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Abstract: We consider the change-point problem for the marginal distri-
bution of subordinated Gaussian processes that exhibit long-range depen-
dence. The asymptotic distributions of Kolmogorov-Smirnov- and Cramér-
von Mises type statistics are investigated under local alternatives. By doing
so we are able to compute the asymptotic relative efficiency of the men-
tioned tests and the CUSUM test. In the special case of a mean-shift in
Gaussian data it is always 1. Moreover, our theory covers the scenario where
the Hermite rank of the underlying process changes.

In a small simulation study, we show that the theoretical findings carry
over to the finite sample performance of the tests.
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1. Introduction

Over the last two decades various authors have studied the change-point problem
under long-range dependence and classical methods are often found to yield
different results than under short-range dependence. The CUSUM test is studied
in Csörgő and Horvath (1997) and compared to the Wilcoxon change-point test
in Dehling et al. (2012). Ling (2007) investigates a Darling-Erdős-type result
for a parametric change-point test, and estimators for the time of change are
considered in Horvath and Kokoszka (1997) and Hariz et al. (2009). Moreover,
the special features of long memory motivated new procedures. Beran and Terrin
(1996) and Horvath and Shao (1999) are testing for a change in the linear
dependence structure of the time series and Berkes et al. (2006) and Baek and
Pipiras (2011) construct tests in order to discriminate between stationary long
memory observations and short memory sequences with a structural change. For
a general overview of the change-point problem under long-range dependence see
Kokoszka and Leipus (2001) and the associated chapter in Beran et al. (2013).

One of the classical change-point problems is the change of the marginal dis-
tributions of a time series {Yi}i≥1. When testing for at most one change-point
(AMOC) in the marginal distribution one often considers the empirical distribu-
tion function of the first k observations and that of the remaining observations.
Taking a distance between the empirical distributions and the maximum over
all k < n yields a natural statistic. Common distances are the supremum norm,
which gives the Kolmogorov-Smirnov statistic

Tn = max
1≤k<n

sup
x∈R

∣∣∣∣∣
k∑

i=1

1{Yi≤x} −
k

n

n∑
i=1

1{Yi≤x}

∣∣∣∣∣ , (1.1)

or an L2-distance, which gives the Cramér-von Mises statistic

Sn = max
1≤k<n

∫
x∈R

(
k∑

i=1

1{Yi≤x} −
k

n

n∑
i=1

1{Yi≤x}

)2

dF̂n(x). (1.2)

Both are widely used for goodness-of-fit tests and two-sample problems. In the
change-point literature they are considered by Szyszkowicz (1994) for indepen-
dent data, by Inoue (2001) for strongly mixing sequences and by Giraitis et al.
(1996b) for linear long-memory processes. However, note that in the LRD setting
only the Kolmogorov-Smirnov test has been investigated.

(1.1) and (1.2) are functionals of the sequential empirical process, that is∑�nt�
i=1 (1{Yi≤x} − F (x)) for t ∈ [0, 1] and x ∈ R. Thus the asymptotic dis-

tributions of Tn and Sn rely on that of the sequential empirical process. For
weakly dependent sequences this would be a Gaussian process, in the special
case of independent random variables it is called Kiefer-Müller process. For
stationary sequences that exhibit long-range dependence, Dehling and Taqqu
(1989a) proved that the limit process is of the form {J(x)Z(t)}t,x, where J(x)
is a deterministic function and the process is therefore called semi-degenerate.
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They considered subordinated Gaussian processes, in detail Yi = G(Xi) for any
measurable function G and a Gaussian sequence Xi with non-summable auto-
covariance function. A similar limit structure was later obtained independently
by Ho and Hsing (1996) and Giraitis et al. (1996a) for long-range dependent
moving-average sequences.

It is the main goal of this paper to derive the limit distribution of change-
point statistics of the type (1.1) and (1.2) under local alternatives. We then
apply these results to derive the asymptotic relative efficiency (ARE) of several
change-point tests. To this end, we investigate the sequence

G1(X1), . . . , G1(Xk∗), Gn(Xk∗+1, ) . . . Gn(Xn), (1.3)

Here Gn is a sequence of functions such that the distribution of Gn(X1) con-
verges to the distribution of G(X1) in some suitable way.

Therefore, we are able to analyze various types of change-points, among them
a mean-shift. Thus we may compute the ARE of Kolmogorov Smirnov, Cramér-
von Mises, CUSUM and Wilcoxon test and get the surprising result that in the
case of Gaussian data it is always 1.

The mathematically most challenging case is the situation when the Hermite
rank changes. The Hermite rank of the class {1{G(·)≤x} − F (x)}x∈R is defined
as the smallest positive integer, such that E[1{G(X1)≤x}Hq(X1)] �= 0 for some
x ∈ R, with Hq being the q-th Hermite polynomial. The structure of the lim-
iting process Z(t), e.g. the marginal distribution and the covariance structure,
mainly depends on m. However, a special feature of distributional changes in
subordinated Gaussian processes is the fact that the Hermite rank may change
too. Hence the question arises which Hermite process will determine the limit
distribution. Under a mean-shift the Hermite rank remains unchanged, which
can be seen easily by its definition.

Our results differ in various ways from those obtained in Giraitis et al.
(1996b), where changes in the coefficients of an LRD linear process were in-
vestigated. While the empirical process of LDR moving average sequences con-
verges to fractional Brownian motion, we may encounter higher order Hermite
processes. The possible change in the Hermite rank is therefore a novel feature
in our investigation.

The rest of the paper is organized as follows. In section 2 we will state a limit
theorem for the sequential empirical process under change-point alternatives.
Moreover, we will give the asymptotic distribution of the test statistics under the
hypothesis of no change as well as under local alternatives. Thus we are able to
derive the asymptotic relative efficiency of several change-point tests. In section
2.5 we consider the empirical process for long-range dependent arrays that are
stationary within rows. The outcome mainly serves as a device for proving the
main results, but is also of interest on its own. Section 3 contains the simulation
study. To the best of our knowledge, there are no results on the finite sample
performance of the Cramér-von Mises change-point test under long memory. It
is compared to other change-point tests and the effect of an estimated Hurst-
coefficient is discussed. We obtain that the theoretical results (e.g. asymptotic
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relative efficiency between Cramér-von Mises and CUSUM test) carry over to the
finite sample performance of the tests. Finally, proofs are provided in section 4.

2. Main results

Let {Xi}i≥1 be a stationary Gaussian process, with

EXi = 0, EX2
i = 1 and ρ(k) = EX0Xk = k−DL(k),

for 0 < D < 1 and a slowly varying function L. The non-summability of the
covariance function is one possibility to define long-range dependence. We inves-
tigate our results for so called subordinated Gaussian processes {Yi}i≥1, where
Yi = G(Xi) and G : R → R is a measurable function. The key tool in our anal-
ysis of possible changes in the marginal distribution of such a process is the
sequential empirical process. To obtain weak convergence of this process the
right normalization is needed. Here it is denoted as dn,m, defined by

d2n,m = V ar

(
n∑

i=1

Hm(Xi)

)
∼ n2HLm(n), (2.1)

where the constant of proportionality is 2m!(1−mD)−1(2−mD)−1, see Theorem
3.1 in Taqqu (1975). H = 1−mD/2 is called Hurst coefficient and

m = min
{
q > 0 | E[1{G(X1)≤x}Hq(X1)] �= 0 for some x

}
,

is the Hermite rank of {1{G(·)≤x} −F (x)}x∈R. The mentioned result of Dehling
and Taqqu (1989a) then reads as follows.

Theorem A (Dehling, Taqqu). Let the class of functions {1{G(·)≤x}−F (x)}x∈R

have Hermite rank m and let 0 < D < 1/m. Then

1

dn,m

�nt�∑
i=1

(1{G(Xi)≤x} − F (x))
D−→ Jm(x)

m!
Zm,H(t), (2.2)

where the convergence takes place in D([0, 1] × [−∞,∞]), equipped with the
uniform topology. Jm(x) is defined by

Jm(x) = E[1{G(X1)≤x}Hm(X1)]

and (Zm,H(t))t∈[0,1] is an m-th order Hermite process, see Taqqu (1979) for a
definition.

Remark 2.1. In the case m = 1, the Hermite process becomes the well known
fractional Brownian Motion, which we denote by BH(t).

2.1. The empirical process under change-point alternatives

Let us consider the following change-point model. Define the triangular array
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Yn,i =

{
G(Xi), if i ≤ �nτ	,
Gn(Xi), if i ≥ �nτ	+ 1,

(2.3)

for measurable functions G and (Gn)n and unknown τ ∈ (0, 1). For τ = 0 one
gets a row-wise stationary triangular array, as considered in section 2.5, and for
τ = 1 a stationary sequence, as in Dehling and Taqqu (1989a). In what follows,
we will denote the distribution functions of G(Xi) and Gn(Xi) by F and F(n),
respectively.

To obtain weak convergence of the empirical process of (2.3) we have to make
some assumptions on the structure of the change and the Hermite rank.

Assumption A:

A1. The class of functions {1{G(·)≤x}}x∈R has Hermite rank m with 0 < D <
1/m.

A2. Let m(n) be the Hermite rank of {1{Gn(·)≤x}}x∈R and
m∗ = lim infn→∞ m(n). Then we assume

sup
x∈R

(P (min{G(X1), Gn(X1)} ≤ x)− P (max{G(X1), Gn(X1)} ≤ x))

= o(n(m∗−m)D(1+δ)/2),

for some δ > 0.

Theorem 2.1. If Assumption A holds, then

1

dn,m

�nt�∑
i=1

(1{Yn,i≤x} − P (Yn,i ≤ x))
D−→ Jm(x)

m!
Zm,H(t),

where Jm(x) is the Hermite coefficient of 1{G()≤x}. The convergence takes place
in D([0, 1]× [−∞,∞]), equipped with the uniform topology.

Remark 2.2. (i) For given functions G(x) and Gn(x), Assumption A2 might
easily be checked, see the examples below. It serves to ensure convergence of the
Hermite coefficients Jq,n(x) = E[1{Gn(Xi)≤x}Hq(Xi)]. In detail,

sup
x∈R

(P (min{G(X1), Gn(X1)} ≤ x)− P (max{G(X1), Gn(X1)} ≤ x)) → 0

implies, see the proof of Lemma 4.5,

sup
x∈R

|Jq,n(x)− Jq(x)| → 0 ∀q ∈ N. (2.4)

By Assumption A1, J1(x) = . . . Jm−1(x) = 0 for all x ∈ R, yet Jm(x) �= 0 for
some x. Together with (2.4) this implies m∗ = lim infn→∞ m(n) ≤ m.

(ii) Moreover, A2 implies convergence of the marginal distribution function.
To see this, note

|F(n)(x)− F (x)| = max{F(n)(x), F (x)} −min{F(n)(x), F (x)}



2466 J. Tewes

≤ P (min{G(X), Gn(X)} ≤ x)− P (max{G(X), Gn(X)} ≤ x)

and n(m−m∗)D(1+δ)/2 = O(1). However, the converse is not always true. Con-
sider, for instance, the functions G(x) = x and Gn(x) = G1(x) = −x or the
situation in Example 2.8. Then again, there are lots of natural choices of G and
Gn for whom convergence of the marginal distribution functions (with a certain
rate) implies Assumption A2. Among them Gn(x) = G(x) + μn (mean-shift),
Gn(x) = σnG(x) (change in variance) and

Gn(x) = F−1
(n) ◦ Φ(x) and G(x) = F−1 ◦ Φ(x).

(iii) Our assumptions explicitly allow for the Hermite rank to change together
with the marginal distribution. Then again, the limit behavior seems to be
untouched by this change. Intuitively, this corresponds to the idea that the
change in distribution and the change in the Hermite coefficient, both caused
by the difference of G and Gn, are of the same order. For q < m this enforces the
function Jq,n(x) to converge rather fast to 0. Technically, this can be explained
through A2. If this assumption is dropped, we might actually encounter limits
with multiple Hermite processes. Such cases will be considered in Example 2.8
and Corollary 2.13.

(iv) If A1 is violated, the sequence {G(Xi)}i≥1 is actually short-range depen-
dent. For stationary observations Csörgő and Mielniczuk (1996) showed conver-
gence of the sequential empirical process to a two-parameter Gaussian process.
Change-point alternatives have not been considered for such random variables
yet, but would require fundamentally different proofs compared to our results.

2.2. Asymptotic behavior of the change-point statistics

We now apply the results concerning empirical processes to determine the
asymptotic distributions of the Kolmogorov-Smirnov statistic

Tn = sup
t∈[0,1]

sup
x∈R

d−1
n,m

∣∣∣∣∣∣
�nt�∑
i=1

1{Yn,i≤x} −
�nt	
n

n∑
i=1

1{Yn,i≤x}

∣∣∣∣∣∣ , (2.5)

and of the Cramér-von Mises statistic

Sn = d−2
n,m sup

t∈[0,1]

∫
R

∣∣∣∣∣∣
�nt�∑
i=1

1{Yn,i≤x} −
�nt	
n

n∑
i=1

1{Yn,i≤x}

∣∣∣∣∣∣
2

dF̂n(x). (2.6)

To get a non degenerate limit under a sequence of local alternatives it is impor-
tant to choose the right amount of change. For a mean-shift this is naturally the
difference of the expectations before and after the change. For a general change
we formulate the test problem as follows: We wish to test the hypothesis

H : Assumption A1 holds and Gn(x) = G(x) for all x ∈ R and n ≥ 1,



Local alternatives under LRD 2467

against the sequence of local alternatives

An : Assumption A holds and, for n → ∞,
n

dn,m
(F (x)− F(n)(x)) → g(x), (2.7)

uniformly in x, where g(x) is a measurable function of bounded

total variation, whose support has positive Lebesgue measure.

Remark 2.3. Note that nd−1
n,m ∼ nmD/2L−m/2(n). Thus (2.7) implies

n(m−m∗)D(1+δ)/2(F (x)− F(n)(x)) → 0,

for δ < m∗/(m−m∗) or m∗ = m. This again implies Assumption A2 for certain
choices of functions G and Gn, see Remark 2.2 (ii).

Theorem 2.2. (i) Under the hypothesis H of no change we have, as n → ∞,

Tn
D−→ sup

x∈R

|Jm(x)/(m!)| sup
t∈[0,1]

∣∣∣Z̃m,H(t)
∣∣∣

and Sn
D−→

∫
x∈R

(Jm(x)/(m!))2 dF (x) sup
t∈[0,1]

∣∣∣Z̃m,H(t)
∣∣∣2 ,

where Z̃m,H(t) = Zm,H(t)− tZm,H(1).
(ii) Under the sequence of local alternatives An we have, as n → ∞,

Tn
D−→ sup

x∈R

sup
t∈[0,1]

∣∣∣Jm(x)/(m!)Z̃m,H(t)− g(x)ψτ (t)
∣∣∣

and Sn
D−→ sup

t∈[0,1]

∫
x∈R

(
Jm(x)/(m!)Z̃m,H(t)− g(x)ψτ (t)

)2

dF (x),

where

ψτ (t) =

{
t(1− τ), if t ≤ τ,

τ(1− t), if t > τ.

Motivated by this Theorem, we consider change-point tests based on the
statistics Tn and Sn. Critical values might be chosen as

sup
x∈R

|Jm(x)/(m!)|q1−α,m,H and

∫
x∈R

(Jm(x)/(m!))2 dF (x)q21−α,m,H ,

for the Kolmogorov-Smirnov test and the Cramér-von Mises test, respectively.
Here q1−α,m,H is the (1 − α)-quantile of supt∈[0,1]|Z̃m,H(t)|. Thereby the tests
have asymptotically level α and nontrivial power against local alternatives.

The tests can be performed, if the right normalization for the empirical pro-
cess, the supremum of Jm(x) and the distribution of supt∈[0,1]|Z̃m,H(t)| are
known. In practical applications this might be not the case. Solutions are self-
normalization (Shao (2011), Betken (2016)), estimating the Hurst-coefficient
(see for example Künsch (1987)). The distribution of the limiting process might
be approximated by bootstrap estimators (Tewes (2016)) or subsampling tech-
niques (Betken and Wendler (2017+)).
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2.3. Examples

Example 2.4 (Mean-shift). Let Gn(x) = G(x) + μn with μn ∼ dn/n, then we
get the typical change-in-mean problem. In the case of long-range dependent,
subordinated Gaussian processes it was considered in Dehling et al. (2012, 2017),
Csörgő and Horvath (1997), Shao (2011) and Betken (2016). Let fG be the
probability density of G(X1), and assume that it is continuous and of bounded
variation. Then we obtain

n

dn,m
(F (x)− F(n)(x)) =

n

dn,m
(F (x)− F (x− μn)) → CfG(x),

where, due to continuity of fG, the convergence holds uniformly.

Example 2.5 (Change in the variance). To describe the change-in-variance-
problem define Gn(x) = 1/(1 − δn)G(x), with δn ∼ dn/n. For ease of notation
let δn = dn/n. Then we get

sup
x∈R

∣∣δ−1
n (F (x)− F(n)(x))− xfG(x)

∣∣
= sup

x∈R

∣∣δ−1
n (F (x)− F (x− δnx))− xfG(x)

∣∣
= sup

x∈R

∣∣∣∣xF (x)− (x− δnx)F (x− δnx)

δnx
− F (x− δnx)− xfG(x)

∣∣∣∣
≤ sup

x∈R

∣∣∣∣xF (x)− (x− δnx)F (x− δnx)

δnx
− (xfG(x) + F (x))

∣∣∣∣ (2.8)

+ sup
x∈R

|F (x− δnx)− F (x)|. (2.9)

The derivative of xF (x) is xfG(x) + F (x), hence (2.8) converges to 0. The
convergence is uniform, if fG and F are continuous. (2.9) converges to 0, because
of continuity, monotonicity and boundedness of F . Thus (2.7) holds with the
function g(x) = xfG(x). Assume without loss of generality σn = 1/(1− δn) > 1,
then

P max{G(X1), Gn(X1)} ≤ x)

= P (σnG(X1) ≤, G(x) ≥ 0) + P (G(X1) ≤ x,G(X1) ≤ 0)

=

{
F (x/σn), if x ≥ 0,

F (x), if x < 0.

The minimum can be treated analogously, hence Assumption A2 follows from
the convergence of F(n)(x) towards F (x).

Additionally, one might consider a combined change in mean and variance,
given through Gn(x) = σnG(x) + μn. In this case (2.7) holds with g(x) =
fG(x)(C1 + C2x).

Example 2.6 (Generalized inverse of a mixture distribution). By using the gen-
eralized inverse of a distribution function one could generate subordinated Gaus-
sian processes with any given marginals, see for example Dehling et al. (2017).



Local alternatives under LRD 2469

We use this for the change-point problem by setting

G ≡ F−1 ◦ Φ and Gn ≡ F−1
(n) ◦ Φ.

For a continuous distribution function F ∗ define the mixture

F(n)(x) = (1− δn)F (x) + δnF
∗(x),

with δn ∼ dnn
−1. Then (2.7) holds with g(x) = F ∗(x)− F (x) and moreover

P (max{G(X1), Gn(X1)} ≤ x) = P (max{F−1 ◦ Φ(X1), F
−1
(n) ◦ Φ(X1)} ≤ x)

= P (Φ(X1) ≤ min{F (x), F(n)(x)})
= min{F (x), F(n)(x)}.

Analogously, one has P (min{G(X1), Gn(X1)} ≤ x) = max{F (x), F(n)(x)}.
Hence

P (min{G,Gn}(X1) ≤ x)− P (max{G,Gn}(X1) ≤ x) = |F(n)(x)− F (x)|,

thus Assumption A2 is also satisfied. For strongly mixing data similar local
alternatives were considered by Inoue (2001).

Example 2.7 (χ2-distribution). Consider a χ2-distribution given throughG(x) =
x2 and note that the indicator functions have Hermite rank m = 2, see also
Dehling and Taqqu (1989a). Further let

Gn(x) =

{
anx

2, if x ≥ 0,

x2, if x < 0,

with Hermite ranks m(n) = 1 for all n ∈ N. If (an − 1) ∼ dn,2/n, then one can
show (similar to the case of a variance change in Example 2.5) that

n

dn,2
(P (G(X1) ≤ x)− P (Gn(X1) ≤ x))

→ C
√
xφ(

√
x)1[0,∞)(x),

uniformly in x. As Assumption A2 is satisfied too, we may apply Corollary 2.2
(ii) with function g(x) = C

√
xφ(

√
x)1[0,∞)(x) and m = 2.

Example 2.8 (Multiple Hermite processes in the limit). In the previous example,
together with the marginal distribution, also the Hermite rank has changed.
However, the limiting process seems to be untouched by this fact and one might
ask whether this is intuitive or not.

It is caused by the fact that the change in the distribution and the change in
the Hermite coefficients, both originating in the difference of the functions G(x)
and Gn(x), are of the same order.

To get an additional Hermite process in the limit, one would need (an− 1) ∼
dn,2/dn,1, see Corollary 2.13 and its proof. But then

n

dn,2
sup
x

∣∣F (x)− F(n)(x)
∣∣ = n

dn,1

dn,1
dn,2

sup
x

∣∣F (x)− F(n)(x)
∣∣ → ∞,

and the test would have asymptotic power 1.
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In order to achieve a nontrivial asymptotic power, one has to consider struc-
tural breaks that consists of two aspects and where only one is captured by the
marginal distribution. To this end define the transformations

G(x) = Φ−1(F (|x|)) = Φ−1(2Φ(|x|)− 1)

and

Gn(x) = Φ−1(F ∗
(n)(G

∗
n(x)) + μn,

where F ∗
(n)(x) = P (G∗

n(Xi) ≤ x) and

G∗
n(x) =

{
anx

2, if x ≥ 0,

x2, if x < 0,

for some sequence (an)n with an �= 1 and an → 1. On the one hand, {1{G()≤x}}x
has Hermite rank m = 2 and G(Xi) ∼ N(0, 1). On the other hand, {1{Gn()≤x}}x
has Hermite rank m(n) = 1 for all n ∈ N and Gn(Xi) ∼ N(μn, 1). Now let
μn ∼ dn,2/n. Then Example 2.4 applies and we obtain

n

dn,2
(F(n)(x)− F (x)) =

n

dn,2
(Φ(x− μn)− Φ(x)) → Cφ(x),

for any sequence (an)n. In contrast, the convergence of the Hermite coefficients
is highly influenced by (an)n. If the sequence is chosen such that (an − 1) ∼
dn,2/dn,1 (therefore, it converges slower than μn), then the sequential empirical
process will converge towards

K(x, t) =

{
2−1J2(x)Z2(t), if t ≤ τ,

J̃1(x)Z1(t) + 2−1J2(x)Z2(t), if t > τ.

Actually, this can be proved similar to Corollary 2.13. Moreover, the Kolmogorov-
Smirnov statistic converges weakly to

sup
t∈[0,1]

sup
x∈R

|K(x, t)− tK(x, 1)− ψτ (t)Cφ(x)|.

We find this example rather pathological, therefore such situations are excluded
from the main results via Assumption A2.

2.4. Asymptotic relative efficiency

By studying the asymptotic distributions under local alternatives one might
compare different tests in terms of the asymptotic relative efficiency (ARE).
Here we give a precise definition of the ARE in the very special context of our
change-point setting. The general idea is due to Pitman (1948) (for a published
article see for example Noether (1950)) and was formalized in Noether (1955).
Of course it can be extended to all kinds of testing procedures.
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Definition 2.9. Let T1 and T2 represent two change-point test procedures.
Consider the local alternatives

(G,Gnk
, τ) and a sample size (nk)k,

(G, G̃mk
, τ) and a sample size (mk)k,

such that Gnk
(x) = G̃mk

(x) = Gk(x) for all k ≥ 1 and x ∈ R.
Let β1 be the asymptotic power of the test T1 against the local alternatives

given by (G,Gnk
, τ, (nk)k) and β2 be the asymptotic power of the test T2 against

the local alternatives given by (G, G̃mk
, τ, (mk)k). If β1 equals β2, then the

asymptotic relative efficiency (ARE) of the tests T1 and T2 is defined as

ARE(T1, T2) = lim
k→∞

mk

nk
.

Example 2.10 (Mean-shift in Gaussian data). Consider G(x) = x and Gn(x) =
G(x) + μn, in other words a mean-shift in Gaussian data. As for the Hermite
coefficient function, we get J1(x) = −φ(x), where φ is the standard normal
probability density. Thus, according to Corollary 2.2, for a sample size n the
test statistic Tn converges towards

sup
x∈R

|φ(x)| sup
t∈[0,1]

∣∣∣B̃H(t) + Cψτ (t)
∣∣∣ = (2π)−1/2 sup

t∈[0,1]

∣∣∣B̃H(t) + Cψτ (t)
∣∣∣ ,

where C = limn→∞ μnn/dn,1. Under the Null, that is we have a stationary
standard Gaussian sequence, the limit distribution would be

sup
x∈R

|φ(x)| sup
t∈[0,1]

∣∣∣B̃H(t)
∣∣∣ = (2π)−1/2 sup

t∈[0,1]

∣∣∣B̃H(t)
∣∣∣ .

For the Cramér-von Mises statistic we obtain analogously the limit distributions∫
φ3(x)dx sup

t∈[0,1]

∣∣∣B̃H(t) + Cψτ (t)
∣∣∣2 and

∫
φ3(x)dx, sup

t∈[0,1]

∣∣∣B̃H(t)
∣∣∣2

under local alternative and hypothesis, respectively. Hence, in this special case
the CUSUM test, the Wilcoxon test (see Dehling et al. (2017) for each), the
Kolmogorov-Smirnov test and the Cramér-von Mises test all have the same
asymptotic power, namely

P

(
sup

t∈[0,1]

|B̃H(t) + Cψτ (t)| > q1−α,H

)
, (2.10)

where the sample size is the same for all tests and C = limn→∞ μnn/dn,1, again
for all four tests. Moreover, q1−α,H is the (1−α)-quantile of the maximum of a

fractional Brownian bridge supt∈[0,1]|B̃H(t)|.
Now let β ∈ (0, 1) be the “desired” asymptotic power. Then all tests achieve

this power under the same sequence of sample sizes. Consequently, the ARE of
the four tests is 1. This result is quite surprising, keeping in mind that CUSUM
and Wilcoxon tests are designed to detect level-shifts, while our tests have power
against all kinds of distributional changes.
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For non-Gaussian data and change-points beyond a simple mean-shift, the
investigation of the ARE is not that straightforward. In fact, little is known
about the distribution of

sup
t
|B̃H(t) + f(t)|,

and even less if higher order Hermite processes are considered. This seems to
prevent a precise computation of the ARE in many cases. However, one might
derive lower bounds for the efficiency, as we do in the next example for a com-
bined change in mean and variance. Unlike in the previous example, we will
make use of the subtle definition of the ARE.

Example 2.11 (Combined change in mean and variance). Let G(x) = x and
Gk(x) = σkx+μk, that is a combined change of mean and variance in Gaussian
data. If further μkk/dk,1 → C1 > 0 and (1 − 1/σk)k/dk,1 → C2 > 0, then by
Example 2.5 the empirical bridge-type process converges to (for the sample size
k → ∞)

φ(x)B̃H(t) + φ(x)(C1 + C2x)ψτ (t), x ∈ R, t ∈ [0, 1].

We now consider slightly modified Cramér-von Mises and CUSUM tests, in
detail, instead of [0, 1] the supremum is taken over [κ1, κ2] for some κ1 ∈ (0, 1/2)
and κ2 ∈ (1/2, 1).

The asymptotic distribution of the CUSUM test has been derived in Dehling
et al. (2017), but only in the case of a mean-shift with constant variance. How-
ever, for EG2(Xi) < ∞ the CUSUM statistic is a continuous functional of the
sequential empirical process. Thus, we might apply our Theorem 2.1 and con-
clude that the CUSUM statistic converges under this type of local alternatives
to

sup
t∈[κ1,κ2]

∣∣∣∣
∫

φ(x)
(
B̃H(t) + (C1 + C2x)ψτ (t)

)
dx

∣∣∣∣
= sup

t∈[κ1,κ2]

∣∣∣B̃H(t) + C1ψτ (t)
∣∣∣ .

Note that this is the same limit as under a mean-shift with constant variance
and thus, too, the asymptotic power is the same as in example 2.10.

The limiting distribution of the Cramér-von Mises statistic is given by

Z2 = sup
t∈[κ1,κ2]

∫
φ3(x)

(
B̃H(t) + (C1 + C2x)ψτ (t)

)2

dx

= sup
t∈[κ1,κ2]

{∫
φ3(x)dx

(
B̃H(t) + C1ψτ (t)

)2

+ C2
2ψ

2
τ (t)

∫
φ3(x)x2dx

}
,

and for its asymptotic power we obtain

P

(
Z2 > q21−α,H

∫
φ3(x) dx

)
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= P

(
Z2 > q21−α,H

∫
φ3(x) dx , sup

t∈[κ1,κ2]

{B̃H(t)} > q1−α,H

)
(2.11)

+ P

(
Z2 > q21−α,H

∫
φ3(x) dx , sup

t∈[κ1,κ2]

{B̃H(t)} ≤ q1−α,H

)
.

First assume supt{B̃H(t)} ≤ q = q1−α,H and consider C∗
1 , given by

C∗
1 = f∗(C1, C2, q, τ, κ1, κ2)

= min
t∈[κ1,κ2]

⎧⎪⎪⎨
⎪⎪⎩

√
q2 + 2qC1ψτ (t) +

(
C2

1 + C2
2

∫
φ3(x)x2dx∫
φ3(x)dx

)
ψ2
τ (t)− q

ψτ (t)

⎫⎪⎪⎬
⎪⎪⎭ .

Now C∗
1 is constructed in a way, such that 1

C∗
1 > C1

and for all ω ∈ Ω with supt B̃H(t;ω) ≤ q

Z2 = sup
t∈[κ1,κ2]

{∫
φ3(x)dx

(
B̃H(t) + C1ψτ (t)

)2

+ C2ψ
2
τ (t)

∫
φ3(x)x2dx

}

> sup
t∈[κ1,κ2]

{∫
φ3(x)dx

(
B̃H(t) + C∗

1ψτ (t)
)2
}
.

If, on the other hand, supt{B̃H(t)} > q1−α,H , then (because C1 > 0) automati-
cally Z2 > q21−α,H

∫
φ3(x)dx. Combining these two findings with (2.11) we can

bound the asymptotic power from below by

P

(
Z2 > q21−α,H

∫
φ3(x) dx

)

= P

(
sup

t∈[κ1,κ2]

∫
φ3(x)

(
B̃H(t) + C∗

1ψτ (t)
)2

dx > q21−α,H

∫
φ3(x)dx

)

≥ P

(
sup

t∈[κ1,κ2]

∣∣∣B̃H(t) + C∗
1ψτ (t)

∣∣∣ > q1−α,H

)
, (2.12)

for C∗
1 > C1.

Now we are ready to compute the ARE. To this end, we chose a differ-
ent sample size for both tests. In detail, (nk)k for the Cramér-von Mises test
and (mk)k for the CUSUM test. Moreover, the local alternatives are such that
GCvM

nk
(x) = GCUSUM

mk
(x) = Gk(x) for all x ∈ R, consequently

μ(1)
nk

= μ(2)
mk

= μk and σ(1)
nk

= σ(2)
mk

= σk.

For the CUSUM test, in order to achieve at least an asymptotic power β, its
limit distribution has to satisfy

1Here weed the restriction to [κ1, κ2].
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P

(
sup

t∈[0,1]

|B̃H(t) + C∗
1ψτ (t)| > qα,H

)
≥ β.

In other words, C∗
1 = π−1(β), where

π(C∗) = P

(
sup

t∈[0,1]

|B̃H(t) + C∗
1ψτ (t)| > qα,H

)

and π−1 is the generalized inverse. Therefore, the sample size of the CUSUM
test has to be chosen such that

C∗
1 = lim

k→∞

mk

dmk

μ(2)
mk

= lim
k→∞

mk

dmk

μk. (2.13)

We also obtain (as μk and (1− 1/σk) are of the same order)

lim
k→∞

mk

dmk

(
1− 1

σ
(2)
mk

)
= lim

k→∞

mk

dmk

(
1− 1

σk

)
= C∗

2 ,

for some C∗
2 > 0.

Next we will select the sample size for the Cramér-von Mises test such that
its asymptotic power might be bounded from below as in (2.12) (and therefore
by β). To this end, choose C1 > 0, such that

f̃(C1) = f(C1, C1
C∗

2

C∗
1

, q, τ, κ1, κ2) = C∗
1 .

The function f̃ : [0,∞) → [0,∞) is monotone increasing, surjective and continu-
ous (as the minimum is attained either in κ1 or κ2), therefore such a C1 always
can be found. By construction of the function f it follows that C1 < C∗

1 . Now
let the sample size of the Cramér-von Mises test satisfy

C1 = lim
k→∞

nk

dnk

μ(1)
nk

= lim
k→∞

nk

dnk

μk. (2.14)

Moreover, we observe

C2 = lim
k→∞

nk/dnk
(1− 1/σk)

= lim
k→∞

(nk/dnk
μk) (mk/dmk

μk)
−1

(mk/dmk
(1− 1/σk))

= C1C
∗
2/C

∗
1 .

Thus,

f(C1, C2, q, τ, κ1, κ2) = C∗
1 ,

and we observe for the asymptotic power of the Cramér-von Mises test

P

(
sup

t∈[κ1,κ2]

{∫
φ3(x) dx

(
B̃H(t) + C1ψτ (t)

)2

+ C2ψ
2
τ (t)

∫
φ3(x)x2 dx

}
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> q1−α,H

∫
φ3(x)dx

)

≥ P

(
sup

t∈[κ1,κ2]

∣∣∣B̃H(t) + C∗
1ψτ (t)

∣∣∣ > q1−α,H

)

≥ β.

So both test have (at least) asymptotic power β against the local alternatives
(G,Gk, τ). Finally, we obtain

(
mk

nk

)1−H

=
mk

dmk

μk
dnk

nk
μ−1
k

L(1/2)(mk)

L(1/2)(nk)

→ C∗
1

C1
> 1,

by construction of the sample sizes and the definition of slowly varying functions.
Consequently

ARE(CvM,CUSUM) = (C∗
1/C1)

1/(1−H) > 1.

In other words, the Cramér-von Mises test is asymptotically more efficient, no
matter how small the additional variance-change is.

2.5. The empirical process of triangular arrays

Since the work of Dehling and Taqqu (1989a,b), uniform reduction principles
have become the main tool in the analysis of empirical processes of long-range
dependent data. More precisely, the empirical process gets approximated only
by the first term of its Hermite expansion (if the underlying process is not
Gaussian other expansions are available). However, most results are investigated
for stationary sequences. When considering

G(X1), . . . , G(X�nτ�), Gn(X�nτ�+1), . . . , Gn(Xn),

the empirical process of the first �nτ	 random variables can be approximated
just as in Dehling and Taqqu (1989a). In contrast the Hermite expansion of
1{Gn(Xi)≤x} − F(n)(x) is

∞∑
q=m∗

Jq,n(x)

q!
Hq(Xi).

Two difficulties arise. First, m∗ might be smaller than m, the Hermite rank
of {1{G(·)≤x}}x∈R. Secondly, the coefficients Jq,n(x) depend on n and might
converge uniformly to 0. Thus, it is a priori not clear which term of the Hermite
expansion is asymptotically dominant or if there are even more than one. The
next result is a reduction principle that lays emphasis on this aspects. We will
make use of it in the proof of Theorem 2.1, but is also of interest on its own.
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Theorem 2.3. Let {Gn}n be a sequence of measurable functions and let m(n)
be the sequence of Hermite ranks of {1{Gn(·)≤x}}x∈R. Then, for any m ∈ N with
m(n) ≤ m < 1/D (for n ≥ n0),

P

⎛
⎝ sup

t∈(0,1)

sup
x∈R

1

dn,m

∣∣∣∣∣∣
�nt�∑
i=1

(1{Gn(Xi)≤x} −
m∑
q=0

Jq,n(x)

q!
Hq(Xi))

∣∣∣∣∣∣ > ε

⎞
⎠

≤ Cn−κ(1 + ε−3),

where C and κ do not depend on n.

Remark 2.12. (i) Theorem 2.3 contains the reduction principle of Dehling and
Taqqu (1989a) as a special case (Gn(x) = G(x) and m(n) = m).

(ii) Note that the class {1{Gn(·)≤x}−F(n)(x)}x∈R might have a Hermite rank

smaller than m (say m∗ < m). Thus, one might expect d−1
n,m∗ as normalization.

The weaker normalization d−1
n,m is however possible since the empirical process

is approximated by additional terms of the Hermite expansion, in detail those
up to m.

(iii) A similar result is given by Wu (2003), who considers linear long memory
processes and even shows convergences with respect to a weighted supremum
metric. Then again, he considers only the classical empirical process, while we
also treat the sequential version. Moreover, we consider triangular arrays, which
Wu (2003) does not.

Corollary 2.13. Let {Gn}n be sequence of measurable functions and let m(n)
be the sequence of Hermite ranks of {1{Gn(·)≤x}}x∈R. If further m∗ ≤ m(n) ≤
m < 1/D for all n ≥ n0 and

dn,q
dn,m

Jq,n(x)

q!
→ hq(x) ∀q ∈ {m∗, . . . ,m},

uniformly in x, then

1

dn,m

�nt�∑
i=1

(1{Gn(Xi)≤x} − F(n)(x))
D−→

m∑
q=m∗

hq(x)Zq(t).

(Zq,H(t))t∈[0,1] are uncorrelated, qth order Hermite processes.

Remark 2.14. (i) Comparing the limit process of Corollary 2.13 to that of The-
orem 2.1 it is apparent that multiple Hermite Processes are involved. This is
not the case in Theorem 2.1. The reason is Assumption A2, which causes the
Hermite coefficients Jm,n(x) to converge rather fast.

(ii) The Hermite processes occurring in the limit are dependent, see Propo-
sition 1 in Bai and Taqqu (2013).

Remark 2.15. In view of the proof of Corollary 2.13 it is important to note
that the functions hq are uniform limits of the cádlág-functions Jm,n(x) and
hence elements of D[−∞,∞]. As a consequence they are also bounded (Pollard
(1984)).



Local alternatives under LRD 2477

Example 2.16. There are indeed sequences of functions {Gn}n that satisfy the
conditions of Corollary 2.13. Consider again the functions from Example 2.7,
namely Gn(x) = x2(1x≥0 + an1x<0) with an → 1 and an �= 1. Thus, we are in
the situation of Theorem 2.3 with m(n) = 1 for all n ∈ N. One obtains, an → 1s

sup
x∈R

|J2,n(x)− J2(x)| → 0,

with

J2(x) = E[1{X2
1≤x}(X

2
1 − 1)] = −2

√
xφ(

√
x)1{x≥0}.

If in addition an ∼ n−D/2L1/2(n) ∼ dn,2/dn,1, then

sup
x

∣∣∣∣dn,1dn,2
J1,n(x)− Cxφ(

√
x)1x≥0

∣∣∣∣ → 0,

for some constant C depending onD only. Corollary 2.13 then holds withm = 2,
m∗ = 1, h1(x) = Cxφ(

√
x)1x≥0 and h2(x) = J2(x)/2.

3. Simulation study

3.1. Fractional Gaussian noise

Consider a mean-shift in Gaussian data. Then Example 2.4 states that the
Cramér-von Mises test (and the Kolmogorov-Smirnov test) are asymptotically
as efficient as the CUSUM test. The goal of this simulation study is to examine
whether this theoretical and asymptotic result carries over to the finite sample
performance of the tests. We will consider samples of size 50 to 400. For these
situations the approximation of the empirical process by its semi-degenerate
limit process is quite inaccurate. The empirical size of the Cramér-von Mises test
will be therefore much larger than the nominal size, if critical values are deduced
from the asymptotic distribution. Instead, we simulate J = 1000 Gaussian time
series

Xj,1, . . . Xj,n, j = 1, . . . J,

with Hurst coefficientH. In the simulation study, we will use fractional Gaussian
noise for this sequences. Subsequently, a Cramér-von Mises statistic is calculated
for each of the J = 1000 Gaussian series, in detail

Sn,j = max
1≤k<n

∫
x∈R

(
k∑

i=1

1{Xj,i≤x} −
k

n

n∑
i=1

1{Xj,i≤x}

)2

dF̂n,j(x) j = 1, . . . J.

We then use the empirical quantiles of {Sn,j}Jj=1 as critical values. The
Cramér-von Mises statistic is invariant under monotone transformations of the
data (as is the Kolmogorov-Smirnov statistic). Hence the critical values are
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Table 1

Empirical power, H assumed to be known, size of level shift μ = 1, relative change positions
τ = 0.2 and τ = 0.5.

Relative change position τ = 0.2

H = 0.6 H = 0.7

n 50 100 250 400 50 100 250 400

S 0.196 0.566 0.854 0.970 0.158 0.215 0.547 0.689
W 0.263 0.525 0.910 0.983 0.201 0.233 0.501 0.636
C 0.288 0.666 0.933 0.986 0.276 0.284 0.555 0.769

H = 0.8 H = 0.9

n 50 100 250 400 50 100 250 400

S 0.101 0.221 0.241 0.350 0.057 0.098 0.236 0.167
W 0.089 0.156 0.264 0.383 0.089 0.116 0.191 0.147
C 0.171 0.234 0.348 0.349 0.164 0.127 0.239 0.223

Relative change position τ = 0.5

H = 0.6 H = 0.7

n 50 100 250 400 50 100 250 400

S 0.664 0.919 1.000 1.000 0.524 0.682 0.925 0.970
W 0.621 0.930 0.998 1.000 0.513 0.742 0.906 0.967
C 0.733 0.918 0.997 0.999 0.599 0.717 0.919 0.960

H = 0.8 H = 0.9

n 50 100 250 400 50 100 250 400

S 0.418 0.504 0.655 0.830 0.359 0.461 0.475 0.526
W 0.374 0.485 0.674 0.770 0.387 0.430 0.578 0.587
C 0.400 0.553 0.673 0.766 0.393 0.499 0.522 0.553

valid if our observations are monotone transformations of Gaussian data. We
note that this is a strong assumption and that an accurate approximation of the
empirical process for general long-range dependent data is an issue of future re-
search. The CUSUM statistic is not invariant under monotone transformations.
Therefore, the Wilcoxon change-point test is considered additionally.

In the first part of the simulation study, we treat realizations of a Gaussian
process X1, . . . , Xn, given by fractional Gaussian noise. For the implementa-
tion we have used the function fgnSim from the R-package fArma. Eventually a
change is added by Yi = Xi +μ1{i>�nτ�} and the three mentioned change-point
tests are applied to Y1, . . . , Yn.

If the Hurst-coefficient is assumed to be known, the empirical size of the tests
naturally equals the nominal one, due to the construction of the critical values.
The empirical power of Cramér-von Mises (denoted by Sn), Wilcoxon (denoted
by Wn) and CUSUM test (denoted by Cn) is displayed in Table 1. If the change
occurs in the middle of the observation period, the three tests are showing
almost exactly the same performance, which matches the theoretical results.
For early changes (after 20% of the observations) the CUSUM test is slightly
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Table 2

Empirical size, estimated Hurst coefficient.

H = 0.6 H = 0.7

n 50 100 250 400 50 100 250 400

SĤ 0.067 0.088 0.065 0.058 0.080 0.076 0.063 0.043
SĤ

k̂
0.082 0.105 0.085 0.083 0.122 0.143 0.107 0.081

WĤ 0.067 0.058 0.054 0.057 0.081 0.074 0.061 0.035
WĤ

k̂
0.070 0.100 0.102 0.078 0.122 0.118 0.100 0.081

CĤ 0.071 0.072 0.064 0.046 0.111 0.080 0.056 0.056
CĤ

k̂
0.085 0.090 0.103 0.081 0.116 0.127 0.095 0.078

H = 0.8 H = 0.9

n 50 100 250 400 50 100 250 400

SĤ 0.094 0.104 0.062 0.063 0.075 0.070 0.092 0.080
SĤ

k̂
0.136 0.141 0.099 0.077 0.087 0.127 0.118 0.112

WĤ 0.085 0.074 0.056 0.059 0.073 0.071 0.097 0.079
WĤ

k̂
0.129 0.137 0.087 0.074 0.098 0.146 0.115 0.103

CĤ 0.165 0.101 0.051 0.046 0.309 0.257 0.112 0.075
CĤ

k̂
0.218 0.127 0.094 0.072 0.137 0.130 0.083 0.063

more accurate than the other tests. Depending on sample size and strength of
dependence, either the Cramér-von Mises or the Wilcoxon test might be second
best.

3.2. Unknown Hurst coefficient

In applications the true Hurst coefficient H is unknown, and in the following we
will consider two different estimators. The first is the local Whittle estimator
(denoted by Ĥ) with bandwidth parameter m = �n2/3	, see Künsch (1987).
However, if there is actually a change in the data, the local Whittle estima-
tor is known to be biased. For the second estimator we therefore divide the
observations into two subsamples

X1, . . . , Xk̂ and Xk̂+1, . . . , Xn

and estimate H on each set, using again the local Whittle estimator. Finally
the new estimator is given by Ĥk̂ = k̂/nĤ1+(n− k̂)/nĤ2. Here k̂ is the natural
change-point estimator, associated with each test. For example, in case of the
Cramér-von Mises test we use

k̂ = min

{
1 ≤ k ≤ n− 1 | Uk,n = max

1≤k≤n−1
Uk,n

}
,

where

Uk,n =

∫
x∈R

(
k∑

i=1

1{Xi≤x} −
k

n

n∑
i=1

1{Xi≤x}

)2

dF̂n(x).
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Table 3

Empirical Power, estimated Hurst coefficient, size of level shift μ = 1, relative change
positions τ = 0.2 and τ = 0.5.

Relative change position τ = 0.2

H = 0.6 H = 0.7

n 50 100 250 400 50 100 250 400

SĤ 0.178 0.263 0.597 0.828 0.189 0.177 0.285 0.404
SĤ

k̂
0.248 0.491 0.834 0.946 0.260 0.377 0.528 0.620

WĤ 0.190 0.298 0.625 0.811 0.146 0.193 0.278 0.386
WĤ

k̂
0.291 0.532 0.850 0.943 0.237 0.364 0.488 0.649

CĤ 0.289 0.413 0.706 0.896 0.312 0.266 0.379 0.547
CĤ

k̂
0.378 0.596 0.874 0.972 0.312 0.422 0.585 0.721

H = 0.8 H = 0.9

n 50 100 250 400 50 100 250 400

SĤ 0.115 0.125 0.156 0.185 0.096 0.105 0.142 0.163
SĤ

k̂
0.208 0.265 0.287 0.296 0.160 0.213 0.208 0.234

WĤ 0.150 0.146 0.161 0.181 0.094 0.126 0.143 0.158
WĤ

k̂
0.214 0.271 0.281 0.322 0.137 0.188 0.237 0.234

CĤ 0.405 0.321 0.270 0.305 0.539 0.442 0.367 0.328
CĤ

k̂
0.313 0.321 0.383 0.429 0.418 0.350 0.311 0.313

Relative change position τ = 0.5

H = 0.6 H = 0.7

n 50 100 250 400 50 100 250 400

SĤ 0.541 0.759 0.985 0.999 0.412 0.557 0.814 0.904
SĤ

k̂
0.614 0.860 0.990 0.999 0.539 0.710 0.881 0.952

WĤ 0.594 0.811 0.984 0.999 0.441 0.564 0.809 0.902
WĤ

k̂
0.609 0.877 0.991 1.000 0.550 0.717 0.878 0.950

CĤ 0.677 0.819 0.988 1.000 0.584 0.671 0.850 0.925
CĤ

k̂
0.694 0.905 0.995 0.998 0.567 0.760 0.920 0.953

H = 0.8 H = 0.9

SĤ 0.373 0.403 0.535 0.640 0.337 0.428 0.472 0.549
SĤ

k̂
0.454 0.563 0.649 0.711 0.412 0.480 0.582 0.604

WĤ 0.369 0.413 0.563 0.648 0.357 0.387 0.506 0.536
WĤ

k̂
0.443 0.566 0.662 0.710 0.433 0.528 0.544 0.599

CĤ 0.576 0.584 0.655 0.706 0.659 0.622 0.631 0.637
CĤ

k̂
0.535 0.599 0.716 0.760 0.604 0.574 0.637 0.638

Consistency of this estimator was shown in Hariz et al. (2009). Horvath and
Kokoszka (1997) verified consistency for the analogous CUSUM-based estimator.

Empirical size and empirical power of the tests under unknown H are dis-
played in Tables 2 and 3. Let us first compare the impact of the different esti-
mators Ĥ and Ĥk̂ on the finite sample performance of the Cramér-von Mises
test. If we use the classical local Whittle estimator, the empirical size of the test
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Table 4

Empirical Power, estimated Hurst coefficient, relative change position τ = 0.5, level shift of
size μ = 1 and change in variance from σ2 = 1 to σ2

0 = 5/4, nominal size α = 0.05.

H = 0.6 H = 0.7

n 50 100 250 400 50 100 250 400

SĤ 0.701 0.931 1.000 1.000 0.606 0.772 0.963 0.996
SĤ

k̂
0.878 0.986 1.000 1.000 0.817 0.973 0.999 1.000

WĤ 0.609 0.812 0.989 1.000 0.572 0.593 0.879 0.952
WĤ

k̂
0.734 0.973 1.000 1.000 0.705 0.907 0.988 0.998

CĤ 0.660 0.899 0.999 1.000 0.529 0.724 0.938 0.983
CĤ

k̂
0.588 0.916 1.000 1.000 0.507 0.806 0.983 0.998

H = 0.8 H = 0.9

SĤ 0.466 0.636 0.824 0.898 0.507 0.599 0.755 0.797
SĤ

k̂
0.762 0.942 0.983 1.000 0.824 0.960 0.993 0.993

WĤ 0.597 0.568 0.669 0.727 0.718 0.645 0.582 0.634
WĤ

k̂
0.616 0.850 0.944 0.981 0.562 0.823 0.926 0.953

CĤ 0.445 0.601 0.806 0.853 0.438 0.551 0.731 0.762
CĤ

k̂
0.443 0.635 0.852 0.937 0.460 0.576 0.781 0.847

Table 5

Empirical Power, estimated Hurst coefficient, relative change position τ = 0.5,G1(x) = x2,
G2(x) = x2 + x/2 + 1/2, nominal size α = 0.05, H is the Hurst coefficient of the underlying

Gaussian.

H = 0.6 H = 0.7

n 50 100 250 400 50 100 250 400

SĤ 0.535 0.827 0.983 0.999 0.487 0.758 0.957 0.988
SĤ

k̂
0.494 0.815 0.992 0.999 0.479 0.750 0.968 0.995

WĤ 0.480 0.743 0.990 0.998 0.430 0.632 0.924 0.986
WĤ

k̂
0.420 0.735 0.986 1.000 0.407 0.657 0.933 0.987

CĤ 0.424 0.616 0.853 0.958 0.399 0.547 0.745 0.858
CĤ

k̂
0.387 0.569 0.828 0.920 0.390 0.546 0.755 0.891

H = 0.8 H = 0.9

SĤ 0.461 0.670 0.825 0.885 0.424 0.522 0.607 0.614
SĤ

k̂
0.474 0.680 0.860 0.934 0.507 0.589 0.698 0.704

WĤ 0.376 0.537 0.670 0.773 0.350 0.369 0.443 0.438
WĤ

k̂
0.418 0.555 0.738 0.828 0.458 0.496 0.488 0.511

CĤ 0.374 0.464 0.564 0.596 0.384 0.352 0.343 0.352
CĤ

k̂
0.440 0.538 0.655 0.772 0.397 0.491 0.562 0.579

is quite accurate and even matches the nominal size for n = 400 and H ≤ 0.8.
However, there is a loss in the empirical power. The power performance is much
better, if the local Whittle estimator is modified. Actually, there is no loss in
power if compared to the case where H was assumed to be known. Then again,
the probability of a false rejection is higher than α = 0.05, so the test is quite
liberal.



2482 J. Tewes

Next we compare Cramér-von Mises, Wilcoxon and CUSUM test. The em-
pirical size of the three tests is similar, no matter which estimator we choose
and which situation we assume (sample size, Hurst coefficient), see Table 2.

In terms of empirical power the Cramér-von Mises and Wilcoxon test give
similar results with the CUSUM test being slightly ahead for τ = 1/2 and being
clearly advantageous for early changes τ = 1/5 (see Table 3).

We have to keep in mind that CUSUM and Wilcoxon test are designed to
detect changes in the mean. On the contrary, the Cramér-von Mises test is a
so called omnibus test and has power against arbitrary changes in the marginal
distribution.

Therefore, we consider another situation, with the mean-shift being now ac-
companied by a small change in the variance. In detail,

Yi =

{
Xi for i ≤ �nτ	,
σXi + μ for i > �nτ	,

for Gaussian {Xi}i≥1. The theoretic result in Example 2.11 indicates that in
this scenario the Cramér-von Mises test should be advantageous. In fact, for
all combinations of sample size n and Hurst coefficient H the empirical power
against this change is always higher than the power against a mean-shift under
constant variance. Moreover, the Cramér-von Mises test has clearly higher power
than CUSUM and Wilcoxon test, see Table 4, which matches the theoretical
findings of Example 2.11. Furthermore, we consider the change-point problem

Yi =

{
X2

i for i ≤ �nτ	,
X2

i + aXi + μ for i > �nτ	,

corresponding to a situation in which mean, variance, skewness and the Hermite
rank change (see Example 2.8). Table 5 displays the empirical power of the
three tests against this alternative and the picture is quite clear. The Cramér-
von Mises test has the highest power for all combinations of H and n, while
the Wilcoxon test is second best. Also note that the Hermite rank of the pre-
change transformation is m = 2. Consequently, these observations are short-
range dependent for H < 0.75.

3.3. farima(0, d, 0)-processes

For Gaussian long memory processes beyond fractional Gaussian noise, not only
the Hurst coefficient determines the normalization. Instead it is given by

dn = nHL1/2(n)(H(2H − 1))−1/2),

see (2.1). In this study we assume, as n → ∞, L(n) → C, which is quite common
in the literature. For fractional Gaussian noise, C = H(2H−1) so the two factors
just cancel out. In general the constant C is given through the limit

ρ(k)k2−2H → C,
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Table 6

Empirical size and power for farima(0, 0.2, 0)-sequences, Hurst coefficient is estimated,
nominal size α = 0.05.

No change Mean-shift μ = 1

n 50 100 250 400 50 100 250 400

SĤ 0.036 0.058 0.069 0.056 0.276 0.490 0.832 0.920
SĤ

k̂
0.167 0.148 0.119 0.129 0.520 0.737 0.939 0.986

WĤ 0.067 0.139 0.086 0.074 0.601 0.882 0.968 0.730
WĤ

k̂
0.247 0.189 0.160 0.153 0.573 0.711 0.934 0.980

CĤ 0.104 0.061 0.053 0.048 0.281 0.479 0.836 0.945
CĤ

k̂
0.212 0.202 0.158 0.114 0.499 0.682 0.937 0.977

as k → ∞. We suggest an estimator for C (which is quite heuristic) by:

Ĉ =
1

K

K∑
k=1

ρ̂(k)k2−2Ĥ , (3.1)

with Ĥ being one of the two estimators from above. Finally, we use the normal-
ization

d̂n = nĤĈ1/2(Ĥ(2Ĥ − 1))1/2.

Usually estimators constructed via the spectral domain are favorable compared
to such time-domain estimators. For a spectral domain approach see Abadir
et al. (2009). However, using Ĉ, one might consider the normalization

d̂n = nĤĈ1/2(Ĥ(2Ĥ − 1))1/2.

The estimator in (3.1) is only defined under long memory, that is H > 0.5 (or
in this situation Ĥ > 0.5). Therefore, we modify both estimators by considering
max(Ĥ, 0.501) instead of Ĥ. The effect of this modification on short memory
processes will be seen in the next section.

However, for farima(0, d, 0)-sequences it seems to work quite well, see Table
6. Note that critical values are still deduced from fractional Gaussian noise. The
finite sample performance (under the hypothesis as well as under a mean-shift)
is very similar to the case where the data comes from fractional Gaussian noise.
Meaning, the Cramér-von Mises test has good properties and the different tests
yield very similar results, again matching the theoretic findings.

3.4. Short-range dependent effects

Finally, we have considered deviations from purely LRD sequences by simulating
farima(1, d, 0)-time series and short memory AR(1)-processes.

First, we have applied the tests to farima(0, d, 1)-sequences, which are still
long-range dependent. Table 7 indicates that the empirical power of the Cramér-
von Mises test is less than in the case of farima(0, d, 0)-processes. However, the
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Table 7

Empirical size and power for farima(1, 0.2, 0)-sequences with AR-coefficient a1 = 0.4,
Hurst coefficient is estimated, nominal size α = 0.05.

No change Mean-shift μ = 1

n 50 100 250 400 50 100 250 400

SĤ 0.032 0.021 0.030 0.034 0.154 0.183 0.329 0.433
SĤ

k̂
0.126 0.065 0.062 0.052 0.316 0.325 0.415 0.489

WĤ 0.038 0.009 0.003 0.007 0.157 0.158 0.192 0.266
WĤ

k̂
0.183 0.048 0.015 0.017 0.363 0.313 0.301 0.387

CĤ 0.445 0.288 0.124 0.081 0.625 0.615 0.605 0.689
CĤ

k̂
0.422 0.302 0.138 0.093 0.592 0.613 0.656 0.710

Table 8

Empirical size and power for AR(1)-sequences with AR-coefficient a1 = 0.6, Hurst
coefficient is estimated, nominal size α = 0.05.

No change Mean-shift μ = 1

n 50 100 250 400 50 100 250 400

SĤ 0.016 0.008 0.004 0.002 0.135 0.150 0.324 0.576
SĤ

k̂
0.097 0.030 0.012 0.004 0.282 0.260 0.374 0.556

WĤ 0.036 0.004 0.000 0.000 0.149 0.106 0.106 0.213
WĤ

k̂
0.141 0.018 0.000 0.000 0.336 0.249 0.235 0.343

CĤ 0.467 0.279 0.017 0.006 0.641 0.592 0.606 0.721
CĤ

k̂
0.412 0.219 0.026 0.006 0.654 0.631 0.678 0.794

test works principally well, meaning that the power increases with the number
of observations while the empirical size stays close to the nominal size. For
CUSUM and Wilcoxon test, this seems to be not the case.

For the (purely short-range dependent) AR(1)-processes we make two obser-
vations: First, due to the assumption of LRD (H > 0.5) the normalization is too
strong and the statistics converge to 0, at least under stationarity. If the struc-
tural change is big enough, the tests might still detect the change (see Table 8).
However, there is a certain loss in power.

Secondly, Cramér-von Mises test and CUSUM test are showing a quite dif-
ferent finite sample performance. While under LRD (in concordance with the
theory) their empirical size and power is always very similar, we now observe
situations where the Cramér-von Mises test has empirical power 0.374 and the
CUSUM test 0.678, see the results in Table 8. Again, this matches the theoretical
fact that under short memory the tests show a different asymptotic behavior.

4. Proofs of the main results

4.1. Proof of Theorem 2.3 and Corollary 2.13

It is the goal to approximate the sequential empirical process by a linear com-
bination of multiple partial sum processes. The indicator function 1{Gn(Xj)≤x}
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has the Hermite expansion

1{Gn(Xj)≤x} =

∞∑
q=0

Jq,n(x)

q!
Hq(Xj).

Remind that Jq,n(x) = E[1{Gn(Xj)≤x}Hq(Xj)] and especially J0,n(x) equals
P (Gn(Xj) ≤ x) = F(n)(x). Now let Lm,n,j(x) be the Hermite expansion up to
m, in detail

Lm,n,j(x) =

m∑
q=0

Jq,n(x)

q!
Hq(Xj). (4.1)

Letm(n) be the Hermite rank of (1{Gn(Xj)≤x})x. Then we have by the conditions
of Theorem 2.3 that m∗ ≤ m(n) ≤ m for some m∗ ≤ m < 1/D. Thus

Lm,n,j(x) = F(n)(x) +

m∑
q=m∗

Jq,n(x)/q!Hq(Xj).

Moreover, define

Sn(l;x) =
1

dn,m

l∑
j=1

(
1{Gn(Xj)≤x} − Lm,n,j(x)

)
.

Finally, let Sn(k;x, y) = Sn(k; y)−Sn(k;x), Lm,n,j(x, y) = Lm,n,j(y)−Lm,n,j(x)
and Jn,q(x, y) = Jn,q(y)− Jn,q(x).

We will make use of the chaining technique of Dehling and Taqqu (1989a).
To this end, define

Λn(x) :=

∫
{Gn(s)≤x}

(
m∑
q=0

|Hq(s)|
q!

)
φ(s) ds

and observe that Jq,n(x, y)/q! is bounded by Λn(x, y) = Λn(y) − Λn(x), for all
n ∈ N and all q = 0, . . . ,m. Furthermore, Λn is monotone, Λn(−∞) = 0 and

Λn(+∞) =

∫
R

(
m∑
q=0

|Hq(s)|
q!

)
φ(s) ds = C < ∞, for all n ∈ N.

Define partitions, similarly to Dehling and Taqqu (1989a), but now depending
on n, by

xi(k) = x
(n)
i (k) = inf{x|Λn(x) ≥ Λn(+∞)i2−k} i = 0, · · · , 2k − 1

for k = 0, · · · ,K, with the integer K chosen below. Then we have

Λn(xi(k)−)− Λn(xi−1(k)) ≤ Λn(+∞)2−k. (4.2)

Note that the right hand side of (4.2) does not depend on n.
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Based on these partitions we can define chaining points ik(x) by

xik(x)(k) ≤ x < xik(x)+1(k),

for each x and each k ∈ {0, 1, . . . ,K}, see Dehling and Taqqu (1989a).

Lemma 4.1. Define the chaining points as above. Suppose the following two
conditions hold:

(i) There are constants γ > 0 and C > 0, not depending on n, such that for
all k ≤ n

E|Sn(k;x, y)|2 ≤ C

(
k

n

)
n−γF(n)(x, y).

(ii) For all ε > 0 and all n ∈ N there is a real number K = K(n, ε), such that
for all λ > 0

P

⎛
⎝sup

x∈R

∣∣∣∣∣∣
1

dn,m

l∑
j=1

Lm,n,j(xiK(x)(K), xiK(x)+1(K)−)

∣∣∣∣∣∣ > ε

⎞
⎠

≤ C

(
l

n

)2−m∗D

nλ−m∗D.

Then there is a constant ρ > 0, such that for all n ∈ N and all ε > 0 the
following holds:

P

(
sup
x
|Sn(l;x)| > ε

)
≤C

(
l

n

)
n−γε−2(K(n, ε)+ 3)5 +C

(
l

n

)2−m∗D

nλ−m∗D.

Proof. Due to definition of the chaining points each point x is linked to −∞ in
detail

−∞ = xi0(x)(0) ≤ xi1(x)(1) ≤ · · · ≤ xiK(x)(K) ≤ x < xiK(x)+1(K)

We have

Sn(l;x) =
K∑

k=1

Sn(l;xik−1(x)(k − 1), xik(x)(k)) + Sn(l;xiK(x)(K), x). (4.3)

The last summand of the right hand side of (4.3) can be treated as follows∣∣Sn(l;xiK(x)(K), x)
∣∣

=
1

dn,m

∣∣∣∣∣∣
l∑

j=1

(
1{xiK (x)(K)<Gn(Xj)≤x} − Lm,n,j(xiK(x)(K), x)

)∣∣∣∣∣∣
≤ 1

dn,m

∣∣∣∣∣∣
l∑

j=1

(
1{xiK (x)(K)<Gn(Xj)<xiK (x)+1(K)}
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−Lm,n,j(xiK(x)(K), xiK(x)+1(K)−)

)∣∣∣∣ (4.4)

+ 2
1

dn,m

∣∣∣∣∣∣
l∑

j=1

Lm,n,j(xiK(x)(K), xiK(x)+1(K)−)

∣∣∣∣∣∣
=

∣∣Sn(l;xiK(x)(K), xiK(x)+1(K)−)
∣∣

+ 2
1

dn,m

∣∣∣∣∣∣
l∑

j=1

Lm,n,j(xiK(x)(K), xiK(x)+1(K)−)

∣∣∣∣∣∣ .
By (4.3) and (4.4) we get, using

∑∞
k=1(k + 2)−2 < 1/2,

P

(
sup
x
|Sn(l;x)| > ε

)

≤ P

(
sup
x
|Sn(l;x)| > ε

K+1∑
k=1

(k + 2)−2 + ε/2

)

≤
K∑

k=1

P
(
max

x
|Sn(l;xik−1(x)(k − 1), xik(x)(k))| > ε/(k + 2)2

)
(4.5)

+ P
(
max

x
|Sn(l;xiK(x)(K), xiK(x)+1(K)−)| > ε/(K + 3)2

)
(4.6)

+ P

⎛
⎝2d−1

n,m

∣∣∣∣∣∣
∑
j≤l

Lm,n,j(xiK(x)(K), xiK(x)+1(K)−)

∣∣∣∣∣∣ > (ε/2)

⎞
⎠ . (4.7)

Further, by condition (i) of Lemma 4.1 and the Markov inequality we get

P
(
max

x
|Sn(l;xik(x)(k), xik+1(x)(k + 1))| > ε/(k + 2)2

)

≤
2k+1−1∑

i=0

P
(
Sn(l;xi(k + 1), xi+1(k + 1)) > ε/(k + 2)2

)

≤ C

2k+1−1∑
i=0

(
l

n

)
n−γ (k + 2)4

ε2
F(n)(xi(k + 1), xi+1(k + 1)) (4.8)

≤ C

(
l

n

)
n−γ (k + 2)4

ε2
.

The constant C in (4.8) is the constant of condition (i) in Lemma 4.1 and thus
independent of n. In the next line this C gets multiplied with Λn(+∞), which is
a constant by itself. Thus the C in the inequality above is a universal constant,
not depending on n. The same is true for γ.

Using the same arguments we get moreover

P
(
max

x
|Sn(l;xiK(x)(K), xiK(x)+1(K)−)| > ε/(K + 3)2

)
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≤ C

(
l

n

)
n−γ (K + 3)4

ε2
.

Finally we have by condition (ii) of Lemma 4.1

P

⎛
⎝2d−1

n,m

∣∣∣∣∣∣
∑
j≤l

Lm,n,j(xiK(x)(K), xiK(x)+1(K)−)

∣∣∣∣∣∣ > (ε/2)

⎞
⎠

≤ C

(
l

n

)2−m∗D

nλ−m∗D,

for all λ > 0. Combining the estimates for (4.5), (4.6) and (4.7) we arrive at

P

(
sup
x
|Sn(l;x)| > ε

)
≤ C

(
l

n

)
n−γε−2

K+1∑
k=1

(k + 2)4 + C

(
l

n

)2−m∗D

nλ−m∗D

≤ C

(
l

n

)
n−γε−2(K + 3)5 + C

(
l

n

)2−m∗D

nλ−m∗D.

which finishes the proof.

Lemma 4.2. There exist constants γ and C, not depending on n, such that for
all k ≤ n

E|Sn(k;x, y)|2 ≤ C

(
k

n

)
n−γF(n)(x, y).

The proof is very close to the proof of Lemma 3.1 in Dehling and Taqqu
(1989a). However, for further results it is crucial that C and γ only depend
indirectly on the function Gn, namely through the Hermite rank. Thus we give
a detailed proof to highlight this fact.

Proof. First, obtain the Hermite expansion

1{x<Gn(Xi)≤y} − F(n)(x, y) =

∞∑
q=m∗

Jq,n(x, y)

q!
Hq(Xi).

Secondly, we have by orthogonality of the Hq(Xi) and EH2
q (Xi) = q!

∞∑
q=m∗

J2
q,n(x, y)

q!
=

∞∑
q=m∗

E

(
Jq,n(x, y)

q!
Hq(Xi)

)2

= E

( ∞∑
q=m∗

Jq,n(x, y)

q!
Hq(Xi)

)2

= E
(
1{x<Gn(Xi)≤y} − F(n)(x, y)

)2
= F(n)(x, y)(1− F(n)(x, y))
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≤ F(n)(x, y).

This yields

E (dn,mSn(k;x, y))
2
=

∞∑
q=m+1

J2
q,n(x)

q!

1

q!

∑
i,j≤k

EHq(Xi)Hq(Xj)

≤ F(n)(x, y)
∑
i,j≤k

|r(i− j)|m+1.

Note that the second factor of the product in the last line may depend indirectly
on the function Gn, because Gn determinesm, however this is the only influence.
For different combinations of m and D the term

∑
i,j≤k|r(i−j)|m+1 might have

a different asymptotic order. However, in all cases we get (see page 1777 in
Dehling and Taqqu (1989a))

1

dn,m

∑
i,j≤k

|r(i− j)|m+1 ≤ CnmD−2L−m(n)k1∨(2−(m+1))/DL1(k)

≤ C

(
k

n

)1∨(2−(m+1)D)

nmD−1∨(−D)L1(k)L
−m(n).

The result then follows because L and L1 are slowly varying.

Lemma 4.3. Let n ∈ N and ε > 0. Define the chaining points and Lm,n,j(x)
as in (4.1). Set

K = K(n, ε) =

⌊
log2

(
(m−m∗ + 2)Λn(+∞)

ε
nd−1

n,m

)⌋
+ 1.

Then there is a constant C > 0, such that for all λ > 0

P

⎛
⎝sup

x∈R

∣∣∣∣∣∣
1

dn,m

l∑
j=1

Lm,n,j(xiK(x)(K), xiK(x)+1(K)−)

∣∣∣∣∣∣ > ε

⎞
⎠

≤ C

(
l

n

)2−m∗D

nλ−m∗D.

Proof. By construction of the chaining points we have for q = 0, . . . ,m and for
all x ∈ R

sup
x∈R

|Jq,n(xiK(x)(K), xiK(x)+1(K)−)/q!| ≤ Λn(+∞)2−K .

Thus for all x ∈ R

1

dn,m

∣∣∣∣∣∣
l∑

j=1

Lm,n,j(xiK(x)(K), xiK(x)+1(K)−)

∣∣∣∣∣∣
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≤
m∑
q=0

|Jq,n(xiK(x)(K), xiK(x)+1(K)−)/q!| 1

dn,m

∣∣∣∣∣∣
l∑

j=1

Hq(Xj)

∣∣∣∣∣∣
≤ Λn(+∞)2−K

m∑
q=0

1

dn,m

∣∣∣∣∣∣
l∑

j=1

Hq(Xj)

∣∣∣∣∣∣ .
By definition of K

2Kε

(m−m∗ + 2)Λn(+∞)
≥ n

dn,m
.

Therefore we get by Markov’s inequality for q = m∗, . . . ,m

P

⎛
⎝Λn(+∞)2−K 1

dn,m

∣∣∣∣∣∣
l∑

j=1

Hq(Xj)

∣∣∣∣∣∣ > ε/(m−m∗ + 2)

⎞
⎠

≤ P

⎛
⎝
∣∣∣∣∣∣

l∑
j=1

Hq(Xj)

∣∣∣∣∣∣ > n

⎞
⎠ ≤ C

d2l,q
n2

≤ C
l2−qD

n2
Lq(l) ≤ C

(
l

n

)2−m∗D

nλ−m∗D.

For q = 0 the term is deterministic, thus the probability is 0.

Proof of Theorem 2.3. The two conditions of Lemma 4.1 are satisfied (see Lem-
ma 4.2 and Lemma 4.3 ) with

K =

⌊
log2

(
(m−m∗ − 2)Λn(+∞)

ε
nd−1

n,m

)⌋
+ 1.

Note that (K + 3)5 ≤ Cε−1nδ for any δ > 0, see Dehling and Taqqu (1989a),
page 1781. By this fact and by virtue of Lemma 4.1

P

(
sup
x
|Sn(l;x)| > ε

)
≤ C

(
l

n

)
nδ−γε−3 + C

(
l

n

)2−m∗D

nλ−m∗D

≤ Cn−ρ

{(
l

n

)
ε−3 +

(
l

n

)2−m∗D
}
,

with ρ = min(γ − δ,m∗D− λ). Now choose δ < γ, then ρ > 0 and we have thus
proven a reduction principle in x. It remains to verify uniformity in l. For n = 2r

one gets by the same arguments as in the proof of Theorem 3.1 in Dehling and
Taqqu (1989a)

P

(
max
l≤n

sup
x
|Sn(l;x)| > ε

)
≤ Cn−κ(1 + ε−3)

for any 0 < ε ≤ 1 and universal constants C and ε. Next consider arbitrary n
and define for r such that 2r−1 < n ≤ 2r

S∗
n(l, x) =

1

d2r,m

l∑
j=1

(1{Gn(Xj)≤x} − Lm,n,j(x)) for l ≤ 2r,
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where {Gn(Xj)}n∈N,j≤2r is a (slightly modified) array. One obtains

P

(
max
l≤n

sup
x
|S∗

n(l;x)| > ε

)
≤ C(2r)−κ(1 + ε−3).

Hence

P

(
max
l≤n

sup
x
|Sn(l;x)| > ε

)
≤ P

(
max
l≤n

sup
x
|S∗

n(l;x)| > ε
dn,m
d2r,m

)

≤ ≤ C(2r)−κ

(
1 + ε−3

(
d2r,m
dn,m

)3
)

≤ Cn−κ(1 + ε−3).

The last line holds since d2r,m/dn,m is uniformly bounded away from 0 and ∞.
Thus, Theorem 2.3 is proven.

Proof of Corollary 2.13. Using the reduction principle, namely Theorem 2.3, it
remains to show that

d−1
n,m

m∑
q=m∗

Jq,n(x)

q!

�nt�∑
i=1

Hq(Xi) (4.9)

converges to the desired limit processes. Define

Zn,q(t) =
1

dn,q

�nt�∑
i=1

Hq(Xi),

and note that because of 1/m > D the sequences {Hq(Xi)}i≥1 are long-range
dependent for q = m∗, . . . ,m. Then we have by Theorem 4 of Bai and Taqqu
(2013)

(Zn,m∗ , . . . , Zn,m)
D−→ (Zm∗ , . . . , Zm) , (4.10)

where convergence takes place in (D[0, 1])m−m∗+1, equipped with the uniform
metric. Moreover, (Zq(t))t∈[0,1] are uncorrelated Hermite processes of order q.
The functions hq are elements ofD[−∞,∞] and therefore they are also bounded,
see Remark 2.15. Hence we may apply the continuous mapping theorem and
conclude that ⎧⎨

⎩
m∑

q=m∗

hq(x)d
−1
n,q

�nt�∑
i=1

Hq(Xi)

⎫⎬
⎭

t,x

converges in distribution to {
m∑

q=m∗

hq(x)Zq(t)

}
t,x

,

where convergence takes place in D([0, 1]× [−∞,∞], equipped with the supre-
mum norm. The result then follows by the uniform convergence of dn,m/
dn,qJq,n(x) towards q!hq(x), the reduction principle and Slutsky’s theorem.
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4.2. Proof of Theorem 2.1 and Theorem 2.2

We start by proving a reduction principle for the empirical process in presence
of a change point. Consider the array {Yn,i}n∈N,i≤n, defined in section 2, and
let Hn,i(x) = P (Yn,i ≤ x). Define

S(τ)
n (t, x) =

1

dn,m

�nt�∑
i=1

(
1{Yn,i≤x} −Hn,i(x)−

m∑
q=m∗

Jq,n,i(x)

q!
Hq(Xi)

)
,

where Jq,n,i(x) = E[1{Yn,i≤x}Hq(Xi)]. Note that Jq,n,i(x) = 0 if i ≤ �nτ	 and
q < m.

Lemma 4.4. Let the conditions of Theorem 2.1 hold. Then there are constants
C ≥ 0 and κ > 0 such that for all ε > 0

P

(
sup

t∈[0,1]

sup
x∈R

|S(τ)
n (t, x)| > ε

)
≤ Cn−κ(1 + ε−3).

Proof. Define

Sn,1(t, x) =
1

dn,m

�nt�∑
j=1

(
1{G(Xj)≤x} − F (x)− Jm(x)

m!
Hm(Xj)

)

and Sn,2(t, x) =
1

dn,m

�nt�∑
j=1

(
1{Gn(Xj)≤x} − F(n)(x)−

m∑
q=m∗

Jq,n(x)

q!
Hq(Xj)

)
.

By Theorem 2.3 we have

P

(
sup

t∈[0,1]

sup
x∈R

|Sn,i(t, x)| > ε

)
≤ Cn−κ(1 + ε−3) i = 1, 2. (4.11)

Next obtain

S(τ)
n (t, x) =

{
Sn,1(t, x), if t ≤ τ,

Sn,2(t, x) + Sn,1(τ, x)− Sn,2(τ, x), if t > τ.

Therefore, we get, using (4.11) several times,

P

(
sup

t∈[0,1]

sup
x∈R

|S(τ)
n (t, x)| > ε

)
≤ 2P

(
sup

t∈[0,1]

sup
x∈R

|Sn,1(t, x)| > ε/4

)

+ 2P

(
sup

t∈[0,1]

sup
x∈R

|Sn,2(t, x)| > ε/4

)

≤ 4Cn−κ(1 + ε−3),

for all n ∈ N and all ε > 0.
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Lemma 4.5. Let Assumption A hold. Then for all q ≤ m

sup
x∈R

dn,m∗/dn,m|Jq,n(x)− Jq(x)| → 0, (4.12)

as n → ∞.

Proof. Using Hölder’s inequality, one has for any p ∈ N

|Jq,n(x)− Jq(x)| = |E
(
(1{Gn(Xi)≤x} − 1{G(Xi)≤x})Hq(Xi)

)
|

≤
(
E|1{Gn(Xi)≤x} − 1{G(Xi)≤x}|(p+1)/p

)p/(p+1)

‖Hq(Xi)‖Lp+1

≤ C(E|1{Gn(Xi)≤x} − 1{G(Xi)≤x}|)p/(p+1)

Now obtain

E|1{Gn(Xi)≤x} − 1{G(Xi)≤x}|
= P ({Gn(X1) ≤ x,G(X1) > x} ∪ {Gn(X1) > x,G(X1) ≤ x})
= 1− P ({Gn(X1) ≤ x,G(X1) ≤ x})− P ({Gn(X1) > x,G(X1) > x})
= P (min{Gn(X1), G(X1)} ≤ x)− P (max{Gn(X1), G(X1)} ≤ x)

= o(n(m∗−m)D(1+δ)/2),

for some δ > 0. The last line holds uniformly due to Assumptions A2. Finally,

dn,m∗/dn,m|Jq,n(x)− Jq(x)|
≤ Cn(m−m∗)D/2L(m∗−m)/2(n)(E|1{Gn(Xi)≤x} − 1{G(Xi)≤x}|)p/(p+1)

≤ C
(
n(m−m∗)D(p+1)/p/2E|1{Gn(Xi)≤x} − 1{G(Xi)≤x}|

)p/(p+1)

= C
(
n(m−m∗)D(1+1/p)/2E|1{Gn(Xi)≤x} − 1{G(Xi)≤x}|

)p/(p+1)

.

Choosing p > 1/δ, this implies (4.12).

Proof of Theorem 2.1. By definition of the functions Jq,n,i we get

1

dn,m

�nt�∑
i=1

m∑
q=m∗

Jq,n,i(x)

q!
Hq(Xi)

=
1

dn,m

Jm(x)

m!

�nt�∑
i=1

Hm(Xi)

+ 1{t>τ}

m−1∑
q=m∗

dn,q
dn,m

Jq,n(x)

q!

1

dn,q

�nt�∑
i=�nτ�+1

Hq(Xi)

+ 1{t>τ}
Jm,n(x)− Jm(x)

m!

1

dn,m

�nt�∑
i=�nτ�+1

Hm(Xi).
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The second and the third summands are negligible due to the uniform conver-
gence of the functions Jq,n (see Lemma 4.5)). The first summand converges in
distribution towards

Jm(x)

m!
Zm(t),

see Dehling and Taqqu (1989a). Together with Lemma 4.4 this finishes the
proof.

Proof of Theorem 2.2. We give the proof for a sequence of local alternatives.
The asymptotic behavior under the hypothesis then is an immediate conse-
quence. Obtain the following decomposition of the empirical bridge-process

1

dn,m

⎛
⎝�nt�∑

i=1

1{Yn,i≤x} −
�nt	
n

n∑
i=1

1{Yn,i≤x}

⎞
⎠ (4.13)

=
1

dn,m

⎛
⎝�nt�∑

i=1

(
1{Yn,i≤x} −Hn,i(x)

)
− t

n∑
i=1

(
1{Yn,i≤x} −Hn,i(x)

)⎞⎠

+

(
t− �nt	

n

)
1

dn,m

n∑
i=1

(
1{Yn,i≤x} −Hn,i(x)

)
+

n

dn,m
ψn,τ (t)

(
F (x)− F(n)(x)

)
,

where

ψn,τ (t) =

⎧⎨
⎩

�nt�
n

(
1− �nτ�

n

)
, if t ≤ τ,

�nτ�
n

(
1− �nt�

n

)
, if t > τ.

By uniform convergence of n/dn,m(F (x) − F(n)(x)) and ψn,τ (t) towards g(x)
and ψτ (t), respectively, Theorem 2.1 and the continuous mapping theorem, one
gets that (4.13) converges weakly towards

Jm(x)/(m!) (Zm(t)− tZm(t)) + ψτ (t)g(x).

The convergence of the Kolmogorov-Smirnov type statistic then follows from
continuity of the application of the supremum norm. The Cramér-von Mises
statistic Sn can be written Sn = supt∈[0,1] Mn(t), where

Mn(t) = d−2
n,m

∫
R

⎛
⎝�nt�∑

i=1

1{Yn,i≤x} −
�nt	
n

n∑
i=1

1{Yn,i≤x}

⎞
⎠

2

dF̂n(x)

= d−2
n,m

∫
R

⎛
⎝�nt�∑

i=1

1{Yn,i≤x} −
�nt	
n

n∑
i=1

1{Yn,i≤x}

⎞
⎠

2

dF (x) (4.14)
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+ d−2
n,m

∫
R

⎛
⎝�nt�∑

i=1

1{Yn,i≤x} −
�nt	
n

n∑
i=1

1{Yn,i≤x}

⎞
⎠

2

d(F̂n(x)− F (x)).

(4.15)

Due to the convergence of (4.13) and the continuous mapping theorem, (4.14)
converges to the desired limit process. Thus, it remains to show that (4.15) is
negligible. Therefore, obtain

d−2
n,m

∫
R

⎛
⎝�nt�∑

i=1

1{Yn,i≤x} −
�nt	
n

n∑
i=1

1{Yn,i≤x}

⎞
⎠

2

d(F̂n(x)− F (x))

=

∫
R

(
Jm(x)/(m!)Z̃m(t)− ψτ (t)g(x)

)2

d(F̂n(x)− F (x)) (4.16)

+

∫
R

{
d−2
n,m

⎛
⎝�nt�∑

i=1

1{Yn,i≤x} −
�nt	
n

n∑
i=1

1{Yn,i≤x}

⎞
⎠

2

−
(
Jm(x)/(m!)Z̃m(t)− ψτ (t)g(x)

)2
}

d(F̂n(x)− F (x)). (4.17)

Using the Skorohod-Dudley-Wichura representation theorem (whose conditions
are satisfied because Jm(x)/(m!)Z̃m(t)−ψτ (t)g(x) lays almost surely in C([0, 1]×
[−∞,∞])), one can assume without loss of generality that

d−2
n,m

⎛
⎝�nt�∑

i=1

1{Yn,i≤x} −
�nt	
n

n∑
i=1

1{Yn,i≤x}

⎞
⎠

2

−
(
Jm(x)

(m!)
Z̃m(t)− ψτ (t)g(x)

)2

converges almost surely to 0, uniformly in x and t. Thus, (4.17) converges to 0,
uniformly in t. Next consider (4.16)∫

R

(
Jm(x)/(m!)Z̃m(t)− ψτ (t)g(x)

)2

d(F̂n(x)− F (x))

= (Z̃m(t))2/(m!)2
∫
R

J2
m(x) d(F̂n(x)− F (x))

− 2Z̃m(t)ψτ (t)/(m!)

∫
R

Jm(x)g(x) d(F̂n(x)− F (x))

+ ψ2
τ (t)

∫
R

g2(x) d(F̂n(x)− F (x))

= In − IIn + IIIn.

As a consequence of Theorem 2.1 and F(n)(x) → F (x) one gets a weak Glivenko-
Cantelli type convergence, in detail

sup
x∈R

|F̂n(x)− F (x)| ≤ sup
x∈R

∣∣∣∣∣F̂n(x)−
n∑

i=1

Hn,i(x)

n

∣∣∣∣∣+ sup
x∈R

|F(n)(x)− F (x)|



2496 J. Tewes

converges in probability to 0. Moreover, obtain that Jm(x) is of bounded vari-
ation (this was also noted in Dehling and Taqqu (1989a)). To see this, let [a, b]
be an arbitrary interval and {xi}ni=0 a partition of this interval. Then

n−1∑
i=0

|J(xi+1)− J(xi)| =
n−1∑
i=0

|E[1{xi<G(X1)≤xi+1}Hm(X1)]|

≤
n−1∑
i=0

E[1{xi<G(X1)≤xi+1}|Hm(X1)|]

= E

[
n−1∑
i=0

1{xi<G(X1)≤xi+1}|Hm(X1)|
]

= E
[
1{G(X1)∈[a,b]}|Hm(X1)|

]
≤ E|Hm(X1)|.

By the boundedness of Jm, J2
m is also of bounded variation and thus integration

by parts, together with the weak Glivenko-Cantelli-type reulst, yields

In = −(Z̃m(t))2/(m!)2
∫
R

(F̂n(x)− F (x)) dJ2
m(x)

P−→ 0.

By definition, the function g(x) is bounded and of bounded variation. Hence
the same is true for g2(x) and by the same arguments as above one gets IIIn =
oP (1). Finally, IIn = oP (1), which can be seen using Hölders’s inequality. This
finishes the proof.

Remark 4.6. Note that our proof of the weak convergence of the Cramér-von
Mises statistic would not work for short-range dependent time series. The reason
is the completely different limit behavior of the sequential empirical process.
Instead of the semi-degenerate process Jm(x)Zm(t) one gets a Gaussian process
K(t, x). While Jm is of bounded variation, this is not the case for sample paths
of K. Hence

∫
R
K(t, x) d(Fn(x) − F (x)) cannot be treated simultaneously to∫

R
Jm(x) d(Fn(x)− F (x)).
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