
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 22 (2017), no. 70, 1–34.
ISSN: 1083-6489 DOI: 10.1214/17-EJP98

Metastability in the reversible inclusion process *

Alessandra Bianchi † Sander Dommers ‡ Cristian Giardinà §

Abstract

We study the condensation regime of the finite reversible inclusion process, i.e., the
inclusion process on a finite graph S with an underlying random walk that admits a
reversible measure. We assume that the random walk kernel is irreducible and its
reversible measure takes maximum value on a subset of vertices S? ⊆ S. We consider
initial conditions corresponding to a single condensate that is localized on one of
those vertices and study the metastable (or tunneling) dynamics. We find that, if the
random walk restricted to S? is irreducible, then there exists a single time-scale for the
condensate motion. In this case we compute this typical time-scale and characterize
the law of the (properly rescaled) limiting process. If the restriction of the random
walk to S? has several connected components, a metastability scenario with multiple
time-scales emerges. We prove such a scenario, involving two additional time-scales,
in a one-dimensional setting with two metastable states and nearest-neighbor jumps.
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1 Introduction

The inclusion process is an interacting particle system introduced in the context of
non-equilibrium statistical mechanics, as a dual process of certain diffusion processes
modeling heat conduction and Fourier’s law [18, 19, 20]. Besides, it is also related
to models in mathematical population genetics [13], such as the Moran model, and to
models of wealth distribution [15]. In addition to this, the inclusion process is interesting
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Metastability in the reversible IP

in its own right as an interacting particle system belonging to the class of misanthrope
processes [16].

In the inclusion process, particles jump over a set S of vertices, thus the total number
of particles N is conserved by the dynamics. The transitions are driven by two competing
contributions to the total jump rate. Denoting by ηx the particle number at site x, and
calling r : S×S → R+ the jump rates of a continuous-time irreducible random walk on S,
the process is defined by the following rules (see Section 2.1 for the process generator):

i) firstly, particles move as continuous-time independent random walks: for a param-
eter dN > 0, each of the ηx particles at site x waits a random time which is the
minimum of exponential clocks of parameters dNr(x, z) for z ∈ S, and then jumps
to site y with probability r(x, y)/(

∑
z∈S r(x, z)).

ii) secondly, particles jump because of an attractive interaction: each of the ηx
particles at site x waits a random time which is the minimum of exponential
clocks of parameters ηzr(x, z) for z ∈ S, and then jumps to site y with probability
ηyr(x, y)/(

∑
z∈S ηzr(x, z)).

Whereas the first contribution leads to spreading of the particles over the sites of S, due
to the second contribution particles have a preference to accumulate on a few sites. This
attractive interaction is in contrast to the repulsive behavior of the well-known exclusion
process, where particles are subject to a hard-core potential that forbids more than
one particle per site. The inclusion process is a bosonic system, whereas the exclusion
process is fermionic.

The relative strength of the two contributions is tuned by the parameter sequence
dN . In the long time limit, the two contributions find a compromise into a (reversible)
stationary measure that is shown explicitly in Section 2.2. As long as dN > 0, this
measure has mass over all the configuration space. If the sequence dN approaches zero
sufficiently fast as N →∞, then the stationary measure concentrates on a small subset
of configurations. This is the phenomenon of condensation in the inclusion process, first
studied in [21]. In the condensation regime essentially all particles accumulate on a
single site of S? ⊆ S, the set over which the stationary measure of the random walk takes
maximum value. The condensation phenomenon occurs in several other interacting
particle systems [17], most notably the zero range process [23].

In this paper we consider the condensation regime of the inclusion process and
study the dynamics of the condensate. This problem was previously considered in
[22]. There, however, the authors assumed a symmetric random walk kernel that
therefore has a uniform reversible measure on S. Here we consider instead the case of a
generic reversible measure, thus allowing the possibility that S? 6= S. Depending on the
properties of the underlying random walk kernel, the following metastability scenario
with possibly multiple time-scales emerges from our analysis. If the restriction of the
random walk kernel to S? is still irreducible, then the system has only one time-scale.
However, if such restriction is reducible into several connected components, then there
exist up to three time-scales: a first time-scale over which the system moves within
connected components; a second time-scale to see the jumps between components
that are at graph distance equal to two; a third (even longer) time-scale for the jumps
between components that are at graph distance larger than two. We point out that the
origin of the multi-scale metastability can be traced back to the rates of the inclusion
process and this complex scenario does not appear in the zero range process, where the
rates are functions of one site only.

Our results include the characterization of the single time-scale scenario in great
generality. In particular, when the system has only one time-scale, we allow any geometry
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Metastability in the reversible IP

and we are able to derive the rates of the limiting Markovian dynamics. We give
a rigorous proof of the multiple time-scale scenario instead in the one-dimensional
setting, i.e., for linear chains with nearest-neighbor jumps, whose end-points are the
only maximal states of the reversible measure. In this case we fully characterize the
second time-scale (together with the rates of the limiting dynamics) when |S| = 3, and
the third time-scale when |S| > 3 and the stationary measure of the random walk has
only two values. We conjecture that the same qualitative behavior of the motion of the
condensate occurs in great generality.

The key ingredient of the proofs of our main results are potential theory methods.
We refer in particular to the potential theoretic approach to metastability, introduced in
a series of papers by Bovier, Eckhoff, Gayrard and Klein [8]–[10], and to the martingale
approach, developed in some recent papers by Beltrán and Landim [3]–[6]. A general
treatment of metastable systems may be found in [28], where the pathwise approach to
metastability is discussed, while we refer to [11] for a recent monograph on the potential
theory approach to metastability.

The paper is organized as follows. In the next Section we introduce the model and
state our main results precisely. We also give an outline of the proofs. In Section 3 we
analyze the metastable sets that are those configurations with all particles occupying a
single site in S?. The three different time-scales and the corresponding limiting dynamics
are then analyzed in Sections 4–6, respectively.

2 Model and results

2.1 Reversible inclusion process

Consider a set of sites S with κ := |S| <∞ and let r : S × S → R+ be the jump rates
of a continuous-time irreducible random walk on S, reversible with respect to some
probability measure m, i.e.,

m(x)r(x, y) = m(y)r(y, x), for all x, y ∈ S. (2.1)

Without loss of generality, we assume that r(x, x) = 0 for all x ∈ S.
Of special interest are the sites where m attains its maximum. Hence, we define

M? = max{m(x) : x ∈ S}, S? = {x ∈ S : m(x) = M?} and κ? = |S?|. (2.2)

and let

m?(x) =
m(x)

M?
, (2.3)

which is a normalization of m such that m?(x) = 1 if and only if x ∈ S?.
For a given underlying random walk we can now give the definition of the reversible

inclusion process {η(t) : t ≥ 0}. For each N ≥ 1, the set of configurations EN correspond
to all the possible arrangements of N particles on S, that is

EN = {η ∈ NS :
∑
x∈S

ηx = N}. (2.4)

The component ηx of η has to interpreted as the number of particles at site x ∈ S.
To specify the possible transitions of the dynamics, for x, y ∈ S, x 6= y, and η ∈ EN

such that ηx > 0, let us denote by ηx,y the configuration obtained from η by moving a
particle from x to y:

(ηx,y)z =


ηx − 1, for z = x,

ηy + 1, for z = y,

ηz, otherwise.

(2.5)
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The inclusion process with N particles is then a Markov process {η(t) : t ≥ 0} on EN
with generator LN , acting on functions F : EN → R, given by

(LNF )(η) =
∑
x,y∈S

ηx (dN + ηy) r(x, y)[F (ηx,y)− F (η)] , (2.6)

where {dN > 0 : N ∈ N} is a sequence of positive numbers that is specified later. Since
we consider only finite graphs there are no restrictions on the functions F .

2.2 Condensation and metastability

The inclusion process has a stationary and reversible probability measure µN (η),
given by a product measure of negative binomials conditioned to a total number of
particles N , i.e.,

µN (η) =
1

ZN,S

∏
x∈S

m?(x)ηxwN (ηx), (2.7)

where

wN (k) =
Γ(k + dN )

k!Γ(dN )
, (2.8)

and
ZN,S =

∑
η∈EN

∏
x∈S

m?(x)ηxwN (ηx). (2.9)

We abbreviate
mη
? :=

∏
x∈S

m?(x)ηx and wN (η) =
∏
x∈S

wN (ηx), (2.10)

so that (2.7) becomes

µN (η) =
1

ZN,S
mη
?wN (η). (2.11)

The stationary measure is unique, because the underlying random walk, and hence also
the inclusion process, is irreducible. It can easily be checked that the measure in (2.7)
satisfies the detailed balance, and thus is the reversible measure of the process.

If the parameter dN scales to zero fast enough in the limit N →∞, then the inclusion
process shows condensation, i.e., the invariant measure concentrates on disjoint sets of
configurations (that we shall call metastable sets or condensates). To formalize this idea,
let

ExN = {η ∈ EN : ηx = N} , x ∈ S? . (2.12)

Moreover, for S0 ⊂ S?, define EN (S0) =
⋃
x∈S0

ExN and let ∆ = EN \ EN (S?).
The following result, proved in Section 3, shows that invariant measure asymptotically

concentrates on the sets (in fact singletons) ExN , x ∈ S?, which turn out to be the
metastable sets of the process:

Proposition 2.1. For dN logN → 0 as N →∞, and for all x ∈ S?,

lim
N→∞

µN (ExN ) =
1

κ?
. (2.13)

As a consequence, limN→∞ µN (∆) = 0.

The metastability problem we address in this paper is the following. Assume the
process is started from a configuration corresponding to a single condensate. Then we
determine the time-scale(s) over which the condensate moves and characterize the law
of the process describing the motion of the condensate.

Remark 2.2. Notice that the metastable sets ExN , x ∈ S?, have equal µN -measure. It may
be worth to mention that in this situation some authors prefer to speak about tunneling
behavior rather than metastability. However, this abuse of terminology is currently quite
diffuse in the mathematical literature, and we just use the word metastability.
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2.3 Results

In order to state our findings we introduce some notation. For a set A ⊂ EN , let τA
denote the hitting time of A:

τA = inf{t ≥ 0 : η(t) ∈ A} . (2.14)

Moreover, with the identification E?N ≡ EN (S?), let ηE
?
N (t) denote the trace process on E?N ,

i.e., the process obtained from η(t) by cutting out all time periods where the system is
not in E?N . Formally, for all t ≥ 0, ηE

?
N (t) := η(SE?N (t)) with SE?N (t) the generalized inverse

of the local time `E?N (t):

`E?N (t) =

∫ t

0

1{η(s)∈E?N}ds and SE?N (t) = sup{s ≥ 0 : `E?N (s) ≤ t} . (2.15)

Notice that this is still a Markov process (we refer to [3] for a proof of this result).
Finally, let us define the process

XN (t) = ψN (ηE
?
N (t)), (2.16)

where ψN : E?N 7→ S? is given by

ψN (η) =
∑
x∈S?

x · 1{η∈ExN} . (2.17)

With the above notation, and the usual convention that Eη(·) denotes the expectation
when the process η(t) is started from η at time t = 0, we prove the following:

Theorem 2.3 (First time-scale). If dN logN → 0 as N →∞, then, for all x ∈ S?,

(i) The average time to move the condensate at x to another site of S? is given by

EExN (τEN (S?\{x})) =
1∑

y∈S?,y 6=x r(x, y)

1

dN
(1 + o(1)) . (2.18)

(ii) Assume that XN (0) = x. Then, the speeded-up process {XN (t/dN ) , t ≥ 0} con-
verges weakly on the path space D(R+, S?) to the Markov process {X(t) , t ≥ 0}
on S?, with X(0) = x and generator

Lf(y) =
∑
z∈S?

r(y, z)[f(z)− f(y)] . (2.19)

Furthermore, the system spends negligible time outside the metastable states, i.e.,
∀T > 0

lim
N→∞

EExN

[∫ T

0

1{η(s/dN )∈∆}ds

]
= 0. (2.20)

Remark 2.4. The weak convergence stated in item (ii) of Theorem 2.3 refers to the path
space endowed with the Skorokhod topology. We stress the fact that from this result,
together with condition (2.20), one can also infer the weak convergence of the speeded-
up projected process {ψN (η(t/dN )) , t ≥ 0} to the Markov process {X(t) , t ≥ 0} as
defined above, though with a topology on the path space, called soft topology, that is
weaker than the Skorokhod one. We refer to [24] for the details.

From Theorem 2.3, we conclude that on this first time-scale the condensate can only
jump between sites in S? that are connected in the graph induced by the underlying
dynamics. In particular, if x, y ∈ S? are not connected by a path in S?, then the
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condensate will not move from x to y on the time-scale 1/dN . Since the inclusion process
is irreducible, we therefore expect that this movement occurs on a longer time-scale.

We formalize these ideas focusing on a specific one-dimensional setting. For an
integer κ ≥ 2, let

S = [1, κ] ∩Z , with r(x, y) 6= 0 iff |x− y| = 1 , S? = {1, κ} , (2.21)

that is indeed an example of dynamics that is not irreducible when restricted to S?.
For such systems we have the following result, where we say that dN decays subex-

ponentially if, for all δ > 0, limN→∞ dNe
δN =∞.

Theorem 2.5 (Second time-scale). Consider an underlying random walk as in (2.21),
with κ = 3. Assume that dN decays subexponentially and dN logN → 0 as N →∞. Then

(i) The average time to move the condensate between the sites of S? is given by

EE1N (τE3N ) = EE3N (τE1N ) =

(
1

r(1, 2)
+

1

r(3, 2)

)
· (1−m?(2)) · N

d2
N

(1 + o(1)) . (2.22)

(ii) Assume that XN (0) = x ∈ S?. Then, the speeded-up process XN (tN/d2
N ) converges

weakly on the path space D(R+, S?) to the Markov process {X(t) , t ≥ 0} on S?,
starting at X(0) = x and jumping back and forth between x and S? \ {x} at rate(

1

r(1, 2)
+

1

r(3, 2)

)−1
1

1−m?(2)
. (2.23)

Furthermore, the system spends negligible time outside the metastable states, i.e.,
∀T > 0 and x ∈ S?,

lim
N→∞

EExN

[∫ T

0

1{η(s·N/d2N )∈∆}ds

]
= 0 . (2.24)

As will be clear from the proof of Theorem 2.5 (see Section 5) the explanation for
the presence of this second time-scale is that, in order to move the condensate between
sites of S? = {1, 3}, the system is forced to bring particles through S \ S? = {2}. This is
however an unlikely event, that slows down the motion of the condensate between sites
of S? and yields a much longer transition time-scale. In this sense, we may consider the
sites of S \ S? as traps for the dynamics of the system.

Following this idea, the natural further question is about the presence of possibly
many time-scales related to the length of these traps, that is to the graph-distance
between disconnected sites of S?. We answer this question in the affirmative for linear
systems as those defined in (2.21) with κ ≥ 4, proving that an even longer time-scale is
required to move the condensate between the disconnected sites {1, κ} = S? which are
at graph-distance greater than 2. We have the following:

Theorem 2.6 (Third time-scale). Consider an underlying random walk as in (2.21), with
κ ≥ 4 and m? := m?(2) = . . . = m?(κ− 1). Assume that dN decays subexponentially and
dN logN → 0 as N →∞. Then,

(i) The average time to move the condensate between the sites of S? is given by

EE1N (τEκN ) = EEκN (τE1N ) = 3
m?

(1−m?)2

(
κ−2∑
x=2

1

r(x, x+ 1)

)−1

· N
2

d3
N

(1 + o(1)) . (2.25)
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(ii) Assume that XN (0) = x ∈ S?. Then, the speeded-up process XN (tN2/d3
N ) con-

verges weakly on the path space D(R+, S?) to the Markov process {X(t) , t ≥ 0} on
S?, starting at X(0) = x and jumping back and forth between x and S? \ {x} at rate

3
m?

(1−m?)2

(
κ−2∑
x=2

1

r(x, x+ 1)

)−1

. (2.26)

Furthermore, the system spends negligible time outside the metastable states, i.e.,
∀T > 0 and x ∈ S?,

lim
N→∞

EExN

[∫ T

0

1{η(s·N2/d3N )∈∆}ds

]
= 0 . (2.27)

As is shown in Section 6.1, the lower bound on the capacities, which corresponds to
an upper bound on the expected crossover time, excludes the possibility of the presence
of longer transition time-scales (or deeper traps). Since this bound can actually be
extended to more general settings beyond the one-dimensional case, we thus conjecture
that the inclusion process has always at most three time-scales for the motion of the
condensate, although we cannot exclude the possibility of the presence of intermediate
time-scales.

2.4 Discussion

Symmetric inclusion process. The paper [22] proves results similar to those of item
(ii) of Theorem 2.3 in the case where the underlying random walk is symmetric, i.e.,
r(x, y) = r(y, x), and under the assumption that dN → 0 and dNN → ∞ as N → ∞. In
this case the underlying random walk is reversible with respect to the measure m? ≡ 1,
so that S = S?. In particular, all the sites of S? belong to the same connected component
and the motion of the condensate involves only the first time-scale, of order 1/dN . Let
us mention that the results of [22] were obtained by completely different techniques,
namely by a direct scaling and expansion of the generator (2.6), that was shown to
converge to the generator (2.19) of the limiting Markov process.

Comparison with the zero range process. The zero range process (ZRP) is a well
known interacting particle system that under suitable hypotheses displays the condensa-
tion phenomenon (see e.g. [23, 2], and reference therein). The dynamics of a condensate
for the ZRP has been studied in the finite reversible case in [5] by Beltrán and Landim, as
a first application of the martingale approach to metastability that was proposed by the
same authors [4, 6]. The results have then been generalized to the case of a diverging
number of sites [12, 1], and to the totally asymmetric case [25].

The quite complete picture of metastability obtained in the ZRP, allows for a com-
parison with the reversible inclusion process. We stress the following similarities. In
both cases: (i) the condensate is present only on sites of S?; (ii) the metastable sets are
equally probable w.r.t. the equilibrium measure, and thus they are equally stable; (iii)
the energetic barriers that separate the metastable sets are at most logarithmic with the
number of particles, thus yielding transition times that are at most polynomial in N .

More interesting are instead differences between the two processes: (i) the ZRP has
only one relevant time-scale, at which the condensate can jump directly between any
sites in S?. This is due to the fact that the rates of the scaled process on S? are given by
the capacities of the underlying random walk, that are all positive by irreducibility, thus
making irreducible also the condensate dynamics; (ii) the condensate of the ZRP does
not consist of N particles, but only of N − `N particles, for some `N such that `N →∞
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and `N/N → 0 as N →∞. It is exactly due to that small number of particles wandering
around the graph, that the condensate of the ZRP is able to jump to all sites of S? on a
unique time-scale.

Multiple time-scales. Our analysis yields a metastable behavior characterized – in
general – by multiple time-scales. Though we prove the existence of the second and third
time-scale given in Theorems 2.5 and 2.6 only for the one-dimensional setting in (2.21),
we conjecture that the same time-scales show up for general underlying dynamics and
that no further time-scales can occur. In fact, we expect that the leading mechanism
beyond the motion of the condensate can be reduced to a train of particles moving
along single paths between metastable sets. In this sense, each path can be seen as a
one-dimensional system, and the results should be proved in a similar way.

However, to formalize this idea one has first to define, for each time-scale, a new
family of metastable sets obtained by merging together the metastable states that are
connected on a lower time-scale (a formalization of this merging can for example be
found in [4]). Then, one has to show that the reduction to one-dimensional paths is
correct, or in other words, that flows of particles other than those described above,
are unlikely to happen. Because of the complex geometry that may appear in general
situations, this may be a rather difficult task.

For other systems with multi-scale metastable behavior see, for example, the Blume-
Capel model [14, 26] and the random field Curie-Weiss model [7].

Formation of the condensate An interesting question, that still remains open in this
general reversible case, concerns the time-scale characterizing the formation of the
condensate. In [22] this was computed in the symmetric case, and it was shown to
correspond to the same time-scale on which the condensate moves between sites. In the
reversible setting, when multiple time-scales are present, the time-scale on which the
condensate forms, as well as the related dynamics, will be the subject of future research.

2.5 Outline of the proof

As mentioned in the introduction, to prove our theorems we will use potential theory
methods. In potential theory, crucial quantities in the case of dynamics that are reversible
w.r.t. a measure µN , are capacities between sets. Let DN denote the Dirichlet form
associated to the generator LN , that for F : EN 7→ R, is given by

DN (F ) =
1

2

∑
x,y∈S

∑
η∈EN

µN (η)ηx (dN + ηy) r(x, y)[F (ηx,y)− F (η)]2. (2.28)

For two disjoint subsets A, B ⊂ EN , the capacity between A and B can be defined
through the Dirichlet variational principle

CapN (A,B) = inf{DN (F ) : F ∈ FN (A,B)}. (2.29)

where

FN (A,B) = {F : F (η) = 1 for all η ∈ A and F (η) = 0 for all η ∈ B}. (2.30)

The unique minimizer of the Dirichlet principle is the equilibrium potential, i.e., the
harmonic function hA,B that solves the Dirichlet problem

LNh(η) = 0, if η /∈ A ∪B,
h(η) = 1, if η ∈ A,
h(η) = 0, if η ∈ B.

(2.31)
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It can be easily checked that

hA,B(η) = Pη(τA < τB) . (2.32)

As pointed out in [8]–[10], one main fact about capacities in the framework of
metastability, is that they are related to the mean hitting time between sets through the
formula

EνA,B (τB) =
µN (hA,B)

CapN (A,B)
, (2.33)

where νA,B is a probability measure on A such that, for all η ∈ A,

νA,B(η) =
µN (η)Pη(τB < τ+

A )

CapN (A,B)
, (2.34)

and τ+
A is the return time to A, i.e.,

τ+
A = inf{t > 0 : η(t) ∈ A, η(s) 6= η(0) for some s ∈ (0, t)} . (2.35)

Notice in particular, that when A is just a singleton, as in the situations we are dealing
with, the measure νA,B is just a Dirac delta over the singleton. The results stated in
Theorems 2.3(i), 2.5(i) and 2.6 are based on (2.33) for A = ExN and B = EN (S? \ {x}).

Capacities also play an important rôle in [3], where potential theory ideas and
martingale methods have been combined in order to prove the scaling limit of suitably
speeded-up processes, as the one that we have defined in (2.16). In our setting, where
metastable sets are given by singletons, the approach of [3] to prove the convergence
stated in Theorems 2.3(ii) and 2.5(ii), amounts to verifying the existence of a sequence
(θN , N ≥ 1) of positive numbers, such that, for any x, y ∈ S? , x 6= y, the following limit
exists

p(x, y) := lim
N→∞

θNr
E?
N (ExN , E

y
N ) , (2.36)

where rE?N ( · , · ) are the jump rates of the trace process ηE
?
N (t) . The sequence (θN )

provides the proper time-scale to be used in the scaling limit and the set of asymptotic
rates (p(x, y))x,y∈S? identifies the limiting dynamics. By Lemma 6.8. in [3],

µN (ExN )rE?N (ExN , E
y
N ) =

1

2
[CapN (ExN , EN (S? \ {x})) + CapN (EyN , EN (S? \ {y}))

−CapN (EN ({x, y}), EN (S? \ {x, y}))] ,
(2.37)

so that, once more, the main tool to prove our main results turns out to be the computa-
tion of the asymptotic capacities.

The computation of the capacities in the first time-scale is performed in Section 4,
while the capacities in the second and in the third time-scale are analysed in Sections 5
and 6, respectively. In all the three cases, we first provide a lower bound by restricting
the Dirichlet form to a suitable subset of EN (or flow of configurations). We then use the
obtained insights to construct an approximated equilibrium potential and deduce, via
the Dirichlet principle, a matching upper bound.

In our lower bounds we repeatedly use the following lemma, which uniformly bounds
(parts of) the Dirichlet form from below by the effective resistance of a linear electrical
network.

Lemma 2.7. Let Ri,i+1 > 0, i = 1, . . . , k − 1. Then, for any function F : {1, . . . , k} → R,

k−1∑
i=1

Ri,i+1[F (i+ 1)− F (i)]2 ≥ [F (k)− F (1)]2

(
k−1∑
i=1

1

Ri,i+1

)−1

. (2.38)
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Proof. Define the function

g(i) =
F (i)− F (1)

F (k)− F (1)
, (2.39)

so that g(1) = 0 and g(k) = 1. Then,

k−1∑
i=1

Ri,i+1[F (i+ 1)− F (i)]2 = [F (k)− F (1)]2
k−1∑
i=1

Ri,i+1[g(i+ 1)− g(i)]2

≥ [F (k)− F (1)]2 inf
h:h(1)=0,
h(k)=1

k−1∑
i=1

Ri,i+1[h(i+ 1)− h(i)]2

= [F (k)− F (1)]2

(
k−1∑
i=1

1

Ri,i+1

)−1

, (2.40)

where the last equality follows using the series law for the effective capacity of a linear
chain (see, e.g., [27]).

3 Metastable sets

In this section we study the partition function ZN,S and characterize its asymptotic
behavior in the limit N → ∞. This result is used to prove that the configurations in
∆ = EN \ E?N are very unlikely in equilibrium and that ExN , x ∈ S? are the metastable sets
(Proposition 2.1). That in turn is the main ingredient for the proof of (2.20) and (2.24) in
Theorems 2.3 and 2.5, respectively.

We start analyzing the weight function wN (`).

Lemma 3.1. For dN logN → 0 as N →∞, and 0 ≤ k < N ,

lim
N→∞

(dN + k)wN (k)

dN
= lim
N→∞

(k + 1)wN (k + 1)

dN
= 1. (3.1)

Proof. First note that

(dN + k)wN (k) = (dN + k)
Γ(k + dN )

k!Γ(dN )
=

(k + 1)Γ(k + 1 + dN )

(k + 1)!Γ(dN )
= (k + 1)wN (k + 1), (3.2)

so that indeed the two limits are the same.
We rewrite

(k + 1)wN (k + 1)

dN
=

1

dN

(k + 1)Γ(k + 1 + dN )

(k + 1)!Γ(dN )
=

1

Γ(dN + 1)

Γ(k + 1 + dN )

Γ(k + 1)
. (3.3)

Clearly,

lim
N→∞

1

Γ(dN + 1)
=

1

Γ(1)
= 1, (3.4)

and
Γ(k + 1 + dN )

Γ(k + 1)
≥ 1. (3.5)

The upper bound follows from Wendel’s inequality [29]:

Γ(k + 1 + dN )

Γ(k + 1)
≤ (k + 1)dN ≤ NdN = edN logN , (3.6)

which indeed converges to 1 by our assumption on dN .

We can now compute the limiting behavior of the partition function:
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Proposition 3.2. For dN logN → 0 as N →∞,

lim
N→∞

N

dN
ZN,S = κ?. (3.7)

Proof. Since ZN,S includes the κ? configurations where all particles are on one of the
sites in S?, it is clear that

ZN,S ≥ κ?wN (N) = κ?
dN
N

(1 + o(1)), (3.8)

by Lemma 3.1.
To prove the upper bound we proceed by induction. We label the sites by 1, . . . , κ,

and let En,k be the set of configurations with n particles on the first k sites, i.e., En,k =

En,{1,...,k}. Let us define, for 1 ≤ n ≤ N ,

Zn,k =
∑

η∈En,k

mη
?wN (η). (3.9)

By induction over k, we aim to prove that, for all 1 ≤ n ≤ N , 1 ≤ k ≤ κ, and N large
enough,

Zn,k ≤
dN (1 + o(1))

n

k∑
s=1

m?(s)
n + Ck

d2
N log n

n
, (3.10)

where Ck <∞ is a constant that only depends on k and may change from line to line.
We start the induction with k = 1, for which clearly, by Lemma 3.1,

Zn,1 = m?(1)nwN (n) =
dN (1 + o(1))

n
m?(1)n . (3.11)

Assume that (3.10) holds true for k − 1 and for all 1 ≤ n ≤ N . Then, using the induction
hypothesis and Lemma 3.1,

Zn,k = m?(k)nwN (n) + Zn,k−1 +

n−1∑
`=1

m?(k)`wN (`)Zn−`,k−1

≤ dN (1 + o(1))

n

(
m?(k)n +

k−1∑
s=1

m?(s)
n

)
+ Ck−1

d2
N log n

n
(3.12)

+

n−1∑
`=1

m?(k)`
dN (1 + o(1))

`

((
k−1∑
s=1

m?(s)
n−`

)
dN (1 + o(1))

(n− `)
+ Ck−1

d2
N log(n− `)
n− `

)
.

Using that m?(k) ≤ 1 and dN log(n− `) = o(1) by assumption, and for N large enough,
the sum in ` can be bounded from above by

Ckd
2
N

n−1∑
`=1

1

`(n− `)
= 2Ckd

2
N

n/2∑
`=1

1

`(n− `)
= 2Ck

d2
N

n

n/2∑
`=1

1

`(1− `/n)
. (3.13)

Since ` ≤ n/2 we have that (1− `/n) ≥ 1
2 . Hence, we can bound (3.13) from above by

4Ck
d2
N

n

n/2∑
`=1

1

`
≤ 4Ck

d2
N log n

n
. (3.14)

This proves the induction step. Thus,
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ZN,κ ≤
dN (1 + o(1))

N

κ∑
s=1

m?(s)
N + Cκ

d2
N logN

N
(3.15)

= κ?
dN (1 + o(1))

N
+
dN (1 + o(1))

N

∑
s/∈S?

m?(s)
N

+ CκdN logN


= κ?

dN
N

(1 + o(1)). (3.16)

The proposition follows by combining this upper bound with the lower bound in (3.8).

Combining these results, Proposition 2.1 follows trivially:

Proof of Proposition 2.1. For all x ∈ S?, by Lemma 3.1 and Proposition 3.2,

lim
N→∞

µN (ExN ) = lim
N→∞

wN (N)

ZN,S
= lim
N→∞

N · wN (N)

dN

dN
N · ZN,S

=
1

κ∗
. (3.17)

As a consequence,

lim
N→∞

µN (∆) = 1−
∑
x∈S?

lim
N→∞

µN (ExN ) = 0 . (3.18)

4 Dynamics of the condensate on the first time-scale

In this section we analyze capacities on the time-scale 1/dN and prove Theorem 2.3.
We prove the lower bound on capacities in Section 4.1, the upper bound in Section 4.2,
and we give the proof of Theorem 2.3 in Section 4.3.

4.1 Lower bound on capacities

Proposition 4.1. For a nonempty subset S1
? ( S?, let S2

? = S?\S1
? . Then, for dN logN → 0

as N →∞,

lim inf
N→∞

1

dN
CapN

(
EN (S1

?), EN (S2
?)
)
≥ 1

κ?

∑
x∈S1

?

∑
y∈S2

?

r(x, y). (4.1)

Proof. Let

Ax,yN = {η ∈ EN : ηx + ηy = N} . (4.2)

Fix a function F ∈ FN (EN (S1
?), EN (S2

?)). Then,

DN (F ) =
1

2

∑
x,y∈S

∑
η∈EN

µN (η)ηx (dN + ηy) r(x, y)[F (ηx,y)− F (η)]2

≥ 1

2

∑
x∈S1

?

∑
y∈S2

?

∑
η∈Ax,yN

µN (η)ηx (dN + ηy) r(x, y)[F (ηx,y)− F (η)]2

+
1

2

∑
y∈S2

?

∑
x∈S1

?

∑
η∈Ax,yN

µN (η)ηy (dN + ηx) r(y, x)[F (ηy,x)− F (η)]2

=
∑
x∈S1

?

∑
y∈S2

?

r(x, y)
∑

η∈Ax,yN

µN (η)ηx (dN + ηy) [F (ηx,y)− F (η)]2, (4.3)

by reversibility. Note that the set Ax,yN can be parametrized by the number of particles at
x, and is thus a one-dimensional set. For a fixed couple x, y ∈ S?, let G be the restriction
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of F to the set Ax,yN , i.e., for η ∈ Ax,yN such that ηx = `, define G(`) := F (η). Then we can
rewrite ∑

η∈Ax,yN

µN (η)ηx (dN + ηy) [F (ηx,y)− F (η)]2

=

N∑
`=1

wN (`)wN (N − `)
ZN,S

` (dN +N − `) [G(`− 1)−G(`)]2, (4.4)

where we used that m?(x) = m?(y) = 1.
Using Lemma 3.1 for all 1 ≤ ` ≤ N ,

wN (`)wN (N − `)` (dN +N − `) = d2
N (1 + o(1)), (4.5)

so that (4.4) equals

d2
N (1 + o(1))

ZN,S

N∑
`=1

[G(`− 1)−G(`)]2. (4.6)

Note that G(0) = 0 and G(N) = 1, so that it follows from Lemma 2.7 that

N∑
`=1

[G(`− 1)−G(`)]2 ≥ 1

N
. (4.7)

Hence,

DN (F ) ≥ d2
N

NZN,S

∑
x∈S1

?

∑
y∈S2

?

r(x, y), (4.8)

and the proposition follows from Proposition 3.2.

4.2 Upper bound on capacities

Proposition 4.2. For a nonempty subset S1
? ( S?, let S2

? = S?\S1
? . Then, for dN logN → 0

as N →∞,

lim sup
N→∞

1

dN
CapN

(
EN (S1

?), EN (S2
?)
)
≤ 1

κ?

∑
x∈S1

?

∑
y∈S2

?

r(x, y). (4.9)

The strategy of the proof is to provide a suitable test function F ∈ FN (E(S1
?), E(S2

?))

to plug in the Dirichlet principle

CapN (E(S1
?), E(S2

?)) = inf{DN (F ) : F ∈ FN (E(S1
?), E(S2

?))} . (4.10)

We first describe how we construct the test function, and then study the corresponding
Dirichlet form by splitting it into several parts, and analyzing each of them separately.
We conclude the section collecting all the results and providing the proof of the above
proposition.

Construction of the test function. Inspired by the lower bound derived in the pre-
vious section, we want F (η) to be approximately equal to G∗(ηx) , where G∗ is the
minimizer of

∑N
`=1[G(`− 1)−G(`)]2, which is given by

G∗(`) =
`

N
. (4.11)

To avoid difficulties for small and large values of ηx, we choose an arbitrary small ε > 0

and set the function equal to 0 if ηx/N ≤ ε, and equal to 1 if ηx/N ≥ 1− ε.
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For values ηx/N ∈ (ε, 1− ε) , we approximate G∗(ηx) with a smooth function φε(ηx/N)

defined as in [5]. That is, φε : [0, 1]→ [0, 1] is a smooth nondecreasing function satisfying
φε(t) + φε(1− t) = 1 for all t ∈ [0, 1], φε(t) = 0 for t ≤ ε, φε(t) = 1 for t ≥ 1 − ε, and
φ′ε(t) ≤ 1 +

√
ε for all t ∈ [0, 1]. Such a function exists since (1 +

√
ε) times the length of

the interval [ε, 1− ε] is strictly bigger than 1 for ε small enough.
All together, for any x ∈ S, we define the functions Fx : EN 7→ R as

Fx(η) = φε(ηx/N), (4.12)

and similarly, for S1 ⊂ S, the functions FS1 : EN 7→ R as

FS1(η) =
∑
x∈S1

Fx(η). (4.13)

Split of the Dirichlet form. To split the Dirichlet form, define, for a set A ⊆ EN ,

DN (F,A) =
1

2

∑
η∈A

µN (η)
∑
z,w∈S

ηz(dN + ηw)r(z, w)[F (ηz,w)− F (η)]2. (4.14)

Also define
AxN =

⋃
y∈S\{x}

Ax,yN . (4.15)

We can then write

DN (FS1) = DN (FS1 , EN ) = DN (FS1 ,
⋃
x∈S1

AxN ) +DN (FS1 , EN \
⋃
x∈S1

AxN ). (4.16)

By definition
DN (FS1 ,

⋃
x∈S1

AxN ) = DN (FS1 ,
⋃
x∈S1

⋃
y∈S\{x}

Ax,yN ). (4.17)

If {x1, y1} 6= {x2, y2} and η ∈ Ax1,y1
N ∩Ax2,y2

N , then either x1 = x2 and ηx1 = N , or y1 = y2

and ηy1 = N . In both cases, FS1(ηz,w) = FS1(η) for all z, w ∈ S because of the definition
of φε. Therefore, we can write

DN (FS1 ,
⋃
x∈S1

AxN ) =
∑
x∈S1

∑
y∈S2

DN (FS1 , Ax,yN ) +
1

2

∑
x,y∈S1

DN (FS1 , Ax,yN ), (4.18)

where S2 = S \ S1.

Dirichlet form inside tubes. The main contribution to the Dirichlet form comes from
configurations inside tubes between sites x ∈ S1, y ∈ S2, as the next lemma shows.

Lemma 4.3. Let x ∈ S1 and y ∈ S2. Then, for dN logN → 0 as N →∞,

lim
ε→0

lim sup
N→∞

1

dN
DN (FS1 , Ax,yN ) ≤ 1

κ?
r(x, y)1{x, y ∈ S?}. (4.19)

Proof. Note that if η ∈ Ax,yN , then for v ∈ S1 \ {x} we have that Fv(η) = Fv(η
z,w) = 0,

since ηv, ηz,wv ≤ 1 < εN . Hence,

DN (FS1 , Ax,yN ) = DN (Fx, A
x,y
N ). (4.20)

Note also that for configurations such that ηx < εN , or ηx > (1 − ε)N , we have
that Fx(ηz,w) = Fx(η). Hence, we can restrict the sum to configurations η such that
εN ≤ ηx ≤ (1− ε)N and get
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DN (Fx, A
x,y
N ) =

1

2ZN,S

(1−ε)N∑
j=εN

m?(x)jm?(y)N−jwN (j)wN (N − j)

∑
z,w∈S

ηz(dN + ηw)r(z, w)[Fx(ηz,w)− Fx(η)]2. (4.21)

Since Fx(η) = φε(ηx) does not change if the number of particles on x stays the same, we
can further rewrite this, also using reversibility, as

DN (Fx, A
x,y
N ) =

1

ZN,S

(1−ε)N∑
j=εN

m?(x)jm?(y)N−jwN (j)wN (N − j)

{
j(dN +N − j)r(x, y)

[
φε
(
j−1
N

)
− φε

(
j
N

)]2
(4.22)

+
∑

z∈S\{x,y}

jdNr(x, z)
[
φε
(
j−1
N

)
− φε

(
j
N

)]2}
.

Because of the bound on φ′ε(t), we have that∣∣∣φε( j+1
N

)
− φε

(
j
N

)∣∣∣ ≤ 1 +
√
ε

N
. (4.23)

Thus, also using Lemma 3.1,

DN (Fx, A
x,y
N ) ≤d

2
N (1 + o(1))

N2ZN,S
(1 +

√
ε)2m?(x)εNm?(y)εN

×
(1−ε)N∑
j=εN

{
r(x, y) +

∑
z∈S\{x,y}

dN
N − j

r(x, z)

}

=
dN (1 + o(1))

κ?
(1 +

√
ε)2(1− 2ε)m?(x)εNm?(y)εNr(x, y), (4.24)

where in the second equality we used Proposition 3.2. Hence,

lim sup
N→∞

1

dN
DN (Fx, A

x,y
N ) ≤ r(x, y)

κ?
(1 +

√
ε)2(1− 2ε)1{x, y ∈ S?}, (4.25)

and the lemma follows by taking the limit ε→ 0.

The contribution to the Dirichlet form coming from configurations inside a tube
between sites x, y ∈ S1 is negligible, as the next lemma shows.

Lemma 4.4. Let x, y ∈ S1. Then, for dN logN → 0 as N →∞,

lim
N→∞

1

dN
DN (FS1 , Ax,yN ) = 0. (4.26)

Proof. Again, note that if η ∈ Ax,yN , then for v ∈ S1 \ {x, y} we have that Fv(η) =

Fv(η
z,w) = 0, since ηv, ηz,wv ≤ 1 < εN . Thus,

DN (FS1 , Ax,yN ) = DN (Fx + Fy, A
x,y
N ). (4.27)

If a particle moves from x to y, or viceversa, the total number of particles on sites x and
y stays equal to N and hence

Fx(η) + Fy(η) = Fx(ηx,y) + Fy(ηx,y) = Fx(ηy,x) + Fy(ηy,x) = 1, (4.28)
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since by definition, φε(x) + φε(1 − x) = 1 for all x ∈ [0, 1]. We can use again that Fv
does not change if the number of particles on v stays the same, and restrict the sum to
configurations with εN ≤ ηx ≤ (1− ε)N . Thus

DN (FS1 , Ax,yN ) =
1

2

∑
η∈Ax,yN

µN (η)
∑

z∈S\{x,y}

{
ηxdNr(x, z)

[
Fx(ηx,z)− Fx(η)

]2
+ ηydNr(y, z)

[
Fy(ηy,z)− Fy(η)

]2}

=
dN

2ZN,S

(1−ε)N∑
j=εN

m?(x)jm?(y)N−jwN (j)wN (N − j)
{
jr(x, z)

[
φε
(j − 1

n

)
− φε

( j
n

)]2
+ (N − j)r(y, z)

[
φε
(N − j − 1

N

)
− φε

(N − j
N

)]2}
. (4.29)

Using Lemma 3.1, (4.23) and m?(x),m?(y) ≤ 1, we can bound

DN (FS1 , Ax,yN ) ≤ d3
N (1 + o(1))

2N2ZN,S
(1 +

√
ε)2

(1−ε)N∑
j=εN

{
r(x, z)

N − j
+
r(y, z)

j

}

=
dN (1 + o(1))

2κ?
(1 +

√
ε)2(1− 2ε)o(1). (4.30)

Then finally,

lim
N→∞

1

dN
DN (FS1 , Ax,yN ) = lim

N→∞
dNo(1) = 0. (4.31)

Dirichlet form outside tubes We finally show in the next lemma, that the configura-
tions outside the collections of tubes AzN gives a negligible contribution to the Dirichlet
form.

Lemma 4.5. For dN logN → 0 as N →∞,

lim
N→∞

1

dN
DN (FS1 , EN \

⋃
x∈S1

AxN ) = 0. (4.32)

Proof. As in [5], by the Cauchy-Schwarz inequality we get

[FS1(ηz,w)− FS1(η)]2 =

[∑
x∈S1

[Fx(ηz,w)− Fx(η)]

]2

≤ |S1|
∑
x∈S1

[Fx(ηz,w)− Fx(η)]2, (4.33)

and then

DN (FS1 , EN \
⋃
z∈S1

AzN ) ≤ |S1|
∑
x∈S1

DN (Fx, EN \
⋃
z∈S1

AzN ) ≤ |S1|
∑
x∈S1

DN (Fx, EN \AxN ).

(4.34)
Again, we can restrict the sum to configurations with εN ≤ ηx ≤ (1− ε)N . Furthermore,
if η ∈ EN \AxN and ηx = j, all sites besides x have at most N − j − 1 particles, and thus

DN (Fx, EN\AxN ) =
1

2

(1−ε)N∑
j=εN

∑
η:ηx=j

∀y 6=x: ηy≤N−j−1

µN (η)
∑
z,w∈S

ηz(dN+ηw)r(z, w)[Fx(ηz,w)−Fx(η)]2.

(4.35)
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Note that if z, w 6= x, then Fx(ηz,w) = Fx(η), since Fx only depends on the number of
particles on x. Hence,

DN (Fx, EN \AxN ) =
1

2

(1−ε)N∑
j=εN

∑
η∈EN :ηx=j

∀y 6=x: ηy≤N−j−1

µN (η)

×
∑

y∈S\{x}

{
ηx(dN + ηy)r(x, y)[Fx(ηx,y)− Fx(η)]2+ ηy(dN + ηx)r(y, x)[Fx(ηy,x)− Fx(η)]2

}

=
1

2ZN,S

(1−ε)N∑
j=εN

m?(x)jwN (j)
∑

η∈EN :ηx=j
∀y 6=x: ηy≤N−j−1

∏
y∈S\{x}

(
m?(y)ηywN (ηy)

)
(4.36)

×
∑

y∈S\{x}

{
j(dN + ηy)r(x, y)

[
φε
(
j−1
N

)
− φε

(
j
N

)]2
+ ηy(dN + j)r(y, x)

[
φε
(
j+1
N

)
− φε

(
j
N

)]2}
.

Since |S| <∞, we can bound r(x, y), r(y, x) ≤ maxz,w∈S r(z, w) =: R and m?(x) ≤ 1, and
also bound max{j(dN + N − j), (N − j)(dN + j)} ≤ j(N − j)(1 + o(1)). Combining this
with (4.23), we get

DN (Fx, EN \AxN ) ≤ R(κ− 1)
(1 +

√
ε)2

N2ZN,S

(1−ε)N∑
j=εN

wN (j)j(N − j)(1 + o(1))
∑

η∈EN :ηx=j
∀y 6=x: ηy≤N−j−1∏

y∈S\{x}

(
m?(y)ηywN (ηy)

)
. (4.37)

Notice that the last sum can be written as

ZN−j,S\{x} −
∑

y∈S\{x}

m?(y)N−jwN (N − j) ≤ dN
N − j

o(1), (4.38)

where the inequality follows from (3.10). Hence, also using Lemma 3.1 and Proposi-
tion 3.2,

DN (Fx, EN \AxN ) ≤ R(κ− 1)
(1 +

√
ε)2

N2ZN,S
(1− 2ε)Nd2

N (1 + o(1))o(1)

= R
(κ− 1)

κ?
(1 +

√
ε)2(1− 2ε)dN (1 + o(1))o(1), (4.39)

from which it follows that

1

dN
DN (Fx, EN \AxN ) = o(1), (4.40)

and that together with (4.34) proves the lemma.

Combining these lemmas, we can now prove Proposition 4.2.

Proof of Proposition 4.2. Let S1 ( S be such that S1
? ⊆ S1 and S2

? ⊆ S \ S1 =: S2.
Note that if η ∈ EN (S2

?) then FS1
(η) = 0, and if η ∈ EN (S1

?) then FS1
(η) = 1. Hence,

FS1
∈ FN (E(S1

?), E(S2
?)). Therefore, by (4.10),

CapN (E(S1
?), E(S2

?)) ≤ DN (FS1). (4.41)

We can split the right hand side according to (4.16) and (4.18), and the proposition then
follows from Lemmas 4.3, 4.4 and 4.5.
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4.3 Proof of Theorem 2.3

Proof of Theorem 2.3(i). As a consequence of Propositions 4.1 and 4.2, we have that for
nonempty subsets S1

? ( S? and S2
? = S? \ S1

? , and dN logN → 0 as N →∞,

lim
N→∞

1

dN
CapN

(
EN (S1

?), EN (S2
?)
)

=
1

κ?

∑
x∈S1

?

∑
y∈S2

?

r(x, y). (4.42)

In view of (2.32) and (2.33), in order to prove the statement (i) we need to provide an
asymptotic formula for the µN -average of the equilibrium potentialPη

(
τExN < τEN (S?\{x})

)
.

Since this is trivially equal to 1 for η ∈ ExN , and equal to 0 for η ∈ EN (S? \ {x}), we have
on one hand ∑

η∈EN

µN (η) · Pη
(
τExN < τEN (S?\{x})

)
≥ µN (ExN ) , (4.43)

and on the other hand∑
η∈EN

µN (η) · Pη
(
τExN < τEN (S?\x)

)
≤

∑
η∈EN

η/∈EN (S?\{x})

µN (η) = µN (ExN ) + µN (∆) . (4.44)

From these bounds and Proposition 2.1, it follows∑
η∈EN

µN (η) · Pη
(
τExN < τEN (S?\{x})

)
=

1

κ?
(1 + o(1)) , (4.45)

that together with (4.42) concludes the proof of (2.18).

Proof of Theorem 2.3(ii). We stress once more that in our setting, where metastable sets
are just singletons, the convergence of the speeded-up process follows from Theorem 2.7
of [3] once the condition (2.36) of Section 2.5 (called condition (H0) in [3]) is verified
for the sequence θN = 1/dN , N ≥ 1.

By Lemma 6.8 of [3], that we have recalled in (2.37), and using Proposition 2.1 and
(4.42), we get that for any x, y ∈ S?, x 6= y,

lim
N→∞

1

dN
rE?N (ExN , E

y
N ) = r(x, y) . (4.46)

To prove (2.20) observe that by the stationarity of µN we have

EExN

[∫ T

0

1{η(s/dN ) ∈ ∆} ds

]
≤ 1

µN (ExN )

∑
η∈EN

µN (η)Eη

[∫ T

0

1{η(s/dN ) ∈ ∆} ds

]

= T · µN (∆)

µN (ExN )
.

(4.47)

Then (2.20) follows from Proposition 2.1. This concludes the proof of theorem.

5 Dynamics of the condensate on the second time-scale

This section is organized similarly to the previous one. We first provide a lower bound
on capacities, then a matching upper bound, and finally we give the proof of Theorem
2.5.
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5.1 Lower bound on capacities

Proposition 5.1. Let the underlying random walk be as in (2.21), with κ = 3. Then, for
dN logN → 0 as N →∞,

lim inf
N→∞

N

d2
N

CapN (EN (1), EN (3)) ≥
(

1

r(1, 2)
+

1

r(3, 2)

)−1
1

1−m?(2)
. (5.1)

Proof. Fix a function F ∈ F(EN (1), EN (3)). Using reversibility, we can write the Dirichlet
form of F as

DN (F )

=
∑
η∈EN

µN (η)

(
η1(dN + η2)r(1, 2)

[
F (η1,2)− F (η)

]2
+ η2(dN + η3)r(2, 3)

[
F (η2,3)− F (η)

]2)

=
∑

ξ∈EN−1

(
µN (ξ + ∂1)(ξ1 + 1)(dN + ξ2)r(1, 2) [F (ξ + ∂2)− F (ξ + ∂1)]

2

+ µN (ξ + ∂2)(η2 + 1)(dN + ξ3)r(2, 3) [F (ξ + ∂3)− F (ξ + ∂2)]
2

)
, (5.2)

where ξ + ∂z denotes a configuration ξ with N − 1 particles, and with one extra particle
on z.

For some fixed L and N big enough, we can restrict the Dirichlet form of F by only
considering configurations ξ ∈ EN−1 such that ξ1 = j, ξ2 = ` and ξ3 = N − j − `− 1, with
` ≤ L. On this set of configurations, we then define the function G(j, `, z) := F (ξ + ∂z).
With abuse of notation, we also define G(N − `, `, 3) := F (η) where η1 = N − `, η2 = `

and η3 = 0. We can then write

DN (F ) ≥ 1

ZN,S

L∑
`=0

N−`−1∑
j=0{

wN (j + 1)m?(2)`wN (`)wN (N − j − `− 1)(j + 1)(dN + `)r(1, 2)[G(j, `, 2)−G(j, `, 1)]2

+ wN (j)m?(2)`+1wN (`+ 1)wN (N − j − `− 1)(`+ 1)(dN +N − j − `− 1)

· r(2, 3)[G(j, `, 3)−G(j, `, 2)]2
}
, (5.3)

where we used that m?(2)r(2, 3) = r(3, 2) by the reversibility of the underlying random
walk. From inequality (4.5), we can then bound (5.3) from below by

d2
N

ZN,S

L∑
`=0

m?(2)`
N−`−1∑
j=0

{
wN (N − j − `− 1)r(1, 2)[G(j, `, 2)−G(j, `, 1)]2

+ wN (j)r(3, 2)[G(j, `, 3)−G(j, `, 2)]2
}
.

(5.4)

Moreover, let us define

w̃N (j) =

{
dN , if j = 0,

wN (j), if j > 0,
(5.5)

so that wN (0) = 1 = w̃N (0) + (1− dN ) and hence

DN (F ) ≥ d2
N

ZN,S

L∑
`=0

m?(2)`
N−`−1∑
j=0

{
w̃N (N − j − `− 1)r(1, 2)[G(j, `, 2)−G(j, `, 1)]2
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+ w̃N (j)r(3, 2)[G(j, `, 3)−G(j, `, 2)]2
}

+ (1− dN )
d2
N

ZN,S

L−1∑
`=0

m?(2)`
(
r(1, 2)[G(N − `− 1, `, 2)−G(N − `− 1, `, 1)]2

+ r(3, 2)[G(0, `, 3)−G(0, `, 2)]2
)
. (5.6)

Using Lemma 2.7 with

g(z) =
G(j, `, z)−G(j, `, 3)

G(j, `, 1)−G(j, `, 3)
, (5.7)

we can bound

w̃N (N − j − `− 1)r(1, 2)[G(j, `, 2)−G(j, `, 1)]2 + w̃N (j)r(3, 2)[G(j, `, 3)−G(j, `, 2)]2

≥ [G(j, `, 1)−G(j, `, 3)]2
(

1

w̃N (N − j − `− 1)r(1, 2)
+

1

w̃N (j)r(3, 2)

)−1

. (5.8)

Observing that G(j, `, 1) = G(j + 1, `, 3), and using Lemma 2.7 again, we bound

N−`−1∑
j=0

[G(j, `, 1)−G(j, `, 3)]2
(

1

w̃N (N − j − `− 1)r(1, 2)
+

1

w̃N (j)r(3, 2)

)−1

(5.9)

≥ [G(N − `, `, 3)−G(0, `, 3)]2

N−`−1∑
j=0

(
1

w̃N (N − j − `− 1)r(1, 2)
+

1

w̃N (j)r(3, 2)

)−1

.

By reversing the summing order of the first term, the sum over j equals

(
1

r(1, 2)
+

1

r(3, 2)

)N−`−1∑
j=0

1

w̃N (j)
=

(
1

r(1, 2)
+

1

r(3, 2)

)
1

dN

1 +

N−`−1∑
j=1

j(1 + o(1))


=

(
1

r(1, 2)
+

1

r(3, 2)

)
N2

2dN
(1 + o(1)), (5.10)

since ` = o(N). Hence,

DN (F )

≥ d2
N

ZN,S

L∑
`=0

m?(2)`[G(N − `, `, 3)−G(0, `, 3)]2
((

1

r(1, 2)
+

1

r(3, 2)

)
N2

2dN

)−1

(1 + o(1))

+ (1− dN )
d2
N

ZN,S

L−1∑
`=0

m?(2)`
(
r(1, 2)[G(N − `− 1, `, 2)−G(N − `− 1, `, 1)]2

+ r(3, 2)[G(0, `, 3)−G(0, `, 2)]2
)

=
d2
N

ZN,S

L∑
`=0

{
m?(2)`

2dN
N2

(
1

r(1, 2)
+

1

r(3, 2)

)−1

(1 + o(1))[G(N − `, `, 3)−G(0, `, 3)]2

+ (1− dN )

`−1∑
p=0

m?(2)p

L− p

(
r(1, 2)[G(N − p− 1, p+ 1, 3)−G(N − p, p, 3)]2

+ r(3, 2)[G(0, p, 3)−G(0, p+ 1, 3)]2
)}

, (5.11)
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where we used that for every function f(p), we have the identity

L−1∑
`=0

f(`) =

L∑
`=0

`−1∑
p=0

f(p)

L− p
. (5.12)

Using Lemma 2.7, we can bound

`−1∑
p=0

m?(2)p

L− p
[G(N − p− 1, p+ 1, 3)−G(N − p, p, 3)]2

≥ [G(N − `, `, 3)−G(N, 0, 3)]2

(
`−1∑
p=0

L− p
m?(2)p

)−1

≥ [G(N − `, `, 3)−G(N, 0, 3)]2
m?(2)`

L2
, (5.13)

and

`−1∑
p=0

m?(2)p

L− p
[G(0, p, 3)−G(0, p+ 1, 3)]2 ≥ [G(0, 0, 3)−G(0, `, 3)]2

m?(2)`

L2
. (5.14)

Thus,

DN (F ) ≥ d2
N

ZN,S

L∑
`=0

m?(2)`
{

2dN
N2

(
1

r(1, 2)
+

1

r(3, 2)

)−1

(1 + o(1))[G(N − `, `, 3)−G(0, `, 3)]2

+ r(1, 2)
1− dN
L2

[G(N − `, `, 3)−G(N, 0, 3)]2 + r(3, 2)
1− dN
L2

[G(0, 0, 3)−G(0, `, 3)]2
}
,

(5.15)

and since G(0, 0, 3) = 0 and G(N, 0, 3) = 1, we get

DN (F ) ≥ d2
N

ZN,S

L∑
`=0

m?(2)`
{
N2

2dN

(
1

r(1, 2)
+

1

r(3, 2)

)
(1 + o(1)) +

r(1, 2)L2

1− dN
+
r(3, 2)L2

1− dN

}−1

=
d2
N

N

2dN
NZN,S

(
1

r(1, 2)
+

1

r(3, 2)

)−1

(1 + o(1))

L∑
`=0

m?(2)` . (5.16)

By Proposition 3.2, limN→∞
dN

NZN,S
= 1

κ?
= 1

2 . Hence,

lim inf
N→∞

N

d2
N

DN (F ) ≥
(

1

r(1, 2)
+

1

r(3, 2)

)−1 L∑
`=0

m?(2)`, (5.17)

and the proposition follows by taking L→∞.

Remark 5.2. The above lemma can be generalized to systems with arbitrary set S and
underlying dynamics, such that S? = {x, y} with x, y sites at graph-distance 2. In that
case, we have the lower bound

lim inf
N→∞

N

d2
N

CapN (EN (x), EN (y)) ≥
∑

v∈S\{x,y}

(
1

r(x, v)
+

1

r(y, v)

)−1
1

1−m?(v)
. (5.18)

This can easily be proved by restricting the Dirichlet form to those jumps that have at
most one vertex v ∈ S \ S? with a positive number of particles, and then proceeding as
above. Notice that if it does not exists v ∈ S such that r(x, v) > 0 and r(y, v) > 0 then the
r.h.s. of (5.18) is zero, suggesting the existence of an additional (larger) time-scale.
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5.2 Upper bound on capacities

Proposition 5.3. Let the underlying random walk be as in (2.21), with κ = 3. Further-
more, suppose that dN decays subexponentially and dN logN → 0 as N →∞. Then,

lim sup
N→∞

N

d2
N

CapN (EN (1), EN (3)) ≤
(

1

r(1, 2)
+

1

r(3, 2)

)−1
1

1−m?(2)
. (5.19)

Proof. Since there are only three sites, the space EN is parametrized by the number
of particles on 1 and 2. We want to choose a test function so that (5.8) and (5.9)
approximately hold with equality. That is, when a particle jumps from 1 to 2 we want the
contribution to be approximately a constant times

1

w̃N (N − j − `− 1)r(1, 2)
≈ N − j − `− 1

dNr(1, 2)
≈ N

dN

1

r(1, 2)
(1− j

N
), (5.20)

and when a particle jumps from 3 to 2 it should be approximately the same constant
times

1

w̃N (j)r(3, 2)
≈ 1

r(3, 2)

j

dN
=

N

dN

1

r(3, 2)

j

N
. (5.21)

Hence, with φε defined as in Section 4.2, we let

G(j, `) = 2

(
1

r(1, 2)
+

1

r(3, 2)

)−1(
1

r(1, 2)

∫ φ2ε( j−1
N )

0

(1−x) dx+
1

r(3, 2)

∫ φ2ε( j−1
N +( `N ∧ε))

0

xdx

)
,

(5.22)
and consider the test function

F (η) = G(η1, η2). (5.23)

The constant is chosen such that G(N, 0) = 1 and G(0, 0) = 0, so that indeed F ∈
FN (EN (1), EN (3)), while the extremes of the integrals are chosen in such a way that the
first integral only contributes when a particle jumps between 1 and 2, and the second
integral only when the jump is between 2 and 3, with a truncation so that ` cannot be
too big.

Using reversibility we can write the Dirichlet form of F as

DN (F )

=
∑
η∈EN

µN (η)

(
η1(dN + η2)r(1, 2)

[
F (η1,2)− F (η)

]2
+ η2(dN + η3)r(2, 3)

[
F (η2,3)− F (η)

]2)

=
∑

ξ∈EN−1

(
µN (ξ + ∂1)(ξ1 + 1)(dN + ξ2)r(1, 2) [F (ξ + ∂2)− F (ξ + ∂1)]

2

+ µN (ξ + ∂2)(η2 + 1)(dN + ξ3)r(2, 3) [F (ξ + ∂3)− F (ξ + ∂2)]
2

)
=

1

ZN,S

N−1∑
`=0

N−`−1∑
j=0

(
wN (j + 1)m?(2)`wN (`)wN (N − j − `− 1)(j + 1)(dN + `)r(1, 2)

[G(j, `+ 1)−G(j + 1, `)]
2

+ wN (j)m?(2)`+1wN (`+ 1)wN (N − j − `− 1)(`+ 1)(dN +N − j − `− 1)r(2, 3)

[G(j, `)−G(j, `+ 1)]
2

)
. (5.24)

By the definition of G, we can compute
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G(j + 1, `)−G(j, `+ 1) (5.25)

= 2

(
1

r(1, 2)
+

1

r(3, 2)

)−1
(

1

r(1, 2)

∫ φ2ε( jN )

φ2ε( j−1
N )

(1− x) dx+
1

r(3, 2)

∫ φ2ε( jN +( `N ∧ε))

φ2ε( j−1
N +( `+1

N ∧ε))
xdx

)
,

which is 0 for j ≤ εN , and j > (1− 2ε)N . Also

G(j, `+ 1)−G(j, `) = 2

(
1

r(1, 2)
+

1

r(3, 2)

)−1
1

r(3, 2)

∫ φ2ε( j−1
N +( `+1

N ∧ε))

φ2ε( j−1
N +( `N ∧ε))

xdx, (5.26)

which is 0 for ` ≥ εN , and also for j ≤ εN or j > (1− 2ε)N . Hence, by Lemma 3.1,

DN (F ) =
d3
N (1 + o(1))

ZN,S

εN−1∑
`=0

m?(2)`
((1−2ε)N∑

j=εN

1

N − j − `− 1
r(1, 2) [G(j, `+ 1)−G(j + 1, `)]

2

+

(1−2ε)N∑
j=εN

1

j
r(3, 2) [G(j, `)−G(j, `+ 1)]

2

)
(5.27)

+
d2
N (1 + o(1))

ZN,S

N−1∑
`=εN

m?(2)`
N−`−1∑
j=εN

wN (N − j − `− 1)r(1, 2) [G(j, `+ 1)−G(j + 1, `)]
2
,

where we also used the reversibility of the underlying random walk to substitute
m?(2)r(2, 3) = r(3, 2).

For ` ≤ εN − 1, the second integral in (5.25) is 0, so that

(1−2ε)N∑
j=εN

1

N − j − `− 1
r(1, 2) [G(j, `+ 1)−G(j + 1, `)]

2

=

(1−2ε)N∑
j=εN

1

N − j − `− 1
r(1, 2)

[
2

(
1

r(1, 2)
+

1

r(3, 2)

)−1
1

r(1, 2)

∫ φ2ε( jN )

φ2ε( j−1
N )

(1− x) dx

]2

= 4

(
1

r(1, 2)
+

1

r(3, 2)

)−2
1

r(1, 2)

(1−2ε)N∑
j=εN

∫ φ2ε( jN )

φ2ε( j−1
N )

(1− x) dx
1

N

∫ φ2ε( jN )

φ2ε( j−1
N )

1− x
1− j+`+1

N

dx.

(5.28)

Then, by the properties of φ2ε and using that `+2
N ≤ 2ε for N big enough, we get

∫ φ2ε

(
j
N

)
φ2ε

(
j−1
N

) 1− x
1− j+`+1

N

dx ≤
(
φ2ε

(
j
N

)
− φ2ε

(
j−1
N

)) 1− φ2ε

(
j−1
N

)
1− j+`+1

N

≤ 1 +
√
ε

N

φ2ε

(
1− j−1

N

)
1− j−1

N − 2ε
.

(5.29)
Using the fundamental theorem of calculus, and that φ2ε(2ε) = 0,

φ2ε

(
1− j−1

N

)
=

∫ 1− j−1
N

2ε

φ′2ε(x) dx ≤
(

1− j − 1

N
− 2ε

)
(1 +

√
ε). (5.30)

Hence, ∫ φ2ε( jN )

φ2ε( j−1
N )

1− x
1− j+`+1

N

dx ≤ 1

N
(1 +

√
ε)2, (5.31)

so that

(1−2ε)N∑
j=εN

1

N − j − `− 1
r(1, 2) [G(j, `+ 1)−G(j + 1, `)]

2

EJP 22 (2017), paper 70.
Page 23/34

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP98
http://www.imstat.org/ejp/


Metastability in the reversible IP

≤ 4(1 +
√
ε)2

N2

(
1

r(1, 2)
+

1

r(3, 2)

)−2
1

r(1, 2)

(1−2ε)N∑
j=εN

∫ φ2ε( jN )

φ2ε( j−1
N )

(1− x) dx

=
2(1 +

√
ε)2

N2

(
1

r(1, 2)
+

1

r(3, 2)

)−2
1

r(1, 2)
. (5.32)

Similarly, we can use (5.26) to bound, for ` ≤ εN − 1,

(1−2ε)N∑
j=εN

1

j
r(3, 2) [G(j, `)−G(j, `+ 1)]

2

= 4

(
1

r(1, 2)
+

1

r(3, 2)

)−2
1

r(3, 2)

(1−2ε)N∑
j=εN

∫ φ2ε( j+`N )

φ2ε( j+`−1
N )

xdx
1

N

∫ φ2ε( j+`N )

φ2ε( j+`−1
N )

x

j/N
dx

≤ 2(1 +
√
ε)2

N2

(
1

r(1, 2)
+

1

r(3, 2)

)−2
1

r(3, 2)
. (5.33)

To bound the third line of (5.27), notice that |G(j, `+ 1)−G(j + 1, `)| ≤ 1 and m?(2)` ≤
m?(2)εN , so that

N−1∑
`=εN

m?(2)`
N−`−1∑
j=εN

wN (N − j − `− 1) [G(j, `+ 1)−G(j + 1, `)]
2 (5.34)

≤ m?(2)εN
N−1∑
`=εN

1 +

N−`−2∑
j=εN

dN (1 + o(1))

N − j − `− 1

 ≤ m?(2)εNN(1 + dN logN(1 + o(1))).

Hence, we obtain

DN (F ) ≤ d3
N (1 + o(1))

N2ZN,S
2(1 +

√
ε)2

(
1

r(1, 2)
+

1

r(3, 2)

)−1 εN−1∑
`=0

m?(2)`

+
d2
N (1 + o(1))

ZN,S
m?(2)εNN(1 + dN logN). (5.35)

Taking the limit N →∞ gives

lim sup
N→∞

N

d2
N

DN (F ) ≤ lim
N→∞

dN (1 + o(1))

NZN,S
2(1 +

√
ε)2

(
1

r(1, 2)
+

1

r(3, 2)

)−1 εN∑
`=0

m?(2)`

+
dN (1 + o(1))

NZN,S

1

dN
m?(2)εNN2(1 + dN logN)

=
2(1 +

√
ε)2

κ?

(
1

r(1, 2)
+

1

r(3, 2)

)−1
1

1−m?(2)
, (5.36)

where we used that dN decays subexponentially to show that the second part converges
to 0. The proposition follows by taking the limit ε→ 0 and noting that κ? = 2.

5.3 Proof of Theorem 2.5

The proof runs similarly to that of Theorem 2.3.

Proof of Theorem 2.5(i). As a consequence of Propositions 5.1 and 5.3, if dN decays
subexponentially and dN logN → 0 as N →∞,
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lim
N→∞

N

d2
N

CapN (EN (1), EN (3)) =

(
1

r(1, 2)
+

1

r(3, 2)

)−1
1

1−m?(2)
. (5.37)

In view of (2.33), recalling that CapN (A,B) = CapN (B,A), and applying (4.45), this
provides formula (2.22).

Proof of Theorem 2.5(ii). As in the proof of Theorem 2.3(ii), the convergence follows
from Theorem 2.7 of [3] once condition (2.36) of Section 2.5 is verified for the sequence
θN = N/d2

N , N ≥ 1. By Lemma 6.8 of [3] (see (2.37) in Section 2.5) and using Proposition
2.1 and (5.37), we get

lim
N→∞

N

d2
N

rE?N
(
E1
N , E3

N

)
= lim
N→∞

N

d2
N

rE?N
(
E3
N , E1

N

)
=

(
1

r(1, 2)
+

1

r(3, 2)

)−1
1

1−m?(2)
,

(5.38)
proving (2.36). Finally, (2.24) is proved similarly to (2.20).

6 Dynamics of the condensate on the third time-scale

In this last section we study the third time-scale that appears when the condensate
moves between sites in S? that are at graph-distance larger than 2.

6.1 Lower bound on capacities

Proposition 6.1. Let the underlying random walk be as in (2.21), with κ ≥ 4 and

m? := min
x=2,...,κ−1

m?(x). (6.1)

Then, for dN logN → 0 as N →∞,

lim inf
N→∞

N2

d3
N

CapN (EN (1), EN (κ)) ≥ 3
m?

(1−m?)2

(
κ−2∑
x=2

1

r(x, x+ 1)

)−1

. (6.2)

Proof. This lower bound is given by transporting particles from 1 to κ, in such a way
that transport involves at most two neighboring sites of S \ S∗. To see this, consider
any function F : EN 7→ R such that F (η1 = N) = 1 and F (ηκ = N) = 0. We first use
reversibility to write

DN (F ) =
1

2

∑
η∈EN

µN (η)
∑
z,w∈S

ηz(dN + ηw)r(z, w)[F (ηz,w)− F (η)]2

=
∑
η∈EN

µN (η)

κ−1∑
x=1

ηx(dN + ηx+1)r(x, x+ 1)[F (ηx,x+1)− F (η)]2. (6.3)

We bound this from below by considering only configurations η parametrized by (j, x, `, k),
such that ηy = 0 for all y /∈ {1, x, x+ 1, κ}, η1 = j ≥ 0, ηx = k and ηx+1 = `− k (meaning
that ηx + ηx+1 = `), with x a site from 1 to κ − 1, k ≤ ` and ` ≤ L with L fixed, and
ηκ = N − j − `. We write, with abuse of notation, µN (j, x, `, k) and F (j, x, `, k) for µN (η)

and F (η), respectively.
This means that, for a given `, particles will be transported from 1 to κ in groups of `

at a time. To make sure we do not leave out too many configurations, we also choose
a number of particles 0 ≤ i < `, which will be transported first one at a time. When
these i particles and as many groups of ` particles as possible have been transported,
there might be some particles left, since N − i might not be divisible by `, which are also
transported one at a time in the end.
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We have to make sure that we are not double counting contributions of particle jumps
that occur for different ` and i. For this, note that if a particle jumps from 2 ≤ x ≤ κ− 2

to x+ 1, ` and i are uniquely determined. It turns out that these are also the only main
contributions. For jumps that can occur multiple times, for example the first particle
jump will occur for all ` and i, we divide these contributions by L2, which is the maximum
number of times this contribution can occur. Since these contributions are negligible, as
we show below, this does not change the result.

We can hence write

DN (F ) ≥
L∑
`=1

`−1∑
i=0

(A1(`, i) +A2(`, i) +A3(`, i)) , (6.4)

where A1(`, i) is the contribution of moving the first i particles, A3(`, i) of moving the
last N − (i + (bN/`c − 1)`) particles and A2(`, i) of moving the particles in groups of `.
We focus on this last term first.

Let 0 ≤ n < bN/`c − 1 be the number of groups that has already been transported.
Then we can split A2(`, i) further as

A2(`, i) =

bN/`c−2∑
n=0

A2,n(`, i), (6.5)

where

A2,n(`, i)

=
1

L2

∑̀
k=1

µN (N − (n+ 1)`− i+ k, 2, `− k, 0)(N − (n+ 1)`− i+ k)(dN + `− k)r(1, 2)

× [F (N − (n+ 1)`− i+ k − 1, 2, `− k + 1, 0)− F (N − (n+ 1)`− i+ k, 2, `− k, 0)]
2

+

κ−2∑
x=2

∑̀
k=1

µN (N − (n+ 1)`− i, x, `, k)k(dN + `− k)r(x, x+ 1)

× [F (N − (n+ 1)`− i, x, `, k − 1)− F (N − (n+ 1)`− i, x, `, k)]
2

+
1

L2

∑̀
k=1

µN (N − (n+ 1)`− i, κ− 2, k, 0)k(dN + n`+ i+ `− k)r(κ− 1, κ)

× [F (N − (n+ 1)`− i, κ− 1, k − 1, 0)− F (N − (n+ 1)`− i, κ− 1, k, 0)]
2
. (6.6)

Using Lemma 3.1 and that m?(x) ≥ m? for all x = 2, . . . , κ− 1 we can bound this as

A2,n(`, i) ≥ d4
N (1 + o(1))

ZN

{
1

dNL2

r(1, 2)

n`+ i

∑̀
k=1

m`−k
?

× [F (N − (n+ 1)`− i+ k − 1, 2, `− k + 1, 0)− F (N − (n+ 1)`− i+ k, 2, `− k, 0)]
2

+
m`
?

(N − (n+ 1)`− i)(n`+ i)

κ−2∑
x=2

r(x, x+ 1)
∑̀
k=1

1

× [F (N − (n+ 1)`− i, x, `, k − 1)− F (N − (n+ 1)`− i, x, `, k)]
2

+
1

dNL2

r(κ− 1, κ)

N − (n+ 1)`− i
∑̀
k=1

mk
?

× [F (N − (n+ 1)`− i, κ− 1, k − 1, 0)− F (N − (n+ 1)`− i, κ− 1, k, 0)]
2

}
. (6.7)
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Using Lemma 2.7 twice, we can bound this further as

A2,n(`, i)

≥ d4
N (1 + o(1))

ZN

{
1

dNL2

r(1, 2)

n`+ i

(∑̀
k=1

1

m`−k
?

)−1

× [F (N − (n+ 1)`− i, 2, `, 0)− F (N − n`− i, 2, 0, 0)]
2

+
m`
?

(N − (n+ 1)`− i)(n`+ i)

κ−2∑
x=2

r(x, x+ 1)
1

`

× [F (N − (n+ 1)`− i, x, `, 0)− F (N − (n+ 1)`− i, x, `, `)]2

+
1

dNL2

r(κ− 1, κ)

N − (n+ 1)`− i

(∑̀
k=1

1

mk
?

)−1

× [F (N − (n+ 1)`− i, κ− 1, 0, 0)− F (N − (n+ 1)`− i, κ− 1, `, 0)]
2

}
≥ d4

N (1 + o(1))

ZN

{
dNL

2(n`+ i)

r(1, 2)

∑̀
k=1

1

m`−k
?

+
`(N − (n+ 1)`− i)(n`+ i)

m`
?

κ−2∑
x=2

1

r(x, x+ 1)

+
dNL

2(N − (n+ 1)`− i)
r(κ− 1, κ)

∑̀
k=1

1

mk
?

}−1

× [F (N − (n+ 1)`− i, κ− 1, 0, 0)− F (N − n`− i, 2, 0, 0)]
2

≥ d4
N (1 + o(1))

ZN

m`
?

`(N − (n+ 1)`− i)(n`+ i)

(
κ−2∑
x=2

1

r(x, x+ 1)

)−1

× [F (N − (n+ 1)`− i, 2, 0, 0)− F (N − n`− i, 2, 0, 0)]
2
, (6.8)

where the last equality holds since the first and third term are at most of order dNN ,
whereas the second term is of order at least N . Using this bound on A2,n(`, i), we can
bound A2(`, i) by applying Lemma 2.7 once more:

A2(`, i) ≥
bN/`c−2∑
n=0

d4
N (1 + o(1))

ZN

m`
?

`(N − (n+ 1)`− i)(n`+ i)

(
κ−2∑
x=2

1

r(x, x+ 1)

)−1

× [F (N − (n+ 1)`− i, κ− 1, 0, 0)− F (N − n`− i, 2, 0, 0)]
2

≥ d4
N (1 + o(1))

ZN

m`
?

`

(
κ−2∑
x=2

1

r(x, x+ 1)

)−1
bN/`c−2∑

n=0

(N − (n+ 1)`− i)(n`+ i)

−1

× [F (N − (bN/`c − 1)`− i, 2, 0, 0)− F (N − i, 2, 0, 0)]
2
. (6.9)

Using that

bN/`c−2∑
n=0

(N − (n+ 1)`− i)(n`+ i) = N3 1

N

bN/`c−2∑
n=0

(
1− n+ 1

N
`− i

N

)(
n

N
`+

i

N

)

= N3(1 + o(1))

∫ 1/`

0

(1− x`)x`dx =
N3

6`
(1 + o(1)),

(6.10)
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we get the bound

A2(`, i) ≥ 6
d4
N (1 + o(1))

N3ZN
m`
?

(
κ−2∑
x=2

1

r(x, x+ 1)

)−1

× [F (N − (bN/`c − 1)`− i, 2, 0, 0)− F (N − i, 2, 0, 0)]
2
. (6.11)

By similar arguments, one can show that there exists a constant C1 > 0, such that

A1(`, i)

=
1

L2

i−1∑
n=0

{
µN (N − n, 2, 0, 0)(N − n)dNr(1, 2) [F (N − (n+ 1), 2, 1, 1)− F (N − n, 2, 0, 0)]

2

+

κ−2∑
x=2

µN (N − (n+ 1), x, 1, 1)dNr(x, x+ 1)

× [F (N − (n+ 1), x, 1, 0)− F (N − (n+ 1), x, 1, 1)]
2

+ µN (N − (n+ 1), κ− 1, 1, 1)(dN + n)

× [F (N − (n+ 1), κ− 1, 0, 0)− F (N − (n+ 1), κ− 1, 1, 1)]
2

}
≥ C1

d4
N (1 + o(1))

ZNN
[F (N − i, 2, 0, 0)− F (N, 2, 0, 0)]

2
. (6.12)

One can also show that there exists a constant C3 > 0, such that

A3(`, i) ≥ C3
d4
N (1 + o(1))

ZNN
[F (0, 2, 0, 0)− F (N − (bN/`c − 1)`− i, 2, 0, 0)]

2
. (6.13)

Hence, using Lemma 2.7 once more,

DN (F ) ≥
L∑
`=1

`−1∑
i=0

{
C1
d4
N (1 + o(1))

ZNN
[F (N − i, 2, 0, 0)− F (N, 2, 0, 0)]

2

+ 6
d4
N (1 + o(1))

N3ZN
m`
?

(
κ−2∑
x=2

1

r(x, x+ 1)

)−1

× [F (N − (bN/`c − 1)`− i, 2, 0, 0)− F (N − i, 2, 0, 0)]
2

+ C3
d4
N (1 + o(1))

ZNN
[F (0, 2, 0, 0)− F (N − (bN/`c − 1)`− i, 2, 0, 0)]

2

}
≥

L∑
`=1

`−1∑
i=0

{
ZNN(1 + o(1))

C1d4
N

+
N3ZN (1 + o(1))

6d4
N

1

m`
?

κ−2∑
x=2

1

r(x, x+ 1)
+
ZNN(1 + o(1))

C3d4
N

}−1

× [F (0, 2, 0, 0)− F (N, 2, 0, 0)]
2
. (6.14)

Note that the summands do not depend on i, and that F (0, 2, 0, 0) = 0 and F (N, 2, 0, 0) = 1.
Therefore,

DN (F ) ≥ 6
d4
N (1 + o(1))

N3ZN

(
κ−2∑
x=2

1

r(x, x+ 1)

)−1 L∑
`=1

`m`
?. (6.15)

Hence, it follows from Proposition 3.2 with κ? = 2 that,

lim inf
N→∞

N2

d3
N

≥ 3

(
κ−2∑
x=2

1

r(x, x+ 1)

)−1 L∑
`=1

`m`
?, (6.16)

and the proposition follows by taking the limit L→∞.
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Remark 6.2. For systems where the m? are not all equal, we obtain the correct order of
magnitude, but the constant obtained is not the same as the one obtained in the upper
bound in the next section, which we believe to be the correct one.

On general graphs, this lower bound on the capacity between sites in S? that are
at graph distance at least three is also valid, since the Dirichlet form can always be
restricted to only allow for jumps on one specific path, and then restricting the jumps
further as in the proof. This proves that also in general systems longer time-scales
cannot be present.

6.2 Upper bound on capacities

We have the following upper bound for general systems as in (2.21), with κ ≥ 4,
which coincides with the lower bound in the case that all the m? are equal:

Proposition 6.3. Let the underlying random walk be as in (2.21), with κ ≥ 4. Further-
more, suppose that dN decays subexponentially and dN logN → 0 as N →∞. Then,

lim sup
N→∞

N2

d3
N

CapN (EN (1), EN (κ)) ≤ 3

(
κ−2∑
x=2

(1−m?(x))(1−m?(x+ 1))

m?(x)r(x, x+ 1)

)−1

. (6.17)

In particular, for m? := m?(2) = . . . = m?(κ− 1),

lim sup
N→∞

N2

d3
N

CapN (EN (1), EN (κ)) ≤ 3
m?

(1−m?)2

(
κ−2∑
x=2

1

r(x, x+ 1)

)−1

. (6.18)

Proof. From the lower bound, we can guess that a good test function should be of the
form

F (η) = 6

κ−2∑
`=2

c`

∫ φ2ε( η1N +(( 1
N

∑`
p=2 ηp)∧ε))

0

x(1− x) dx, (6.19)

where we need to choose the constants such that

κ−2∑
`=2

c` = 1, (6.20)

so that

F (η1 = N) = 6

κ−2∑
`=2

c`

∫ 1

0

x(1− x) dx = 1. (6.21)

We obviously also have that F (ηκ = N) = 0, so that F ∈ FN (EN (1), EN (κ)). We optimize
over the constants c` at the end.

Because of the choice of φ2ε, we have that F (ηp,p+1)−F (η) = 0 for all p = 1, . . . , κ− 1

if j < εN or j > (1− ε)N . Denote by ` the total number of particles on sites 2, . . . , κ− 1.
Then, we have that, for ` < εN ,

F (η1,2)− F (η) = 0. (6.22)

We also have, for all values of `, that

F (ηκ−1,κ)− F (η) = 0. (6.23)

Hence, also using reversibility in the first equality, we can rewrite the Dirichlet form of
F as,

DN (F ) =
∑
η∈EN

µN (η)

κ−1∑
q=1

ηq(ηq+1 + dN )r(q, q + 1)
[
F (ηq,q+1)− F (η)

]2
(6.24)
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=

εN−1∑
`=0

(1−ε)N∑
j=εN

∑
η2+...+ηκ−1=`

µN (η)

κ−2∑
q=2

ηq(ηq+1 + dN )r(q, q + 1)
[
F (ηq,q+1)− F (η)

]2
+

N∑
`=εN

N−∑̀
j=εN

∑
η2+...+ηκ−1=`

µN (η)

κ−2∑
q=1

ηq(ηq+1 + dN )r(q, q + 1)
[
F (ηq,q+1)− F (η)

]2
.

For small `, we split the sum

∑
η2+...+ηκ−1=`

=

κ−2∑
p=2

∑̀
ηp=1

1{ηp+1 = `− ηp}+
∑

η2+...+ηκ−1=`
ηp+ηp+1<` ∀ 2≤p≤κ−2

. (6.25)

The first sum consists of all configurations with ` particles on at most 2 adjacent sites in
{2, . . . , κ− 1}, and with the rest of the particles only on sites 1 and κ, while the second
sum consists of all other configurations. This latter sum turns out to have a negligible
contribution, as we show later. Let us first analyze the first sum:

εN−1∑
`=0

(1−ε)N∑
j=εN

κ−2∑
p=2

∑̀
ηp=1

1{ηp+1 = `− ηp}µN (η)

κ−2∑
q=2

ηq(ηq+1 + dN )r(q, q + 1)
[
F (ηq,q+1)− F (η)

]2
=

1

ZN

εN−1∑
`=0

(1−ε)N∑
j=εN

wN (j)wN (N − j − `)
κ−2∑
p=2

∑̀
ηp=1

wN (ηp)m?(p)
`wN (`− ηp)m?(p+ 1)`−ηp

(p+1)∧(κ−2)∑
q=p

ηq(ηq+1 + dN )r(q, q + 1)
[
F (ηq,q+1)− F (η)

]2
,

(6.26)

since all other q give a 0 contribution, because then ηq = 0.
Using Lemma 3.1, the above equals

d4
N

ZN
(1 + o(1))

εN−1∑
`=0

(1−ε)N∑
j=εN

1

j(N − j − `)

κ−2∑
p=2

∑̀
ηp=1

m?(p)
ηpm?(p+ 1)`−ηp

(
r(p, p+ 1)

[
F (ηp,p+1)− F (η)

]2
+
dN
ηp
r(p+ 1, p+ 2)

[
F (ηp+1,(p+2)∧(κ−2))− F (η)

]2)

= 62 d
4
N

ZN
(1 + o(1))

εN−1∑
`=0

κ−2∑
p=2

∑̀
ηp=1

m?(p)
ηpm?(p+ 1)`−ηp

(1−ε)N∑
j=εN

1

j(N − j − `)

(
r(p, p+ 1)

cp ∫ φ2ε

(
j+ηp
N

)
φ2ε

(
j+ηp−1

N

) x(1− x) dx

2

+
dN
ηp
r(p+ 1, p+ 2)

cp+1

∫ φ2ε

(
j+ηp+1

N

)
φ2ε

(
j+ηp+1−1{p<κ−2}

N

) x(1− x) dx

2)
. (6.27)

Similarly to the upper bound in the second time-scale, it holds that

(1−ε)N∑
j=εN

1

j(N − j − `)

∫ φ2ε

(
j+ηp
N

)
φ2ε

(
j+ηp−1

N

) x(1− x) dx

2

=
1

N2

(1−ε)N∑
j=εN

∫ φ2ε

(
j+ηp
N

)
φ2ε

(
j+ηp−1

N

) x(1− x) dx

∫ φ2ε

(
j+ηp
N

)
φ2ε

(
j+ηp−1

N

) x

j/N

1− x
1− (j + `)/N

dx
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≤ (1 +
√
ε)3

N3

∫ 1

0

x(1− x) dx =
(1 +

√
ε)3

6N3
. (6.28)

Hence, (6.27) is bounded from above by

6
(1 +

√
ε)3

N3

d4
N

ZN
(1 + o(1))

κ−2∑
p=2

c2pr(p, p+ 1)

εN−1∑
`=0

∑̀
ηp=1

m?(p)
ηpm?(p+ 1)`−ηp , (6.29)

because the contribution of the second part of the last line of (6.27) is clearly o(1) times
the contribution of the first part.

To bound the contribution of the last sum in (6.25), we set M = maxv/∈S? m?(v) and
observe that, for all such configurations and all q,

mη
?wN (η)ηq(ηq+1 + dN ) ≤M ` d5

N

j(N − j − `)
, (6.30)

because either at least 5 sites are occupied, or 4 sites are occupied but ηq+1 = 0. Then
one can show, as above, that this contribution is also negligible compared to (6.29).

To show that the sum over ` ≥ εN in (6.24) is negligible, we write

κ−2∑
q=1

ηq(ηq+1 + dN )r(q, q + 1) ≤ (κ− 3)RN2, (6.31)

where we set R = maxκ−2
`=2 r(`, `+ 1). Furthermore,

[
F (ηq,q+1)− F (η)

]2 ≤ 1 and

µN (η) ≤ MεN

ZN
wN (η) =

MεNN

2dN
(1 + o(1))wN (η). (6.32)

Hence,

N∑
`=εN

N−∑̀
j=εN

∑
η2+...+ηκ−1=`

µN (η)

κ−2∑
q=1

ηq(ηq+1 + dN )r(q, q + 1)
[
F (ηq,q+1)− F (η)

]2
≤ (κ− 3)R

MεNN3

2dN
(1 + o(1))

N∑
`=εN

N−∑̀
j=εN

∑
η2+...+ηκ−1=`

wN (η). (6.33)

Now we can write

N∑
`=εN

N−∑̀
j=εN

∑
η2+...+ηκ−1=`

wN (η) ≤
N∑
`=0

N−∑̀
j=0

∑
η2+...+ηκ−1=`

wN (η) = Z̃N , (6.34)

where Z̃N is the partition function of a similar system where we set m?(v) = 1 for all
v ∈ {1, . . . , κ}. Hence,

Z̃N =
κdN
N

(1 + o(1)). (6.35)

and we get

N2

d3
N

N∑
`=εN

N−∑̀
j=0

∑
η2+...+ηκ−1=`

µN (η)

κ−2∑
q=1

ηq(ηq+1 + dN )r(q, q + 1)
[
F (ηq,q+1)− F (η)

]2
≤ κ(κ− 3)R

MεNN4

2d3
N

(1 + o(1)), (6.36)

which converges to 0 because dN decays subexponentially.
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Thus, the only significant contribution to DN (F ) can be bounded from above by (6.29),
and altogether we obtain

lim sup
N→∞

N2

d3
N

DN (F ) (6.37)

≤ lim sup
N→∞

6(1 +
√
ε)3 dN

NZN
(1 + o(1))

κ−2∑
p=2

c2pr(p, p+ 1)

εN−1∑
`=0

∑̀
ηp=1

m?(p)
ηpm?(p+ 1)`−ηp

= 3(1 +
√
ε)3

κ−2∑
p=2

c2pr(p, p+ 1)m?(p)

∞∑
`=0

`−1∑
ηp=0

m?(p)
ηpm?(p+ 1)`−1−ηp

= 3(1 +
√
ε)3

κ−2∑
p=2

c2p
r(p, p+ 1)m?(p)

(1−m?(p))(1−m?(p+ 1))
. (6.38)

We finally optimize over the constants cp. Let us write cp = g(p)− g(p+ 1). By (6.20), we
need that

κ−2∑
p=2

cp =

κ−2∑
p=2

(g(p)− g(p+ 1)) = g(2)− g(κ− 1) = 1, (6.39)

and hence, without loss of generality, we can optimize over functions g such that g(2) = 1

and g(κ−1) = 0. Then, taking the infimum over all such functions g, it follows from (6.37)
that

lim sup
N→∞

N2

d3
N

DN (F ) (6.40)

≤ inf
g:g(2)=1,g(κ−2)=0

3(1 +
√
ε)3

κ−2∑
p=2

[g(p)− g(p+ 1)]2
r(p, p+ 1)m?(p)

(1−m?(p))(1−m?(p+ 1))

= 3(1 +
√
ε)3

(
κ−2∑
p=2

(1−m?(p))(1−m?(p+ 1))

r(p, p+ 1)m?(p)

)−1

, (6.41)

because this is again the effective capacity of a linear chain.

The first statement of the proposition now follows by taking ε → 0. The second
statement easily follows from the first.

6.3 Proof of Theorem 2.6

The proof again runs similarly to that of Theorem 2.3.

Proof of Theorem 2.6(i). As a consequence of Propositions 6.1 and 6.3, if dN decays
subexponentially and dN logN → 0 as N →∞ and m?(2) = . . . = m?(κ− 1) < 1,

lim
N→∞

N2

d3
N

CapN (EN (1), EN (κ)) = 3
m?

(1−m?)2

(
κ−2∑
x=2

1

r(x, x+ 1)

)−1

. (6.42)

In view of (2.33), recalling that CapN (A,B) = CapN (B,A), and applying (4.45), this
provides formula (2.25).

Proof of Theorem 2.6(ii). As in the proof of Theorem 2.3(ii), the convergence follows
from Theorem 2.7 of [3] once condition (2.36) of Section 2.5 is verified for the sequence
θN = N2/d3

N , N ≥ 1. By Lemma 6.8 of [3] (see (2.37) in Section 2.5) and using
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Proposition 2.1 and (6.42), we get

lim
N→∞

N2

d3
N

rE?N
(
E1
N , EκN

)
= lim
N→∞

N2

d3
N

rE?N
(
EκN , E1

N

)
= 3

m?

(1−m?)2

(
κ−2∑
x=2

1

r(x, x+ 1)

)−1

,

(6.43)
proving (2.36). Finally, (2.27) is proved similarly to (2.20).
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