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Abstract: While popular, single index models and additive models have
potential limitations, a fact that leads us to propose SiAM, a novel hy-
brid combination of these two models. We first address model identifiabil-
ity under general assumptions. The result is of independent interest. We
then develop an estimation procedure by using splines to approximate un-
known functions and establish the asymptotic properties of the resulting
estimators. Furthermore, we suggest a two-step procedure for establishing
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confidence bands for the nonparametric additive functions. This procedure
enables us to make global inferences. Numerical experiments indicate that
SiAM works well with finite sample sizes, and are especially robust to model
structures. That is, when the model reduces to either single-index or addi-
tive scenario, the estimation and inference results are comparable to those
based on the true model, while when the model is misspecified, the superi-
ority of our method can be very great.
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62J02, 62F12.
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1. Introduction

Because of the complexity of data sets in practice, there has been much interest
in developing statistical analysis tools for problems involving high dimensional
covariates. Examples of these models include additive models [AM, 13] and
single index models [SiM, 15]. A common feature of these models is that they
achieve dimension reduction [30] to circumvent the “curse of dimensionality” [1]
while retaining flexibility of the nonparametric regression.

Additive models (AM) [AM, 13, 39, 40] and additive partially linear models
[APLM, 13, 17, 19, 25, 32] corresponding to continuous response variables have
been well studied in the literature [13]. The latter parsimoniously specifies the
relationship between the response variable and some of the covariates in a lin-
ear function form, and the relationship between the dependent variable and the
remaining covariates in a form of additive nonlinear unknown functions. The
APLM enjoys the simplicity property of the linear model and the flexibility of
the AM, due to the combination of parametric and nonparametric components.
For estimation, [4] applied a backfitting procedure, proposed by [3], to approx-
imate the additive components. [19] proposed to estimate the nonparametric
components by polynomial splines [28, 30]. After the spline basis is chosen, the
coefficients can be estimated by least squares, leading to great gains computa-
tionally when contrasted with backfitting.

Although the AM and APLM are flexible and widely used for data explo-
ration [13, 14, 35], their limitations are also evident from their relatively special
structures. For instance, they can be used only for the additive case and are
unable to reflect interactions of two or more variables, which we may encounter
in the analysis of complex biomedical data.

Single index models (SiM), another attempt to gain dimensional reduction,
have attracted great attention for estimating a conditional mean function be-
cause they relax restrictive assumptions imposed on parametric models of con-
ditional mean functions such as linear or generalized linear models [12, 16],
and therefore gain more flexibility. There are various estimation procedures for
single-index models. See [15] for a comprehensive survey and various applications
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of single-index models. An advantage of the SiM and their various extensions
over additive models is that they can take interactions of multiple variables into
account, which are frequently encountered in the analysis of complex biomedical
data, for example from gene regulatory networks, while still enjoying dimension
reduction. However, SiM have their own limitations, in that they assume a com-
mon nonlinear structure for the linear combination of predictors with different
weights, and can not reflect the nonlinear main effect of each predictor when
this feature truly exists.

To overcome the limitations of AM and SiM but still enjoy their advantages,
we propose SiAM, a combination of these two structures. However, such a com-
bination immediately raises several concerns: (i) under what assumptions is the
resulting model identifiable? (ii) The resulting model contains two classes of
nonparametric functions; i.e., the first one for the single index part, and the
second one for the individual components. Whether we can equally treat them
and similar criteria can be applied is unclear. (iii) Are the resulting models ro-
bust? That is when the true model is a sole SiM or AM, does the hybrid model
and associated methods for it perform the same (or almost the same) as the true
model and its associated methods? Technically, it is much more challenging to
develop estimation and inference procedures for such a combination due to the
complexity of the model structure. As a result, establishing theory for these
procedures, such as asymptotic properties, is much more difficult.

In this paper, we address these concerns, and provide an alternative but more
flexible tool for data exploration. To further gain simplicity in the implemen-
tation, we apply spline approximation to estimate each unknown component
functions. This strategy has been applied in the recent literature of estimation
and inference for semiparametric models [33, 39]. Further, we suggest a two-step
procedure for establishing confidence bands for the nonparametric additive func-
tions. This procedure enables us to make global inference for the nonparametric
functions.

The paper is organized as follows. Section 2 presents the modelling frame-
work, and addresses model identifiability. Section 3 proposes estimation for the
single index and nonparametric components. Section 4 establishes asymptotic
properties for the resulting estimators. The asymptotic normality for index es-
timators and the rates of convergence for the nonparametric estimators are
developed. Section 5 describes the two-step procedure and presents the simul-
taneous confidence band. Section 6 illustrates the numerical performance of the
proposed method through simulation experiments. The last section provides
remarks and discussions. All proofs are provided in an Appendix. Additional
tables and graphs are also provided in the Supplemental Material [24].

2. The models and identifiability

To combine additive models and single index models, we propose single index
additive models (SiAM ), given by

E(Y |X) = g̃(X�α) + m̃1(X1) + · · ·+ m̃p(Xp), (1)
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where X = (X1, · · · , Xp)
� is the p-dimensional continuous covariates, X�α

is referred to as the index component, and g̃(·), m̃1(·), · · · , m̃p(·) are unknown
smooth functions. We briefly discuss the incorporation of discrete covariates in
Section 7.

Since single-index models and additive models are two special cases of SiAM,
two obvious constraints for identifiability borrowed from these two special cases
are ‖α‖ = 1 with α1 > 0, and E{mj(Xj)} = 0, respectively. However, these two
constraints alone are not sufficient for identifiability. To see that identifiability
can fail even with these two constraints, a simple example is that 2{(X1 +
X2)/

√
2}2−{X2

1 −E(X2
1 )}−{X2

2 −E(X2
2 )} = −2{(X1−X2)/

√
2}2+2E(X2

1 )+
2E(X2

2 ) + {X2
1 − E(X2

1 )}+ {X2
2 − E(X2

2 )}.
To achieve identifiability, we first need to decompose mj as the sum of a

linear term and a term orthogonal to the space of linear functions. That is, we
write mj(x) as aj + βjx+ m̃j(x) with E{m̃j(Xj)} = E{Xjm̃j(Xj)} = 0. Since

g(X�α)+
∑

j aj+X�β = g(X�α)+
∑

j aj+(β�α)X�α+X�{β−(β�α)α} =

g̃(X�α) +X�β̃ where g̃(x) = g(x) +
∑

j aj + (β�α)x, β̃ = β − (β�α)α and

β = (β1, . . . , βp)
�, with β̃ orthogonal to α, the conditional expectation in an

SiAM can be written as

g(X�α) +X�β +
∑p

j=1mj(Xj), (2)

with ‖α‖ = 1, α1 > 0,α⊥β, E{mj(Xj)} = E{Xjmj(Xj)} = 0. We call (2)
the canonical form of SiAM. It is natural to require the canonical form to be
unique. The following theorem gives sufficient conditions for the parameters
to be identified. Although these are not necessary conditions, in view of our
previous counterexample these conditions are reasonably weak.

Theorem 2.1. Suppose Xj (1 ≤ j ≤ p) has a density function supported on
an interval Sj ⊆ R and X has a joint positive density on the interior of

∏
j Sj.

Consider (2), with ‖α‖ = 1, α1 > 0,α⊥β, E{mj(Xj)} = E{Xjmj(Xj)} = 0.
There are two situations.

(i) g and mj, j = 1, . . . , p are second order differentiable. g′′ �≡ 0 on the
support of X�α. α has at least three nonzero components.

(ii) g and mj, j = 1, . . . , p are second order differentiable. g′′ is a nonconstant
continuous function on the support of X�α. α has at least two nonzero
components.

Under either (i) or (ii), (g,α,β, {mj}pj=1) is unique.

3. Estimation

The full SiAM model is

Y = g(X�α0) +X�β0 +
∑p

j=1mj(Xj) + ε, (3)

with ‖α0‖ = 1, α0
1 > 0,α0⊥β0, E{mj(Xj)} = E{Xjmj(Xj)} = 0, and ε is the

error term satisfying E(ε |X ) = 0. Define
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L(α,β,m,g) = E{Y −
∑p

j=1mj(Xj)− g(X�α)−X�β}2, (4)

where m = {mj(·), j = 1, . . . , p}. Denote Ỹ = Y −
∑p

j=1mj(Xj), and define

ϕα(u) = E(Ỹ
∣∣X�α = u ),Γα(u) = E(X

∣∣X�α = u ). (5)

By simple calculation,

L(α,β,m,g) = L(α,β,m) = E[Ỹ − ϕα(X
�α)− β�{X− Γα(X

�α)}]2.

In what follows, for any vector ζ = (ζ1, . . . , ζs)
� ∈ Rs, denote ‖ζ‖∞ =

max1≤�≤s |ζ�| and ‖ζ‖2 = (|ζ1|2 + · · · + |ζs|2)1/2. For any symmetric matrix

As×s, denote its Lr norm as ‖A‖r = maxζ∈s,ζ �=0 ‖Aζ‖r ‖ζ‖
−1
r . For any matrix

A =(Aij)
s,t
i=1,j=1, denote ‖A‖∞ = max1≤i≤s

∑t
j=1 |Aij |.

Let ω(α) = E[{X − Γα(X
�α)}⊗2] and ν(α) = E[{X − Γα(X

�α)}{Ỹ −
ϕα(X

�α)}], where A⊗2 = AA� for any matrix A. For given α and m, the
corresponding β which minimizes L(α,β,m) is βα = {ω(α)}−ν(α), where
{ω(α)}− is a generalized inverse of ω(α). According to Theorem 2 of [38], by
assuming that X has a joint positive density function on an open convex subset
in Rp, for given m, the minimum point of L(α,β,m) with α⊥β is unique at
α0 and

β0 = βα0 = {ω(α0)}+ν(α0), (6)

where α0 and β0 are the true parameters in model (3), and {ω(α)}+ is the
Moore-Penrose inverse of ω(α).

We approximate the nonparametric functions g(·) and mj(·) by means of B-
splines, and the estimators of α, β, g(·) andmj(·) can be obtained by minimizing
an objective function, which is the sample analog of (4). However, to simulta-
neously obtain those estimators is computationally very challenging given that
the estimates of the parameters and the nonparametric functions intrinsically
depend on each other. We then apply an iterative algorithm to minimize the
objective function with respect to one parameter vector and fixing the others.
The iterative algorithm has been commonly used for estimation in partially lin-
ear single-index models (PLSiMs) and it converges well [5, 20, 31, 36, 38]. When
the nonparametric functions are given, estimation of the parameters follows
the same procedure as given in [38]. When the parameters are fixed, we deal
with estimation of nonparametric additive functions instead of nonparametric
univariate function in PLSiMs, but they should have the same computational
convergence property. Let Xi = (Xij , 1 ≤ j ≤ p)� and Yi be the ith realization
of X and Y . The estimation is achieved in three steps:

Step I. For given α and mj(·), the estimate of β is obtained by a sam-
ple estimate of (6). We first estimate ϕα(u) and Γα(u) given in (5)
by means of B-splines. Let B (u) = {B1 (u) , . . . , BK (u) be a set of
q-th order B-spline basis functions, in which K is the number of ba-
sis functions which increases with the sample size n, and thus the
number of interior knots is K − q. Moreover, the distance between
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neighboring knots satisfies the assumptions given in [26]. Then the

spline estimators of ϕα(u) and Γα(u) are given as ϕ̂α(u) = B (u)
�
λ̂

and Γ̂α(u) = B (u)
�
Θ̂, where λ̂ and Θ̂ are spline coefficient esti-

mates obtained from least squares estimation with responses Ỹi and
X, respectively. Then the estimate of β is given as

β̂ = {
n∑

i=1

(
Xi)
⊗2}+{

n∑
i=1

(
Xi)(
Ỹi)},

where 
Xi = Xi − Γ̂α(X
�
i α) and 
Ỹi = Ỹi − ϕ̂α(X

�
i α).

Step II. The estimate of α, denoted as α̂, is obtained by minimizing∑n
i=1{Yi −

∑p
j=1m̂j(Xj)−X�

i β̂ − ĝ(X�
i α)}2,

where m̂j(·) and ĝ(·) are the spline estimates of mj(·) and g(·) from
the previous step of the iteration. Then we let α̂ = α̂/‖α̂‖.

Step III. For given α̂ and β̂, we estimate g(u) and mj(xj) by the spline es-

timates ĝ(u) = B (u)
�
γ̂ and m̂j(xj) = bj (xj)

�
δ̂j with γ̂ and δ̂j

minimizing∑n
i=1{Yi −X�

i β̂ −B
(
X�

i α̂
)�

γ −
∑p

j=1bj (Xij)
�
δj}2,

where bj (xj) = {bj1 (xj) , . . . , bjL (xj)}� are sets of basis functions
for j = 1, . . . , p defined as follows. Let

Bj (xj) = {Bj1 (xj) , . . . , BjL (xj)}� (7)

be sets of q-th order B-spline basis functions for j = 1, . . . , p. To en-
sure that En{m̂j(Xj)} = En{Xjm̂j(Xj)} = 0, where En (·) denotes
the empirical average, we let bj� (xj) = Bj� (xj) + a� + b�xj , with

b� =
n−1

∑n
i=1Bj� (Xij)

∑n
i=1Xij −

∑n
i=1Bj� (Xij)Xij∑n

i=1X
2
ij − n−1(

n∑
i=1

Xij)2
,

a� = −n−1∑n
i=1Bj� (Xij)− b�n

−1∑n
i=1Xij . (8)

We iterate Steps I–III until convergence. The initial estimates α̂ini, β̂
ini

and
ĝini (·) of α, β and g (·) are obtained by fitting the partially linear single-index
model: Y = g(X�α)+X�β+ε∗1 by the method used in [38]. The initial estimates

of mj are obtained by fitting the additive model: Y − ĝini(X�α̂ini)−X�β̂
ini

=∑p
j=1mj(Xj) + ε∗2,

4. Asymptotic properties

In this section, we study the large-sample properties of the SiAM parameter
estimators, which are obtained by minimizing the objective function

Ln(α,β,γ, δ) =
∑n

i=1[Yi −B∗ (Xi)
�
δ −B

(
X�

i α
)�

γ −X�
i β]

2, (9)
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where B∗ (Xi) = {b1 (Xi1)
�
, . . . ,bp (Xip)

�}� and δ = (δ
�
1 , . . . , δ

�
p )

�. For

given α and β, the spline coefficient estimators are γ̂(α,β) and δ̂(α,β) =

{δ̂j(α,β), 1 ≤ j ≤ p}�, where{
δ̂(α,β)�, γ̂(α,β)�

}�
= {

∑n
i=1Φi(α)Φi(α)�}−1∑n

i=1Φi(α)(Yi −X�
i β),

(10)
and

Φi(α) = {B∗(Xi)
�,B(X�

i α)�)�, (11)

and the estimators of the nonparametric functions are ĝ (u;α,β) =

B (u)
T
γ̂(α,β) and m̂j(xj ;α,β) = bj (xj)

�
δ̂j(α,β). We obtain the estimators

α̂ and β̂ of α and β as the minimizers of

L∗
n(α,β) =

∑n
i=1{Yi −B∗ (Xi)

�
δ̂(α,β)−B

(
X�

i α
)�

γ̂(α,β)−X�
i β}2.

The spline estimators of the nonparametric functions g(u) and mj(xj) are given

as ĝ
(
u; α̂, β̂

)
and m̂j(xj ; α̂, β̂), respectively.

We next introduce the following notation and definitions. Let α0 and β0 be
the true parameters in model (3). Now define the Hilbert space H as a collection
of additive functions with finite L2 norm on S1×· · ·×Sp, where Sj is the support
of Xj , j = 1, . . . , p, by

H =
{
h(x) = h0(x

�
α0) +

∑p
j=1hj (xj) , Eh0

(
X�α0

)2
< ∞,

Ehj (Xj)
2
< ∞, Ehj (Xj) = 0, EXjhj (Xj) = 0

}
, (12)

where x = (x1, . . . , xp)
�
. Moreover, define

P (Xj) = argmin
h∈H

E {Xj − h (X)}2 ,

and
P (Zj) = argmin

h∈H
E {Zj − h (X)}2 ,

where Zj = Xj ġ(X
�α0) for j = 1, . . . , p and ġ(u) = ∂g(u)/∂u. Let

P (X) = {P (X1) , . . . ,P (Xp)}� ,

P (Z) = {P (Z1) , . . . ,P (Zp)}� , (13)

where Z =(Z1, . . . , Zp)
�
, and X̃ = X−P (X) and Z̃ = Z−P (Z). Denote Zij =

Xij ġ(X
�
i α

0), Zi = (Zi1, . . . , Zip)
�, X̃i = Xi−P (Xi) and Z̃i = Zi−P (Zi). For

any positive numbers an and bn, let an � bn denote that an/bn = o(1), and
an 
 bn means that limn→∞ an/bn = c, where c is some nonzero constant. Let
r with r ≥ 2 be the smoothness order of the coefficient functions m� (·) as given
in Condition (C2) in the Appendix. Denote var(Y |X = x )= σ2 (x). We assume

that α̂ and β̂ are in a neighborhood of α0 and β0.
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Theorem 4.1. Under Conditions (C1)–(C4) in the Appendix, and K 
 L 

Kn, n

1/(2r+2) � Kn � n1/4, we have

√
n

{
(α̂−α0)�, (β̂ − β0)�

}�
=

{
n−1

∑n

i=1
(Z̃

�

i , X̃
�
i )

�(Z̃�
i , X̃

�
i )

}−1

×
[
n−1/2

∑n

i=1

{
Yi − g(X�

i α0)−X�
i β0 −

∑p
j=1mj(Xj)

}
(Z̃�

i , X̃
�
i )

�
]

+op(1).

Consequently,
√
n

{
(α̂−α0)�, (β̂ − β0)�

}�
→d Normal (0,Σ), as n → ∞,

where

Σ =
[
E

{
(Z̃�, X̃�)�(Z̃�, X̃�)

}]−1 [
E

{
σ2 (X) (Z̃�, X̃�)�(Z̃�, X̃�)

}]
[
E

{
(Z̃�, X̃�)�(Z̃�, X̃�)

}]−1

. (14)

Remark 1. The asymptotic expansion stated in Theorem 4.1 can be used to
conduct inferences for the parameters such as constructing confidence intervals
and Wald test statistics. We estimate P (Xij), P (Zij), 1 ≤ j ≤ p, 1 ≤ i ≤ n, by
the spline estimator

P̂ (Xij) = Φi(α̂)�{
∑n

i=1Φi(α̂)Φi(α̂)�}−1∑n
i=1Φi(α̂)Xij ,

P̂ (Zij) = Φi(α̂)�{
∑n

i=1Φi(α̂)Φi(α̂)�}−1∑n
i=1Φi(α̂)Zij ,

respectively, and the residuals are estimated by

ε̂i = Yi −
∑p

j=1m̂j(Xij ; α̂, β̂)− ĝ(X
�

i α̂; α̂, β̂)−X�
i β̂. (15)

Thus, the covariance matrix Σ given in (14) is estimated by

Σ̂ =
{
n−1

∑n

i=1
(Ẑ

�

i , X̂
�
i )

�(Ẑ�
i , X̂

�
i )

}−1 {
n−1

∑n

i=1
ε̂2i (Ẑ

�

i , X̂
�
i )

�(Ẑ�
i , X̂

�
i )

}
×

{
n−1

∑n

i=1
(Ẑ

�

i , X̂
�
i )

�(Ẑ�
i , X̂

�
i )

}−1

,

where X̂i = Xi − P̂ (Xi), Ẑi = Zi − P̂ (Zi), P̂ (Xi) =
{
P̂ (Xi1) , . . . , P̂ (Xip)

}�
,

and P̂ (Zi) =
{
P̂ (Zi1) , . . . , P̂ (Zip)

}�
.

Let S0 be the support of X�α0. The following theorem presents the global
convergence rates of the estimators for the nonparametric functions.

Theorem 4.2. Under Conditions (C1)–(C4) in the Appendix, and K 
 L 

Kn, n1/(2r+2) � Kn � n1/4, we have that (i)

∫
S0
{ĝ(u; α̂, β̂) − g(u)}2du =

Op

(
n−1Kn +K−2r

n

)
and

(ii)
∑p

j=1

∫
Sj
{m̂j(xj ; α̂, β̂)−mj(xj)}2dxj = Op

(
n−1Kn +K−2r

n

)
.
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5. Inference for nonparametric functions

5.1. Goal

Although the one-step spline approximation can quickly estimate multiple non-
parametric functions, according to [29], no asymptotic distribution is available
for the resulting estimators. In this section, we adopt a refined two-step spline
estimation procedure as proposed for additive models in [27] and [21], based on
which asymptotic confidence bands are further constructed for global inferences
of the nonparametric functions.

5.2. Oracle nonparametric estimator

Next we will describe the oracle estimator for mj(xj), and the oracle estimator
for g (u) can be defined accordingly. By “oracle” here, we mean the estimation
of one of the component functions of the SiAM model when all parameters and
all the other functions are known.

Without loss of generality, we let j = 1. By assuming that g (u), mj(xj) for
j ≥ 2, α0 and β0 are known, we rewrite model (3) as

Y 1
i = Yi − g(X�

i α
0)−

∑
j≥2mj(Xij)−X�

i β
0 = m1(Xi1) + εi.

Thus we obtain the oracle estimator ofm1(x1) as the least squares spline estima-

tor given as m̂OR
1 (x1) = B̃(x1)

�δ̂
OR

1 , where B̃(x1) = {B̃11 (x1) , . . . , B̃1L̃ (x1)}�
is a set of B-spline basis functions with the same spline order as B(x1) given in

(7) but different number of basis functions L̃ and

δ̂
OR

1 = {
∑n

i=1B̃(Xi1)B̃(Xi1)
�}−1∑n

i=1B̃(Xi1)Y
1
i .

We propose a smooth simultaneous confidence band (SCB) for m1(·) by
studying the asymptotic behavior of maximum of the normalized deviation of
the spline functional estimate. To construct asymptotic SCBs for m1(·) over the
interval x1 ∈ S1 with confidence level 100(1 − α)%, α ∈ (0, 1), we need to find
two functions ln(x1) and un(x1) such that

lim
n→∞

P (ln(x1) ≤ m1(x1) ≤ un(x1) for all x1 ∈ S1) = 1− α. (16)

In practice, we consider a variant of (16) and construct SCBs over a finite subset
Sn,1 of S1 with Sn,1 becoming denser as n → ∞. Without loss of generality, we
let S1 = [a, b] where a and b are two finite numbers. Thus, we partition [a, b]
according to Nn equally spaced points a < ξ0 < ξ1 < · · · < ξNn < ξNn+1 = b
where Nn → ∞ as n → ∞. Let Sn,1 = (ξ0, . . . , ξNn). Define dNn(α) = 1 −
{2log(Nn+1)}−1[log{−(1/2)log(1−α)}+(1/2){loglog(Nn+1)+log(4π)}], and
QNn(α) = {2log(Nn + 1)}1/2dNn(α).
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Theorem 5.1. Under Conditions (C1)–(C4) in the Appendix, and Nn 
 L̃ 

n1/(2r+1), we have

lim
n→∞

P

{
sup

x1∈Sn,1

∣∣σn(x1)
−1{m̂OR

1 (x1)−m1(x1)}
∣∣ ≤ QNn(α)

}
= 1− α.

and thus an asymptotic 100(1−α)% confidence band for m1(x1) over x1 ∈ Sn,1

is

m̂OR
1 (x1)± σn(x1)QNn(α), (17)

where σ2
n(x1) = B̃(x1)

�ΞnB̃(x1) with

Ξn = {
n∑

i=1

B̃(Xi1)B̃(Xi1)
�}−1{

∑n
i=1σ

2 (Xi) B̃(Xi1)B̃(Xi1)
�} (18)

{
∑n

i=1B̃(Xi1)B̃(Xi1)
�}−1.

Remark 2. We estimate Ξn by

Ξ̂n = {
n∑

i=1

B̃(Xi1)B̃(Xi1)
�}−1{

∑n
i=1ε̂

2
i B̃(Xi1)B̃(Xi1)

�}

× {
∑n

i=1B̃(Xi1)B̃(Xi1)
�}−1,

where ε̂i is given in (15).

Remark 3. Compared to the pointwise CI with width 2Z1−α/2σn(x1), the width

of the confidence bands (17) is inflated by {2log(Nn + 1)}1/2dNn(α)/Z1−α/2.

Moreover, σn(x1) 
 n−r/(2r+1){1 + op(1)} uniformly in x1 ∈ Sn,1.

Remark 4. To construct the SCB based on Theorem 5.1, we propose a finite
sample approximation scheme to compute the cutoff value QNn(α) as follows.
Let η(ξJ), 1 ≤ J ≤ Nn + 1 have jointly normal distribution with E{η(ξJ)} = 0,

var{η(ξJ)} = 1 and covariance cov{η(ξJ), η(ξJ ′)} = σ−1
n (ξJ )σ

−1
n (ξJ ′){B̃(ξJ )

�

ΞnB̃(ξJ ′)} for 1 ≤ J �= J ′ ≤ Nn + 1. We propose the finite sample cutoff value
Q∗

Nn
(α) defined by P

{
sup1≤J≤Nn+1 |η(ξJ )| ≤ Q∗

Nn
(α)

}
= 1−α. Thus the cutoff

value Q∗
Nn

(α) is the 100(1− α)th percentile of the absolute maxima distribution
of η(ξJ).

5.3. Two-step estimator

Since g (u), mj(xj) for j ≥ 2, α and β are unknown in reality, we replace the
true functions and parameters by their estimators ĝ (u), m̂j(xj) for j ≥ 2, α̂

and β̂ from Section 3 to obtain the two-step estimator of m1(x1), denoted as
m̂SS

1 (x1). The following theorem gives the uniform efficiency of the two-step
estimator m̂SS

1 (x1).
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Theorem 5.2. Under Conditions (C1)–(C4) in the Appendix, and L̃
n1/(2r+1),
K 
 L 
 Kn, and n1/(2r+1) � Kn � n1/4, we have

sup
x1∈S1

|m̂SS
1 (x1)− m̂OR

1 (x1)| = Op{(log(n)/n)1/2 +K−r
n } = op(n

−r/(2r+1)).

Remark 5. Based on the uniform rate given in Theorem 5.2, the difference
between the two-step and the oracle estimator is asymptotically negligible, so that
the asymptotic 100(1− α)% confidence band for m1(x1) is given as m̂SS

1 (x1)±
σn(x1){2log(Nn+1)}1/2dNn(α). Moreover, to have the result in Theorem 5.2, we
need the spline estimator in the first step to be undersmoothed with the number
of basis functions satisfying L � n1/(2r+1). The number of basis functions in
the second step has the optimal order given as L̃ 
 n1/(2r+1).

Remark 6. As suggested by a reviewer, since the effect of any single covariate
appears in both the single-index part and the additive part, it is of interest to
make inferences on the function

h(x1) := g(x1α1 + x∗
2α2 + · · ·+ x∗

pαp) + x1β1 + x∗
2β2 + · · ·+ x∗

pβp

+m1(x1) +

p∑
j=2

mj(x
∗
j ) (19)

where x∗
2, · · · , x∗

p are fixed values of x2, . . . , xp. By an analogy with the inferences
for m1 above, we can construct the confidence bands for (19) using

ĥ1(x1)± σh(x1)QNn(α)

where σ2
h(x1) = B̆(x1)

�Ξ̆nB̆(x1) with Ξ̆n = {
∑n

i=1 B̆(Xi1)B̆(Xi1)
�}−1{

∑n
i=1

σ2 (Xi) B̆(Xi1)B̆(Xi1)
�}{

∑n
i=1B̆(Xi1)B̆(Xi1)

�}−1, B̆(x1) = (b(x1)
�,b(x∗

2)
�,

. . . ,b(x∗
p)

�, x1, x
∗
2, . . . , x

∗
p,B(x1α̂1 + x∗

1α̂2 + · · · + x∗
pα̂p))

�, and B̆(Xi) =

(B∗(Xi)
�,X�

i ,B(X�
i α̂)�))�. However, unlike the previous inferences for m1,

theoretical investigation of this requires joint asymptotics of different estimated
components and we are not able to provide a rigorous justification in this paper
and will only demonstrate this using simulations.

6. Simulations

We conducted simulation studies to investigate the finite sample performance
of SiAM, the additive model (AM) and the partially linear single-index model
(PLSiM). The algorithm is implemented in R and the code can be obtained
from the second author upon request. The first example is

Example 1.

Yi = g(X�
i α) +

4∑
j=1

{mj(Xij)− Emj(Xij)}+ εi, i = 1, . . . , n,
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with εi ∼ Normal(0, σ2). We set α = (2, 1,−2,−1)�/
√
10, g(x)= 10x2,m1(x) =

2 sin(5x)/{2 − sin(5x)}, m2(x) = 4x exp(−x2), m3(x) = exp(5x − 4), m4(x) =
3x sin(4x − 4). The above generating model is not presented in the canonical
form. The associated canonical form (2) can be found numerically. For example,
we find by numerical integration that β = (−1.236, 2.034, 0.938,−2.313)�.

We generated the covariates from a multivariate Gaussian distribution with
cov(Xij , Xij′) = ρ|j−j′| and marginally transformed the covariates into [0, 1]
using the cumulative distribution function of the standard normal distribution.
We use cubic B-splines with the number of internal knots equal to �n1/9�, which
is the theoretically optimal order when using cubic splines, and �a� denotes the
largest integer no greater than a. Although it is possible to choose the number
of internal knots in a more data-adaptive way, the strategy of using such fixed
choice is much more convenient and even a small number of internal knots can
provide a flexible fit to various functions and is thus commonly adopted in the
literature of regression splines [21, 27, 34].

We let ρ = 0.2 and choose n ∈ {200, 500, 1000} and σ = 0.5, a total of 3
settings. In each setting, 100 data sets are generated and fitted using SiAM.

Table 1

Estimated standard errors of the parameters for data simulated in Example 1 in Section 6.

(n, σ) α β
(200, 0.5) Est 0.038 0.025 0.036 0.028 0.174 0.132 0.136 0.165

Emp 0.045 0.028 0.041 0.031 0.218 0.169 0.162 0.206
(500, 0.5) Est 0.025 0.016 0.024 0.017 0.119 0.083 0.085 0.116

Emp 0.027 0.018 0.026 0.019 0.138 0.102 0.108 0.130
(1000, 0.5) Est 0.019 0.010 0.017 0.012 0.098 0.067 0.073 0.091

Emp 0.020 0.012 0.019 0.014 0.102 0.072 0.079 0.095

First we consider the estimation of standard errors for the parameters α and
β. It is easy to obtain standard error estimates based on the asymptotic normal-
ity results. On each generated data set, we can get an estimate of standard errors
and the average of these over 100 data sets are reported in Table 1, on rows
indicated by “Est”. The sample standard errors of the estimated parameter val-
ues based on 100 data sets are taken as the empirical standard errors, reported
on rows indicated by “Emp”. It is seen that the estimated standard errors are
reasonably close to the empirical values, especially for large sample size.

For an illustration of the construction of the confidence band, Figure 1 and
the Supplemental Material Figures 6 and 7 show visually the 95% confidence
bands obtained on one data set for σ = 1, for functions g,m1, . . . ,m4, as well
as h defined in (19) with x∗

2 = · · · = x∗
p = 1/2. To construct these bands, except

for h which only uses a one-step estimator, we use �2n1/7�+1 internal knots for
the first-stage estimator and use �n1/9� + 1 internal knots in the second stage,
which takes a similar form as recommended in previous works such as [27]. We
set Nn = 20. To investigate the coverage of the confidence bands, 500 data sets
are generated in each parameter setting and the results are reported in Table
2. The coverage improves with sample size. The more severe under-coverage of
the band for m1 with n = 200 is possibly due to the relatively large bias in
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Fig 1. 95% confidence band for the nonparametric functions for Example 1 in Section 6 when
n = 500.

Table 2

Coverage of 95% confidence bands for data simulated in Example 1.

(n, σ) g m1 m2 m3 m4 h
(200, 0.5) 0.842 0.764 0.914 0.826 0.878 0.834
(500, 0.5) 0.918 0.812 0.916 0.890 0.902 0.874
(1000, 0.5) 0.930 0.926 0.932 0.900 0.926 0.918

estimation for this sample size, which can also be seen in Figures 3–5 of the
Supplemental Material, for example.

We now use this example to illustrate that the performances actually critically
depend on the choice of a good initial estimator. As mentioned before, our initial
estimators for α and β are obtained as in [38]. Under the setting of n = 500,
we add independent normal perturbation errors with standard deviation σp =
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Fig 2. Trajectory of estimation error versus iterations. Upper left, upper right, lower left and
lower right panels show results for σp = 0, 0.1, 0.2, 0.4, respectively.

0.1, 0.2, 0.4 to each component of the initial values for α and β, normalize α and
orthogonalize β with respect to α, and then use these as initial values instead.

The trajectory of the estimator error

√
‖α̂−α‖2/p+ ‖β̂ − β‖2/p varying with

iterations are shown in Figure 2, together with the results using initial estimator
based on [38] without perturbation. It is seen that even with a small perturbation
σp = 0.1 the results become worse and do not seem to converge to the correct
value. Thus a good selection of initial values are important in the estimation,
and one may even use multiple starting values to safeguard estimation.

The Supplemental Material has additional results. We report the estimation
errors of α,β, g,m1, . . . ,m4 in Table 4 (the quantities here refer to those in the
canonical form). For α the estimation error is defined as ‖α̂ − α‖ and simi-

larly for β. The estimation error of g is defined by
√∑200

j=1{ĝ(tj)− g(tj)}2/200,
where t1 < t2 < · · · < t200 are equally spaced grid points on the range of X�

i α̂.

Similarly the estimation error for mj is
√∑200

j=1{m̂(xj)−m(xj)}2/200 with 200

grid points on [0, 1]. From Table 4 of the Supplemental Material, we see that
as sample size increases or the noise decreases, the estimation errors become
smaller, as expected. For σ = 1, in Figures 3–5 of the Supplemental Material,
we show the estimated nonparametric curves for 20 generated data sets, to-
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gether with the truth (solid red curve), to visually illustrate how the estimation
accuracy improves with sample size.

Our next aim is to compare the performance of SiAM with two of its special
cases, PLSiM and AM. We generated data from the following three examples.
Examples 2 and 3 correspond to PLSiM and AM, respectively, and Example 4
represents a more general model that is actually not within the class of SiAM.

Example 2. Yi = g(X�
i α) + X�

i β, i = 1, . . . , n, where g(x) = 10x2, α =
(2, 1,−2,−1)�/

√
10, and β = (2, 2, 2, 2)�.

Example 3. Yi = 1 +
∑4

j=1{mj(Xij) − Emj(Xij)} + εi, i = 1, . . . , n, where
mj , j = 1, . . . , 4 are the same as in Example 1.

Example 4. Yi = −4+ {X�
i α+

∑4
j=1 2(Xij − 0.2)2}2 + εi, i = 1, . . . , n, where

α = (2, 1,−2,−1)�/
√
10.

We consider the same parameter settings as before and in each case generate
100 data sets. Whichever example is the true generating model, we fit the data
using the three different models: SiAM, PLSiM and AM. Of course we expect
that the estimation would be best when the model used in fitting matches the
true generating model. However, calculating the estimation errors is generally
not appropriate in comparing different models. For example if the true model is
SiAM while an AM is applied in model fitting, it is expected that the estimator
is consistent for estimating the “best approximation” of SiAM using AM, which
is not necessarily the additive part in the true generating model. In particular,
it is difficult to find numerically what quantity the AM is trying to estimate
when the true model is SiAM.

Thus we compare the performance of different methods in terms of their
prediction accuracy by generating independently 500 observations from the true

model. The prediction error is define to be
√∑500

i=1(Yi − Ŷi)2/500 where Ŷi is the

predicted response value and Yi is the generated true response. The prediction
errors are reported in Table 3. We can see that among three different fitting
methods, the prediction errors are smallest when the true model is used in data
fitting. However, the prediction errors for SiAM are close to the best fitting
model for Examples 2 and 3, and much smaller than AM and PLSiM in Example
1. This illustrates that the cost of overfitting using a more flexible model is
relatively small compared to the cost of misspecification. Finally, in Example 4
for which all fitting models are misspecified, SiAM still has by far the smallest
prediction error, which is more obvious in the low-noise setting.

7. Discussion

In this paper, we have proposed a new model, SiAM, that combines the additive
model (AM) and single index model (SiM), and have developed statistical the-
ory for model identifiability. We have further developed a two-step procedure for
making global inferences for nonparametric functions. In brief, the model and
the proposed methods have the following properties: (i) the estimators of the
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Table 3

Prediction errors (average errors with standard deviations inside brackets on 100 simulated
data sets) by fitting three different models when the data are generated from Examples 1–4

in Section 6.

(n, σ)
Fitting Method

SiAM PLSiM AM
Example 1

(200, 0.5) 0.56(0.012) 1.01(0.023) 1.13(0.034)
(500, 0.5) 0.54(0.005) 0.99(0.011) 1.09(0.017)
(1000, 0.5) 0.50(0.003) 0.99(0.007) 1.06(0.012)

Example 2
(200, 0.5) 0.52(0.019) 0.50(0.010) 1.11(0.035)
(500, 0.5) 0.50(0.010) 0.49(0.004) 1.07(0.017)
(1000, 0.5) 0.49(0.004) 0.49(0.005) 1.06(0.013)

Example 3
(200, 0.5) 0.59(0.106) 1.04(0.131) 0.55(0.010)
(500, 0.5) 0.59(0.117) 1.03(0.135) 0.53(0.004)
(1000, 0.5) 0.55(0.157) 1.03(0.203) 0.49(0.002)

Example 4
(200, 0.5) 0.62(0.016) 1.03(0.029) 1.07(0.027)
(500, 0.5) 0.60(0.007) 1.00(0.014) 1.03(0.012)
(1000, 0.5) 0.59(0.006) 0.99(0.011) 1.02(0.008)

index parameters have been shown to be asymptotically normal, and the estima-
tors of the nonparametric functions have optimal rates of convergence; (ii) the
two-step estimators have the oracle property; (iii) the proposed methods show
promising performance in finite sample situations; and (iv) the implemented
algorithm is computationally efficient. Using regression splines, the implemen-
tation of the method is much simpler than that of the backfitting-based or
profile-based estimation.

Because SiAM contains the single index component and additive components,
it can detect interactions among the covariates as well as uncover possible non-
linear main effects, while SiM or AM can only achieve one or the other. Thus,
the proposed model is more flexible than those two models.

As a starting point, SiAM can be used for flexible exploratory analysis. If no
main effect is detected, one may simplify the model to a SiM, and if the single
index component is not significant, one may reduce the model to an additive one.
It appears possible that SiAM can be modified by using penalization to develop
a variable selection procedure for identifying which elements should enter in the
index component, and which ones can be treated as additive components: we
will consider this in future work. Moreover, as a future research topic, it would
be interesting to develop a method for adaptively choosing among the AM, SiM
and our proposed SiAM. Such a model selection problem can be tackled by the
“structural adaptation” strategy proposed in [11]. The detailed method and the
associated theories need a further investigation.

In this article, we have focused on modeling with fixed dimensional covariates.
It is of interest to extend the methods to high dimensional SiAM. However, the
theory and implementation of such an extension is much more complicated and
warrants further study.
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In this article we developed our theory assuming that all predictors are con-
tinuous. If some predictors are discrete, they can be added to the linear part
of the model: it is straightforward to extend our theory to this slightly more
general case, with a few complications of notation only.

Software

The algorithm is implemented in R and the code can be obtained from the
second author upon request.

Appendix

A.1. An example about identifiability

Here we give an example to illustrate that if data are generated from the SiAM
model, while we use an additive model to fit the data, then the results will be
totally misleading.

Suppose the data are generated from E(Y |X) = 2X1X2+2X2X3+2X1X3−
2X1− 2X2− 2X3+3/2, which can be re-expressed as (X1+X2+X3)

2− (X2
1 +

X2
2 +X2

3 + 2X1 + 2X2 + 2X3 − 3/2), with X1, X2, X3
i.i.d.∼ Unif(0, 1). This is a

SiAM. If we try to use an additive model to fit the data instead of SiAM. We
will see what exactly can we obtain.

Note that for any functions mj , j = 1, 2, 3 with E{m2
j (Xj)} < ∞, we have

E[{(X1 − 1/2)(X2 − 1/2)−m1(X1)−m2(X2)−m3(X3)}2]
= E{(X1 − 1/2)2(X2 − 1/2)2}+ E[{m1(X1) +m2(X2) +m3(X3)}2]

−2
3∑

j=1

E{(X1 − 1/2)(X2 − 1/2)mj(Xj)}

= E{(X1 − 1/2)2(X2 − 1/2)2}+ E[{m1(X1) +m2(X2) +m3(X3)}2]
≥ E{(X1 − 1/2)2(X2 − 1/2)2},

where the second equality above used the fact that the covariates are inde-
pendent and EX1 = EX2 = 1/2. The above means that the best additive
approximation of (X1 − 1/2)(X2 − 1/2) is zero function and thus the best ad-
ditive approximation of X1X2 is X1/2 + X2/2 − 1/4. From this, we immedi-
ately see the best additive approximation of E(Y |X) = (X1 + X2 + X3)

2 is
X2

1 +X2
2 +X2

3 + 2X1 + 2X2 + 2X3 − 3/2. As a result, we could mistakenly use
a the zero function to approximate E(Y |X) = (X1 +X2 +X3)

2 − (X2
1 +X2

2 +
X2

3 + 2X1 + 2X2 + 2X3 − 3/2) if we try to use additive model to fit the data
instead of SiAM in the limit of n → ∞.
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A.2. Assumptions

Denote the space of r-th order smooth function as C(r) [0, 1] =
{
ϕ
∣∣ϕ(r) ∈

C[0, 1]
}
. Let C0,1 (Xw) be the space of Lipschitz continuous function on Xw,

i.e.,

C0,1 (Xw) =

{
ϕ : ‖ϕ‖0,1 = sup

w �=w′,w,w′∈Xw

|ϕ (w)− ϕ (w′)|
|w − w′| < ∞

}
,

in which ‖ϕ‖0,1 is the C0,1-norm of ϕ. To establish the consistency and asymp-
totic normality for the proposed estimators, we need the following regularity
conditions.

(C1) The density function fU(α) (·) of the random variable U (α) = X�α is
bounded away from 0 on SU and fU(α) (·) ∈ C0,1 (SU ) for α in the neigh-

borhood of α0, where SU =
{
X�α,X ∈ S

}
and S is a compact support set

of X, and the density function fXj (xj) of random variable Xj is bounded
away from 0 on the support Sj of Xj for j = 1, . . . , p.

(C2) The nonparametric functions g ∈ C(r)(SU ) and mj ∈ C(r) (Sj), 1 ≤ j ≤ p,
for some integer r ≥ 2, and the spline order q satisfies q ≥ r.

(C3) The conditional variance function var(Y |X = x )= σ2 (x) is measurable
and bounded above from Cσ, for some constant 0 < Cσ < ∞.

(C4) The functions h0 and hj given in (12) satisfy h0 ∈ C(1) (SU ) and hj ∈
C(1) (Sj), j = 1, . . . , p.

Conditions (C1)–(C4) are commonly used in the nonparametric smoothing
literature; for example, see [7] and [41].

A.3. Proof of Theorems 2.1

Suppose we have other variables (f,θ,η, {fj}pj=1) satisfying the same constraints.
We have

g(X�α)+X�β+m1(X1)+· · ·+mp(Xp)= f(X�θ)+X�η+h1(X1)+· · ·+hp(Xp).
(A.1)

Taking second derivatives with respect to X, we get

g′′(X�α)αα� + diag{m′′
1(X1), . . . ,m

′′
p(Xp)} = f ′′(X�θ)θθ�

+diag{h′′
1(X1), . . . , h

′′
p(Xp)}.

The above displayed equation means g′′(X�α)αα�−f ′′(X�θ)θθ� is a diagonal
matrix.

First consider assumption (i). Without loss of generality we assume α1 >
0, α2 �= 0, α3 �= 0. By looking at the off-diagonal entries of the 3 × 3 principal
submatrix of g′′(X�α)αα� − f ′′(X�θ)θθ�, we get

g′′(X�α)α1α2 = f ′′(X�θ)θ1θ2,
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g′′(X�α)α2α3 = f ′′(X�θ)θ2θ3, (A.2)

g′′(X�α)α1α3 = f ′′(X�θ)θ1θ3.

Take X such that g′′(X�α) �= 0. From the above, the assumption that αj �=
0, j = 1, 2, 3 implies θj �= 0, j = 1, 2, 3. We also have α1/θ1 = α2/θ2 =
α3/θ3. Furthermore, looking at other off-diagonal entries of g′′(X�α)αα� −
f ′′(X�θ)θθ�, we get g′′(X�α)α1αj = f ′′(X�θ)θ1θj , which implies either αj =
θj = 0 or α1/θ1 = αj/θj , for all j. By the constraint ‖α‖ = 1 and α1 > 0 (sim-
ilarly for θ), we get α = θ. By (A.2) this also implies g′′(X�α) = f ′′(X�α). We
also get m′′

j (Xj) = h′′
j (Xj). Considering the constraints Emj(Xj) =

EXjmj(Xj) = 0, this implies mj = hj . Now (A.1) implies g(X�α) + X�β =
f(X�θ) +X�η. The identifiability follows from that of partially linear single-
index models [18, 37].

Now consider assumption (ii). Without loss of generality we assume α1 >
0, α2 �= 0. In this case similar to (i) we have

g′′(X�α)α1α2 = f ′′(X�θ)θ1θ2. (A.3)

By our assumption that g′′ is nonconstant and the identifiability of single-index
models, we know α = θ which immediately implies g′′(X�α) = f ′′(X�α). The
rest of the proof is the same as for (i).

A.4. Proofs of Theorems 4.1 and 4.2

By Bernstein’s inequality in [2], we can show that

sup
1≤�≤L

∣∣n−1∑n
i=1Bj� (Xij)− E{Bj� (Xj)}

∣∣ = Op(
√
logn/(nL)) = op(1).

Thus, for the b� and a� defined in (8), we have sup1≤�≤L |b�| = Op(L
−1) and

sup1≤�≤L |a�| = Op(L
−1), so that the basis functions bj (xj) = {bj1 (xj) , . . . ,

bjL (xj)}� with bj� (xj) = Bj� (xj) + a� + b�xj are asymptotically equivalent to
the B-spline basis functions Bj (xj) = {Bj1 (xj) , . . . , BjL (xj)}�.

The proposition below presents the convergence rate of the estimators
ĝ

(
u;α0,β0

)
, m̂j(xj ;α

0,β0) and ̂̇g (
u;α0,β0

)
, where ̂̇g (

u;α0,β0
)

=

Ḃ (u)
�
γ̂(α0,β0) which is the estimator of the first derivative of g (u).

Proposition A.1. Under Conditions (C1)–(C4), and K 
 L 
 Kn and Kn →
∞ and nK−1

n → ∞, as n → ∞, one has (i)
∣∣ĝ (

u;α0,β0
)
− g(u)

∣∣ =

Op

(
n−1/2K

1/2
n +K−r

n

)
uniformly for any u ∈ SU ; (ii)

∣∣m̂j(xj ;α
0,β0) −

mj(xj)
∣∣ = Op

(
n−1/2K

1/2
n +K−r

n

)
uniformly for any xj ∈ Sj ; and (iii) under

Kn → ∞ and nK−3
n → ∞, as n → ∞,

∣∣∣̂̇g (
u;α0,β0

)
− g(u)

∣∣∣ = Op

(
n−1/2K

3/2
n +

K−r+1
n

)
uniformly for any u ∈ SU .

Proof. The proofs follow similar procedures as given in [41] and [42], and thus
are omitted.
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Lemma A.1. Under Conditions (C1)–(C4) in the Appendix, and K 
 L 
 Kn,
n1/(2r+2) � Kn � n1/4, we have∥∥∥−L̇∗

n(α
0,β0)−2

∑n
i=1{Yi −

∑p
j=1mj(Xij)− g(X�

i α
0)−X�

i β
0}(Z̃�

i , X̃
�
i )

�
∥∥∥

= op

(
n1/2

)
,

where L̇∗
n(α

0,β0) =∂L̇∗
n(α

0,β0)/∂(α�,β�)�.

Proof. Let θ0 = (α0�,β0�)� and �̂(α,β) =
{
δ̂(α,β)�, γ̂(α,β)�

}�
. By the

definition of L∗
n(α,β), we have

− (1/2) L̇∗
n(α

0,β0) =
∑n

i=1[{∂�̂(α0,β0)�/∂θ}Φi(α
0)

+{X�
i
̂̇g(X�

i α
0;α0,β0),X�

i }�]
×[Yi −B∗ (Xi)

�
δ̂(α0,β0)−B

(
X�

i α
0
)�

γ̂(α0,β0)−X�
i β

0].

By Proposition A.1, we have for every 1 ≤ i ≤ n,

|Λi1| =
∣∣∣{Yi −B∗ (Xi)

�
δ̂(α0,β0)−B

(
X�

i α
0
)�

γ̂(α0,β0)−X�
i β

0}

−{Yi −
∑p

j=1mj(Xij)− g(X�
i α

0)−X�
i β

0}
∣∣∣

= Op(
√

Kn/n+K−r
n ). (A.4)

In the following, we will show that

‖Λi2‖ = ‖{∂�̂(α0,β0)�/∂θ}Φi(α
0) + {X�

i
̂̇g(X�

i α
0;α0,β0),X�

i }�

−(Z̃�
i , X̃

�
i )

�‖ = Op

(
n−1/2K3/2

n +K−1
n

)
. (A.5)

According to the result on page 149 of [8], there are δ = (δ
�
1 , . . . , δ

�
p )

� ∈ RpK

and γ ∈ RL, such that m̃j(xj) = bj(xj)
�δj and g̃(u) = B(u)�γ satisfying

supxj∈Sj
|m̃j(xj)−mj(xj)| = O

(
K−r

n

)
, supu∈SU

|g̃(u)− g(u)| = O
(
K−r

n

)
.

(A.6)

Let � =
(
δ�,γ�

)�
. Let Φi = Φi(α

0). By (10), we have

Φ�
i {∂�̂(α0,β0)/∂θ�} = Φ�

i [∂{�̂(α0,β0)−�}/∂θ�]

= Φ�
i [∂(

∑n
i=1ΦiΦ

�
i )

−1∑n
i=1Φi(Yi −X�

i β
0 −Φ�

i �)/∂θ�]

= Υ1i +Υ2i +Υ3i,

where

Υ1i = Φ�
i

{
(
∑n

i=1ΦiΦ
�
i )

−1∑n
i=1Φi∂(Yi −X�

i β
0 −Φ�

i �)/∂θ�
}
,

= −Φ�
i (n

−1∑n
i=1ΦiΦ

�
i )

−1n−1∑n
i=1Φi{X�

i
̂̇g(X�

i α
0;α0,β0),X�

i },
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Υ2i = Φ�
i

{
(n−1∑n

i=1ΦiΦ
�
i )

−1n−1
n∑

i=1

(∂Φi/∂θ
�)(Yi −X�

i β
0 −Φ�

i �)

}
,

Υ3i = Φ�
i

{
∂(n−1∑n

i=1ΦiΦ
�
i )

−1/∂θ�
}
n−1∑n

i=1Φi(Yi −X�
i β

0 −Φ�
i �).

Let

Υ̃1i = −Φ�
i (n

−1
n∑

i=1

ΦiΦ
�
i )

−1n−1∑n
i=1Φi{X�

i ġ(X
�
i α

0;α0,β0),X�
i }.

By Theorem 5.4.2 of [10], [9] and Condition (C1), we can show that∥∥(n−1∑n
i=1ΦiΦ

�
i )

−1
∥∥
∞ = Op(Kn). (A.7)

By Proposition A.1, (A.7) and
∥∥n−1

∑n
i=1Φi

∥∥
∞ = Op(K

−1
n ), we have

‖Υ1i − Υ̃1i‖2
≤

∥∥(n−1∑n
i=1ΦiΦ

�
i )

−1
∥∥
∞

∥∥n−1∑n
i=1Φi

∥∥
∞ Op

(
n−1/2K3/2

n +K−r+1
n

)
= Op(Kn)Op(K

−1
n )Op

(
n−1/2K3/2

n +K−r+1
n

)
= Op

(
n−1/2K3/2

n +K−r+1
n

)
. (A.8)

Under Condition (C4), we have∥∥∥Υ̃1i + {P (Zi)
�
,P (Xi)

�}
∥∥∥
2
= Op

(
n−1/2K1/2

n +K−1
n

)
, (A.9)

where P (X) and P (Z) are defined in (13). By Proposition A.1, we have∥∥∥{X�
i
̂̇g(X�

i α
0;α0,β0),X�

i }� − (Z�
i ,X

�
i )

�
∥∥∥
2
= Op

(
n−1/2K3/2

n +K−r+1
n

)
.

(A.10)

Therefore, by (A.8), (A.9) and (A.10), we have∥∥∥Υ1i + {X�
i
̂̇g(X�

i α
0;α0,β0),X�

i }� − (Z̃�
i , X̃

�
i )

∥∥∥
2

= Op

(
n−1/2K3/2

n +K−1
n

)
. (A.11)

Moreover,

‖Υ2i‖2 ≤
∥∥(n−1∑n

i=1ΦiΦ
�
i )

−1
∥∥
∞

∥∥∥n−1∑n
i=1(∂Φi/∂θ

�)
∥∥∥
∞

O(K−r
n )

= Op(Kn)Op(K
−1
n )O(K−r

n ) = Op(K
−r
n ), (A.12)

and similarly we have
‖Υ3i‖2 = Op(K

−r
n ). (A.13)
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Thus (A.5) is proved by (A.11), (A.12) and (A.13). By (A.4) and (A.5), we have

− (1/2) L̇∗
n(α

0,β0) =
∑n

i=1{(Z̃�
i , X̃

�
i )

� + Λi2}(εi + Λi1)

=
∑n

i=1(Z̃
�
i , X̃

�
i )

�εi +
∑n

i=1Λi2εi +
∑n

i=1(Z̃
�
i , X̃

�
i )

�Λi1

+
∑n

i=1Λi2Λi1,

where εi = Yi−
∑p

j=1mj(Xij)−g(X�
i α

0)−X�
i β

0. By the weak law of large num-

bers, (A.4) and (A.5), we have ‖
∑n

i=1Λi2εi‖2 =Op{(n1/2)
(
n−1/2K

3/2
n +K−1

n

)
},∥∥∥∑n

i=1(Z̃
�
i , X̃

�
i )

�Λi1

∥∥∥
2
= Op{(n1/2)

(√
Kn/n+K−r

n

)
}, and

‖
∑n

i=1Λi2Λi1‖2 = Op{n(
√

Kn/n+K−r
n )×Op

(
n−1/2K3/2

n +K−1
n

)
}.

Therefore, for n1/(2r+2) � Kn � n1/4, we have∥∥∥− (1/2) L̇∗
n(α

0,β0)−
∑n

i=1(Z̃
�
i , X̃

�
i )

�εi

∥∥∥
2
= op(n

1/2).

Proof of Theorem 4.1. By Lemma A.1, we have∥∥∥1/nL̈∗
n(α

0,β0)−2/n
∑n

i=1(Z̃
�
i , X̃

�
i )

�(Z̃�
i , X̃

�
i )

∥∥∥ = op(1).

By Taylor expansion, for α̂ and β̂ in a neighborhood of α0 and β0, we have

√
n

(
α̂−α0

β̂ − β0

)
=

{
n−1

∑n

i=1
(Z̃�

i , X̃
�
i )

�(Z̃�
i , X̃

�
i )

}−1

{
n−1/2

∑n

i=1
εi(Z̃

�
i , X̃

�
i )

�
}
+ op(1),

and thus the results in Theorem 4.1 follow.

Proof of Theorem 4.2. The results in Theorem 4.2 follow from Proposition
A.1 and Theorem 4.1 directly.

A.5. Proof of Theorem 5.1

We decompose m̂OR
1 (x1) into

m̂OR
1 (x1) = m̂OR

1,m(x1) + m̂OR
1,ε (x1), (A.14)

where m̂OR
1,m(x1) = B̃(x1)

�δ̂
OR

1,m and m̂OR
1,ε (x1) = B̃(x1)

�δ̂
OR

1,ε with

δ̂
OR

1,m = {
∑n

i=1B̃(Xi1)B̃(Xi1)
�}−1∑n

i=1B̃(Xi1)m1(Xi1),

δ̂
OR

1,ε = {
∑n

i=1B̃(Xi1)B̃(Xi1)
�}−1∑n

i=1B̃(Xi1)εi.
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Following the same reasons as Lemma A.7 in [23], by the strong approximation
lemma given in Theorem 2.6.7 of [6], we can prove that

sup
x1∈[a,b]

∣∣m̂OR
1,ε (x1)− m̂0

1,ε(x1)
∣∣ = o(nt) a.s. (A.15)

for some t < −r/(2r + 1) < 0, where

m̂0
1,ε(x1) = B̃(x1)

�{
∑n

i=1B̃(Xi1)B̃(Xi1)
�}−1∑n

i=1σ (Xi) B̃(Xi1)Zi,

where Zi, 1 ≤ i ≤ n, are i.i.d. N(0, 1) independent of Xi1. Define η(x1) =

σ−1
n (x1)m̂

0
1,ε(x1), where σ2

n(x1) is defined in (18) and σn(x1) 
 (L̃/n)1/2{1 +
op(1)} uniformly in x1 ∈ Sn,1. It is apparent that L{η(ξJ) |Xi, 1 ≤ i ≤ n} =
N(0, 1), so L{η(ξJ)} = N(0, 1) for 0 ≤ J ≤ Nn. Moreover, the eigenvalues of

{EB̃(X1)B̃(X1)
�}−1 
 L̃. Then with probability approaching 1, for J �= J ′,

|E{η(ξJ)η(ξJ ′)}| 
 (n/L̃)n−1
∣∣∣B̃(ξJ )

�{EB̃(X1)B̃(X1)
�}−1B̃(ξJ ′)

∣∣∣



∣∣∣B̃(ξJ)
�B̃(ξJ ′)

∣∣∣ = ∑L̃
�=1B̃�(ξJ)B̃�(ξJ ′),

and
∑L̃

�=1 B̃�(ξJ)B̃�(ξJ ′) 
 C for a constant 0 < C < ∞ when |�J − �J ′ | ≤ (q −
1) and

∑L̃
�=1 B̃�(ξJ )B̃�(ξJ ′) = 0 when |�J − �J ′ | > (q−1), in which �J denotes the

index of the knot closest to ξJ from the left. Therefore, by Nn 
 L̃, there exist
constants 0 < C1 < ∞ and 0 < C2 < ∞ such that with probability approaching

1, for J �= J ′, |E{η(ξJ)η(ξJ ′)}| ≤ C
−|�J−�J′ |
1 ≤ C

−|J−J ′|
2 . By Lemma A1 given

in [22], we have

lim
n→∞

P{sup0≤J≤Nn
|η(ξJ)| ≤ {2log(Nn + 1)}1/2dNn(α)} = 1− α. (A.16)

Further, according to the result on page 149 of [8], we can show that

supx1∈S1

∣∣∣{log(Nn + 1)}−1/2σ−1
n (x1){m̂OR

1,m(x1)−m1(x1)}
∣∣∣

= Op({log(Nn + 1)}−1/2(n/L̃)1/2L̃−r) = op(1). (A.17)

Therefore, by (A.14), (A.15), (A.16) and (A.17), we have

lim
n→∞

P{sup0≤J≤Nn

∣∣σ−1
n (ξJ){m̂OR

1,m(ξJ)−m1(ξJ)}
∣∣≤{2log(Nn + 1)}1/2dNn(α)}

= 1− α,

thus proving Theorem 5.1.

A.6. Proof of Theorem 5.2

Denote ĝ
(
X�

i α
)
= ĝ

(
X�

i α;α0,β0
)
, δ̂ = δ̂(α0,β0), γ̂ = γ̂(α0,β0), and Ui =

X�
i α

0. By the definitions of m̂SS
1 (x1) and m̂OR

1 (x1), we have

m̂SS
1 (x1)− m̂OR

1 (x1)
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= B̃(x1)
�{

∑n
i=1B̃(Xi1)B̃(Xi1)

�}−1∑n
i=1B̃(Xi1)

× [{g(X�
i α

0)− ĝ
(
X�

i α̂; α̂, β̂
)
}

+
∑
j≥2

{mj(Xij)− m̂j(Xij)}+X�
i (β

0 − β̂)]

= −B̃(x1)
�{

∑n
i=1B̃(Xi1)B̃(Xi1)

�}−1

×
∑n

i=1B̃(Xi1){Φ�
i,−1(δ̂

�
−1, γ̂

�)� − g(Ui)−
∑
j≥2

mj(Xij)}+O(n−1/2)

= −{Ψn,1(x1) + Ψn,2(x1)}+Op(n
−1/2), (A.18)

where Φi,−1 = {Φi,−1,�, 1 ≤ � ≤ L(p− 1)+K}� = {B∗
−1(Xi)

�,B(Ui)
�}� with

B∗
−1 (Xi) = {b2 (Xi1)

�
, . . . ,bp (Xip)

T}�, δ̂−1 = (δ̂
�
2 , . . . δ̂

�
p )

�, and

Ψn,1(x1) = B̃(x1)
�{

∑n
i=1B̃(Xi1)B̃(Xi1)

�}−1∑n
i=1B̃(Xi1)Φ

�
i,−1(δ̂

�
−1,e, γ̂

�
e )

�

Ψn,2(x1) = B̃(x1)
�{

∑n
i=1B̃(Xi1)B̃(Xi1)

�}−1

×
∑n

i=1B̃(Xi1){Φ�
i,−1(δ̂

�
−1,m, γ̂�

m)� − g(Ui)−
∑
j≥2

mj(Xij)},

in which

(δ̂
�
e , γ̂

�
e )

� = (δ̂
�
1,e, . . . , δ̂

�
p,e, γ̂

�
e )

� = (
∑n

i=1ΦiΦ
�
i )

−1∑n
i=1Φiεi;

(δ̂
�
m, γ̂�

m)� = (δ̂
�
1,m, . . . , δ̂

�
p,m, γ̂�

m)�

= (
∑n

i=1ΦiΦ
�
i )

−1∑n
i=1Φi{g(Ui) +

∑
j≥2

mj(Xij)},

and δ̂−1,e = (δ̂
�
2,e, . . . , δ̂

�
p,e)

� and δ̂−1,m = (δ̂
�
2,m, . . . , δ̂

�
p,m)�. With probability

approaching 1,

sup
x1∈S1

E{Ψn,1(x1) |Xi, 1 ≤ i ≤ n}2 
 (L̃/n)2(Kn/n)
2

× sup
x1∈S1

∣∣∣B̃(x1)
�{

∑n
i=1B̃(Xi1)Φ

�
i,−1}(

∑n
i=1ΦiΦ

�
i )

× {
∑n

i=1Φi,−1B̃(Xi1)
�}B̃(x1)

∣∣∣

 (L̃/n)2(Kn/n)

× sup
x1∈S1

∣∣∣B̃(x1)
�{

∑n
i=1B̃(Xi1)Φ

�
i,−1}{

∑n
i=1Φi,−1B̃(Xi1)

�}B̃(x1)
∣∣∣ .

By Bernstein’s inequality [2], we can prove that sup�,�′

∣∣∣∑n
i=1B̃�(Xi1)Φ

�
i,−1,�′

∣∣∣ =
Oa.s.(nL̃

−1K−1
n ). Thus, with probability approaching 1,

sup
x1∈S1

E{Ψn,1(x1) |Xi, 1 ≤ i ≤ n}2
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 (L̃/n)2(Kn/n)(n
2L̃−2K−2

n )Kn sup
x1∈S1

∣∣∣B̃(x1)
�B̃(x1)

∣∣∣ = O
(
n−1

)
.

Therefore, by Bernstein’s inequality in [2], we have

supx1∈S1
|Ψn,1(x1)| = Op(n

−1/2
√
logn). (A.19)

Moreover, by (A.6),

supx1∈S1
|Ψn,2(x1)|

≤ supx1∈S1

∣∣∣B̃(x1)
�{

∑n
i=1B̃(Xi1)B̃(Xi1)

�}−1

×
∑n

i=1B̃(Xi1){Φ�
i,−1(δ

�
−1,γ

�)− g(Ui)−
∑
j≥2

mj(Xij)}

∣∣∣∣∣∣ +O(K−r
n )

≤ supx1∈S1

∣∣∣B̃(x1)
�{

∑n
i=1B̃(Xi1)B̃(Xi1)

�}−1∑n
i=1B̃(Xi1)

∣∣∣O(K−r
n )

+O(K−r
n )

= Op(Kn/n)Op(n/Kn)O(K−r
n ) +O(K−r

n ) = Op(K
−r
n ). (A.20)

Therefore, Theorem 5.2 follows from (A.18), (A.19) and (A.20).

Supplementary Material

Additional Results for Simulation Studies
(doi: 10.1214/17-EJS1291SUPP; .pdf).
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