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1. Introduction

High-frequency statistics has attracted a lot of attention in recent years. Given
observations of a semimartingale X, one is often interested in estimation of its
quadratic variation (or parts thereof, such as integrated volatility) and with
associated central limit theorems.

A natural way is to work in a setting where observations come at regular
times, that is we have data Xj/n, j = 0, . . . , n, over the interval [0, 1], say.
The most general paper on asymptotics in this setting is Jacod (2008) where
various (stable) central limit theorems for functionals of discretely observed Itô
semimartingales are stated, including those for realized variance RV (X,X)nt
with

RV (X,Y )nt =

�nt�∑
j=1

(Xj/n −X(j−1)/n)(Yj/n − Y(j−1)/n)
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comments which helped to improve the paper significantly.
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for arbitrary processes X and Y ; see also Jacod and Protter (1998) for earlier
results on related statistics in the case of Lévy processes. Suppose, X is defined
on the filtered probability space (Ω,F , (Ft)t≥0,P) and can be decomposed as

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs +

∫ t

0

∫
R

κ(δ(s, x))(μ− ν)(ds, dx) (1.1)

+

∫ t

0

∫
R

κ̄(δ(s, x))μ(ds, dx),

where a, σ and δ are adapted processes, typically càdlàg as well, and where
a truncation function κ, κ̄(x) = x − κ(x), separates large from compensated
small jumps. Here, the compensating intensity measure ν of the Poisson random
measure μ admits the form ν(ds, dx) = ds⊗ λ(dx) for a σ-finite measure λ. In
this case, the quadratic variation process becomes

[X,X]t =

∫ t

0

σ2
sds+

∑
0≤s≤t

(ΔXs)
2, ΔXs = Xs −Xs−.

Under essentially no extra conditions, Theorem 2.11 in Jacod (2008) gives the
F-stable central limit theorem

Zn
t (X) =

√
n (RV (X,X)nt − [X,X]t)

L−(s)−→ Zt, (1.2)

pointwise in t, where the limiting process Zt = Ut + Vt consists of two parts:
The first one,

Ut =
√
2

∫ t

0

σ2
sdW

′
s,

is due to the continuous martingale part of X only. Here, W ′ denotes an in-
dependent Brownian motion defined on an extension (Ω′,F ′, (F ′

t)t≥0,P
′) of the

original space. The process Vt takes a more complicated form and comes from
both the continuous part and the jump part of X. It is given by

Vt = 2
∑
Sp≤t

ΔXSp

(
κpσSp−Rp +

√
1− κpσSpR

′
p

)
,

where the sequence (Sp)p denotes an enumeration of the jump times of X, and
where the Rp and R′

p are standard normal and the κp are uniform random
variables on [0, 1], all defined on the same extension as W ′ and all mutually
independent. In the case of a continuous σ, the limit obviously reduces to

Vt = 2
∑
Sp≤t

ΔXSpσSpRp. (1.3)

For details on stable convergence we refer to Section VIII.5 of Jacod and Shiryaev
(2003).

Over the last decade, a lot of work has been connected with extensions of
(1.2) whenever the ideal setting of observations of X at equidistant times is not
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realistic. Typically, the focus has been on a version of X with continuous paths,
which means that (1.1) reduces to

Xt = X0 +

∫ t

0

asds+

∫ t

0

σsdWs. (1.4)

Regarding non-equidistant observations, authors have typically worked in set-
tings where observations times come either in a deterministic way or are (es-
sentially) independent of X. In this case, one still has stable convergence of the
standardized realized variance to a limiting process U ′

t , but it differs from Ut

by an extra factor which accounts for the variability of time. See for example
Hayashi et al. (2011), Mykland and Zhang (2012) or Koike (2014). A similar
result can be obtained if jumps are present, but in this case with a different
process V ′

t as well. See Bibinger and Vetter (2015).
Even though important from a practical point a view, the situation with en-

dogenous observation times has found much less attention. This is certainly the
case because the proofs of the corresponding results become much more com-
plicated then. For model (1.4), central limit theorems are provided in Fukasawa
(2010b) and Li et al. (2014), once certain extra conditions are satisfied which
might be difficult to check in practice. As a specific example, hitting times of a
grid are motivated and discussed in Fukasawa (2010a), Robert and Rosenbaum
(2012) and Fukasawa and Rosenbaum (2012).

However, to the best of our knowledge no results exist in the general model
(1.1) involving jumps. The aim of this work therefore is to shed some light on
this issue. In particular, we will prove a result similar to (1.2), but only in the
less general case of a continuous Itô semimartingale plus finite activity jumps
with deterministic characteristics, observed at hitting times of a regular grid.
This is a bit unsatisfactory from a practical point of view, but we will discuss
the reasons for this slight limitation and possible guidelines for future research
in order to solve the problem in a general framework.

This work is organised as follows: Section 2 gives a short review on the case
of deterministic observation times, and we give a heuristic explanation why
the limiting process Zt is of the form as stated in (1.2). Section 3 contains the
main theorem of this work, as well as a comparison with the standard result and
remarks on further extensions of the model. All proofs are gathered in Section 4.

2. The standard case: Deterministic observations

Let us shortly sketch the strategy which leads to the main result (1.2) from
Jacod (2008). The key idea is to decompose X for each integer q as

Xt = Ct +N(q)t +X(q)t, (2.1)

where

N(q)t =

∫ t

0

∫
δ(s, x)1{γ(x)>1/q}μ(ds, dx)
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denotes the large jumps of X,

Ct =

∫ t

0

σsdWs

corresponds to the continuous martingale part of X, and the remainder X(q)t
involving drift and small jumps is defined implicitly. One uses here the mild
assumption that the process |δ(s, x)|, which is responsible for the jump sizes, is
bounded by some deterministic function γ(x).

Using (2.1) and the binomial theorem one obtains

Zn
t (X) =

√
n (RV (C,C)nt − [C,C]t) +

√
n (RV (N(q), N(q))nt − [N(q), N(q)]t)

+
√
n (RV (X(q), X(q))nt − [X(q), X(q)]t)

+ 2
√
nRV (C,N(q))nt + 2

√
nRV (C,X(q))nt + 2

√
nRV (N(q), X(q))nt

for each integer q. A huge part of the proof of (1.2) deals with negligibility of
most terms in the decomposition above. This is the case for all terms involving
the remainder X(q) which can be shown to converge to zero in probability if
we first let n → ∞ and then q → ∞. The proof relies heavily on martingale
techniques when dealing with the compensated small jumps of X. See for exam-
ple Appendix B in Bibinger and Vetter (2015). Moreover, since N(q) is a finite
activity jump process, for any fixed q we have

√
n (RV (N(q), N(q))nt − [N(q), N(q)]t) = 0

identically, with a probability converging to one, as well. This explains why
only two processes appear in the limit in (1.2). In case of continuous paths,
the relevant term is

√
n (RV (C,C)nt − [C,C]t), for which the proof of stable

convergence to Ut is very well understood by now. The main condition, due to
conditional Gaussianity, is the convergence of the empirical conditional variance

2n

3

�nt�∑
j=1

E
[
(Cj/n − C(j−1)/n)

4|F(j−1)/n

]
=
2n

3

�nt�∑
j=1

σ4
(j−1)/nE

[
(Wj/n −W(j−1)/n)

4
]
+ oP(1)

P−→ 2

∫ t

0

σ4
sds, (2.2)

which determines the distribution of the limiting Brownian martingale.
Let us therefore focus on the mixed part. Since N(q)t is a finite activity jump

process, we can write

2
√
nRV (C,N(q))nt = 2

√
n

∑
Sp≤t

ΔN(q)Sp

(
Ci+(Sp)/n − Ci−(Sp)/n

)
,

where i+(s) and i−(s) denote the index of the first observation past or equal
to s and the last observation prior to s, respectively. Even though the process
looks already like Vt, there are several steps necessary in order to get to the final
result. First, one uses a similar discretization argument as for the conditional
variance in order to write
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Ci+(Sp)/n − Ci−(Sp)/n

)
= σi−(Sp)/n

(
WSp −Wi−(Sp)/n

)
+ σSp

(
Wi+(Sp)/n −WSp

)
,

up to an error of size oP(n
−1/2). Second, for each p we have the equality(

WSp −W i−(Sp)

n

,W i+(Sp)

n

−WSp

)
=

(√
Sp −

i−(Sp)

n
Rp,

√
i+(Sp)

n
− SpR

′
p

)
(2.3)

in distribution. Third, the stable convergence

n (Sp − (i−(Sp))/n)
L−(s)−→ κp (2.4)

follows, since the jump times of N(q) are uniformly distributed over [0,1]; see
the proof of Lemma 6.2 in Jacod and Protter (1998). All of these steps can be
shown to hold jointly for 1 ≤ p ≤ k, for an arbitrary integer k. This is sufficient
to prove

2
√
nRV (C,N(q))nt

L−(s)−→ 2
∑
Sp≤t

ΔN(q)Sp

(
κpσSp−Rp +

√
1− κpσSpR

′
p

)
for any fixed q. Letting q → ∞, stable convergence to Vt follows. Finally, some
more technicalities are needed in order to prove the joint stable convergence of
the two sequences leading to Ut and Vt.

3. The endogenous case: Exit times from a regular grid

It is in particular the equality in distribution stated in (2.3) which makes an
extension of (1.2) to random observation times τnj difficult in general. As long
as the times are exogenous, i.e. independent of X, or satisfy some predictability
condition, this equality still holds because at least the local behaviour of W is
independent of the observation times. The central limit theorem for

RV (X,X)nt =
∑

0<τn
j ≤t

(Xτn
j
−Xτn

j−1
)2, τn0 = 0,

then looks similar to (1.2), with some minor modifications because one has to
find suitable conditions under which a result like (2.4) holds. See e.g. Bibinger
and Vetter (2015) for details.

In the purely endogenous case, however, the observation times depend strongly
on the process X (and in particular on the process W ), and therefore one can-
not expect a version of (2.3) to remain valid. For this reason, we will work in a
specific setting which makes a computation of the distribution of increments of
the Brownian part between successive observations possible. Suppose therefore
in the following that we observe

Xt =

∫ t

0

asds+

∫ t

0

σsdWs + Jt, (3.1)
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Fig 1. The observation scheme used: The first observations τnj to τnj+2 are due to movements
of the underlying Brownian motion only; the jump at Sp is big enough to cause the observation
τnj+3. Remark that between τnj+2 and τnj+3 the path hits (k + 2)εnc several times without
generating an observation. Last, the jump at Sp+1 is too small for the path to exit the interval
[(k + 5)εnc, (k + 3)εnc].

where as and σs are deterministic continuous processes, Wt is a standard Brow-
nian motion and

Jt =

∫ t

0

∫
R

δ(s, x)μ(ds, dx)

is a finite activity jump process, with a deterministic continuous δ(s, x) and
such that ν([0, t]×R\{0}) < ∞ for all t > 0. We also assume that the function
σ is positive everywhere. Observations are coming as exit times from a regular
grid. That is, for a given constant c > 0 and a sequence εn → 0, which governs
the asymptotics, we observe X at the stopping times τn0 = 0 and

τnj = inf
{
t > τnj−1 : Xt /∈ AXτn

j−1

}
,

where either
Ay = [y − cεn, y + cεn]

if y = kcεn for some k ∈ Z or

Ay = [	(cεn)−1y
cεn, (	(cεn)−1y
+ 1)cεn]

if no such k exists. A sketch of this observation scheme can be found in Figure 1.

Roughly speaking, data is collected whenever the unit of the price is changing,
e.g. from one cent to another. No stopping, however, takes place at the previously
reached barrier, which is necessary because Brownian motion hits it infinitely
often after starting from there. This scheme is a particular case of the setting
in Fukasawa and Rosenbaum (2012), who derived a central limit theorem for
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realized variance of a continuous semimartingale. Note that in their setting
observations came at hitting times (not necessarily of a regular grid), which is
essentially similar to exit times for processes with continuous paths.

In order to state the stable central limit theorem, we again assume the process
X to live on the filtered probability space (Ω,F , (Ft)t≥0,P), and we consider a
second probability space (Ω′,F ′, (F ′

t)t≥0,P
′) which supports a Brownian motion

W ′ and a sequence (ηp)p≥1 of random variables with density

h(y) =

∫ ∞

0

1√
2πz

∞∑
m=−∞

(
e−

(y−4m)2

2z − e−
(y+2+4m)2

2z

)
dz1[−1,1](y). (3.2)

All of these are mutually independent and independent of W ′ as well. Limiting
variables are then defined on the product (Ω̃, F̃ , (F̃t)t≥0, P̃) of the two afore-
mentioned probability spaces.

Finally, we denote with S1, S2, . . . a specific sequence of stopping times ex-
hausting the jumps of X, namely we order the sequence in chronological order.
This is possible, as there are only finitely many jumps almost surely. In prin-
ciple, other enumerations were possible as well, but this choice facilitates some
parts of the proof.

Theorem 3.1. Suppose that X is given by (3.1) and is observed at the random
instants coming from the sampling scheme described above. Then, as n → ∞,
we have the F-stable convergence

Z̃n
t (X) = ε−1

n (RV (X,X)nt − [X,X]t)
L−(s)−→ Z̃t = Ũt + Ṽt,

pointwise in t, where

Ũt =

√
2

3
c

∫ t

0

σsdW
′
s

and
Ṽt = 2

∑
Sp≤t

ΔXSpcηp,

with the Brownian motion W ′ and the sequence (ηp)p≥1 as above.

Remark 3.2.
(i) In contrast to (1.3), the distribution of Ṽt does not involve a factor σSp .

Intuitively, when finding analogues of (2.3) and (2.4) we are concerned
with the distribution of the random variables

ε−1
n στ−

n (Sp)

(
WSp −Wτ−

n (Sp)

)
,

where it is sufficient to take Sp as the right end point because a jump
of X causes an exit from the current interval with probability converging
to one. (Here and below, τ−n (t) is the last observation strictly before t.)
After rescaling, each distribution essentially equals the one of a Brownian
motion σW (starting in zero and with σ = στ−

n (Sp)
) at time t, when it is
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known to not having left the interval [−c, c] by that time. This additional
knowledge makes the distribution independent of σ. See Lemma 4.2 for
details.

(ii) A similar effect is known from Fukasawa and Rosenbaum (2012), from
which we borrow the stable convergence of the continuous martingale part.
Whereas in the case of exogeneous observation times σ enters to second
order in the conditional standard deviation, as seen e.g. from (2.2), it only

contributes to first order to the (conditional) standard deviation of Ũ . The
missing order is due to a factor c in our situation, which enters likewise in
the mixed term.

(iii) We believe that a generalization to the case of random characteristics and
irregular grids holds as well, but in this situation the proof becomes even
more involved. If the grid takes the form

Gn = {εnpi|i ∈ Z},

we conjecture that apart from Ũ , which changes according to the results
in Fukasawa and Rosenbaum (2012) under their assumptions, the second
summand becomes

Ṽt = 2
∑
Sp≤t

ΔXSpηp(XSp−)

where the distribution of ηp(x) is a suitably weighted mixture of the limit-
ing distribution of two independent Brownian motions starting at the grid
points right above and right below x, respectively, and which are known
to not having caused another observation.

(iv) Using our strategy of proof it is extremely difficult to prove (a version of)
Lemma 4.2 and, thus, Theorem 3.1 when one works with infinitely many
jumps within X. In our setting, as two jumps are usually far apart, the key
steps in the proof regard the exact distribution of exit times of Brownian
motion and a result by Freedman (1983) who derives an explicit formula
for

P

(
Wz ≤ x, inf

0≤u≤z
Wu > −c, sup

0≤u≤z
Wu < −c

)
. (3.3)

In the general case, one has to account for exit times of jump processes as
well, and very little is known even for Lévy processes. (Asymptotics are
provided in Rosenbaum and Tankov (2011), however.) To the best of the
authors’ knowledge, a generalization of (3.3) does not even exist in the
literature for Brownian motions with a constant drift.

4. Appendix: Proof of Theorem 3.1

We start with the proof of Theorem 3.1 when Xt = σWt + Jt with a constant
σ > 0. As above, we set Ct = σWt, and we denote with S1, S2, . . . the sequence
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of jump times of J on [0,∞) in chronological order. For convenience, S0 = 0.
We write

Un
t = ε−1

n

∑
j

(
(Cτn

j ∧t − Cτn
j−1∧t)

2 − σ2(τnj ∧ t− τnj−1 ∧ t)
)
,

which is essentially a centred version of the continuous martingale part of real-
ized volatility at time t, but for technical reasons we always add an additional
observation in t. Furthermore, we set

α(n, p) = σε−1
n

(
WSp −Wτ−

n (Sp)

)
for each p. The main part of the proof of Theorem 3.1 is contained in the
following lemma.

Lemma 4.1. Let T > 0 be arbitrary. As n → ∞, we have the F-stable conver-
gence

(Un, (α(n, p))p≥1)
L−(s)−→ (U, (ηp)p≥1)

on D[0, T ]×R∞, with U t =
√

2/3cσW ′
t and the sequence ηp as before.

Proof. Using the standard metric on an infinite Cartesian product, it is
enough to prove the result for 1 ≤ p ≤ k and some k. Thus, we show

(Un, (α(n, p))1≤p≤k))
L−(s)−→ (U, (ηp)1≤p≤k),

which formally means that we have to prove

lim
n→∞

E
[
Ψg(Un)

k∏
p=1

hp(α(n, p))
]
= Ẽ

[
Ψg(U)

k∏
p=1

hp(ηp)]

for any bounded Ψ ∈ F and for all bounded Lipschitz functions g, h1, . . . , hk.
Note that g is Lipschitz on the Skorokhod spaceD[0, T ], endowed with a distance
d for the Skorokhod topology.

First, the idea is to separate Un from the other variables. To this end, we
need some technical definitions. Let Γ denote the (almost surely finite) number
of jumps over [0, T ]. Then we fix some integer 
 and set S�−

p = (Sp − 1/
)+
and S�+

p = Sp + 1/
. Now B� = ∪p≥1(S
�−
p , S�+

p ] denotes the union of all those
intervals around the jump times, and for any t ≥ 0 we use Λn(
, t) to define
the set of indices j such that τnj−1 ∧ t /∈ B�. The intervals [τnj−1 ∧ t, τnj ∧ t] for
j ∈ Λn(
, t) then cover

Dn(
, t) = [0, t]\
(
∪Γ
p=1(τ

+
n (S�−

p ), τ+n (S�+
p ))

)
where τ+n (s) denotes the first observation strictly after s. Finally, we define

U(
)nt = ε−1
n

∑
j∈Λn(�,t)

(
(Cτn

j ∧t − Cτn
j−1∧t)

2 − σ2(τnj ∧ t− τnj−1 ∧ t)
)
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and

U(
)t :=

√
2

3
cσ

∫ t

0

1Bc
�
(s)dW ′

s

which are similar quantities as Un
t and U t, but only involve intervals which are

far from the jump times.
We introduce the set

Ω(
) =

{
ω ∈ Ω : inf{|Sp − Sp−1|; 1 ≤ p ≤ Γ} >

2




}
on which any two jumps are further than 2/
 apart. Note that Ω(
) → Ω as

 → ∞. Therefore, by boundedness of Ψ, g and all hp, one might as well prove

lim
�→∞

lim sup
n→∞

∣∣E[
1Ω(�)Ψg(Un)

k∏
p=1

hp(α(n, p))
]
− Ẽ

[
1Ω(�)Ψg(U)

k∏
p=1

hp(ηp)
]∣∣ = 0.

As B� decreases to a discrete set, the convergence U(
)
u.c.p.−→ U is immediate.

Note that ucp convergence implies convergence in the Skorokhod topology in
probability. Therefore, as Ψ and the hp are bounded and g is bounded and
Lipschitz, we deduce

lim
�→∞

E
[
|1Ω(�)Ψ(g(U)− g(U(
))

k∏
p=1

hp(ηp)|] = 0. (4.1)

Similarly, we would like to prove

lim
�→∞

lim sup
n→∞

E
[
|1Ω(�)Ψ(g(Un)− g(U(
)n))

k∏
p=1

hp(ηp)|] = 0, (4.2)

and it is sufficient to show

lim
�→∞

lim sup
n→∞

P
(
{d(Un, U(
)n) ≥ η} ∩ Ω(
)

)
= 0

for any η > 0, for the same reason as above. Let (F ′′
t )t denote the filtration

which is the smallest one containing (Ft)t and such that the jump measure μ of
J is F ′′

0 -measurable. We use an argument based on ucp convergence again and
prove convergence to zero of

lim
�→∞

lim sup
n→∞

P({sup
t≤T

|Un
t − U(
)nt | ≥ δ} ∩ Ω(
))

≤ lim
�→∞

lim sup
n→∞

δ−2E[1Ω(�)E[sup
t≤T

|Un
t − U(
)nt |2|F ′′

0 ]]

for any δ > 0. Since W remains a standard Brownian motion with respect to
(F ′′

t )t, and as the event {j : τnj−1 ∧ t ∈ B�} is F ′′
τn
j−1∧t-measurable, it is easy to

see that

Un
t −U(
)nt = ε−1

n

∑
j

(
(Cτn

j ∧t − Cτn
j−1∧t)

2 − σ2(τnj ∧ t− τnj−1 ∧ t)
)
1{τn

j−1∧t∈B�}
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is a martingale with respect to the filtration F ′′
t . By using the Doob inequal-

ity plus successive conditioning and the Burkholder-Davis-Gundy inequality we
obtain

1Ω(�)E[sup
t≤T

|Un
t − U(
)nt |2|F ′′

0 ] ≤ K1Ω(�)E
[
|Un

T − U(
)nT |2|F ′′
0

]
=K1Ω(�)ε

−2
n E

[∣∣ ∑
j /∈Λn(�,T )

(
(Cτn

j ∧T − Cτn
j−1∧T )

2 − σ2(τnj ∧ T − τnj−1 ∧ T )
)∣∣2|F ′′

0

]
=K1Ω(�)ε

−2
n E

[ ∑
j /∈Λn(�,T )

(
(Cτn

j ∧T − Cτn
j−1∧T )

2 − σ2(τnj ∧ T − τnj−1 ∧ T )
)2|F ′′

0

]
≤K1Ω(�)ε

−2
n E

[ ∑
j /∈Λn(�,T )

(Cτn
j ∧T − Cτn

j−1∧T )
4|F ′′

0

]
≤K1Ω(�)ε

−2
n

Γ∑
p=1

E
[ ∑
j:τ+

n (S�−
p )<τn

j ≤τ+
n (S�+

p )

(Cτn
j
− Cτn

j−1
)4|F ′′

0

]
.

Here and below, K denotes an unspecified constant.

We have to discuss four different cases. First, since we are on Ω(
), we know
that there are no further jumps between S�−

p and S�+
p than the one at Sp.

(Without loss of generality, we assume in the sequel that the jump at Sp is large
enough to lead to an observation. Otherwise, we can add Sp to the τnj and adjust
the previous sum accordingly, at the cost of a further enlargement of K.) All
observations in between are caused by exits of the Brownian motion from the
respective intervals. Therefore we obtain, with the same proof as in Proposition
4.3 of Fukasawa and Rosenbaum (2012),

1Ω(�)ε
−2
n E

[ ∑
j:τ+

n (S�−
p )<τn

j ≤τ−
n (Sp)

(Cτn
j
− Cτn

j−1
)4|F ′′

0

] P−→ 1Ω(�)σ
2c2(Sp − S�−

p )

and

1Ω(�)ε
−2
n E

[ ∑
j:τ+

n (Sp)≤τn
j ≤τ−

n (S�+
p )

(Cτn
j
− Cτn

j−1
)4|F ′′

0

] P−→ 1Ω(�)σ
2c2(S�+

p − Sp).

For the remainder, note that |CSp −Cτ−
n (Sp)

| ≤ cεn and |Cτ+
n (S�+

p )−Cτ−
n (S�+

p )| ≤
2cεn on Ω(
), where the factor in the latter inequality comes from the fact that
there might be an observation in S�+

p , but which is not due to a jump. We
conclude

1Ω(�)ε
−2
n

Γ∑
p=1

E
[ ∑
j:τ+

n (S�−
p )<τn

j ≤τ+
n (S�+

p )

(Cτn
j
− Cτn

j−1
)4|F ′′

0

]
P−→ 1Ω(�)σ

2c2Γ(S�+
p − S�−

p ),
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which basically equals the variance of realized volatility when computed over
intervals outside of Λn(
, T ) only. Then it it easy to deduce

lim
�→∞

lim sup
n→∞

P({sup
t≤T

|Un
t − U(
)nt | ≥ δ} ∩ Ω(
)) ≤ lim

�→∞
K

E[Γ]

δ2

= 0,

where we have used E[Γ] < ∞ by assumption on ν. Hence, we obtain (4.2) as
requested.

Combining (4.1) and (4.2) it enough to show

lim
n→∞

E
[
1Ω(�)Ψg(U(
)n)

k∏
p=1

hp(α(n, p))
]
= Ẽ

[
1Ω(�)Ψg(U(
))

k∏
p=1

hp(ηp)] (4.3)

for any fixed integer 
. Let us introduce the sets

Ωn = {ω ∈ Ω : inf{|ΔJSp |; 1 ≤ p ≤ Γ} > 2εnc},

where every jump of X on [0, T ] leads to an exit from the current interval and
which satisfies P(Ωn) → 1, and

Ωn(
) =
⋂

1≤p≤Γ

(
{τ+n (Sp) < S�+

p } ∩ {τ−n (Sp) > τ+n (S�−
p )}

)
∩ Ωn.

Obviously,

P
(
Ωn(
)

c
)
≤ E

[ Γ∑
p=1

(
1{τ+

n (Sp)≥S�+
p } + 1{τ−

n (Sp)≤τ+
n (S�−

p )}
)
1Ωn

]
+ o(1), (4.4)

and we work conditionally on F ′′
0 again. We bound P

(
{τ+n (Sp) ≥ Sp + 1

� } ∩
Ωn

∣∣F ′′
0

)
by distinguishing the two cases that the next observation after Sp is

due to a jump or to an exit of the Brownian motion. In both situations, it is
obvious that no exit of σWt from the interval [−εnc, εnc] has taken place over
(Sp, Sp + 1/
). Using Theorem 2.49 in Mörters and Peres (2010), this exit time
E (starting at x) satisfies

Ex[E] =
(εnc)

2 − x2

σ2
≤ Kε2n. (4.5)

Therefore,

P

(
{τ+n (Sp) ≥ Sp +

1



} ∩ Ωn

∣∣F ′′
0

)
≤ 2 sup

x∈[−εnc,εnc]

Px(E >
1



) ≤ Kε2n
. (4.6)

A similar argument on backward hitting times, which will be encountered in
the proof of Lemma 4.2 in detail (see (4.8)), can be used to discuss the second
indicator in (4.4). Thus, for any fixed 
,

P (Ωn(
)
c) ≤ E[Γ]Kε2n
+ o(1) = o(1).
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Note that on Ω(
)∩Ωn(
) all jump times Sp and the previous and the following
observations are located outside of Dn(
, t). Therefore, all intervals with j ∈
Λn(
, t) are equal in distribution to lengths of intervals of exit times of σWt

from the regular grid, and U(
)nt is the corresponding standardized sum of the
increments of Brownian motion between these times. We define

W (
)t =

∫ t

0

1B�
(s)dWs,

and let (F ′′�
t )t denote the smallest filtration containing (F ′′

t )t such that W (
)t is
F ′′�

0 -measurable. We introduce with Q = Qω a regular version of the conditional
probability with respect to F ′′�

0 . The same arguments as the ones leading to (4.6)
prove that adding and removing a single observation to realized volatility of the
continuous martingale part gives an error of small order, that is

U(
)nt = ε−1
n

∑
j∈Λn(�,t)

(
(Cτn

j
− Cτn

j−1
)2 − σ2(τnj − τnj−1)

)
1{τn

j ≤t} + oP(1).

Similarly, we obtain that Dn(
, t) shrinks to [0, t]\B�. We are then in a position
to use the stable convergence stated in Fukasawa and Rosenbaum (2012), in
particular Theorem 2.4 and Proposition 3.1 therein, to obtain

1Ω(�)∩Ωn(�)EQω [Ψg(U(
)nt )] = 1Ω(�)∩Ωn(�)ẼQ̃ω
[Ψg(U(
)t)] + oP(1),

where Q̃ denotes the corresponding probability measure on the product space.
Thus,

E
[
1Ω(�)Ψg(U(
)nt )

k∏
p=1

hp(α(n, p))
]

=E
[
1Ω(�)∩Ωn(�)Ψg(U(
)nt )

k∏
p=1

hp(α(n, p))
]
+ o(1)

=E
[
1Ω(�)∩Ωn(�)

k∏
p=1

hp(α(n, p))EQ· [Ψg(U(
)nt )]
]
+ o(1)

=E
[
1Ω(�)∩Ωn(�)

k∏
p=1

hp(α(n, p))ẼQ̃·
[Ψg(U(
)t)]

]
+ o(1).

Since Ψ̃ = ẼQ̃·
[Ψg(U(
)t)] is another bounded F-measurable random variable,

it is certainly enough to prove

E
[
1Ωn(�)∩Ω(�)Ξ

k∏
p=1

hp(α(n, p))
]
→ Ẽ

[
1Ω(�)Ξ

k∏
p=1

hp(ηp)] (4.7)

for any bounded F-measurable Ξ in order to establish (4.3).
On the set Ωn, the random variables α(n, p) only depend on the jump times

Sp, 1 ≤ p ≤ k, and the Brownian motion over the intervals between those times,
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as all jumps automatically lead to an observation. By conditioning, it is then
sufficient to show (4.7) for

Ξ =

k∏
p=1

ϕp({Wu : u ∈ (Sp−1, Sp]})�p(Sp),

where {Wu : u ∈ (Sp−1, Sp]} denotes the Brownian motion between the succes-
sive jump times and any ϕp and �p are bounded. Also, a similar argument as
the one leading to (4.2) shows that it is sufficient to work with

Ξ =
k∏

p=1

ϕp({Wu : u ∈ (Sp−1, Sp − 1/m]})�p(Sp),

for any fixed integer m larger than 
. (Note that Sp− 1/m > Sp−1 always, since
we are on Ω(
).) Let us first discuss the asymptotics of

E
[
hk(α(n, k))ϕk({Wu : u ∈ (Sk−1, Sk − 1/m]})�k(Sk)|F ′′

Sk−1/m

]
=ϕk({Wu : u ∈ (Sk−1, Sk − 1/m]})�k(Sk)E

[
hk(α(n, k))|F ′′

Sk−1/m

]
.

As in (4.6), we have
P(τ−n (Sk) ≤ Sk − 1/m) → 0.

On the complement the conditional expectation simplifies, as α(n, k) is inde-
pendent of W until Sk − 1/m then. We obtain

E
[
hk(α(n, k))|F ′′

Sk−1/m

]
= E[hk(α(n, k))|F ′′

0 ] + oP(1).

The idea is to finally use Lemma 4.2 below, which proves

E[hk(α(n, k))|F ′′
0 ] → Ẽ[hk(ηk)].

One then obtains (4.7) via successive conditioning.

Lemma 4.2. Let t > 0 be arbitrary and let τ−n (t) be the last hitting time of
the grid {εnkc | k ∈ Z} by σW prior to t. Then, as n → ∞ we have the weak
convergence

σε−1
n

(
Wt −Wτ−

n (t)

)
L−→ cη

where η has the density h from (3.2).

Proof. Before we begin with the proof, note from self-similarity of Brownian
motion that ε−2

n (t − τ−n (t)) is equal in distribution to ε−2
n t − υ−

n (ε
−2
n t), where

υ−
n (s) denotes the last hitting time of the grid {kc | k ∈ Z} by σWt. This

distribution is called Gn in the following. Also, after a shift to zero, A1.3.0.2 in
Borodin and Salminen (2002) shows that the distribution of each hitting time
of the grid {kc | k ∈ Z} by σWt equals S with

P(S ≤ z) =

∫ z

0

∞∑
k=−∞

(−1)k
(2k + 1)c√
2πσ2u3/2

e−
((2k+1)c)2

2σ2u du = F (z).
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Theorem 1.18 in Mitov and Omey (2014) then proves

Gn(z) → G(z) =
σ2

c2

∫ z

0

(1− F (u))du (4.8)

pointwise in z, where we have used that c2/σ2 is the expected waiting time until
the next hit; recall (4.5).

By conditioning on t− τ−n (t) we then obtain

P
(
σε−1

n (Wt −Wτ−
n (t)) ≤ x

)
=

∫ ∞

0

P
(
σε−1

n (Wt −Wτ−
n (t)) ≤ x|t− τ−n (t) = ε2nz

)
dGn(z).

Of course, we are not in the setting of stopping times here, as t − τ−n (t) = ε2nz
states both that t − ε2nz was a hitting time and that no further hitting time
has taken place between t − ε2nz and t. However, since we work with a regular
grid we can at least assume that the place of the last hit was at zero and, using
stationarity of the increments of Brownian motion, we can set t − ε2nz = 0.
Overall, we obtain

P
(
σε−1

n (Wt −Wτ−
n (t)) ≤ x|t− τ−n (t) = ε2nz

)
=P

(
σWε2nz

≤ εnx| inf
0≤u≤ε2nz

σWu > −εnc, sup
0≤u≤ε2nz

σWu < εnc
)

=P
(
σWz ≤ x| inf

0≤u≤z
σWu > −c, sup

0≤u≤z
σWu < c

)
=
P
(
σWz ≤ x, inf0≤u≤z σWu > −c, sup0≤u≤z σWu < c

)
P
(
inf0≤u≤z σWu > −c, sup0≤u≤z σWu < c

) ,

where we have used self-similarity of the Brownian motion again. While the
denominator can be written as P(S > z) with S as before, we use Theorem 33
in Freedman (1983) to obtain

P
(
σε−1

n (Wt −Wτ−
n (t)) ≤ x|t− τ−n (t) = ε2nz

)
=

∫ x

−c
1√

2πσ2z

∑∞
m=−∞

(
e−

(y−4mc)2

2σ2z − e−
(y+2c+4mc)2

2σ2z

)
dy

1− F (z)

for x ∈ [−c, c], and it vanishes otherwise. Overall, using dominated convergence,
Fubini’s theorem and a change of variables,

P
(
σε−1

n (Wt −Wτ−
n (t)) ≤ x

)
=

∫ ∞

0

P
(
σε−1

n (Wt −Wτ−
n (t)) ≤ x|t− τ−n (t) = ε2nz

)
dGn(z)

→
∫ ∞

0

∫ x

−c
1√

2πσ2z

∑∞
m=−∞(e−

(y−4mc)2

2σ2z − e−
(y+2c+4mc)2

2σ2z )dy

1− F (z)
dG(z)1[−c,c](x)
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=

∫ x

−c

∫ ∞

0

1√
2πc2u

∞∑
m=−∞

(
e−

(
y
c
−4m)2

2u − e−
(
y
c
+2+4m)2

2u

)
dudy1[−c,c](x)

=

∫ x

−∞

1

c
h
(y

c

)
dy.

This proves the result. Note finally that h is easily seen to be a density, as∫ 1

−1

h(y)dy =

∫ ∞

0

P
(

inf
0≤u≤z

Wu > −1, sup
0≤u≤z

Wu < 1
)
dz = 1

from
∫ ∞
0

P(X > z)dz = E[X] for any positive random variable and (4.5).

Let us now finish the proof of Theorem 3.1 when Xt = σWt + Jt. From (4.5)
we obtain

ε−1
n

(
[X,X]t − [X,X]τ−

n (t)

)
= OP(εn) = oP(1),

because t− τ−n (t) is smaller in distribution than E. As before, using again that
adding and removing a single observation causes an error of small order, we
have the key decomposition

ε−1
n

(
RV (X,X)nt − [X,X]τ−

n (t)

)
=Un

t + ε−1
n

(
RV (J, J)nt − [J, J ]τ−

n (t)

)
+ 2ε−1

n RV (C, J)nt + oP(1), (4.9)

and for simplicitly we can assume to be on Ωn at the cost of additional smaller
order terms only. On this set every jump causes an observation and the second
term in (4.9) vanishes identically. The third term simplifies as well, as we end
up with

Z̃n
t (X) = ε−1

n

(
RV (X,X)nt − [X,X]t

)
= Un

t + 2ε−1
n

∑
Sp≤t

ΔJSpσ
(
WSp −Wτ−

n (Sp)

)
+ oP(1).

The result then follows from Lemma 4.1, as U t equals Ũt for a constant σ.
Finally, let us explain why it is sufficient to discuss the simple case X̂t =

σWt + Jt only. To this end, let

Xt =

∫ t

0

bsds+

∫ t

0

σsdWs + Jt

as above. Following Theorem IV.4.32 in Jacod and Shiryaev (2003), there exists
an equivalent probability measure Q such that the continuous martingale part
and jump process remain the same under Q, but the drift vanishes. Note further
that the F-conditional distribution of the limiting process Z̃t = Ũt + Ṽt only
depends on the quadratic variation process [X,X] up to time t which remains
unchanged under a change of measure using Theorem III.3.13 in Jacod and
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Shiryaev (2003). Thus, if we can show F-stable convergence under Q, we directly
get

EP[Y g(Z̃n
t (X))] = EQ

[
Y

dP

dQ
g
(
Z̃n
t (X)

)]
→ EQ

[
Y

dP

dQ
g(Z̃t)

]
= EP

[
Y g(Z̃t)

]
for any bounded, F-measurable Y and any bounded and continuous function
g, as EQ[dP/dQ|Ft] is locally bounded due to Proposition III.3.5 in Jacod and
Shiryaev (2003) and thus can be assumed to be bounded as well.

Suppose therefore that

Xt =

∫ t

0

σsdWs + Jt.

Using a time change, we can write X = X̂[Xc,Xc] with X̂t = Ĉt + Ĵt, where Ĉ is

a standard Brownian motion and Ĵ is a finite activity jump process with jump
times Ŝp = [Xc, Xc]−1(Sp) and the same jump sizes. We then know from the
preceding results that

ε−1
n

(
RV (X̂, X̂)nt − [X̂, X̂]t

) L−(s)−→
√

2

3
c

∫ t

0

dW ′
s + 2

∑
Ŝp≤t

ΔX̂Ŝp
cηp.

The general claim then follows from

RV (X̂, X̂)n[Xc,Xc]t
− [X̂, X̂][Xc,Xc]t = RV (X,X)nt − [X,X]t

using the fact that the exit times commute with the specific choice of the time
change, as well as from∫ [Xc,Xc]t

0

dW ′
s =

∫ t

0

dW ′
[Xc,Xc]s

=

∫ t

0

σsdW
′
s

and ∑
Ŝp≤[Xc,Xc]t

ΔX̂Ŝp
cηp =

∑
Sp≤t

ΔXSpcηp.
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