity

model, based on the data in Table 4.

HD-WLE

NBI No IM IM LGD HGD OAC

No IM 0.0813 0.0473 0.0260 0.0000 0.0000
IM 0.0671 0.3577 0.0986 0.0120 0.0097
LGD 0.0000 0.1339 0.0732 0.0106 0.0000
HGD 0.0063 0.0061 0.0198 0.0325 0.0000
OAC 0.0000 0.0000 0.0000 0.0097 0.0081

8.3. Lindsay geometry

Lindsay [30, Sect. 7.2] discusses multinomial mixtures under linear constraints
on the mixture components, and assumes that it is sufficient to consider the
distributions supported in the data (i.e., in the active alphabet). Though the
objective function �(·) in P is a ‘single-component’ multinomial likelihood, the
present results for the H-set, Z-set, and BD-gap suggest that it would be more
appropriate to work with the complete alphabet; see also Anaya-Izquierdo et
al. [5, Sect. 5.1].

8.4. Compositional data analysis

Multinomial likelihood maximization has the same solution regardless of wheth-
er the proportions ν or the counts (ni)i∈X are used. Note that the vector ν of
proportions is an instance of the compositional data. In the analysis of com-
positional data, it is assumed that the compositional data (x1, . . . , xm) belong
to {(x1, . . . , xm) : x1 > 0, . . . , xm > 0,

∑
xi = 1}; cf. Aitchison [3, Sect. 2.2].

This assumption transforms ν ∈ ΔX into νa ∈ ΔXa . Consequently, the multi-
nomial likelihood problem P is replaced by the empirical likelihood problem E .
However, this replacement is not without consequences, as the solution of the
empirical likelihood problem E (if it exists) may differ from the solution of P;
cf. Section 7.

8.5. Bootstrap with auxiliary information

Bootstrap in the presence of auxiliary information (cf. Zhang [49], Hall and Pres-
nell [22]) in the form of a convex closed set, resamples from the EL-maximizing
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distribution q̂E . Hence, this method intentionally discards information about the
alphabet. Resampling from q̂P seems to be a better option.

8.6. Score test

The Lagrange multiplier (score) test (cf. Silvey [44]) of the linear restrictions
on q (cf. C given by (2.3)) fails if C is an H-set or a Z-set with respect to ν,
because the Lagrangean first-order conditions do not lead to a finite solution of
P. However, the multinomial likelihood ratio exists.

9. Concluding comments

Computational aspects. There are several methods for obtaining a solution of P,
numerically.

• The primal problem P can be solved by the augmented lagrangean meth-
ods for constrained optimization. This may become burdensome for a large
alphabet.

• A solution of P can also be obtained from the Fenchel dual F . For a linear
set C the optimization is unconstrained over Rr, where r is the number of
linear constraints. This way the Fenchel dual may greatly decrease dimen-
sionality of the optimization problem. Evaluation of the convex conjugate
is not computationally demanding, as it involves nothing more complex
than a univariate root finding; cf. (3.4). Once a solution of F is found,
the corresponding active component of the solution of P can be obtained
by (3.5). Concerning the passive component, if ŷpi �= 1, then the passive
letter is assigned the zero weight. Furthermore, the passive component

belongs to Cp
(

νa

1+ŷa
F

)
.

• For a linear or polyhedral C a solution of F may also be obtained by a
minimax (saddle point) convex optimization; cf. Sect. 3.1. For a polyhedral
C it involves maximization over a positive half space and minimization
over a simplex.

• A solution of P can also be obtained by the sequential active-passive
dualization; cf. Sect. 5.

• Perhaps the most convenient way of obtaining a solution of P is by the PP
algorithm; cf. Sect. 6. The PP algorithm can be implemented in various
ways. For instance, by the Fisher scoring algorithm, or by the Gokhale
algorithm. It can as well be implemented by the BD dual. The BD dual
implementation of the PP algorithm is particularly convenient in the case
of a linear or polyhedral C, where it may reduce dimensionality of the
optimization. The dimensionality reduction is achieved also by the Fenchel
dual, but unlike the Fenchel dual, the PP algorithm seamlessly leads both
active and passive components of a solution. In the Fenchel dual approach,
the passive components of the solution have to be determined separately.
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Applications. The presented results can be used to obtain the correct Maxi-
mum multinomial Likelihood (MmL) estimates and inferences in the many mod-
els, where the feasible set C is convex. Marginal homogeneity models, isotonic
cone models, mean response models, multinomial-Poisson homogeneous models,
contingency tables with given marginals, constrained ‘density’ estimation, esti-
mating equations, and many others are among such a models. The correct MmL
cannot, in general, be obtained by the simplified Lagrange and Fenchel duals,
which are considered in the Statistics literature for decades. Besides the flawed
duality theory of MmL, the current practice of obtaining MmL estimates and
inferences is equally unsatisfactory. Indeed, the replacement of zero count by an
ad hoc, surrogate value leads a ‘solution’ of P that depends on the surrogate
value. The PP algorithm avoids this inconvenience, by letting the perturbations
to zero, in an appropriate way. Taken together, the presented results can be in-
strumental in reviving interest in the likelihood estimation and inferences in the
many convex-constrained models, where they are overshadowed by the methods
such as the MDI, minimum χ2, or the least squares.

MmL vs. EL. Empirical Likelihood is the multinomial likelihood which as-
sumes the support in a data. Owen [34, p. 238] motivates such an ‘empiricism’
by noting, that restricting to empirical measures is “. . . convenient because the
statistician might not be willing to specify a bound M . . . ” on the support
[−M,M ]. Though EL was developed primarily with the continuous data in
mind, it should lead meaningful results also in the discrete case, where the sup-
port is usually known. Once it is recognized that the MmL may exploit also
the unobserved outcomes, a limitation of restricting to observed outcomes be-
comes visible. Namely, the EL-maximizing distribution (if it exists at all) may
be different than the MmL distribution (which always exists). Consequently,
the multinomial likelihood ratio may lead to different inferential and evidential
conclusions than the EL ratio.

As a yet another illustration of the extent of the difference between ignoring
support and taking it into account, consider the unimodal probability mass
function estimation (cf. Balabdaoui and Jankowski [7]), where a sample of size 50
is obtained from the negative binomial distribution with parameters (0.1, 1).
Figure 2 exhibits the observed empirical probability mass function, a unimodal
EL estimate, and the MmL estimate under unimodality.

Also in the continuous case MmL could be preferred to EL, if a statistician
is willing to follow Fisher, and take the finite precision of a data into account.

10. Proofs

10.1. Notation and preliminaries

In this section we introduce notation and recall notions and results which will
be used later; it is based mainly on Bertsekas [10] and Rockafellar [41, 40]. We
will not repeat the definitions introduced in the previous part of the paper.

We assume that the extended real line R̄ = [−∞,∞] is equipped with the
order topology; so it is a compact metrizable space homeomorphic to the unit
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Fig 2. Panel a) the type ν and sampling distribution q; panel b) a unimodal EL distribution;
and panel c) the unimodal MmL.

interval. The arithmetic operations on R̄ are defined in a usual way; further we
put 0 · (±∞) � 0. For α ≤ 0 we define log(α) � −∞; then log : R → R̄ is
continuous.

For m ≥ 0 put Rm
+ � {x ∈ R

m : x ≥ 0} and R
m
− � {x ∈ R

m : x ≤ 0} (recall
that, for m = 0, Rm = {0}). In the matrix operations, the members of Rm

are considered to be column matrices. If no confusion can arise, a vector with
constant values is denoted by a scalar.

Let C be a nonempty subset of R
m. The convex hull of C is denoted by

conv(C). The polar cone of C is the set C∗ � {y ∈ R
m : 〈y, q〉 ≤ 0 for every q ∈

C}. This is a nonempty closed convex cone [10, p. 166]. Assume that C is convex.
The relative interior ri(C) of C is the interior of C relative to the affine hull
aff(C) of C [10, p. 40]; it is nonempty and convex [10, Prop. 1.4.1].

The recession cone of a convex set C is the convex cone

RC � {z ∈ R
m : x+ αz ∈ C for every x ∈ C,α > 0} (10.1)

[10, p. 50]. Every z ∈ RC is called a direction of recession of C. Clearly, 0 ∈ RC ;
if RC = {0} it is said to be trivial. The lineality space LC of C is defined by
LC � RC ∩ (−RC) [10, p. 54]; it is a linear subspace of Rm. Note that if C is a
cone then RC = C and LC = C ∩ (−C).
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Let X be a subset of Rm and f : X → R̄ be a function. By f ′(x; y) we denote
the directional derivative of f at x in the direction y [10, p. 17]. By ∇f(x) and
∇2f(x) we denote the gradient and the Hessian of f at x. For a nonempty
set C ⊆ X, argminC f and argmaxC f denote the sets of all minimizing and
maximizing points of f over C, respectively; that is,

argmin
C

f =

{
x̄ ∈ C : f(x̄) = inf

x∈C
f(x)

}
,

argmax
C

f =

{
x̄ ∈ C : f(x̄) = sup

x∈C
f(x)

}
.

The (effective) domain and the epigraph of f are the sets [10, p. 25]

dom(f) � {x ∈ X : f(x) < ∞} and epi(f) � {(x,w) ∈ X × R : f(x) ≤ w}.
A function f : X → R̄ is

• proper if f > −∞ and there is x ∈ R
m with f(x) < ∞ [10, p. 25] (this

should not be confused with the properness associated with compactness
of point preimages);

• closed if epi(f) is closed in R
m+1 [10, p. 28];

• lower semicontinuous (lsc) if f(x) ≤ lim infk f(xk) for every x ∈ X and
every sequence (xk)k in X converging to x [10, p. 27]; analogously for the
upper semicontinuity (usc);

• convex if both X and epi(f) are convex [10, Def. 1.2.4];
• concave if (−f) is convex.

When dealing with closedness of f , we will often use the following simple lemma
[10, Prop. 1.2.2 and p. 28].

Lemma 27. Let f : X → R̄ be a map defined on a set X ⊆ R
m. Define

f̃ : Rm → R̄, f̃(x) �
{
f(x) if x ∈ X;

∞ if x �∈ X.

Then the following are equivalent:

(a) f is closed;
(b) f̃ is closed;
(c) f̃ is lower semicontinuous;
(d) the level sets Vγ � {x ∈ R

m : f̃(x) ≤ γ} = {x ∈ X : f(x) ≤ γ} are closed
for every γ ∈ R.

The recession cone Rf of a proper convex closed function f : Rm → R̄ is
the recession cone of any of its nonempty level sets Vγ [10, p. 93]. The lineality
space Lf of Rf is, due to the convexity of f , the set of directions y in which f
is constant (that is, f(x + αy) = f(x) for every x ∈ dom(f) and α ∈ R); thus
Lf is also called the constancy space of f [10, p. 97]. If g : Rm → R̄ is concave,
the corresponding notions for g are defined via the convex function (−g).

The fundamental results underlying the importance of recession cones, are
the following theorems ([10, Props. 2.3.2 and 2.3.4] or [41, Thm. 27.3]).
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Theorem 28. Let C be a nonempty convex closed subset of Rm and f : Rm → R̄

be a proper convex closed function such that C∩dom(f) �= ∅. Then the following
are equivalent:

(a) the set argminC f of minimizing points of f over C is nonempty and com-
pact;

(b) C and f have no common nonzero direction of recession, that is,

RC ∩Rf = {0}.

Both conditions are satisfied, in particular, if C ∩ dom(f) is bounded.

Theorem 29. Let C be a nonempty convex closed subset of Rm and f : Rm → R̄

be a convex closed function such that C ∩ dom(f) �= ∅. If

RC ∩Rf = LC ∩ Lf , (10.2)

or if

C is polyhedral and RC ∩Rf ⊆ Lf ,

then the set argminC f of minimizing points of f over C is nonempty. Under
condition (10.2), argminC f can be written as C̃+(LC∩Lf ), where C̃ is compact.

Standing Assumption. If not stated otherwise, in the sequel it is assumed that a
nonempty convex closed subset C of ΔX having support X , and a type ν ∈ ΔX
are given.

Since no confusion can arise, by � we denote also an extension of the original
function � (defined in (2.1)) to R

m:

� : Rm → R̄, �(x) � −〈ν, log(x)〉 = −
∑
i∈Xa

νai log(xa
i ); (10.3)

the conventions 0 · (−∞) = 0 and log β = −∞ for every β ≤ 0 apply.

10.2. Proof of Theorem 2 (Primal problem)

In the next lemma we prove that � is a proper convex closed function. Since C
is compact, C has no nonzero direction of recession. From this and Theorem 28,
Theorem 2 will follow.

Lemma 30. If ν ∈ ΔX and � is given by (10.3), then

(a) �(x) > −∞ for every x ∈ R
m, and �(x) < ∞ if and only if xa > 0; so

dom(�) = {x ∈ R
m : xa > 0};

(b) � is a proper continuous (hence closed) convex function;
(c) the restriction of � to its domain dom(�) is strictly convex if and only if

ν > 0;
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(d) � is differentiable on dom(�) with the gradient given by

∇�(x) = −(νa/xa, 0p);

the one-sided directional derivative of � at x ∈ dom(�) in the direction y
is

�′(x; y) = 〈∇�(x), y〉 = −
∑
i∈Xa

νai y
a
i

xa
i

;

(e) the recession cone R� and the constancy space L� of � are

R� = {z ∈ R
m : za ≥ 0} and L� = {z ∈ R

m : za = 0}.

Proof. The properties (a) and (d) are trivial and the property (b) follows from
the continuity and concavity of the logarithm (extended to the whole real
line); closedness of � follows from continuity by Lemma 27. For the property
(c), use that the Hessian ∇2�(x) = (∂2�(x)/∂xi∂xj)ij is a diagonal matrix
diag(νa/(xa)2, 0p). Hence it is positive definite and � is strictly convex if and
only if ν > 0 [10, Prop. 1.2.6].

It remains to prove (e). Fix any γ ∈ R such that the level set V = {x : �(x) ≤
γ} is nonempty. If z is such that za �≥ 0 then there is an active letter i with
zi < 0. In such a case, for any x ∈ V there is α > 0 with yi + αzi ≤ 0 and so
y + αz �∈ dom(�) ⊇ V . Hence, by (10.1), z �∈ RV = R�.

Now take any z with za ≥ 0. Then, for every x ∈ V and α > 0, �(x +
αz) ≤ �(x) by the monotonicity of the logarithm. That is, x + αz ∈ V and so
z ∈ RV = R�. The property (e) is proved.

Proposition 31. If the support of C is X , then the primal P is finite and
its solution set SP is nonempty and compact. Moreover, if ν > 0 then SP is a
singleton.

Proof. Since C is compact, its recession cone is trivial. Thus the first assertion
follows from Theorem 28. The fact that SP is a singleton provided ν > 0, follows
from the strict convexness of f .

Proposition 32. Let ν ∈ ΔX and C be a convex closed set having support X .
Then the πa-projection of SP onto active letters is always a singleton {q̂aP} and

SP = {q ∈ C : qa = q̂aP} = {q̂aP} × Cp(q̂aP).

Consequently, SP is a singleton if and only if Cp(q̂aP) is a singleton.

Proof. Note that Ca = πa(C) is a nonempty convex closed subset of Rma . Define
�a : Rma → R̄ by �a(xa) � −〈νa, log xa〉 for xa ∈ Ca and �a(xa) � ∞ otherwise.
Since

�(q) = �a(qa) for every q ∈ C, (10.4)

it holds that

inf
xa∈Ca

�a(xa) = �̂P .
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The map �a is proper, convex and closed (use Lemma 27 and the fact that
the restriction of �a to the closed set Ca is continuous, hence closed). Since
dom(�a) ⊆ Ca is bounded, Theorem 28 gives that argmin �a is a nonempty
compact set. This set is a subset of dom(�a) and the restriction of �a to dom(�a)
is strictly convex (Lemma 30(c)), so argmin �a is a singleton. Hence there is a

unique point q̂aP ∈ Ca such that �a(q̂aP) = �̂P . Now, (10.4) gives that q ∈ SP if
and only if qa = q̂aP ; so SP = {q̂aP} × Cp(q̂aP).

Theorem 2 immediately follows from Propositions 31 and 32.

10.3. Proof of Theorem 5 (Convex conjugate by Lagrange duality)

In this section we prove Theorem 5 on the convex conjugate �∗, defined by the
convex conjugate primal problem (cc-primal, for short)

�∗(z) = sup
q∈ΔX

(〈q, z〉 − �(q)).

The proof is based on the following reformulation of the cc-primal

�∗(z) = sup
x≥0

inf
μ∈R

Kz(x, μ) = inf
μ∈R

sup
x≥0

Kz(x, μ),

where
Kz(x, μ) = 〈x, z〉+ 〈ν, log x〉 − μ

(∑
x− 1

)
is the Lagrangian function; cf. Lemma 34. Then we will show that the map μ �→
supx≥0 Kz(x, μ) is minimized at μ̂(z) = max{μ̄(za),max(zp)}; cf. Section 10.3.2.
Structure of the solution set Scc(z) of the cc-primal is described in Section 10.3.3.
Additional properties of the convex conjugate, which will be utilized in the proof
of Theorem 6, are stated in Section 10.3.4.

For every za ∈ R
ma and μ > max(za) put

ξ(μ) = ξza(μ) �
∑ νa

μ− za
(10.5)

and recall that μ̂(z) � max{μ̄(za),max(zp)}, where μ̄(za) > max(za) solves
ξ(μ) = 1. Since

ξ is strictly decreasing, lim
μ↘max(za)

ξ(μ) = ∞ and lim
μ→∞

ξ(μ) = 0, (10.6)

μ̄(za) is well-defined. We start with a simple lemma.

Lemma 33. For every z ∈ R
m and c ∈ R,

μ̄(za + c) = μ̄(za) + c, μ̂(z + c) = μ̂(z) + c, and �∗(z + c) = �∗(z) + c.

Proof. The first two equalities follow from the facts that ξza+c(· + c) = ξza(·)
and that max(zp + c) = max(zp) + c. The final one is a trivial consequence
of the definition of �∗; indeed, since 〈q, c〉 = c for every q ∈ ΔX , �∗(z + c) =
supq(〈q, (z + c)〉 − �(q)) = �∗(z) + c.
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10.3.1. Lagrange duality for the convex conjugate

Assume that ν ∈ ΔX and z ∈ R
m are given. For x ∈ R

m
+ put

hz(x) � 〈x, z〉 − �(x) = 〈x, z〉+ 〈νa, log xa〉

and define extended-real-valued functions

Kz : Rm × R → R̄, Kz(x, μ) �
{
hz(x)− μ (

∑
x− 1) if x ∈ R

m
+ , μ ∈ R,

∞ otherwise;

kz : R → R̄, kz(μ) � sup
x∈R

m
+

Kz(x, μ).

Lemma 34 (Lagrange duality for the convex conjugate). For every ν ∈ ΔX
and z ∈ R

m,

�∗(z) = inf
μ∈R

kz(μ) = inf
μ∈R

sup
x≥0

Kz(x, μ).

Proof. We follow [40, Sect. 4]. Denote by R
m
⊕ the subset {x ∈ R

m : xa > 0, xp ≥
0} of Rm

+ . Define Fz : Rm × R
2 → R̄ and fz : Rm → R̄ by

Fz(x, u) �
{
−hz(x) if x ∈ R

m
⊕ , 1− u2 ≤

∑
x ≤ 1 + u1;

∞ otherwise;

fz(x) � Fz(x, 0).

Note that, in the definition of Fz, x ∈ R
m
⊕ can be replaced by x ∈ R

m
+ ; indeed,

if x ∈ R
m
+ \ R

m
⊕ then xa

i = 0 for some i ∈ X a and hence −hz(x) = ∞. The

set D � {(x, u) ∈ R
m × R

2 : x ≥ 0, 1 − u2 ≤
∑

x ≤ 1 + u1} is closed convex
(in fact, polyhedral) and the map F̃z : D → R̄, (x, u) �→ −hz(x) is convex and
continuous, hence closed. Since the epigraphs of F̃z and Fz coincide,

Fz is convex and closed jointly in x and u. (10.7)

The corresponding optimal value function ϕz : R2 → R̄ is defined by (cf. [40,
(4.7)])

ϕz(u) � inf
x∈Rm

Fz(x, u).

We are going to show that

ϕz(0) = lim inf
u→0

ϕz(u). (10.8)

To this end, take any ε ∈ (0, 1) and u ∈ R
2 with |u| < 1. Assume that u1+u2 ≥ 0.

Then

ϕz(u) = inf
x≥0∑

x∈[1−u2,1+u1]

(−hz(x)) = inf
θ∈[1−u2,1+u1]

inf
x∈ΔX

(−hz(θx)).
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For any θ > 0,

sup
x∈ΔX

|hz(θx)− hz(x)| ≤ sup
x∈ΔX

(|log θ|+ |1− θ| · |〈x, z〉|)

= |log θ|+ |1− θ| ·max|z| � ψz(θ).

Since ψz is continuous at θ = 1 and ψz(1) = 0, there is δ > 0 such that
ψz(θ) < ε for every θ ∈ [1− δ, 1+ δ]. Thus |ϕz(u)−ϕz(0)| < ε whenever |u| < δ
and u1 + u2 ≥ 0. This gives

ϕz(0) = lim
u→0

u1+u2≥0

ϕz(u).

Since ϕz(u) = ∞ if u1 + u2 < 0 (indeed, for such u, Fz(x, u) = ∞ for every x),
(10.8) is proved.

The Lagrangian function Lz : Rm ×R
2 → R̄ associated with Fz is defined by

(cf. [40, (4.2)])

Lz(x, y) � inf
u∈R2

(Fz(x, u) + 〈u, y〉) .

A simple computation yields (cf. [40, (4.4)] with f0(x) = hz(x), f1(x) =
∑

x−1,
and f2(x) = 1−

∑
x, all restricted to C = R

m
⊕ )

Lz(x, y) =

⎧⎪⎨
⎪⎩
−hz(x) + (y1 − y2) (

∑
x− 1) if x ∈ R

m
⊕ , y ∈ R

2
+;

−∞ if x ∈ R
m
⊕ , y �∈ R

2
+;

∞ if x �∈ R
m
⊕ .

(Indeed, fix any x ∈ R
m and y ∈ R

2. If x �∈ R
m
⊕ then Fz(x, u) = ∞ for every u,

hence Lz(x, y) = ∞. If x ∈ R
m
⊕ and y �≥ 0, then Fz(x, u) = −hz(x) whenever

both u1, u2 > 0 are sufficiently large; for such u, 〈u, y〉 is not bounded from
below (use that y1 < 0 or y2 < 0), hence Lz(x, y) = −∞. Finally, assume that
x ∈ R

m
⊕ and y ≥ 0. If u1 + u2 < 0 then Fz(x, u) = ∞ by the definition of Fz.

If u1 + u2 ≥ 0 then 〈u, y〉 ≥ y1(
∑

x − 1) + y2(1 −
∑

x), with the equality if
u1 =

∑
x− 1, u2 = 1−

∑
x. Thus Lz(x, y) = −hz(x) + (y1 − y2) (

∑
x− 1).)

If we define (cf. [40, (4.6)])

gz : R2 → R̄, gz(y) � inf
x∈Rm

Lz(x, y),

then [40, Thm. 7], (10.7), and (10.8) imply

inf
x∈Rm

fz(x) = ϕz(0) = lim inf
u→0

ϕz(u) = sup
y∈R2

gz(y).

By the definition of fz, infx fz(x) = −�∗(z); thus to finish the proof of the
lemma it suffices to show that

inf
μ∈R

kz(μ) = − sup
y∈R2

gz(y). (10.9)
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If y �∈ R
2
+ then gz(y) = −∞; to see this, take arbitrary x ∈ R

m
⊕ and realize

that gz(y) ≤ Lz(x, y) = −∞. Fix any y ∈ R
2
+. Then, for every x ∈ R

m
⊕ ,

Kz(x, y1 − y2) = −Lz(x, y); hence

kz(y1 − y2) = −gz(y).

Since {y1 − y2 : y ∈ R
2
+} = R, we have

inf
μ∈R

kz(μ) = inf
y∈R

2
+

(−gz(y)) = − sup
y∈R2

gz(y).

Thus (10.9) is established and the proof of the lemma is finished.

10.3.2. Proof of Theorem 5

With Lemma 34, Theorem 5 can be proved. Recall that the theorem states that,
for every z ∈ R

m,

�∗(z) = −1+ μ̂(z) + Iμ̂(z)(ν
a ‖ − za), where μ̂(z) � max{μ̄(za),max(zp)}.

Proof of Theorem 5. Keep the notation from Section 10.3.1. By Lemma 34,
�∗(z) = infμ∈R kz(μ), and, using partial maximization,

kz(μ) = sup
xa≥0

k̃z(x
a, μ), where k̃z(x

a, μ) � sup
xp≥0

Kz((x
a, xp), μ).

Note that Kz(x, μ) = c +
∑

i∈Xp x
p
i (z

p
i − μ), where c does not depend on xp.

Thus

k̃z(x
a, μ) =

{
〈xa, za〉+ 〈νa, log xa〉 − μ (

∑
xa − 1) if μ ≥ max(zp);

∞ otherwise.
(10.10)

The second case immediately gives

kz(μ) = ∞ if μ < max(zp). (10.11)

If μ ≥ max(zp) and zai − μ ≥ 0 for some i ∈ X a, then kz(μ) = ∞ (use (10.10)
and the fact that, for any a ≥ 0 and b > 0, the map f(x) � ax+b log x is strictly
increasing and limx→∞ f(x) = ∞). That is

kz(μ) = ∞ if μ ≤ max(za). (10.12)

Assume now that μ ≥ max(zp) and μ > max(za). Note that

kz(μ) = max
xa>0

k̃z(x
a, μ).

By (10.10), k̃z(·, μ) is differentiable and strictly concave on the open set {xa ∈
R

ma : xa > 0} (use that the Hessian, which is equal to diag(−νai /(x
a
i )

2)ma
i=1, is
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negative definite). Thus the basic necessary and sufficient condition for uncon-
strained optimization [10, p. 258] gives that

kz(μ) = k̃z(x̂
a, μ),

where x̂a = x̂a
μ > 0 is the unique solution of ∇xa k̃z(x̂

a, μ) = 0; that is,

zai +
νai
x̂a
i

− μ = 0 for every i ∈ X a.

The above equation immediately yields

x̂a =
νa

μ− za

and

kz(μ) = −1 + μ+ Iμ(ν
a ‖ − za) if μ ≥ max(zp), μ > max(za). (10.13)

Put J � {μ ∈ R : μ > max(za), μ ≥ max(zp)} and μ � max(z); then either
J = (μ,∞) or J = [μ,∞). Equations (10.11), (10.12), and (10.13) yield

kz(μ) =

{
−1 + μ+ Iμ(ν

a ‖ − za) if μ ∈ J ;

∞ otherwise.

For μ > μ we have
k′z(μ) = 1− ξ(μ).

Since ξ is decreasing on J and ξ(μ̄(za)) = 1, kz(μ) is decreasing on [μ, μ̄(za)]
and increasing on [μ̄(za),∞), provided μ ≤ μ̄(za); otherwise kz(μ) is increasing
on [μ,∞]. Thus,

�∗(z) = inf
μ∈R

kz(μ) =

{
kz(μ̄(z

a)) if μ̄(za) ≥ μ;

kz(μ) otherwise.

So argmin kz = max{μ̄(za),max(zp)} = μ̂(z) and Theorem 5 is proved.

Corollary 35. If ν > 0 then, for every z ∈ R
m,

�∗(z) = −1 + μ̄(z) + Iμ̄(z)(ν ‖ − z)

= −1 + μ̄(z) + 〈ν, log ν〉 − 〈ν, log(μ̄(z)− z)〉 .

Corollary 35 was first proved by El Barmi and Dykstra [12, Lemma 2.1].

10.3.3. The structure of the solution set Scc(z)

The structure of the cc-primal solution set Scc(z), defined by (3.2), is described.
First, recall the definition (10.5) of ξ.
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Proposition 36. For every z ∈ R
m, Scc(z) is a nonempty compact set and

Scc(z) = {q̂acc(z)} × {qp ≥ 0 :
∑

qp = 1− ξ(μ̂(z)),

qpi = 0 whenever zpi �= μ̂(z)},

where

q̂acc(z) � νa

μ̂(z)− za
.

In particular, if μ̄(za) ≥ max(zp) then Scc(z) = {(q̂acc(z), 0p)} is a singleton.

Proof. Fix z ∈ R
m and put μ � μ̂(z), q̂acc � q̂acc(z); then, by Theorem 5, �∗(z) =

−1 + μ+ Iμ(ν
a ‖ − za). The fact that Scc(z) is nonempty and compact follows

from Theorem 28.
Take any q̄ ∈ Scc(z). Then q̄a > 0 and, for every q ∈ ΔX ,

0 ≥ f ′
z(q̄; q − q̄) = 〈z, (q − q̄)〉+

∑ νaqa

q̄a
− 1.

If also q ∈ Scc(z) then, analogously,

0 ≥ 〈z, (q̄ − q)〉+
∑ νaq̄a

qa
− 1.

Thus, by combining these two inequalities,

∑
νa
(
qa

q̄a
+

q̄a

qa

)
≤ 2.

For positive x and y, (x/y + y/x) ≥ 2, with equality if and only if x = y. Thus,
qa = q̄a for every q̄, q ∈ Scc(z); hence,

πa(Sa
cc(z)) is a singleton. (10.14)

Distinguish two cases. First assume that μ = μ̄(za) ≥ max(zp) and put
q̄ � (q̂acc, 0

p). Then q̄ ∈ ΔX (use that
∑

q̄ = ξ(μ) = 1) and

fz(q̄) = 〈q̂acc, za〉+ 〈νa, log(q̂acc)〉 =
∑ (za − μ+ μ)νa

μ− za
+ Iμ(ν

a ‖ − za)

= −1 + μ+ Iμ(ν
a ‖ − za) = �∗(z).

Hence q̄ ∈ Scc(z) and, since
∑

q̄a = 1, Scc(z) = {q̄} by (10.14).
Assume now that μ = max(zp) > μ̄(za); then γ � ξ(μ) < ξ(μ̄(za)) = 1. Take

any q̄ ∈ ΔX with q̄a = q̂acc and note that
∑

q̄p = 1− γ. An argument analogous
to the first case gives

fz(q̄) = 〈q̄p, zp〉+ 〈q̂a, za〉+ 〈νa, log(q̂acc)〉 = 〈q̄p, zp〉 − 1 + μγ + Iμ(ν
a ‖ − za).

Hence q̄ ∈ Scc(z) if and only if 〈q̄p, zp〉 = μ(1− γ). Since
∑

q̄p = 1− γ, the last
condition is equivalent to the fact that q̄pi = 0 for every i ∈ X p with zpi < μ. In
view of (10.14) this proves the proposition.
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10.3.4. Additional properties of the convex conjugate

Some additional properties of the convex conjugate �∗, concerning its mono-
tonicity and differentiability, are summarized in the next lemmas.

Lemma 37. The following is true for every z, z̃ ∈ R
m:

(a) If za ≥ z̃a then μ̄(za) ≥ μ̄(z̃a), with the equality if and only if za = z̃a.
(b) If z ≥ z̃ then �∗(z) ≥ �∗(z̃) (that is, �∗ is nondecreasing), with the equality

if and only if za = z̃a and μ̂(z) = μ̂(z̃).

Proof. (a) If za ≥ z̃a then ξza(μ) ≥ ξz̃a(μ) for every μ > max(za); moreover,
ξza(μ) = ξz̃a(μ) for some μ > max(za) if and only if za = z̃a. Using (10.6), (a)
follows.

(b) Assume that z ≥ z̃. Then 〈z, q〉 ≥ 〈z̃, q〉 for every q ∈ ΔX , hence �∗(z) ≥
�∗(z̃). If za = z̃a and μ̂(z) = μ̂(z̃) then �∗(z) = �∗(z̃) by Theorem 5. It suffices
to prove that if za �= z̃a or μ̂(z) �= μ̂(z̃) then �∗(z) > �∗(z̃).

To this end, fix some q̃ ∈ Scc(z̃). If z
a �= z̃a then �∗(z) ≥ 〈q̃, z〉 − �(q̃) ≥

〈q̃a, (za − z̃a)〉 + �∗(z̃). Since q̃a > 0 and (za − z̃a) ≥ 0 is not zero, we have
�∗(z) > �∗(z̃). Finally, assume that za = z̃a and μ̂(z) > μ̂(z̃). The map

g : [μ̄(za),∞) → R, g(μ) � μ+ Iμ(ν
a ‖ − za)

is strictly increasing (indeed, g′(μ) = 1 − ξ(μ) > 0 for μ > μ̄(za) by (10.6)).
Thus, by Theorem 5 and the fact that μ̂(z̃) ≥ μ̄(z̃a) = μ̄(za), it follows that
�∗(z)− �∗(z̃) = g(μ̂(z))− g(μ̂(z̃)) > 0.

Since the convex conjugate �∗ is finite-valued and convex, by [41, Thm. 10.4] it
is locally Lipschitz. The following lemma claims that �∗ is even globally Lipschitz
with the Lipschitz constant equal to 1. (Here we assume that R

m is equipped
with the sup-norm ‖x‖∞ = max|xi|.)
Lemma 38. The convex conjugate �∗ : Rm → R is a (finite-valued) convex
function which is Lipschitz with Lip(�∗) = 1.

Proof. The fact that �∗ is always finite is obvious. To prove that �∗ is Lipschitz-1,
fix any z, z′ ∈ R

m. Then, for any q ∈ Scc(z),

�∗(z)− �∗(z′) ≤ (〈z, q〉 − �(q))− (〈z′, q〉 − �(q)) = 〈(z − z′), q〉
≤ ‖z − z′‖∞.

Analogously �∗(z′)− �∗(z) ≤ ‖z− z′‖∞. Thus Lip(�∗) ≤ 1. Since Lip(�∗) ≥ 1 by
Lemma 33 (use that ‖(c, c, . . . , c)‖∞ = |c| for c ∈ R), we have Lip(�∗) = 1.

Lemma 39. The map μ̄ : Rma → R is differentiable (even C∞) and

∇μ̄(za) =
1∑
i αi

(α1, . . . , αma), αk � νk
(μ̄(za)− zak)

2
(1 ≤ k ≤ ma).

The map μ̂ : Rm → R is continuous.
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Proof. Since μ̂(z) = max(μ̄(za),max(zp)), the continuity of μ̂ follows from the
continuity of μ̄; thus it suffices to prove the first part of the lemma.

To this end, we may assume that X p = ∅, that is, ν > 0 and ma = m. Put
Ω � {(z, μ) : z ∈ R

m, μ > max(z)} and define F : Ω → (0,∞) by

F (z, μ) �
m∑
i=1

νi
μ− zi

.

Note that, for every z, μ̄(z) is the unique solution of F (z, μ) = 1 such that
(z, μ) ∈ Ω. The set Ω is open and connected and F is C∞ on Ω. Moreover,

∇zF (z, μ) =
ν

(μ− z)2
and ∇μF (z, μ) = −

m∑
i=1

νi
(μ− zi)2

�= 0.

By the local implicit function theorem [10, Prop. 1.1.14], μ̄ is C∞ on R
m and

∇μ̄(z) is given by −∇zF (z, μ̄(z)) · [∇μF (z, μ̄(z))]−1. From this the lemma fol-
lows.

Lemma 40. For every z, v ∈ R
m, the subgradient and the directional derivative

of �∗ are given by

∂�∗(z) = Scc(z) and (�∗)′(z; v) = max
q∈Scc(z)

〈q, v〉 .

In particular, if μ̄(za) ≥ max(zp) then �∗ is differentiable at z and

∇�∗(z) = (q̂acc(z), 0
p).

Proof. This is a consequence of Danskin’s theorem [10, Prop. 4.5.1]. To see this,
fix z̄ ∈ R

m and take ε > 0 such that q̂acc(z̄) > ε. Put Δε
X � {q ∈ ΔX : qa ≥ ε}

and define

ϕ : Rm ×Δε
X → R, ϕ(z, q) � 〈z, q〉 − �(q),

f : Rm → R, f(z) � max
q∈Δε

X
ϕ(z, q).

The map ϕ is continuous and the partial functions ϕ(·, q) are (trivially) convex
and differentiable for every q ∈ Δε

X with (continuous) ∇zϕ(z, q) = q. Thus, by
Danskin’s theorem,

f ′(z̄; v) = max
q∈Scc(z̄)

〈q, v〉 (v ∈ R
m)

and
∂f(z̄) = conv{∇zϕ(z̄, q) : q ∈ Scc(z̄)} = Scc(z̄).

Note that μ̂(·) is continuous by Lemma 39 and hence also q̂acc(·) is continuous.
Thus q̂acc(z) > ε on a neighborhood U of z̄, and so �∗ = f on U . This proves the
first assertion.

If μ̄(z̄a) ≥ max(z̄p) then Scc(z̄) is a singleton {q̄}, where q̄ � (q̂acc(z̄), 0
p). In

such a case Danskin’s theorem gives that �∗ is differentiable at z̄ with ∇�∗(z) =
∇zϕ(z, q̄) = q̄. So also the second assertion of the lemma is proved.
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The convex conjugate �∗ is not strictly convex, even if ν > 0. This is so
because �∗(z + c) = �∗(z) + c for every constant c, cf. Lemma 33. However, the
following holds.

Lemma 41. Let ν > 0. Then �∗ is C∞ and, for every z ∈ R
m,

∇�∗(z) =
ν

μ̄(z)− z
, ∇2�∗(z) = diag(α)− 1∑

α
αα′,

where α � (α1, . . . , αm)′, αi � νi/(μ̄(z)− zi)
2. Consequently, for every x ∈ R

m,
x′(∇2�∗(z))x ≥ 0 and

x′(∇2�∗(z))x = 0 if and only if x = (c, . . . , c)′ for some c ∈ R.

Proof. We use the notation from the proof of Lemma 39. By Corollary 35 and
Lemma 39,

∂�∗(z)

∂zk
=

∂μ̄(z)

∂zk

(
1−
∑
i

νi
μ̄(z)− zi

)
+

νk
μ̄(z)− zk

=
νk

μ̄(z)− zk

since
∑

i νi/(μ̄(z)− zi) = F (z, μ̄(z)) = 1. Further,

∂2�∗(z)

∂zk∂zl
= − νk

(μ̄(z)− zk)2
∂μ̄(z)

∂zl
= −αkαl∑

α

for k �= l, and

∂2�∗(z)

∂z2k
= − νk

(μ̄(z)− zk)2

(
∂μ̄(z)

∂zk
− 1

)
= αk − α2

k∑
α
.

Thus the first assertion of the lemma is proved.
To prove the second part of the lemma, fix any z, x ∈ R

m and put a �
∑

α,
A � a∇2�∗(z). Then

x′Ax = a
∑
i

αix
2
i −
(∑

i

αixi

)2

= a2

⎡
⎣∑

i

wix
2
i −
(∑

i

wixi

)2
⎤
⎦

(wi � αi/a). Since a �= 0, Jensen’s inequality gives that x′Ax ≥ 0, and x′Ax = 0
if and only if x1 = · · · = xm. The lemma is proved.

10.4. Proof of Theorem 6 (Relation between F and P)

The proof of Theorem 6 goes through several lemmas. First, in Lemma 43, the
extremality relation between P and F is established using the Primal Fenchel
duality theorem. Then the minimax equality for L (cf. (10.15)) is proved, see
Corollary 45. Proposition 47 gives a relation between the solution set SP of the
primal and the solution set Scc(−ŷ) of the convex conjugate �∗ for ŷ ∈ SF .
Lemma 48 provides a key for establishing the second part of Theorem 6. The
structure of the solution set SF is described in Lemma 50.
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10.4.1. Extremality relation

In the following denote by Δ+
X the set {q ∈ ΔX : qa > 0}; note that neither the

primal nor the convex conjugate are affected by restricting to Δ+
X .

Lemma 42. Let C ⊆ ΔX . If y ∈ C∗ then y + R
m
− ⊆ C∗.

Proof. Take any y ∈ C∗ and z ≤ 0. Then, for every q ∈ C,

〈q, (y + z)〉 = 〈q, y〉+ 〈q, z〉 ≤ 〈q, y〉 ≤ 0.

Thus y + z ∈ C∗.

Lemma 43. For every convex closed set C ⊆ ΔX having support X and for
every ν ∈ ΔX it holds that

�̂F = −�̂P and SF �= ∅.

Proof. Write the primal problem P in the form

�̂P = inf
x∈Δ+

X∩KC

�(x), where KC � {αq : q ∈ C,α ≥ 0}

is the convex cone generated by C. Since C is convex, there is q ∈ ri(C) [10,
Prop. 1.4.1(b)]. Further, X is the support of C, so there is q′ ∈ C satisfying
q′ > 0. By [10, Prop. 1.4.1(a)], q̃ � 1

2 (q + q′) > 0 belongs to ri(C). Further, by
[41, p. 50],

ri(KC) = {αq : q ∈ ri(C), α > 0};

thus q̃ ∈ ri(KC). Since trivially ri(Δ+
X ) = {q ∈ ΔX : q > 0}, it holds that

ri(Δ+
X ) ∩ ri(KC) �= ∅.

Now the Primal Fenchel duality theorem [10, Prop. 7.2.1, pp. 439–440], applied
to the convex set Δ+

X , the convex cone KC and the real-valued convex function
�|Δ+

X
, gives that

inf
x∈Δ+

X∩KC

�(x) = sup
y∈K∗

C

(−�∗(−y)) = − inf
y∈C∗

�∗(−y)

and that the supremum in the right-hand side is attained. That is, �̂P = −�̂F
and SF �= ∅.

10.4.2. Minimax equality for L

Let L : C∗ ×Δ+
X → R be given by

L(y, q) � −〈y, q〉 − �(q) = −〈y, q〉+ 〈νa, log qa〉 . (10.15)
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Lemma 44. For every y ∈ C∗ and q ∈ Δ+
X ,

sup
q∈Δ+

X

L(y, q) = �∗(−y) and inf
y∈C∗

L(y, q) =

{
−�(q) if q ∈ C;

−∞ if q �∈ C.

Proof. The first equality is immediate since if q ∈ ΔX \ Δ+
X then �(q) = ∞.

To show the second one, realize that infy∈C∗ L(y, q) = −�(q) − supy∈C∗ 〈y, q〉.
If q ∈ C then 〈y, q〉 ≤ 0 for every y ∈ C∗, and 〈y, q〉 = 0 for y = 0 ∈ C∗; hence
infy∈C∗ L(y, q) = −�(q). If q ∈ Δ+

X \C, there is ȳ ∈ C∗ with 〈ȳ, q〉 > 0 (use that
C is convex closed, thus C∗∗ = K∗∗

C = KC [10, Prop. 3.1.1] and KC ∩ΔX = C).
Since λȳ ∈ C∗ for every λ ≥ 0,

sup
y∈C∗

〈y, q〉 ≥ sup
λ≥0

λ 〈ȳ, q〉 = ∞.

Thus infy∈C∗ L(y, q) = −∞ provided q ∈ Δ+
X \ C.

Lemmas 43 and 44 immediately yield the minimax equality for L.

Corollary 45. We have

�̂F = inf
y∈C∗

sup
q∈Δ+

X

L(y, q) = sup
q∈Δ+

X

inf
y∈C∗

L(y, q) = −�̂P .

Lemma 46. For every ȳ ∈ R
m and q̄ ∈ Δ+

X ,

(ȳ, q̄) is a saddle point of L ⇐⇒ ȳ ∈ SF and q̄ ∈ SP .

Recall that (ȳ, q̄) is a saddle point of L [10, Def. 2.6.1] if, for every y ∈ C∗

and q ∈ Δ+
X ,

L(ȳ, q) ≤ L(ȳ, q̄) ≤ L(y, q̄). (10.16)

Proof. This result is an immediate consequence of Corollary 45, Lemma 44, and
[10, Prop. 2.6.1].

10.4.3. Relation between SP and Scc(−ŷ)

Proposition 47. Let ŷ ∈ SF . Then

SP ⊆ Scc(−ŷ).

Proof. Take any ŷ ∈ SF and any q̂ ∈ SP . By Lemma 46, (ŷ, q̂) is a saddle point
of L. Hence, by (10.16),

−〈ŷ, q̂〉 − �(q̂) = L(ŷ, q̂) ≥ L(ŷ, q) = −〈ŷ, q〉 − �(q)

for any q ∈ Δ+
X . Thus �∗(−ŷ) = L(ŷ, q̂) and so q̂ ∈ Scc(−ŷ).
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10.4.4. From q̂P to ŷF

The proof of the following lemma is inspired by that of [12, Thm. 2.1].

Lemma 48. Let ν ∈ ΔX and q̂aP be as in Theorem 2. Then

ŷF � (ŷaF ,−1p) ∈ SF , where ŷaF � νa

q̂aP
− 1a .

Further, μ̂(−ŷF) = 1, ŷF⊥SP , and

(a) if
∑

q̂aP = 1 then μ̄(−ŷaF) = 1;
(b) if

∑
q̂aP < 1 then μ̄(−ŷaF) < 1.

Proof. Take any q̂ ∈ SP . Then q̂ ∈ dom(�) and, by Lemma 30(d),

0 ≤ �′(q̂; q − q̂) = −
∑
i∈Xa

νai (q
a
i − q̂ai )

q̂ai
= 1−

∑
i∈Xa

νai q
a
i

q̂ai

=
∑
i∈Xa

qai

(
1− νai

q̂ai

)
+
∑
i∈Xp

qpi = −〈q, ŷF〉

for every q ∈ C. Hence ŷF ∈ C∗. Further,

〈q̂, ŷF〉 =
∑
i∈Xa

q̂ai

(
νai
q̂ai

− 1

)
+
∑
i∈Xp

q̂pi · (−1) =
∑

νa −
∑

q̂ = 0

and so ŷF⊥q̂.

We claim that

μ̄(−ŷaF)

{
= 1 if

∑
q̂a = 1;

< 1 if
∑

q̂a < 1.
(10.17)

Since ŷaF = (νa/q̂aP)− 1a > −1a, it holds that 1 > max(−ŷaF). Moreover,

ξ−ya
F
(1) =

∑ νa

1 + yaF
=
∑

q̂aP .

Thus (10.17) follows from (10.6).

Assume that
∑

q̂a = 1. Then μ̄(−ŷaF) = 1. Since −ŷpF = 1p, μ̂(−ŷF) = 1.
Theorem 5 and Lemma 43 yield

�∗(−ŷF) = I1(ν
a ‖ ŷaF) = 〈νa, log q̂a〉 = −�(q̂) = −�̂P = �̂F .

Since ŷF ∈ C∗, we have ŷF ∈ SF .

If
∑

q̂a < 1 then μ̄(−ŷaF) < 1 by (10.17). Since −ŷpF = 1p, again μ̂(−ŷF) =

1. As before we obtain �∗(−ŷF) = −�(q̂) = �̂F and ŷF ∈ SF . The lemma is
proved.
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10.4.5. Structure of SF

Lemma 49. Let q̂aP be as in Theorem 2. Then

SF ⊆
{
ŷ ∈ C∗ : ŷa =

νa

q̂aP
− μ̂(−ŷ)

}
.

Proof. Take any ŷ ∈ SF . By Propositions 47 and 36,

q̂aP = q̂acc(−ŷ) =
νa

μ̂(−ŷ) + ŷa
.

From this the result follows immediately.

Lemma 50. Let ŷaF be as in Lemma 48. Then

SF = {ŷ ∈ C∗ : ŷa = ŷaF , μ̂(−ŷ) = 1}.

Proof. One inclusion follows from Lemmas 48 and 37(b). To prove the other
one, take any ŷ ∈ SF and put μ = μ̂(−ŷ). Let ŷF be as in Lemma 48. Then
ŷa = ŷaF − (μ− 1) by Lemma 49. Theorem 5 yields

0 = �∗(ŷ)− �∗(ŷF) = (μ+ Iμ(ν
a ‖ ŷa))− (1 + I1(ν

a ‖ ŷaF)) = μ− 1.

Thus μ = 1 and ŷa = ŷaF .

10.4.6. Proof of Theorem 6

Now we are ready to prove Theorem 6.

Proof of Theorem 6. The facts that �̂F = −�̂P and SF �= ∅ were proved in
Lemma 43. Further, the set SF is convex and closed due to the fact that the
conjugate �∗ is convex and closed (even continuous, see Lemma 38). To show
compactness of SF it suffices to prove that it is bounded.

We already know from Lemmas 48 and 50 that ŷa > −1 and ŷp ≥ −μ̂(−ŷ) =
−1 for every ŷ ∈ SF ; thus SF is bounded from below by −1.

Since suppC = X , there is q ∈ C with q > 0; put β � min qi > 0. Take any
ŷ ∈ SF and put I � {i ∈ X : ŷi > 0}. Then, since ŷ ∈ C∗ and ŷ ≥ −1,

0 ≥ 〈ŷ, q〉 ≥ β
∑
i∈I

ŷi −
∑

j∈X\I
qj ≥ βŷi − 1

for every i ∈ I. Thus ŷ ≤ (1/β) and so SF is bounded, hence compact.
The rest of Theorem 6 follows from Lemmas 48 and 50.

10.5. Proof of Theorem 16 (Relation between B and P)

First, basic properties of �∗B are proven. Then Lemma 52 provides a preparation
for the recession cone considerations of B. This leads to Proposition 53 giving
the conditions of finiteness of �̂B. There B is seen as a primal problem and
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Theorem 29 is applied to it. The solution set SB is described in Lemma 54.
Lemma 55 provides properties of q̂B ∈ C defined via ŷB, noting that q̂B need
not belong to SP . Conditions equivalent to q̂B ∈ SP are stated in Lemma 58. Its
proof utilizes also Lemmas 56 and 57.

Let ν ∈ ΔX be a type. Recall from Section 4.1 that the map �∗B : Rm → R̄ is
for ya > −1 defined by

�∗B(y) = I1(ν
a ‖ ya) =

〈
νa, log

νa

1 + ya

〉
.

Since

�∗B(y) = �(1 + y) + 〈νa, log νa〉

for every y ∈ R
m (where � is defined on R

m by (10.3)), Lemma 30 yields the
following result.

Lemma 51. If ν ∈ ΔX , then

(a) �∗B(y) > −∞ for every y ∈ R
m, and �∗B(y) < ∞ if and only if ya > −1; so

dom(�∗B) = {y ∈ R
m : ya > −1};

(b) �∗B is a proper continuous (hence closed) convex function;
(c) the restriction of �∗B to its domain dom(�∗B) is strictly convex if and only

if ν > 0;
(d) �∗B is differentiable on dom(�∗B) with the gradient given by

∇�∗B(y) = −(νa/(1 + ya), 0p);

(e) the recession cone R�∗B
and the constancy space L�∗B

of �∗B are

R�∗B
= {z ∈ R

m : za ≥ 0}, L�∗B
= {z ∈ R

m : za = 0}.

10.5.1. Finiteness of the BD-dual B

Lemma 52. Let ν ∈ ΔX and C be a convex closed subset of ΔX having support
X . Assume that C is either an H-set or a Z-set. Then there is an active letter
i with the following property: For any γ > 0 and v > 0

there is y ∈ C∗ such that ya ≥ −γ and yai = v. (10.18)

Proof. Assume first that C is a Z-set, that is, Ca(0p) �= ∅ and there is an active
letter i such that qai = 0 whenever q ∈ C satisfies qp = 0. Fix any γ > 0, v > 0,
and choose ε ∈ (0, 1) such that ε < γ/(v + 2γ). By compactness of C we can
find 0 < δ < ε such that, for every q ∈ C,

∑
qp ≤ δ implies qai < ε. (For if not,

there is a sequence (q(n))n in C with
∑

(q(n))p ≤ 1/n and (q(n))ai ≥ ε for every
n; by compactness, there is a limit point q ∈ C of this sequence and any such q
satisfies

∑
qp = 0 and qai ≥ ε, a contradiction.) Finally, take any w ≥ v/δ.
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Define y ∈ R
m by

yai = v, yaj = −γ for j ∈ X a \ {i}, and ypj = −w for j ∈ X p. (10.19)

Take arbitrary q ∈ C; we are going to show that 〈y, q〉 ≤ 0. If
∑

qp ≤ δ then
qai ≤ ε and

∑
qa ≥ 1− δ > 1− ε, so

〈y, q〉 = (v + γ)qai − γ
∑

qa − w
∑

qp < (v + γ)ε− γ(1− ε) < 0

by the choice of ε. On the other hand, if
∑

qp > δ then, using qai ≤ min{1,
∑

qa},

〈y, q〉 = vqai − γ
(∑

qa − qai

)
− w

∑
qp < v − wδ ≤ 0

by the choice of w. Thus y ∈ C∗.
Now assume that C is an H-set; that is, Ca(0p) = ∅. By compactness, there

exists δ > 0 such that
∑

qp > δ for every q ∈ C. Continuing as above we obtain
that, for any γ > 0, v > 0, and w ≥ v/δ, the vector y given by (10.19) belongs
to C∗.

Proposition 53. Let ν ∈ ΔX and C be a convex closed subset of ΔX having
support X . Then the following are equivalent:

(a) the dual B is finite;
(b) the set C is neither an H-set nor a Z-set (with respect to ν).

Proof. Assume that C is either an H-set or a Z-set. Fix any γ ∈ (0, 1). Then,
by Lemma 52, for arbitrary v > 0 there is y ∈ C∗ satisfying (10.18). For such y,

−�∗B(y) + 〈νa, log νa〉 ≥
∑

j∈Xa\{i}
νaj log(1− γ) + νai log(1 + v)

= (1− νai ) log(1− γ) + νai log(1 + v).

Since γ is fixed and v > 0 is arbitrary, �̂B = −∞. This proves that (a) implies
(b).

Now we show that (b) implies (a). Assume that C is neither an H-set nor
a Z-set; that is, there is q ∈ C with qa > 0, qp = 0. Put D = {q}∗. Since
RD = D = {y : 〈ya, qa〉 ≤ 0}, LD = D ∩ (−D) = {y : 〈ya, qa〉 = 0} and, by
Lemma 51, R�∗B

= {y : ya ≥ 0} and L�∗B
= {y : ya = 0}, it follows that

R�∗B
∩RD = L�∗B

∩ LD = {y : ya = 0}.

Now Theorem 29 (applied to �∗B and D) implies that argminD �∗B is nonempty,
hence �∗B is bounded from below on D. Since C∗ ⊆ D, (a) is established.

10.5.2. The solution set SB of the BD-dual

Lemma 54. Let ν ∈ ΔX . Let C be a convex closed subset of ΔX having sup-
port X , which is neither an H-set nor a Z-set (with respect to ν). Then the
solution set SB is nonempty, and there is ŷaB ∈ C∗a such that ŷaB > −1 and

SB = {ŷ ∈ C∗ : ŷa = ŷaB} = {ŷaB} × C∗p(ŷaB).
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Moreover, SB is a singleton if and only if ν > 0.

Proof. The proof is analogous to that of Proposition 32. Define �∗aB : C∗a → R̄

by �∗aB (ya) � 〈νa, log(νa/(1 + ya))〉 if ya > −1, �∗aB (ya) � ∞ otherwise. Then
�∗B(y) = �∗aB (ya) for any y ∈ C∗, hence

�̂B = inf
ya∈C∗a

�∗aB (ya) and SB =

{
y ∈ C∗ : ya ∈ argmin

C∗a
�∗aB

}
. (10.20)

By Lemma 51, �∗aB is strictly convex, so argminC∗a �∗aB contains at most one point.
The set C∗ is neither anH-set nor a Z-set, so there is q ∈ C with qa > 0 and qp =
0. Thus, as in the proof of Proposition 53, R�∗aB

∩RC∗a ⊆ R�∗aB
∩R{qa}∗ = {0a}.

Since C∗a ∩ dom(�∗aB ) �= ∅, Theorem 28 gives that argminC∗a �∗aB is nonempty,
hence a singleton; denote its unique point by ŷaB. Since trivially ŷaB > −1, the
first assertion of the lemma follows from (10.20). The second assertion follows
from the first one and Lemma 42.

10.5.3. No BD-duality gap; proof of Theorem 16

The proof of the following lemma is inspired by that of [12, Thm. 2.1].

Lemma 55 (Relation between ŷB and q̂B). Let ν ∈ ΔX . Let C be a convex
closed subset of ΔX having support X , which is neither an H-set nor a Z-set
(with respect to ν). Let ŷaB be as in Lemma 54 and put

q̂B �
(

νa

1 + ŷaB
, 0p
)
. (10.21)

Then

μ̄(−ŷaB) = 1, q̂B ∈ C, q̂B⊥SB, and �(q̂B) = −�̂B.

Note that q̂B need not belong to SP ; for conditions equivalent to q̂B ∈ SP , see
Lemma 58.

Proof. Take any ŷ = (ŷaB, ŷ
p) ∈ SB. Then

0 ≤ (�∗B)
′(ŷ; y − ŷ) = −

∑ νa(ya − ŷaB)

1 + ŷaB
for every y ∈ C∗. (10.22)

Applying (10.22) to y = 2ŷ and then to y = (1/2)ŷ (both belonging to C∗ since
C∗ is a cone) gives

〈q̂B, ŷ〉 =
∑ νaŷaB

1 + ŷaB
= 0. (10.23)

Now (10.22) and (10.23) yield 〈q̂B, y〉 ≤ 0 for every y ∈ C∗, that is, q̂B ∈
C∗∗ = KC (for the last equality use that C is convex closed). Further (recall
the definition (10.5) of ξ),

1 =
∑ νa(1 + ŷaB)

1 + ŷaB
=
∑ νa

1 + ŷaB
= ξ−ŷa

B
(1)
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by (10.23) and (10.21). Since max(−ŷaB) < 1, μ̄(−ŷaB) = 1. Moreover, q̂B ∈ ΔX
(use that q̂B ≥ 0), and so q̂B ∈ (KC ∩ΔX ) = C. Finally,

�(q̂B) = −〈νa, log q̂aB〉 = −I1(ν
a ‖ ŷaB) = −�∗B(ŷ) = −�̂B.

The lemma is proved.

Lemma 56. Let ν ∈ ΔX and C be a convex closed subset of ΔX having sup-
port X . Then

�̂B ≤ �̂F .

Moreover, if ν > 0 then �̂B = �̂F .

Proof. It follows from Theorems 6 and 5 that

�̂F = inf
y∈C∗

μ̂(−y)=1

�∗(−y) = inf
y∈C∗

μ̂(−y)=1

I1(ν
a ‖ ya) ≥ inf

y∈C∗
I1(ν

a ‖ ya) = �̂B.

Hence the inequality is proved. If ν > 0 then μ̂(−y) = μ̄(−ya) for every y; so,
by Lemma 55,

�̂B = inf
y∈C∗

μ̄(−ya)=1

I1(ν
a ‖ ya) = �̂F .

Lemma 57. Let ν ∈ ΔX , C be a convex closed subset of ΔX having support X ,
and q̂aP be as in Theorem 2. Assume that C is neither an H-set nor a Z-set

(with respect to ν), and that
∑

q̂aP = 1. Then �̂B = �̂F and ŷ � (νa/q̂aP −1a,−1p)
belongs to SB ∩ SF .

Proof. By Theorems 6(a) and 5, ŷ ∈ SF and �̂F = �∗(−ŷ) = I1(ν
a ‖ ŷ) = �∗B(ŷ).

Moreover, ξ−ŷa(1) =
∑

q̂aP = 1, so μ̄(−ŷa) = 1. Thus

�∗B(ŷ) = �̂F and μ̂(−ŷ) = μ̄(−ŷa) = 1. (10.24)

Now we prove that �̂B = �̂F . For ν > 0 this follows from Lemma 56. In the
other case put C ′ � Ca(0p) = Ca ∩ ΔXa . This is a nonempty convex closed
set with supp(C ′) = X a (use that C is neither an H-set nor a Z-set). Put
ν′ � νa > 0 and

�̂′B � inf
y′∈C′∗

I1(ν
′ ‖ y′), �̂′F � inf

y′∈C′∗
�′∗(−y′), �̂′P � inf

q′∈C′
�′(q′),

where �′(q′) � −〈ν′, log q′〉 is defined on ΔXa . Since q̂aP ∈ C ′ we trivially have

�̂′P = �̂P . Further, C
′∗ ⊇ C∗a. (To see this, take any ya ∈ C∗a; then there is

yp such that 〈ya, qa〉 + 〈yp, qp〉 ≤ 0 for every q ∈ C. Since (q′, 0p) ∈ C for
any q′ ∈ C ′, for every such q′ we have 〈ya, q′〉 ≤ 0; that is, ya ∈ C ′∗.) Hence

�̂′B ≤ infya∈C∗a I1(ν
a ‖ ya) = �̂B (for the equality see the definition (B) of �̂B).

By Lemma 56 and Theorem 6, �̂′B = �̂′F = −�̂′P , thus,

�̂B ≥ �̂′B = −�̂′P = −�̂P = �̂F .

Now �̂B = �̂F by the inequality from Lemma 56. To finish the proof it suffices to
realize that this fact and (10.24) yield �∗B(ŷ) = �̂B, and so ŷ ∈ SB.



Multinomial and empirical likelihood 2597

Lemma 58. Keep the assumptions and notation from Lemma 55. Then there
is no BD-duality gap, that is,

�̂B = −�̂P ,

if and only if any of the following (equivalent) conditions hold:

(a) q̂aB = q̂aP ;
(b) q̂B ∈ SP ;
(c) SP = {q̂B};
(d)

∑
q̂aP = 1;

(e) ŷaB = ŷaF ;
(f) SF ∩ SB �= ∅;
(g) SF = SB ∩ {ŷ ∈ C∗ : μ̂(−ŷ) = 1};
(h) μ̂(−ŷB) = 1 for some ŷB ∈ SB;
(i) ŷpB ≥ −1 for some ŷB ∈ SB;
(j) �(q̂B) + �∗(−ŷB) = 0 for some ŷB ∈ SB ( extremality relation);
(k) (ŷaB,−1p) ∈ C∗.

Proof. We first prove that the conditions (a)–(k) are equivalent. First, Theo-
rem 2 and Lemma 55 yield that the conditions (a)–(c) are equivalent and that
any of them implies (d). By the definitions of ŷaF and q̂aB from Theorem 6 and
Lemma 55, (a) is equivalent to (e). Theorem 6 and Lemma 54 yield that the
conditions (e)–(g) are equivalent. Since (d) implies (f) by Lemma 57, it follows
that (a)–(g) are equivalent.

Since μ̄(−ŷaB) = 1 for any ŷB ∈ SB by Lemmas 54 and 55, (h) is equivalent to
(i). Since SF is nonempty, (g) implies (h). If (h) is true then, for some ŷB ∈ SB,

�̂B = �∗B(ŷB) = I1(ν
a ‖ ŷaB) = �∗(−ŷB) ≥ �̂F

by Theorem 5; now Lemma 56 gives that ŷB ∈ SF . Hence (h) implies (f). Further,
(b), (e), and (h) imply (j) by Theorem 5 and Lemma 55. On the other hand,
the extremality relation (j) implies that q̂B ∈ SP and that ŷB ∈ SF ; that is, (j)
implies both (b) and (f). So (a)–(j) are equivalent

By Theorem 6, (e) implies (k). By Lemmas 55 and 54, (k) implies that ŷ �
(ŷaB,−1p) belongs to SB and that μ̂(−ŷ) = 1; thus, (k) implies (h).

We have proved that the conditions (a)–(k) are equivalent. To finish we show
that no BD-duality gap is equivalent to the condition (b). If (b) is true (that is,

q̂B ∈ SP) then �̂P = �(q̂B) = −�̂B by Lemma 55; hence (b) implies no BD-duality

gap. Assume now that �̂B = −�̂P . Then Lemma 55 yields �(q̂B) = −�̂B = �̂P . So
(b) is satisfied and the proof is finished.

Proof of Theorem 16. The theorem immediately follows from Proposition 53
and Lemmas 54, 55, 56 and 58.

10.6. Proof of Theorem 19 (Active-passive dualization Aκ)

Proof of Theorem 19. Fix qp ∈ Cp with supp(Ca(qp)) = X a. Then
∑

qp < 1.
Recall that κ = κ(qp) = 1/(1 −

∑
qp) and note that Ca(qp) is a convex closed
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subset of {qa ∈ R
ma
+ :

∑
qa = 1/κ}. Thus

C̃ � κ · Ca(qp) = {κqa : qa ∈ Ca(qp)}

is a convex closed subset of ΔXa with supp(C̃) = X a. Put ν̃ � νa, and de-
note by P̃ and SP̃ the primal problem and its solution set for minimizing
�̃(q̃) � −〈ν̃, log q̃〉 = �(q̃/κ, qp) − log κ over C̃. Then SP̃ is a singleton {q̂P̃}
by Theorem 2, and SP̃ = κSP(q

p); hence

q̂aP(q
p) = κ−1q̂P̃ . (10.25)

Consider now the BD-dual B̃ to P̃ . First, �∗B̃(ỹ) = I1(ν̃ ‖ ỹ) and, by Corol-
lary 17,

SB̃ = {ŷB̃}, ŷB̃ =
ν̃

q̂B̃
− 1. (10.26)

Further, C̃ = [Ca(qp)]∗ by the definition of the polar cone. The fact that
Iκ(ν

a ‖ ya) = I1(ν
a ‖κ−1ya) − 〈νa, log κ〉 = �∗B̃(κ

−1ya) − log κ now implies that
SB(q

p) = κSB̃. That is,

SB(q
p) = {ŷaB}, where ŷaB(q

p) = κŷB̃. (10.27)

Finally, (10.25), (10.26), and (10.27) yield (5.1). The rest follows from (5.1) and
Corollary 17.

10.7. Proof of Theorem 20 (Perturbed primal Pδ – the general case,
epi-convergence)

We start with some notation, which will be used also in Section 10.8. Then we
embark on proving the epi-convergence of perturbed primal problems.

10.7.1. Perturbed primal Pδ – notation

Fix any ν ∈ ΔX . Recall that ma,mp denote the cardinalities of X a,X p. For
every δ > 0 take ν(δ) ∈ ΔX such that (6.1) is true; that is,

ν(δ) > 0 and lim
δ↘0

ν(δ) = ν.

Recall also the definitions of �δ, �̂P(δ), SP(δ) from (Pδ) and the fact that (cf. (6.2))

SP(δ) = {q̂P(δ)} for δ > 0.

The maps �C , �Cδ : Rm → R̄ are defined by (see Section 6)

�C(x) �
{
�(x) if x ∈ C,

∞ if x �∈ C,
and �Cδ (x) �

{
�δ(x) if x ∈ C,

∞ if x �∈ C.
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10.7.2. Epi–convergence

For the definition of epi-convergence, see [42, Chap. 7]. We will use [42, Ex. 7.3,
p. 242] stating that, for every sequence (gn)n of maps gn : Rm → R̄ and for
every x ∈ R

m,

(e-liminf
n

gn)(x) = lim
ε→0+

lim inf
n→∞

inf
x′∈B(x,ε)

gn(x
′),

(e-limsup
n

gn)(x) = lim
ε→0+

lim sup
n→∞

inf
x′∈B(x,ε)

gn(x
′),

(10.28)

where B(x, ε) is the closed ball with the center x and radius ε. If e-liminfn gn =
e-limsupn gn � g, we say that the sequence (gn)n epi-converges to g and we
write e-limn gn = g. For a system (gδ)δ>0 of maps indexed by real numbers
δ > 0, we say that (gδ)δ epi-converges to g for δ ↘ 0 and we write e-limδ gδ = g,
provided e-limn gδn = g for every sequence (δn)n decreasing to zero.

Before proving the epi-convergence of �Cδ to �C , two simple lemmas are pre-
sented.

Lemma 59. Let C be a convex closed subset of ΔX with supp(C) = X . Then
there exists a positive real β such that

q̂P(ν) ≥ βν for every ν ∈ ΔX , ν > 0,

where, for ν > 0, q̂P(ν) denotes the unique point of SP(ν).

Proof. Fix some q > 0 from C and put β = mini qi. For any ν > 0 and q̂ = q̂P(ν)
we have q̂ > 0; so, by Lemma 30(d), �ν is differentiable at q̂ and the directional
derivative �′ν(q̂; q − q̂) = −

∑
i∈X [νi(qi − q̂i)/q̂i] is nonnegative. Thus, by the

choice of β,

0 ≥
∑
i∈X

νiqi
q̂i

− 1 ≥ νjβ

q̂j
− 1

for every j. From this the lemma follows.

Lemma 60. Fix β > 0 and take the map

F : D → R̄, F (ν, q) � �ν(q) = −〈ν, log q〉

defined on
D � {(ν, q) ∈ ΔX × C : q ≥ βν}.

Then F is continuous on D.

Proof. Take any sequence (νn, qn)n from D such that νn → ν, qn → q. Then
q ≥ βν. The sum

∑
i:νi>0 ν

n
i log qni converges to

∑
i:νi>0 νi log qi. Further, for

every i such that νi = 0,

0 ≥ νni log qni ≥ νni log(βνni )

(which is true also in the case when νni = 0) and the right-hand side converges
to zero. Hence limn F (νn, qn) = F (ν, q) and the lemma is proved.
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Note that F need not be continuous on ΔX×C. For example, take X = {0, 1},
C = {(0, 1)}, νn = (1/n, 1−(1/n)) converging to ν = (0, 1), and qn = q = (0, 1).
Then (νn, qn) → (ν, q), but F (νn, qn) = ∞ does not converge to F (ν, q) = 0.

Lemma 61. Let C be a convex closed subset of ΔX with supp(C) = X . Then
the maps �Cδ epi-converge to �C , that is,

e-lim
δ↘0

�Cδ = �C .

Proof. Take any sequence (δn)n decreasing to 0. To prove that e-limn �
C
δn

= �C

we use (10.28). Take x ∈ R
m, ε > 0, and put

ψn(x, ε) � inf
y∈B(x,ε)

�Cδn(y) = inf
y∈C∩B(x,ε)

�δn(y).

If x �∈ C then, since C is closed, ψn(x, ε) = ∞ provided ε is small enough; hence
limε limn ψn(x, ε) = ∞ = �C(x).

Assume now that x ∈ C. Then, by the monotonicity of the logarithm,

ψn(x, ε) ∈ [�δn(x+ ε), �δn(x)].

If x > 0 and 0 < ε < mini xi, then limn �δn(x) = �C(x) and limn �δn(x + ε) =
�C(x+ ε), so continuity of � at x easily gives that limε limn ψn(x, ε) = �C(x). If
there is i ∈ X a with xa

i = 0, then �C(x) = ∞ and limε limn(−ν(δn)
a
i log(x

a
i +

ε)) = −νai limε log ε = ∞, so again limε limn ψn(x, ε) = �C(x).
Finally, assume that x ∈ C is such that xa > 0 and there is i ∈ X p with

xp
i = 0. By Theorem 2 (applied to ν(δn) > 0 and to the nonempty convex closed

subset C ∩B(x, ε) of ΔX ), for every n there is unique x̂n,ε > 0 from C ∩B(x, ε)
such that

ψn(x, ε) = �δn(x̂n,ε).

Moreover, by Lemma 59 there is β > 0 such that

x̂n,ε ≥ βν(δn) for every n. (10.29)

Take any convergent subsequence of (x̂n,ε)n, denoted again by (x̂n,ε)n, and let
x̄ε ∈ C ∩ B(x, ε) denote its limit. Then, by (10.29) and Lemma 60, �δn(x̂n,ε)
converges to �(x̄ε). Hence all cluster points of (ψn(x, ε))n belong to �(C ∩
B(x, ε)). Since � is continuous, limε �(C ∩ B(x, ε)) = {�(x)}. This implies that
e-limn �

C
δn
(x) = �C(x) and the lemma is proved.

Lemma 62. Let supp(C) = X . Then

lim
δ↘0

�̂P(δ) = �̂P and lim
δ↘0

inf
q̂P∈SP

d(q̂P(δ), q̂P) = 0.

Proof. Take any (δn)n decreasing to 0. Since (�Cδn)n epi-converges to �C and �̂P

is finite, the result follows from [42, Thm. 7.1, p. 264] (in part (a) take B � C;

use that �̂P(δn) = min �Cδn and that �̂P = min �C).
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The lemma states that every cluster point of a sequence (q̂P(δn))n of solutions
of the perturbed primal problems Pδn (δn ↘ 0) is a solution of the (unperturbed)
primal P . Of course, not every solution of P can be obtained as a cluster point
of a sequence of perturbed solutions. For example, it is shown in the following
section that if (ν(δ))δ satisfies the regularity condition (6.3), then the perturbed
solutions converge to a unique solution of P, regardless of whether SP is a
singleton.

Proof of Theorem 20. The first part of Theorem 20 was shown in Lemmas 61
and 62. The second part on the convergence of active coordinates then follows
from Theorem 2.

10.8. Proof of Theorem 21 (Perturbed primal Pδ – the linear case,
pointwise convergence)

Let a model C be given by finitely many linear constraints (2.3), that is,

C = {q ∈ ΔX : 〈q, uh〉 = 0 for h = 1, . . . , r},

where uh (h = 1, . . . , r) are fixed vectors from R
m. Let a type ν̄ ∈ ΔX be given

and let X a and X p be the sets of active and passive coordinates with respect to
ν̄.

Assume that perturbed types ν(δ) (δ ∈ (0, 1)) are such that the conditions
(6.1) and (6.3) are true (with ν replaced by ν̄); that is, ν : (0, 1) → ΔX is
continuously differentiable,

ν(δ) > 0, lim
δ↘0

ν(δ) = ν̄,

and there is a constant c > 0 such that, for every i ∈ X p,

|ϑ′
i(δ)| ≤ c ϑi(δ), where ϑi(δ) � νi(δ)∑

j∈Xp νj(δ)
.

The aim of this section is to prove that, under these conditions, solutions q̂P(δ)
of the perturbed primal problems Pδ converge to a solution of the unperturbed
primal P ; that is,

lim
δ↘0

q̂P(δ) exists and belongs to SP .

10.8.1. Outline of the proof

The proof is based on the following ‘passive-active’ reformulation of the per-
turbed primal problem

min
q∈C

�δ(q) = min
qa∈Ca

min
qp∈Cp(qa)

�δ(q
a, qp);
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hence, the passive projection q̂pP(δ) of the optimal solution q̂P(δ) is

q̂pP(δ) = argmin
qp∈Cp(q̂aP (δ))

�δ(q̂
a
P(δ), q

p)

(recall that Ca = πa(C) is the projection of C onto the active coordinates and,
for qa ∈ Ca, that Cp(qa) = {qp ≥ 0 : (qa, qp) ∈ C} is the qa-slice of C).
Employing the implicit function theorem, it is then shown that the passive
projections q̂pP(δ) can be obtained from the active ones q̂aP(δ) via a uniformly
continuous map ϕ. Since q̂aP(δ) converges by Theorem 20, the uniform continuity
of ϕ ensures that also q̂pP(δ) converges.

The above argument is implemented in the following steps:

1. Assume that SP is not a singleton, the other case being trivial. Then the
linear constraints (2.3) defining C can be rewritten into a parametric form

qp = Aλ+Bqa + c (qa ∈ Ca, λ ∈ Λ(qa))

(see Lemma 63). There, A is an mp × s matrix of rank s, B is an mp ×ma

matrix, c ∈ R
mp , none of A,B, c depends on qa, and the (polyhedral)

closed subset Λ(qa) of Rs is defined by

Λ(qa) � {λ ∈ R
s : Aλ+Bqa + c ≥ 0}.

2. Define an open bounded polyhedral set G ⊂ R
1+ma+s by

G � {(δ, x, y) ∈ (0, 1)× R
ma × R

s : x > 0, Ay +Bx+ c > 0}; (10.30)

there x stands for qa and y stands for λ, for brevity. Let Z denote the
projection of G onto the first (1+ma) coordinates. For z = (δ, x) ∈ Z put

G(z) � {y ∈ R
s : Ay +Bx+ c > 0},

Ḡ(z) � {y ∈ R
s : Ay +Bx+ c ≥ 0}.

(10.31)

In Lemma 65, it is proven that, for every z = (δ, x) ∈ Z, the map

ψz : Ḡ(z) → R̄, ψz(y) � −
∑
i∈Xp

ϑi(δ) log(〈αi, y〉+ 〈βi, x〉+ ci)

(where αi and βi denote the i-th rows of A and B, respectively) has a
unique minimizer ϕ(z) ∈ G(z).

3. Since ϕ(z) is also a local minimum of ψz, it satisfies F (z, ϕ(z)) = 0, where
F : G → R

s is given by

F (z, y) � −∇ψz(y). (10.32)

Using the implicit function theorem and an algebraic result (Proposi-
tion 68), it is shown that ϕ : Z → R

s is uniformly continuous (see
Lemma 70).

4. Finally, in Lemma 71, it is demonstrated that, for every δ > 0,

(δ, q̂aP(δ)) ∈ Z and q̂pP(δ) = Aϕ(δ, q̂aP(δ)) +Bq̂aP(δ) + c.

This fact, together with the convergence of q̂aP(δ) and the uniform conti-
nuity of ϕ, implies the convergence of q̂pP(δ), and thus proves Theorem 21.
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10.8.2. Parametric expression for qp ∈ Cp(qa)

Let C be given by (2.3). Denote by Up the (r + 1) × mp matrix whose first r
rows are equal to up

h (the passive projections of uh, h = 1, . . . , r), and the last
row is a vector of 1’s; analogously define Ua using the active projections ua

h of
uh. Let b ∈ R

r+1 be such that bi = 0 for i ≤ r and br+1 = 1. Then

C = {(qa, qp) ≥ 0 : Upqp = −Uaqa + b}. (10.33)

Let V p (of dimension mp× (r+1)) be the Moore-Penrose inverse of Up. By [23,
p. 5–12], (10.33) can be written in the following form

C = {(qa, qp) ≥ 0 : qp = (I − V pUp)γ +Bqa + c for some γ ∈ R
mp},

where I denotes the mp ×mp identity matrix,

B � −V pUa and c � V pb.

Put s � rank(I − V pUp).
If s = 0 then (I − V pUp) = 0 and qp uniquely depends on qa. That is, for

every qa ∈ Ca, the set Cp(qa) is a singleton. By Theorems 2 and 20, also SP

is a singleton and q̂P(δ) converges to the unique member of SP ; so in this case
Theorem 21 is proved.

Hereafter, we assume that s ≥ 1 and, without loss of generality, that the first
s columns of (I − V pUp) are linearly independent. Put

A � (I − V pUp)[{1, . . . ,mp}, {1, . . . , s}]

(the submatrix of entries that lie in the first mp rows and the first s columns).
Since {(I − V pUp)γ : γ ∈ R

mp} equals {Aλ : λ ∈ R
s}, the next lemma follows.

Lemma 63. Let C be given by (2.3) and Up, V p be as above. Assume that
V pUp �= I. Then there are s ≥ 1, an mp × s matrix A of rank s, an mp ×ma

matrix B, and a vector c ∈ R
mp such that

C = {(qa, L(qa, λ)) : qa ∈ Ca, λ ∈ Λ(qa)}.

There,
L(qa, λ) � Aλ+Bqa + c

and
Λ(qa) � {λ ∈ R

s : L(qa, λ) ≥ 0}
is a nonempty closed polyhedral subset of Rs.

Note that, for λ �= λ′, L(qa, λ) �= L(qa, λ′) since A has full column rank.
Keep the notation from Lemma 63. Write x for qa, y for λ, and define G ⊆

R
1+ma+s by (10.30). Let π1 : G → (0, 1) × R

ma be the natural projection
mapping (δ, x, y) onto (δ, x). Put

Z � π1(G)
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and, for z = (δ, x) ∈ Z, define G(z), Ḡ(z) by (10.31). Since G(z) is the z-slice of
G,

G = {(z, y) : z ∈ Z, y ∈ G(z)}.

Note also that, by Lemma 63,

Λ(qa) = Ḡ(δ, qa),

Cp(qa) = AḠ(δ, qa) +Bqa + c,

{qp ∈ Cp(qa) : qp > 0} = AG(δ, qa) +Bqa + c,

(10.34)

for every qa ∈ Ca, qa > 0, and every δ ∈ (0, 1). Moreover,

{q ∈ C : q > 0} = {(x,Ay +Bx+ c) : (δ, x, y) ∈ G for δ ∈ (0, 1)}. (10.35)

Lemma 64. The following are true:

(a) G is a nonempty open bounded polyhedral set;
(b) Z is a nonempty open bounded set;
(c) G(z) (Ḡ(z)) is a nonempty open (closed) bounded polyhedral set for every

z ∈ Z.

Proof. (a) The fact that G is open and polyhedral is immediate from (10.30). It
is nonempty since (δ, q) ∈ G for every δ ∈ (0, 1) and every q ∈ C such that q > 0
(such q exists since C has support X ). To finish the proof of (a) it remains to
show that G is bounded. Since A has full column rank, (10.34) and [23, p. 5–12]
yield

G(δ, qa) = {A+(qp −Bqa − c) : qp ∈ Cp(qa), qp > 0}
⊆ A+[0, 1]mp −A+(Bqa + c),

where A+ is the Moore-Penrose inverse of A. Thus G is bounded.
(b) Since Z is the natural projection of G, it is open, bounded and nonempty.
(c) Boundedness follows from (a); the rest is trivial.

10.8.3. Global minima of the maps ψz (z ∈ Z)

Fix z = (δ, x) ∈ Z and define a map ψz : Ḡ(z) → R̄ by

ψz(y) � −
∑
i∈Xp

ϑi(δ) log di(x, y), di(x, y) � 〈αi, y〉+ 〈βi, x〉+ ci (10.36)

(the convention log 0 = −∞ applies), where αi and βi denote the i-th rows of
A and B, respectively. Since ψz is differentiable on G(z), we can define a map
F : G → R

s by (10.32); that is,

Fh(δ, x, y) �
∑
i∈Xp

aihϑi(δ)

di(x, y)
for h = 1, . . . , s and (δ, x, y) ∈ G.
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Easy computation gives (recall that ν(·), hence also ϑ(·), is differentiable)

∂F

∂δ
= A′E1p,

∂F

∂x
= −A′DB,

∂F

∂y
= −A′DA, (10.37)

where A′ is the transpose of A, and D = D(δ, x, y), E = E(δ, x, y) are given by

D � diag

(
ϑi(δ)

d2i (x, y)

)mp

i=1

and E � diag

(
ϑ′
i(δ)

di(x, y)

)mp

i=1

. (10.38)

Lemma 65. For every z ∈ Z there is a unique minimizer ϕ(z) ∈ G(z) of ψz:

argmin
Ḡ(z)

ψz = {ϕ(z)}.

Proof. Let z = (δ, x) ∈ Z. Since Ḡ(z) is compact (Lemma 64) and ψz : Ḡ(z) →
R̄ is continuous, argminψz is nonempty. If y ∈ Ḡ(z) \ G(z) then there is 1 ≤
i ≤ mp such that di(x, y) = 0 and so ψz(y) = ∞. Hence argminψz ⊆ G(z). The
map ψz is strictly convex on G(z) (use [10, Prop. 1.2.6(b)] and the fact that, by
(10.37), ∇2ψz = A′DA is positive definite). Hence the minimum is unique.

Since G(z) is open for every z, the necessary condition for optimality gives
the following result.

Lemma 66. Let ϕ : Z → R
s be as in Lemma 65. Then, for every (z, y) ∈ G,

F (z, y) = 0 if and only if y = ϕ(z).

Since F is continuously differentiable and ∂F/∂y = −A′DA is always regular,
the local implicit function theorem [10, Prop. 1.1.14] and (10.37) immediately
imply the next lemma.

Lemma 67. The map ϕ : Z → R
s is continuously differentiable and, for every

z = (δ, x) ∈ Z,

∂ϕ

∂δ
= (A′DA)−1A′E1p and

∂ϕ

∂x
= −(A′DA)−1A′DB,

where D = D(z, ϕ(z)), E = E(z, ϕ(z)) are given by (10.38).

In the next section an algebraic result (Proposition 68) implying that ϕ is
Lipschitz on Z (Lemma 70) is proven.

10.8.4. Boundedness of (A′DA)−1A′D

Let ‖ · ‖ denote the spectral matrix norm [23, p. 37–4], that is, the matrix norm
induced by the Euclidean vector norm, which is also denoted by ‖ · ‖. If A is a
matrix, A′ denotes its transpose. The following result must be known, but the
authors are not able to give a reference for it.
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Proposition 68. Let 1 ≤ s ≤ m and A be an m × s matrix with full column
rank rank(A) = s. Then there is σ > 0 such that

‖(A′DA)−1A′D‖ ≤ σ

for every m×m-diagonal matrix D with positive entries on the diagonal.

Before proving this proposition we give a formula for the inverse of A′DA,
which is a simple consequence of the Cauchy-Binet formula; cf. [23, p. 4–4]. To
this end some notation is needed. If C is an m× k matrix and H ⊆ {1, . . . ,m},
K ⊆ {1, . . . , k} are nonempty, by C[H,K] we denote the submatrix of C of en-
tries that lie in the rows of C indexed by H and the columns indexed by K. CH ,

C(j), C(ij), and C
(j)
H are shorthands for C[H, {1, . . . , k}], C[{1, . . . ,m}, {j}c],

C[{i}c, {j}c], and C[H, {j}c], respectively (there, Kc means the complement of
K). For l ≤ m, Hm,l denotes the system of all subsets of {1, . . . ,m} of cardi-
nality l. Finally, if (xi)i∈I is an indexed system of numbers and I ⊆ I is finite,
put

xI �
∏
i∈I

xi.

Lemma 69. Let 1 ≤ s ≤ m, A be an m× s matrix with full rank rank(A) = s,
and D = diag(d1, . . . , dm) be a diagonal matrix with every di > 0. Put

M � A′DA.

Then M is regular and the following are true:

(a) det(M) =
∑

H∈Hm,s
dHℵ2

H > 0,

(b) det(M (hk)) =
∑

I∈Hm,s−1
dIℵI,hℵI,k for every 1 ≤ h, k ≤ s,

(c) M−1 = (chk)
s
hk=1,

where ℵH � det(AH), ℵI,h � det
(
A

(h)
I

)
, and chk � (−1)h+k det(M (hk))/

det(M) for every H ∈ Hm,s, I ∈ Hm,s−1, and h, k ∈ {1, . . . , s}.

Proof. Put Ā � DA = (diaij)ij . By the Cauchy-Binet formula,

det(A′Ā) =
∑

H∈Hm,s

det(AH) det(ĀH) =
∑

H∈Hm,s

dHℵ2
H ,

thus (a) and the regularity of M are proved. Also the property (b) immediately
follows from the Cauchy-Binet formula, since M (hk) = (A(h))′Āk. Finally, (c)
follows from the formulaM−1 = (1/ det(M)) adjM , where adjM is the adjugate
of M , and the fact that M is symmetric.

Proof of Proposition 68. The proof is by induction on m. If m = s then A is a
regular square matrix and (A′DA)−1A′D = A−1, so it suffices to put σ � ‖A−1‖.
Assume that m ≥ s and that the assertion is true for every matrix A of type
m × s. Take any (m + 1) × s matrix Ã of rank s and any diagonal matrix
D̃ = diag(d1, . . . , dm, δ) with di > 0, δ > 0. Since ‖(A′(θD)A)−1A′(θD)‖ =
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‖(A′DA)−1A′D‖ for any θ > 0, we may assume that δ > 1 and di > 1 for every
i. Put D � diag(d1, . . . , dm) and write Ã in the form

Ã =

(
A
α′

)
with A being an m × s matrix and α ∈ R

s. Without loss of generality assume
that rank(A) = s. By the induction hypothesis, there is a constant σ > 0 not
depending on D such that ‖(A′DA)−1A′D‖ ≤ σ.

An easy computation gives

Ã′D̃Ã = M + δαα′, where M � A′DA.

By the Sherman-Morrison formula [23, p. 14–15], for any u, v ∈ R
s, it holds that

(M + uv′)−1 = M−1 − 1

1 + v′M−1u
M−1uv′M−1.

Hence

(Ã′D̃Ã)−1 = M−1 − ςM−1αα′M−1

(
ς � δ

1 + δα′M−1α

)
and

(Ã′D̃Ã)−1Ã′D̃ = (M−1A′D − ςM−1αα′M−1A′D, ςM−1α).

To finish the proof it suffices to show that ‖ςM−1α‖ is bounded by a constant σ′

not depending on D, δ. (Indeed, if this is true then the norm of (Ã′D̃Ã)−1Ã′D̃
is bounded from above by (σ + σ′‖α‖σ) + σ′; it follows from the matrix norm
triangle inequality applied to (E,F ) = (E, 0s×1) + (0s×m, F ), and from the
matrix norm consistency property; cf. [23, p. 37–4].)

If α = 0, then ςM−1α = 0, so one can take σ′ = 0. Assume now that
α = (αh)h �= 0. Using the notation from Lemma 69,

α′M−1α =

s∑
h,k=1

chkαhαk

=
1

det(M)

s∑
h,k=1

∑
I∈Hm,s−1

(−1)h+kαhαkdIℵI,hℵI,k

=
1

det(M)

∑
I∈Hm,s−1

dIε
2
I , where εI �

s∑
k=1

(−1)kαkℵI,k.

On the other hand,

(M−1α)h =

s∑
k=1

chkαk

=
1

det(M)

s∑
k=1

∑
I∈Hm,s−1

(−1)h+kαkdIℵI,hℵI,k

=
(−1)h

det(M)

∑
I∈Hm,s−1

dIεIℵI,h.
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Thus, the h-th coordinate of v � ςM−1α satisfies

|vh| =

∣∣∣∣∣∣
∑

I∈Hm,s−1

dIεIℵI,h
1
δ det(M) +

∑
J∈Hm,s−1

dJε2J

∣∣∣∣∣∣
≤

∑
I∈Hm,s−1

dI |εIℵI,h|
1
δ det(M) +

∑
J∈Hm,s−1

dJε2J

≤
∑

I∈Hm,s−1

dI |εIℵI,h|
1
δ det(M) + dIε2I

≤
∑

I∈Hm,s−1, εI �=0

|ℵI,h|
|εI |

.

This proves that the absolute value of every coordinate of v = ςM−1α is bounded
from above by a constant not depending on D, δ. It finishes the proof of Propo-
sition 68.

10.8.5. Lipschitz property of ϕ

The result of the previous section and Lemma 67 yield that ϕ is Lipschitz, hence
uniformly continuous on Z.

Lemma 70. The map ϕ : Z → R
s is Lipschitz on Z. Consequently, there exists

a continuous extension ϕ̄ : Z̄ → R
s of ϕ to the closure Z̄ of Z.

Proof. By (6.3), the norm of D−1E = diag(di(x, y)ϑ
′
i(δ)/ϑi(δ))

mp

i=1 is bounded
from above by a constant not depending on z = (δ, x) and y (use that 0 < di ≤ 1
by (10.35)). Thus, by Proposition 68 and Lemma 67, ϕ has bounded derivative
on Z. Now the Lipschitz property of ϕ follows from the mean value theorem.

10.8.6. Proof of Theorem 21

The following lemma demonstrates that, for δ > 0, the passive projection q̂pP(δ)
of the solution of Pδ can be expressed via ϕ and the active projection q̂aP(δ).

Lemma 71. Let C be given by (2.3) and A,B, c be given by Lemma 63. Let
(ν(δ))δ∈(0,1) satisfy (6.1) and (6.3). Then, for every δ > 0,

(δ, q̂aP(δ)) ∈ Z and q̂pP(δ) = Aϕ(δ, q̂aP(δ)) +Bq̂aP(δ) + c.

Proof. Fix any δ > 0 and put x � q̂aP(δ), z � (δ, x). Let ŷ ∈ Λ(x) be such
that q̂pP(δ) = Aŷ + Bx+ c (note that ŷ is unique since A has full column rank;
see Lemma 63). Then z ∈ Z since (δ, x, ŷ) belongs to G (use that q̂pP(δ) > 0).
Further, G(z) is a subset of Λ(x) by (10.34), and �δ(x,Ay + Bx + c) = ∞ for
every y ∈ Λ(x) \ G(z) (indeed, for such y some coordinate of Ay + Bx + c is
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zero). Thus ŷ ∈ G(z) and, by (10.36) and (6.3),

ŷ = argmin
y∈G(z)

�δ(x,Ay +Bx+ c)

= argmin
y∈G(z)

(
−
∑
i∈Xp

νi(δ) log di(x, y)

)

= argmin
y∈G(z)

ψz(y).

Hence, by Lemma 65, ŷ = ϕ(z) and so q̂pP(δ) = Aϕ(z) +Bx+ c.

Proof of Theorem 21. Let ϕ̄ : Z̄ → R
s denote the continuous extension of ϕ to

the closure Z̄ of Z (see Lemma 70). By Theorem 20, limδ↘0 q̂
a
P(δ) exists and

equals the unique member q̂aP of SP . Since (δ, q̂aP(δ)) ∈ Z for every δ > 0 (see
Lemma 71), (0, q̂aP) belongs to Z̄. Thus, by Lemma 71,

lim
δ↘0

q̂pP(δ) = lim
δ↘0

(Aϕ(δ, q̂aP(δ)) +Bq̂aP(δ) + c)

= Aϕ̄(0, q̂aP) +Bq̂aP + c.

This proves convergence of q̂pP(δ). Now, by Theorem 20, Theorem 21 follows.
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