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Abstract

Motivated by the results of [21], we propose explicit Euler-type schemes for SDEs
with random coefficients driven by Lévy noise when the drift and diffusion coefficients
can grow super-linearly. As an application of our results, one can construct explicit
Euler-type schemes for SDEs with delays (SDDEs) which are driven by Lévy noise and
have super-linear coefficients. Strong convergence results are established and their
rate of convergence is shown to be equal to that of the classical Euler scheme. It is
proved that the optimal rate of convergence is achieved for L2-convergence which is
consistent with the corresponding results available in the literature.
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1 Introduction

Let (Ω, {F}t≥0,F , P ) be a filtered probability space satisfying the usual conditions.
Let w be Rm-valued standard Wiener process and N(dt, dz) be a Poisson random measure
defined on σ-finite measure space (Z,Z , ν) with intensity measure ν 6≡ 0 (for the case
when ν ≡ 0, readers can refer to [21]). Set Ñ(dt, dz) := N(dt, dz)− ν(dz)dt.

Let bt(x) and σt(x) be P ⊗B(Rd)-measurable functions in Rd and Rd×m respectively.
Also, let γt(x, z) be a P⊗B(Rd)⊗Z -measurable function in Rd. Let T > 0 be a constant
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Explicit approximations for Lévy driven SDEs

and we fix t0 and t1 satisfying 0 ≤ t0 < t1 ≤ T . In this article, we consider the following
SDE,

dxt = bt(xt)dt+ σt(xt)dwt +

∫
Z

γt(xt, z)Ñ(dt, dz) (1.1)

almost surely for any t ∈ [t0, t1] with initial value as an Ft0 -measurable random variable
xt0 in Rd.

Remark 1. We use xt instead of xt− on the right hand side of the equation (1.1) for
notational convenience that shall be used throughout this article. Moreover, this does
not cause any problem because the compensators of the martingales driving the equation
are continuous.

For every n ∈ N, suppose that the functions bnt (x) and σnt (x) are P ⊗ B(Rd)-
measurable and take values in Rd and Rd×m respectively. Furthermore, let the function
γnt (x, z) be P ⊗B(Rd)⊗Z -measurable with values in Rd for every n ∈ N. In this article,
we propose an explicit Euler-type scheme defined below. For every n ∈ N,

dxnt = bnt (xnκ(n,t))dt+ σnt (xnκ(n,t))dwt +

∫
Z

γnt (xnκ(n,t), z)Ñ(dt, dz) (1.2)

almost surely for any t ∈ [t0, t1] with initial value as an Ft0 -measurable random variable
xnt0 inRd. Also, the function κ(n, t) is given by κ(n, t) := bn(t−t0)c/n+t0 for any t ∈ [t0, t1].

The SDEs of type (1.1) are popular models in finance, economics, engineering, ecology,
medical sciences and many other areas where problems are influenced by event-driven
uncertainties. In finance, jumps have been studied extensively in modeling of stock
price and volatility. In particular, the interested reader may consult [1], [4], [5], [22]
and references therein for a detailed analysis of suggested stochastic volatility (SV)
processes driven by SDEs with nonlinear coefficients. This fact coupled with the in-
creased popularity of the 3/2-SV-model, which due to its desired property to fit better
implied volatility surfaces than other widely-used models such as Heston’s SV model,
have provided us with our main motivating example for the construction of new, explicit,
Euler-type numerical schemes for SDEs driven by Lévy noise with superlinear coeffi-
cients. In this way, we provide an efficient and extremely fast way for the pricing of any
path-dependent option written on an asset with assumed SV process {vt}t≥0 driven by

dvt = λvt(µ− |vt|)dt+ ξ|vt|3/2dWt + dN(t)

with initial value v0, λ, µ and ξ being positive constants, and W and N being a Wiener
and a compound Poisson process respectively. Similarly, in mathematical biology &
ecology, a detailed analysis of the use of SDEs with superlinear coefficients and jumps
can be found in [7], [8] and in references therein, while in economics one can consult [6]
for such type of SDEs with a possible extension which can include Poisson jumps.

Often, such SDEs do not possess any explicit solution and one has to resort to
numerical schemes to obtain their approximate solutions. Details of explicit and implicit
schemes for SDEs driven by Lévy noise can be found in [19] and the references therein.
It is well known that the moments of the classical Euler scheme of SDE (1.1) may
diverge to infinity in finite time when the coefficients of the SDE grow super-linearly
- [11] proved this result for SDEs with continuous paths. For SDEs with super-linear
coefficients, implicit schemes can be used to obtain their approximate solutions, but
they are typically computationally very demanding. In recent years, the focus has been
shifted to the development of efficient, explicit numerical schemes with optimal rates
of convergence and a stream of research articles has appeared in the literature which
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reported significant progress in this direction. For continuous SDEs, one can refer to
[12, 13, 14, 18, 20, 21, 23] and the references therein, whereas for SDEs driven by Lévy
noise, one can refer to [3, 17]. Moreover, new results appeared in the direction of non-
polynomial lower error bounds for approximations of nonlinear SDEs, see [15, 24, 22].

In this article, we propose an explicit Euler-type scheme (1.2) of SDE (1.1) where
both drift and diffusion coefficients are allowed to grow superlinearly, whereas the jump
coefficient can grow linearly. The strong convergence is established and the rate of
convergence is shown to be equal to that of the classical Euler scheme. To the best of
the authors’ knowledge, these are the first such results in the literature for Lévy driven
SDEs.

Further, the techniques discussed in this article and in [17, 18] can be combined to
develop explicit Milstein-type and higher-order schemes which converge to SDEs (1.1)
with super-linear drift and diffusion coefficients in the strong sense, however this is not
the focus of the current article. Finally, by adopting the approach of [10, 16], the results
obtained here can also be extended to the case of delay equations (SDDEs) as illustrated
in Section 2.2 below.

To conclude this section, let us introduce some basic notation. We use |x| to denote
the Euclidean norm of x ∈ Rd, |σ| and σ∗ to denote the Hilbert-Schmidt norm and the
transpose of σ ∈ Rd×m respectively. For any x, y ∈ Rd, xy stands for their inner product.
IA stands for the indicator function of a set A and bxc for the integer part of a real
number x. The maximum of two real numbers a and b is denoted by a ∨ b. For an Rd-
valued random variable X, X ∈ Lp(Ω) means E|X|p <∞ and for a sequence {Xn}n∈N
of Rd-valued random variables, {Xn}n∈N ∈ l∞(Lp(Ω)) means supn∈NE|Xn|p <∞. B(V )

denotes the Borel sigma-algebra of a topological space V . P is the predictable sigma-
algebra on Ω×R+. Throughout this article, K > 0 denotes a generic constant that varies
from place to place.

2 Assumptions and description of results

We fix p0 ≥ 2 and make the following assumptions for SDE (1.1). For every R > 0,
consider C(R) which is an Ft0 -measurable random variable such that

lim
R→∞

P (C(R) > f(R)) = 0

for a non-decreasing function f : R+ → R+.

A-1. xt0 ∈ Lp0(Ω).

A-2. There exist a constant L > 0 and an Ft0 -measurable random variable M ∈ L
p0
2 (Ω)

such that {
2xbt(x) + (p0 − 1)|σt(x)|2

}
∨
∫
Z

|γt(x, z)|2ν(dz) ≤ L(M + |x|2)

almost surely for any t ∈ [t0, t1] and x ∈ Rd.
A-3. There exist a constant L > 0 and an Ft0 -measurable random variable N ∈ L(Ω)

such that ∫
Z

|γt(x, z)|p0ν(dz) ≤ L(N + |x|p0)

almost surely for t ∈ [t0, t1] and x ∈ Rd.
A-4. For every R > 0,

2(x− x̄)(bt(x)− bt(x̄)) + |σt(x)− σt(x̄)|2

+

∫
Z

|γt(x, z)− γt(x̄, z)|2ν(dz) ≤ C(R)|x− x̄|2
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almost surely whenever |x| ∨ |x̄| ≤ R for any t ∈ [t0, t1].

A-5. For every R > 0,
sup
|x|≤R

|bt(x)| ≤ C(R)

almost surely for any t ∈ [t0, t1].

A-6. The function bt(x) is continuous in x ∈ Rd for every ω ∈ Ω and t ∈ [t0, t1].

We make the following assumptions for the Euler-type scheme (1.2).

B-1. {xnt0}n∈N ∈ l∞(Lp0(Ω)).

B-2. There exist a constant L > 0 and a sequence of Ft0 -measurable random variables
{Mn}n∈N ∈ l∞(L

p0
2 (Ω)) such that,{

2xbnt (x) + (p0 − 1)|σnt (x)|2
}
∨
∫
Z

|γnt (x, z)|2ν(dz) ≤ L(Mn + |x|2)

almost surely for any t ∈ [t0, t1], n ∈ N and x ∈ Rd.
B-3. There exist a constant L > 0 and a sequence of Ft0 -measurable random variables
{Nn}n∈N ∈ l∞(L(Ω)) such that,∫

Z

|γnt (x, z)|p0ν(dz) ≤ L(Nn + |x|p0)

almost surely for any t ∈ [t0, t1], n ∈ N and x ∈ Rd.
B-4. There exist a constant L > 0 and a sequence of Ft0 -measurable random variables
{Mn}n∈N ∈ l∞(L

p0
2 (Ω)) such that,

|bnt (x)|2 ≤ Ln1/2(Mn + |x|2)

|σnt (x)|2 ≤ Ln1/2(Mn + |x|2)

almost surely for any t ∈ [t0, t1], n ∈ N and x ∈ Rd.
AB-1. For every R > 0,

lim
n→∞

E

∫ t1

t0

I{C(R)≤f(R)} sup
|x|≤R

{|bt(x)− bnt (x)|2 + |σt(x)− σnt (x)|2

+

∫
Z

|γt(x, z)− γnt (x, z)|2ν(dz)}dt = 0.

AB-2. The sequence {xnt0}n∈N converges in probability to xt0 .

Theorem 1. Let Assumptions A-1 to A-6, B-1 to B-4, AB-1 and AB-2 be satisfied. Then,
the explicit Euler-type scheme (1.2) converges to the true solution of SDE (1.1) in
Lp-sense, i.e.

lim
n→∞

sup
t0≤t≤t1

E|xt − xnt |p = 0

for any 0 < p < p0.

The proof of the above theorem can be found in Section 4.
For the rate of convergence of the scheme (1.2), we fix a constant p1 ≥ 2 and consider

any p satisfying 0 < p < p1 and χp(p+ δ)/δ ≤ p0 for a δ > 0 (however small). Moreover,
one replaces Assumptions A-4, AB-1 and AB-2 by the following assumptions.

A-7. There exists a constant C > 0 such that{
2(x− x̄)(bt(x)− bt(x̄)) + (p1 − 1)|σt(x)− σt(x̄)|2

}
∨
∫
Z

|γt(x, z)− γt(x̄, z)|2ν(dz) ≤ C|x− x̄|2

almost surely for any t ∈ [t0, t1] and x, x̄ ∈ Rd.
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A-8. There exist a constant C > 0 such that∫
Z

|γt(x, z)− γt(x̄, z)|pν(dz) ≤ C|x− x̄|p

almost surely for any t ∈ [t0, t1] and x, x̄ ∈ Rd

A-9. There exist a constant C > 0 and χ > 0 such that

|bt(x)− bt(x̄)| ≤ C(1 + |x|χ + |x̄|χ)|x− x̄|

almost surely for any t ∈ [t0, t1] and x, x̄ ∈ Rd.
B-5. There exist constants L > 0, χ > 0 and a sequence of Ft0 -measurable random
variables {Mn}n∈N ∈ l∞(Lp0(Ω)) such that,

|bnt (x)| ≤ L(Mn + |x|χ+1)

almost surely for any t ∈ [t0, t1], n ∈ N and x ∈ Rd.
AB-3. There exists a constant L > 0 such that, for every n ∈ N,

E

∫ t1

t0

{
|bt(xnκ(n,t))− b

n
t (xnκ(n,t))|

p + |σt(xnκ(n,t))− σ
n
t (xnκ(n,t))|

p

+
(∫

Z

|γt(xnκ(n,t), z)− γ
n
t (xnκ(n,t), z)|

ρν(dz)
) p
ρ}
dt ≤ Ln−

p
p+δ

for ρ = 2, p.

AB-4. There exists a constant L > 0 such that,

E|xt0 − xnt0 |
p ≤ Ln−

p
p+δ

for every n ∈ N.

Theorem 2. Let Assumptions A-1 to A-3, A-5, A-7 to A-9, B-1 to B-5, AB-3 and AB-4 hold.
Then, the explicit Euler-type scheme (1.2) converges to the true solution of SDE (1.1) in
Lp-sense with a convergence rate given by,

sup
t0≤t≤t1

E|xt − xnt |p ≤ Kn
− p
p+δ

for any p ≥ 2, where the positive constant K does not depend on n.

As a consequence of Theorem 2, one also obtains the following corollary.

Corollary 1. Let assumptions of Theorem 2 hold, then the explicit Euler-type scheme
(1.2) converges to the true solution of SDE (1.1) in Lp-sense with a convergence rate
given by,

sup
t0≤t≤t1

E|xt − xnt |p ≤ Kn−
p

2+δ

for any 0 < p < 2, where the positive constant K does not depend on n.

Remark 2. If Assumptions A-1 and B-1 hold for all p0 > 0, then one can make δ > 0

appearing in Theorem 2 and Corollary 1 as small as possible and hence can obtain a
rate which is arbitrarily close to 1/p and 1/2 respectively. Notice that the optimal rate of
convergence in the above theorem is attained for 0 < p ≤ 2 which is arbitrarily close to
0.5 when Assumptions A-1 and B-1 hold for all p0 > 0. Moreover, the rate of convergence
coincide with that of the classical Euler scheme.

The proof of the above theorem can be found in Section 4. In the following two
sections, we provide examples of SDE and SDDE that can fit into our model.
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2.1 Explicit Euler-type scheme for SDE driven by Lévy noise

Let βt(x) and αt(x) be B([0, T ]) ⊗ B(Rd)-measurable functions in Rd and Rd×m

respectively. Also, λt(x, z) is a B([0, T ]) ⊗B(Rd) ⊗ Z -measurable function in Rd. We
consider the following SDE,

dxt = βt(xt)dt+ αt(xt)dwt +

∫
Z

λt(xt, z)Ñ(dt, dz) (2.1)

almost surely for any t ∈ [0, T ] with initial value x0 ∈ Lp0(Ω). Notice that one defines
SDE (2.1) as a special case of SDE (1.1) with t0 = 0, t1 = T and

bt(x) := βt(x), σt(x) := αt(x), γt(x, z) := λt(x, z)

for any t ∈ [0, T ] and x ∈ Rd. Moreover, in the assumptions listed above on the coefficients
of SDE (1.1), one uses M ≡ 1 whereas for every R > 0, C(R) is a positive constant.
Similarly, one can define an explicit Euler-type scheme of SDE (2.1) as a special case of
the scheme (1.2) with the following mappings,

bnt (x) :=
βt(x)

1 + n−1/2|x|2χ
, σnt (x) :=

αt(x)

1 + n−1/2|x|2χ
, γnt (x, z) := λt(x, z)

for any n ∈ N, t ∈ [0, T ], x ∈ Rd and z ∈ Z with xn0 = x0. It is easy to verify that
Assumptions B-2 to B-5, AB-1 and AB-3 are satisfied. Hence, the results of Theorems [1,
2] hold true.

Remark 3. Notice that in the above example, coefficients of the SDE (1.1) and the
scheme (1.2) are deterministic. In this case, one can use the following condition on bnt (x)

in Assumption B-4,

|bnt (x)| ≤ Ln1/2(1 + |x|)

with the below mentioned coefficients,

bnt (x) =
βt(x)

1 + n−1/2|x|χ

for any t ∈ [t0, t1], n ∈ N and x ∈ Rd. The proof of the Lemma 3 is then followed in similar
way as done in [18, 21] because in such a case, bt(xnκ(n,t)) remains Fκ(n,t)-measurable in
order to eliminate the stochastic integral in the second term of the right hand side of
(3.4). Hence, this approach does not increase the moment bound requirements on the
initial value as has been attained in [21].

2.2 Explicit Euler-type scheme for SDDE driven by Lévy noise

Let βt(y1, . . . , yk, x) and αt(y1, . . . , yk, x) be B([0, T ])⊗B(Rd×k)⊗B(Rd)-measurable
functions in Rd and Rd×m respectively. Also, λt(y1, . . . , yk, x) is a B([0, T ])⊗B(Rd×k)⊗
B(Rd)⊗Z -measurable function inRd. Further, let d1(t), . . . , dk(t) be increasing functions
of t satisfying −H ≤ di(t) ≤ bt/hch for fixed constants h > 0 and H > 0 for every
i = 1, . . . , k. We consider the following SDDE,

dxt = βt(yt, xt)dt+ αt(yt, xt)dwt +

∫
Z

λt(yt, xt, z)Ñ(dt, dz) (2.2)

almost surely for any t ∈ [0, T ] with initial data xt = ξt for any t ∈ [−H, 0] satisfying
E sup−H≤t≤0 |ξt|p0 <∞, where yt := (xd1(t), . . . , xdk(t)). The SDDE (2.2) can be regarded
as a special case of SDE (1.1) with the following mappings,

bt(x) := βt(yt, x), σt(x) := αt(yt, x), γt(xt, z) := λt(yt, x, z)
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almost surely for any t ∈ [0, T ], x ∈ Rd and z ∈ Z. Suppose that the function βt(y, x)

satisfies βt(y, x) ≤ L(1 + |y|χ1 + |x|χ2) for any y ∈ Rd×k and x ∈ Rd, where L, χ1 and
χ2 are positive constants. Then, the explicit Euler-type scheme of SDDE (2.2) can be
defined with the following mappings,

bnt (x) :=
βt(y

n
t , x)

1 + n−1/2(|ynt |2χ1 + |x|2χ2)
,σnt (x) :=

αt(y
n
t , x)

1 + n−1/2(|ynt |2χ1 + |x|2χ2)

γnt (x, z) :=λt(y
n
t , x, z)

almost surely for any t ∈ [0, T ] and x ∈ Rd. By adopting the approach of [3], one can
show that Theorems [1, 2] hold true.

3 Moment bounds

We make the following observations.

Remark 4. Due to Assumptions A-2 and A-5, for every R > 0,

|σt(x)|2 ∨
∫
Z

|γt(x, z)|2ν(dz) ≤ C(R)

almost surely for any t ∈ [t0, t1] whenever |x| ≤ R.

The moment bound of SDE (1.1) is well know, but for the completeness of the article,
we prove this in the following lemma.

Lemma 1. Let Assumptions A-1 to A-6 be satisfied, then there exists a unique solution
{xt}t∈[t0,t1] of SDE (1.1). Moreover,

sup
t0≤t≤t1

E|xt|p0 ≤ K,

where K is a positive constant.

Proof. The proof of existence and uniqueness of the solution of SDE (1.1) can be found
in [9] under more general settings than those considered here.

Define a stopping time τ̃R := inf{t ≥ t0 : |xt| > R} ∧ t1 and notice that |xt−| ≤ R for
any t0 ≤ t ≤ τ̃R. By using Itô’s formula,

|xt|p0 = |xt0 |p0 + p0

∫ t

t0

|xs|p0−2xsbs(xs)ds+ p0

∫ t

t0

|xs|p0−2xsσs(xs)dws

+
p0(p0 − 2)

2

∫ t

t0

|xs|p0−4|σ∗s (xs)xs|2ds+
p0

2

∫ t

t0

|xs|p0−2|σs(xs)|2ds

+ p0

∫ t

t0

∫
Z

|xs|p0−2xsγs(xs, z)Ñ(ds, dz)

+

∫ t

t0

∫
Z

{|xs + γs(xs, z)|p0 − |xs|p0 − p0|xs|p0−2xsγs(xs, z)}N(ds, dz) (3.1)

almost surely for any t ∈ [t0, t1]. Now, on taking expectation and using Schwarz inequality,
one obtains,

E|xt∧τ̃R |p0 ≤ E|xt0 |p0 +
p0

2
E

∫ t∧τ̃R

t0

|xs|p0−2{2xsbs(xs) + (p0 − 1)|σs(xs)|2}ds

+E

∫ t∧τ̃R

t0

∫
Z

{|xs+γs(xs, z)|p0−|xs|p0−p0|xs|p0−2xsγs(xs, z)}ν(dz)ds (3.2)
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for any t ∈ [t0, t1]. One notes that when p0 = 2, then

E|xt∧τ̃R |2 ≤ E|xt0 |2 +E

∫ t∧τ̃R

t0

{2xsbs(xs)+|σs(xs)|2 +

∫
Z

|γs(xs, z)|2ν(dz)}ds

for any t ∈ [t0, t1]. Thus, the application of Assumption A-2, Gronwall’s inequality and
Fatou’s lemma completes the proof for the case p0 = 2. For the case p0 ≥ 4, one uses the
formula for the remainder and obtains the following estimates,

E|xt∧τ̃R |p0 ≤ E|xt0 |p0 +
p0

2
E

∫ t∧τ̃R

t0

|xs|p0−2
{

2xsbs(xs) + (p0 − 1)|σs(xs)|2
}
ds

+KE

∫ t∧τ̃R

t0

∫
Z

|xs|p0−2|γs(xs, z)|2ν(dz)ds+KE

∫ t∧τ̃R

t0

∫
Z

|γs(xs, z)|p0ν(dz)ds

for any t ∈ [t0, t1]. On the application of Assumptions A-2 and A-3, one obtains,

sup
t0≤t≤u

E|xt∧τ̃R |p0 ≤ E|xt0 |p0 +K +K

∫ u

t0

sup
t0≤r≤s

E|xr∧τ̃R |p0ds <∞

for any u ∈ [t0, t1]. Hence, the application of Gronwall’s lemma and Fatou’s lemma
completes the proof.

Before proving the moment bound of the scheme (1.2), we prove the following lemma.

Lemma 2. Let Assumptions B-2 to B-4 be satisfied. Then, for every ρ ∈ (2, p0], the
following holds

E(|xnt − xnκ(n,t)|
ρ|Fκ(n,t)) ≤ K(n−

ρ
4 (|Mn|

ρ
2 + |xnκ(n,t)|

ρ) + n−1(Nn + |xnκ(n,t)|
ρ))

almost surely and for every ρ ∈ [1, 2], the following holds

E
(
|xnt − xnκ(n,t)|

ρ|Fκ(n,t)

)
≤ Kn−

ρ
4 (|Mn|

ρ
2 + |xnκ(n,t)|

ρ)

almost surely for any t ∈ [t0, t1], where the positive constant K does not depend on n.

Proof. By equation (1.2), one obtains

E
(
|xnt − xnκ(n,t)|

ρ|Fκ(n,t)

)
≤ KE

(∣∣∣ ∫ t

κ(n,t)

bns (xnκ(n,s))ds
∣∣∣ρ|Fκ(n,t)

)
+KE

(∣∣∣ ∫ t

κ(n,t)

σns (xnκ(n,s))dws

∣∣∣ρ|Fκ(n,t)

)
+KE

(∣∣∣ ∫ t

κ(n,t)

∫
Z

γns (xnκ(n,s), z)Ñ(ds, dz)
∣∣∣ρ|Fκ(n,t)

)
which on the application of Hölder’s inequality and an elementary inequality of stochastic
integrals gives,

E
(
|xnt − xnκ(n,t)|

ρ|Fκ(n,t)

)
≤ Kn−ρ+1E

((∫ t

κ(n,t)

|bns (xnκ(n,s))|
ρds
)
|Fκ(n,t)

)
+KE

((∫ t

κ(n,t)

|σns (xnκ(n,s))|
2ds
) ρ

2 |Fκ(n,t)

)
+KE

((∫ t

κ(n,t)

∫
Z

|γns (xnκ(n,s), z)|
2ν(dz)ds

) ρ
2 |Fκ(n,t)

)
+KE

(∫ t

κ(n,t)

∫
Z

|γns (xnκ(n,s), z)|
ρν(dz)ds|Fκ(n,t)

)
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for any t ∈ [t0, t1]. Notice that when ρ ∈ [1, 2], then the last term on the right hand side
of the above inequality can be dropped. Furthermore, one uses Assumptions B-2, B-3
and B-4 to complete the proof.

Lemma 3. Let Assumptions B-1 to B-4 be satisfied, then the following holds

sup
n∈N

sup
t0≤t≤t1

E|xnt |p0 ≤ K,

where K is a positive constant and does not depend on n.

Proof. For every n ∈ N, one applies the Itô’s formula to obtain,

|xnt |p0 = |xnt0 |
p0 + p0

∫ t

t0

|xns |p0−2xns b
n
s (xnκ(n,s))ds+ p0

∫ t

t0

|xns |p0−2xnsσ
n
s (xnκ(n,s))dws

+
p0(p0 − 2)

2

∫ t

t0

|xns |p0−4|σn∗s (xnκ(n,s))x
n
s |2ds+

p0

2

∫ t

t0

|xns |p0−2|σns (xnκ(n,s))|
2ds

+ p0

∫ t

t0

∫
Z

|xns |p0−2xns γ
n
s (xnκ(n,s), z)Ñ(ds, dz)

+

∫ t

t0

∫
Z

{|xns + γns (xnκ(n,s), z)|
p0−|xns |p0−p0|xns |p0−2xns γ

n
s (xnκ(n,s), z)}N(ds, dz) (3.3)

almost surely for any t ∈ [t0, t1]. The last term on the right hand side of the above
equation can be estimated by the formula for the remainder as before. Hence, on taking
expectation and using Schwarz inequality, one obtains the following estimates,

E|xnt |p0 ≤ E|xnt0 |
p0 + p0E

∫ t

t0

|xns |p0−2(xns − xnκ(n,s))b
n
s (xnκ(n,s))ds

+
p0

2
E

∫ t

t0

|xns |p0−2
{

2xnκ(n,s)b
n
s (xnκ(n,s)) + (p0 − 1)|σns (xnκ(n,s))|

2}ds

+KE

∫ t

t0

∫
Z

|xns |p0−2|γns (xnκ(n,s), z)|
2ν(dz)ds+KE

∫ t

t0

∫
Z

|γns (xnκ(n,s), z)|
p0ν(dz)ds (3.4)

which due to Schwarz inequality, Assumptions B-2, B-3 and B-4 yields,

E|xnt |p0 ≤ E|xnt0 |
p0 +Kn

1
4E

∫ t

t0

|xns |p0−2|xns − xnκ(n,s)|(|M
n| 12 + |xnκ(n,s)|)ds

+KE

∫ t

t0

|xns |p0−2(Mn + |xnκ(n,s)|
2)ds+KE

∫ t

t0

(Nn + |xnκ(n,s)|
p0)ds

for any t ∈ [t0, t1]. Moreover, one uses Young’s inequality and an algebraic inequality to
obtain the following estimates,

E|xnt |p0 ≤ E|xnt0 |
p0 +Kn

1
4E

∫ t

t0

|xns − xnκ(n,s)|
p0−1(|Mn| 12 + |xnκ(n,s)|)ds

+Kn
1
4E

∫ t

t0

|xnκ(n,s)|
p0−2|xns − xnκ(n,s)|(|M

n| 12 + |xnκ(n,s)|)ds

+K +K

∫ t

t0

E|xns |p0ds+K

∫ t

t0

E|xnκ(n,s)|
p0ds

for any t ∈ [t0, t1]. Also, one notices that for p0 = 2, the second and third terms on
the right hand side of the above inequality are same which can be kept in mind in the
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following calculations. Moreover, the above can also be written as,

E|xnt |p0 ≤ E|xnt0 |
p0+Kn

1
4E

∫ t

t0

(|Mn| 12+ |xnκ(n,s)|)E(|xns−xnκ(n,s)|
p0−1|Fκ(n,s))ds

+Kn
1
4E

∫ t

t0

|xnκ(n,s)|
p0−2(|Mn| 12 + |xnκ(n,s)|)E(|xns − xnκ(n,s)||Fκ(n,s))ds

+K +K

∫ t

t0

sup
t0≤r≤s

E|xnr |p0ds

for any t ∈ [t0, t1]. Notice that when p0 ∈ [2, 3], then one uses the case ρ ∈ [1, 2] in Lemma
2 which gives the rate n−ρ/4 and hence n1/4 disappears from the second and third terms.
When p0 ≥ 3, then the rate is n−1 which cancels out n1/4 in the second term. As a
consequence, one obtains

sup
t0≤t≤u

E|xnt |p0 ≤ K +K

∫ u

t0

sup
t0≤t≤s

E|xnr |p0ds <∞

for u ∈ [t0, t1] where K does not depend on n. The finiteness of the right hand side of the
above inequality is guaranteed as one can easily show by adapting similar arguments as
those in Lemma 1 that,

sup
t0≤t≤t1

E|xnt |p0 ≤ K̃

where a priori it is not clear whether the constant K̃ is independent of n or not. The
application of Gronwall’s lemma completes the proof.

4 Proof of main results

First, we make the following observations.

Remark 5. Due to Assumptions A-4 and A-5, for every R > 0,

|σt(x)− σt(x̄)|2 +

∫
Z

|γt(x, z)− γt(x̄, z)|2ν(dz) ≤ C(R)(|x− x̄|2 + |x− x̄|)

almost surely whenever |x| ∨ |x̄| ≤ R for any t ∈ [t0, t1] and x, x̄ ∈ Rd.
For proving Theorem 1, one requires the following result.

Corollary 2. Let Assumptions B-1 to B-4 be satisfied. Then for any ρ ∈ [2, p0], the
following holds,

sup
t0≤t≤t1

E|xnt − xnκ(n,t)|
ρ ≤ K(n−

ρ
4 + n−1)

and for any ρ ∈ [1, 2], the following holds,

sup
t0≤t≤t1

E|xnt − xnκ(n,t)|
ρ ≤ Kn−

ρ
4

where K is a positive constant that does not depend on n.

Proof. The proof follows immediately due to Lemmas [2, 3].

Proof of Theorem 1. For every n ∈ N and R > 0, define the following the stopping
times,

τ̃R := inf{t ≥ t0 : |xt| ≥R}, τ̄nR := inf{t ≥ t0 : |xnt | ≥ R}
τnR := τ̃R ∧ τ̄nR
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almost surely. Then, one can write,

sup
t0≤t≤t1

E|xt − xnt |2 ≤ sup
t0≤t≤t1

E|xt − xnt |2I{{τ̃R≤t1}∪{τ̄nR≤t1}∪{C(R)>f(R)}}

+ sup
t0≤t≤t1

E|xt − xnt |2I{{τ̃R>t1}∩{τ̄nR>t1}∩{C(R)≤f(R)}}

=: T1 + T2. (4.1)

For T1, one uses Hölder’s inequality and obtains the following,

T1 := sup
t0≤t≤t1

E|xt − xnt |2I{τ̃R≤t1,τ̄nR≤t1,C(R)>f(R)}

≤
(

sup
t0≤t≤t1

E|xt − xnt |p0
) 2
p0 {P (τ̃R ≤ t1, τ̄nR ≤ t1, C(R) > f(R))}

p0−2
p0

which on the application of Lemmas [1, 3] yields,

T1 ≤ K
(E|xτ̃R |p0

Rp0
+
E|xnτ̄nR |

p0

Rp0
+ P (C(R) > f(R))

) p0−2
p0

≤ K
( 1

Rp0
+ P (C(R) > f(R))

) p0−2
p0 (4.2)

for every R > 0. Moreover, one notices that T2 can be estimated by,

T2 := sup
t0≤t≤t1

E|xt − xnt |2I{{τ̃R>t1}∩{τ̄nR>t1}∩{C(R)≤f(R)}}

≤ sup
t0≤t≤t1

E|xt∧τnR − xnt∧τnR |
2I{C(R)≤f(R)}. (4.3)

Also, due to equations (1.1) and (1.2),

xt − xnt = xt0 − xnt0 +

∫ t

t0

{bs(xs)− bns (xnκ(n,s))}ds+

∫ t

t0

{σs(xs)− σns (xnκ(n,s))}dws

+

∫ t

t0

∫
Z

{γs(xs, z)− γnt (xnκ(n,s), z)}Ñ(ds, dz) (4.4)

for any t ∈ [t0, t1]. Now, one uses Itô’s formula to obtain the following,

|xt − xnt |2 = |xt0 − xnt0 |
2 + 2

∫ t

t0

(xs − xns )(bs(xs)− bns (xnκ(n,s)))ds

+ 2

∫ t

t0

(xs − xns ){σt(xs)− σns (xnκ(n,s))}dws +

∫ t

t0

|σt(xs)− σns (xnκ(n,s))|
2ds

+ 2

∫ t

t0

∫
Z

(xt − xnt ){γt(xt, z)− γns (xnκ(n,s), z)}Ñ(ds, dz)

+

∫ t

t0

∫
Z

|γs(xs, z)− γns (xnκ(n,s), z)|
2N(ds, dz)

almost surely for any t ∈ [t0, t1]. By taking expectation one gets,

E|xt∧τnR − xnt∧τnR |
2I{C(R)≤f(R)} = E|xt0 − xnt0 |

2I{C(R)≤f(R)}

+ 2E

∫ t∧τnR

t0

I{C(R)≤f(R)}(xs − xns )(bs(xs)− bns (xnκ(n,s)))ds

+ E

∫ t∧τnR

t0

I{C(R)≤f(R)}|σs(xs)− σns (xnκ(n,s))|
2ds

+ E

∫ t∧τnR

t0

I{C(R)≤f(R)}

∫
Z

|γs(xs, z)− γns (xnκ(n,s), z)|
2ν(dz)ds
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which further implies,

E|xt∧τnR − xnt∧τnR |
2I{C(R)≤f(R)} = E|xt0 − xnt0 |

2I{C(R)≤f(R)}

+ 2E

∫ t∧τnR

t0

I{C(R)≤f(R)}(xs − xnκ(n,s))(bs(xs)− bs(x
n
κ(n,s)))ds

+ 2E

∫ t∧τnR

t0

I{C(R)≤f(R)}(xs − xnκ(n,s))(bs(x
n
κ(n,s))− b

n
s (xnκ(n,s)))ds

+ 2E

∫ t∧τnR

t0

I{C(R)≤f(R)}(x
n
κ(n,s) − x

n
s )(bs(xs)− bs(xnκ(n,s)))ds

+ 2E

∫ t∧τnR

t0

I{C(R)≤f(R)}(x
n
κ(n,s) − x

n
s )(bs(x

n
κ(n,s))− b

n
s (xnκ(n,s)))ds

+ E

∫ t∧τnR

t0

I{C(R)≤f(R)}|σs(xs)− σs(xnκ(n,s))|
2ds

+ E

∫ t∧τnR

t0

I{C(R)≤f(R)}|σs(xnκ(n,s))− σ
n
s (xnκ(n,s))|

2ds

+ E

∫ t∧τnR

t0

I{C(R)≤f(R)}

∫
Z

|γs(xs, z)− γs(xnκ(n,s), z)|
2ν(dz)ds

+ E

∫ t∧τnR

t0

I{C(R)≤f(R)}

∫
Z

|γs(xnκ(n,s), z)− γ
n
s (xnκ(n,s), z)|

2ν(dz)ds

+ 2E

∫ t∧τnR

t0

I{C(R)≤f(R)}(σs(xs)− σs(xnκ(n,s)))(σs(x
n
κ(n,s))− σ

n
s (xnκ(n,s)))ds

+ 2E

∫ t∧τnR

t0

I{C(R)≤f(R)}

∫
Z

(γs(xs, z)− γs(xnκ(n,s), z))

× (γs(x
n
κ(n,s), z)− γ

n
s (xnκ(n,s), z))ν(dz)ds

for any t ∈ [t0, t1]. By using Assumption A-4, Schwarz’s inequality and Hölder’s inequality,
one obtains the following estimates,

E|xt∧τnR − xnt∧τnR |
2I{C(R)≤f(R)} ≤ E|xt0 − xnt0 |

2

+ E

∫ t∧τnR

t0

I{C(R)≤f(R)}C(R)|xs − xnκ(n,s)|
2ds

+ 8RE

∫ t∧τnR

t0

I{C(R)≤f(R)}|bs(xnκ(n,s))− b
n
s (xnκ(n,s))|ds

+ 4E

∫ t∧τnR

t0

I{C(R)≤f(R)}C(R)|xns − xnκ(n,s)|ds

+ E

∫ t∧τnR

t0

I{C(R)≤f(R)}|σs(xnκ(n,s))− σ
n
s (xnκ(n,s))|

2ds

+ E

∫ t∧τnR

t0

I{C(R)≤f(R)}

∫
Z

|γs(xnκ(n,s), z)− γ
n
s (xnκ(n,s), z)|

2ν(dz)ds

+ 2E

∫ t∧τnR

t0

I{C(R)≤f(R)}(2 + |σs(xs)|2 + |σs(xnκ(n,s))|
2)|σs(xnκ(n,s))− σ

n
s (xnκ(n,s))|ds

+ 2E

∫ t∧τnR

t0

I{C(R)≤f(R)}

(∫
Z

|γs(xs, z)|2ν(dz)
) 1

2

×
(∫

Z

|γs(xnκ(n,s), z)− γ
n
s (xnκ(n,s), z)|

2ν(dz)
) 1

2

ds

EJP 22 (2017), paper 73.
Page 12/19

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP89
http://www.imstat.org/ejp/


Explicit approximations for Lévy driven SDEs

+ 2E

∫ t∧τnR

t0

I{C(R)≤f(R)}

(∫
Z

|γs(xnκ(n,s), z)|
2ν(dz)

) 1
2

×
(∫

Z

|γs(xnκ(n,s), z)− γ
n
s (xnκ(n,s), z)|

2ν(dz)
) 1

2

ds

which further implies due to Remarks [4, 5] that for u ∈ [t0, t1],

sup
t0≤t≤u

E|xt∧τnR − xnt∧τnR |
2I{C(R)≤f(R)} ≤ E|xt0 − xnt0 |

2

+ 2f(R)

∫ u

t0

sup
t0≤r≤s

E|xr∧τnR − xnr∧τnR |
2I{C(R)≤f(R)}ds

+ 2E

∫ t1

t0

I{t0≤s≤τnR}I{C(R)≤f(R)}C(R)|xns − xnκ(n,s)|
2ds

+ 8RE

∫ t1

t0

I{t0≤s≤τnR}I{C(R)≤f(R)}|bs(xnκ(n,s))− b
n
s (xnκ(n,s))|ds

+ 4E

∫ t1

t0

I{t0≤s≤τnR}I{C(R)≤f(R)}C(R)|xns − xnκ(n,s)|ds

+ E

∫ t1

t0

I{t0≤s≤τnR}I{C(R)≤f(R)}|σs(xnκ(n,s))− σ
n
s (xnκ(n,s))|

2ds

+ E

∫ t1

t0

I{t0≤s≤τnR}I{C(R)≤f(R)}

∫
Z

|γs(xnκ(n,s), z)− γ
n
s (xnκ(n,s), z)|

2ν(dz)ds

+ 4E

∫ t1

t0

I{t0≤s≤τnR}I{C(R)≤f(R)}(C(R) + 1)|σs(xnκ(n,s))− σ
n
s (xnκ(n,s))|ds

+ 2E

∫ t1

t0

I{t0≤s≤τnR}I{C(R)≤f(R)}
√
C(R)

×
(∫

Z

|γs(xnκ(n,s), z)− γ
n
s (xnκ(n,s), z)|

2ν(dz)
) 1

2

ds <∞

for any u ∈ [t0, t1]. On using Gronwall’s inequality, the following estimates are obtained,

sup
t0≤t≤t1

E|xt∧τnR − xnt∧τnR |
2I{C(R)≤f(R)} ≤ exp(f(R))

{
E|xt0 − xnt0 |

2

+ f(R)E

∫ t1

t0

I{t0≤s≤τnR}|x
n
s − xnκ(n,s)|

2ds

+ 8RE

∫ t1

t0

I{t0≤s≤τnR}I{C(R)≤f(R)}|bs(xnκ(n,s))− b
n
s (xnκ(n,s))|ds

+ 8f(R)E

∫ t1

t0

I{t0≤s≤τnR}|x
n
s − xnκ(n,s)|ds

+ E

∫ t1

t0

I{t0≤s≤τnR}I{C(R)≤f(R)}|σs(xnκ(n,s))− σ
n
s (xnκ(n,s))|

2ds

+ E

∫ t1

t0

I{t0≤s≤τnR}I{C(R)≤f(R)}

∫
Z

|γs(xnκ(n,s), z)− γ
n
s (xnκ(n,s), z)|

2ν(dz)ds

+ 4(f(R) + 1)E

∫ t1

t0

I{t0≤s≤τnR}I{C(R)≤f(R)}|σs(xnκ(n,s))− σ
n
s (xnκ(n,s))|ds

+ 2
√
f(R)E

∫ t1

t0

I{t0≤s≤τnR}I{C(R)≤f(R)}

×
(∫

Z

|γs(xnκ(n,s), z)− γ
n
s (xnκ(n,s), z)|

2ν(dz)
) 1

2

ds
}
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for every R > 0. Notice that Assumptions A-1, B-1 and AB-2 imply E|xt0 − xnt0 |
2 → 0 as

n→∞. Hence, on using Corollary 2 and Assumption AB-1, one obtains

lim
n→∞

sup
t0≤t≤t1

E|xt∧τnR − xnt∧τnR |
2I{C(R)≤f(R)} = 0

i.e. T2 → 0 for every R > 0. Further, for any given ε, one chooses R > 0 sufficiently large
so that T1 < ε/2 (as it is assumed that limR→∞ P (C(R) > f(R)) = 0) and also n large
enough so that T2 < ε/2. As a consequence, one obtains

lim
n→∞

sup
t0≤t≤t1

E|xt − xnt |2 = 0

which implies that the sequence {|xt− xnt |}n∈N converges to 0 in probability uniformly in
t. Moreover, by taking into consideration Lemmas [1, 3], the desired result follows.

We make the following observations.

Remark 6. Due to Assumptions B-2 and B-5, there exist constants L > 0, χ > 0 and a
sequence of Ft0 -measurable random variables {Mn}n∈N ∈ l∞(L

p0
2 (Ω)) such that, for

every n ∈ N,

|σnt (x)|2 ≤ L(Mn + |x|χ+2)

almost surely for any t ∈ [t0, t1] and x ∈ Rd.
Remark 7. Due to Assumptions A-7 and A-9, there exist constants L > 0, χ > 0 and
C > 0 such that

|σt(x)− σt(x̄)|2 ≤ C(1 + |x|χ + |x̄|χ)|x− x̄|2

almost surely for any t ∈ [t0, t1] and x, x̄ ∈ Rd.
For the proof of Theorem 2, the following lemma is needed.

Lemma 4. Let Assumptions B-1 to B-5 be satisfied. Then for any ρ ∈ [2, 2p0/(χ+ 2)], the
following holds,

sup
t0≤t≤t1

E|xnt − xnκ(n,t)|
ρ ≤ Kn−1

for every n ∈ N, where K is a positive constant that does not depend on n.

Proof. By using equation (1.2), one obtains

E|xnt − xnκ(n,t)|
ρ ≤ KE

∣∣∣ ∫ t

κ(n,t)

bns (xnκ(n,s))ds
∣∣∣ρ +KE

∣∣∣ ∫ t

κ(n,t)

σns (xnκ(n,s))dws

∣∣∣ρ
+KE

∣∣∣ ∫ t

κ(n,t)

∫
Z

γns (xnκ(n,s), z)Ñ(ds, dz)
∣∣∣ρ

which on the application of Hölder’s inequality and an elementary inequality of stochastic
integral yields,

E|xnt − xnκ(n,t)|
ρ ≤ Kn−ρ+1E

∫ t

κ(n,t)

|bns (xnκ(n,s))|
ρds+Kn−

ρ
2 +1E

∫ t

κ(n,t)

|σns (xnκ(n,s))|
ρds

+Kn−
ρ
2 +1E

∫ t

κ(n,t)

(∫
Z

|γns (xnκ(n,s), z)|
2ν(dz)

) ρ
2

ds

+KE

∫ t

κ(n,t)

∫
Z

|γns (xnκ(n,s), z)|
ρν(dz)ds

for any t ∈ [t0, t1]. Hence, Assumptions B-3, B-5, Remark 6 and Lemma 3 complete the
proof.
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Proof of Theorem 2. By the application of Itô’s formula for equation (4.4),

|xt − xnt |p = |xt0 − xnt0 |
p + p

∫ t

t0

|xs − xns |p−2(xs − xns )(bs(xs)− bns (xnκ(n,s)))ds

+ p

∫ t

t0

|xs − xns |p−2(xs − xns )(σs(xs)− σns (xnκ(n,s)))dws

+
p(p− 2)

2

∫ t

t0

|xs − xns |p−4|(σs(xs)− σns (xnκ(n,s)))
∗(xs − xns )|2ds

+
p

2

∫ t

t0

|xs − xns |p−2|σs(xs)− σns (xnκ(n,s))|
2ds

+ p

∫ t

t0

∫
Z

|xs − xns |p−2(xs − xns )(γs(xs, z)− γn(xnκ(n,s), z))Ñ(ds, dz)

+

∫ t

t0

∫
Z

{|xs − xns + γs(xs, z)− γn(xnκ(n,s), z)|
p − |xs − xns |p

− p|xs − xns |p−2(xs − xns )(γs(xs, z)− γn(xnκ(n,s), z))}N(ds, dz) (4.5)

almost surely for any t ∈ [t0, t1]. One uses the formula for the remainder for the last
term on the right hand side of the above equation along with the Schwarz inequality and
obtains,

E|xt − xnt |p ≤ E|xt0 − xnt0 |
p + pE

∫ t

t0

|xs − xns |p−2(xs − xns )(bs(xs)− bns (xnκ(n,s)))ds

+
p(p− 1)

2
E

∫ t

t0

|xs − xns |p−2|σs(xs)− σns (xnκ(n,s))|
2ds

+KE

∫ t

t0

∫
Z

|xs − xns |p−2|γs(xs, z)− γn(xnκ(n,s), z)|
2ν(dz)ds

+KE

∫ t

t0

∫
Z

|γs(xs, z)− γn(xnκ(n,s), z)|
pν(dz)ds

for any t ∈ [t0, t1]. The above can further be written as,

E|xt−xnt |p ≤ E|xt0 − xnt0 |
p +

p

2
E

∫ t

t0

|xs − xns |p−2{2(xs − xns )(bs(xs)− bs(xns ))

+ (p− 1)|σs(xs)− σs(xns )|2 + 2(p− 1)(σs(xs)− σs(xns ))(σs(x
n
s )− σns (xnκ(n,s)))}ds

+ pE

∫ t

t0

|xs − xns |p−2(xs − xns )(bs(x
n
s )− bns (xnκ(n,s)))ds

+
p(p− 1)

2
E

∫ t

t0

|xs − xns |p−2|σs(xns )− σns (xnκ(n,s))|
2ds

+KE

∫ t

t0

∫
Z

|xs − xns |p−2|γs(xs, z)− γn(xnκ(n,s), z)|
2ν(dz)ds

+KE

∫ t

t0

∫
Z

|γs(xs, z)− γn(xnκ(n,s), z)|
pν(dz)ds (4.6)

for any t ∈ t ∈ [t0, t1]. For the second term on the right hand side of the above inequality,
one uses Young’s inequality, 2ab ≤ a2/(2ε) + εb2/2, with ε = (p − 1)/(2(p1 − p)) (since
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p < p1) to obtain the following estimates,

(p− 1)|σs(xs)− σs(xns )|2 + 2(p− 1)(σs(xs)− σs(xns ))(σs(x
n
s )− σns (xnκ(n,s)))

≤ (p− 1)|σs(xs)− σs(xns )|2 + (p− 1)
p1 − p
p− 1

|σs(xs)− σs(xns )|2

+
(p− 1)2

4(p1 − p)
|σs(xns )− σns (xnκ(n,s))|

2

= (p1 − 1)|σs(xs)− σs(xns )|2 +K|σs(xns )− σns (xnκ(n,s))|
2

which on substituting in the right side of (4.6) gives

E|xt − xnt |p ≤ E|xt0 − xnt0 |
p +

p

2
E

∫ t

t0

|xs − xns |p−2
{

2(xs − xns )(bs(xs)− bs(xns ))

+ (p1 − 1)|σs(xs)− σs(xns )|2}ds

+ pE

∫ t

t0

|xs − xns |p−2(xs − xns )(bs(x
n
s )− bns (xnκ(n,s)))ds

+KE

∫ t

t0

|xs − xns |p−2|σs(xns )− σns (xnκ(n,s))|
2ds

+KE

∫ t

t0

|xs − xns |p−2

∫
Z

|γs(xs, z)− γ(xns , z)|2ν(dz)ds

+KE

∫ t

t0

|xs − xns |p−2

∫
Z

|γs(xns , z)− γn(xnκ(n,s), z)|
2ν(dz)ds

+KE

∫ t

t0

∫
Z

|γs(xs, z)− γ(xns , z)|pν(dz)ds

+KE

∫ t

t0

∫
Z

|γs(xns , z)− γn(xnκ(n,s), z)|
pν(dz)ds

which on the application of Assumptions A-7, A-8, Schwarz inequality and Young’s
inequality yields,

E|xt − xnt |p ≤ E|xt0 − xnt0 |
p +K

∫ t

t0

E|xs − xns |pds+KE

∫ t

t0

|bs(xns )− bs(xnκ(n,s))|
pds

+KE

∫ t

t0

|bs(xnκ(n,s))− b
n
s (xnκ(n,s))|

pds+KE

∫ t

t0

|σs(xns )− σs(xnκ(n,s))|
pds

+KE

∫ t

t0

|σs(xnκ(n,s))− σ
n
s (xnκ(n,s))|

pds

+KE

∫ t

t0

(∫
Z

|γs(xns , z)− γ(xnκ(n,s), z)|
2ν(dz)

) p
2

ds

+KE

∫ t

t0

(∫
Z

|γ(xnκ(n,s), z)− γ
n(xnκ(n,s), z)|

2ν(dz)
) p

2

ds

+KE

∫ t

t0

∫
Z

|γs(xns , z)− γ(xnκ(n,s), z)|
pν(dz)ds

+KE

∫ t

t0

∫
Z

|γ(xnκ(n,s), z)− γ
n(xnκ(n,s), z)|

pν(dz)ds

EJP 22 (2017), paper 73.
Page 16/19

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP89
http://www.imstat.org/ejp/


Explicit approximations for Lévy driven SDEs

for any t ∈ [t0, t1]. By using Remark 7, Assumptions A-8 and A-9, one gets,

E|xt − xnt |p ≤ E|xt0 − xnt0 |
p +K

∫ t

t0

E|xs − xns |pds+K

∫ t1

t0

E|xns − xnκ(n,s)|
pds

+KE

∫ t1

t0

(1 + |xns |χ + |xnκ(n,s)|
χ)p|xns − xnκ(n,s)|

pds

+KE

∫ t1

t0

(1 + |xns |χ + |xnκ(n,s)|
χ)

p
2 |xns − xnκ(n,s)|

pds

+KE

∫ t1

t0

|bs(xnκ(n,s))− b
n
s (xnκ(n,s))|

pds+KE

∫ t1

t0

|σs(xnκ(n,s))− σ
n
s (xnκ(n,s))|

pds

+KE

∫ t1

t0

(∫
Z

|γ(xnκ(n,s), z)− γ
n(xnκ(n,s), z)|

2ν(dz)
) p

2

ds

+KE

∫ t1

t0

∫
Z

|γ(xnκ(n,s), z)− γ
n(xnκ(n,s), z)|

pν(dz)ds

for any t ∈ [t0, t1]. Thus, the application of Gronwall’s lemma and Hölder’s inequality
gives the following estimates,

sup
t0≤t≤t1

E|xt − xnt |p ≤ E|xt0 − xnt0 |
p +K sup

t0≤t≤t1
E|xnt − xnκ(n,t)|

p

+K

∫ t1

t0

(
E(1 + |xns |χ + |xnκ(n,s)|

χ)
p(p+δ)
δ

) δ
p+δ
(
E|xns − xnκ(n,s)|

p+δ
) p
p+δ ds

+K

∫ t1

t0

(
E
(
1 + |xns |χ + |xnκ(n,s)|

χ
) p

2
p+δ
δ
) δ
p+δ
(
E|xns − xnκ(n,s)|

p+δ
) p
p+δ ds

+KE

∫ t1

t0

|bs(xnκ(n,s))− b
n
s (xnκ(n,s))|

pds+KE

∫ t1

t0

|σs(xnκ(n,s))− σ
n
s (xnκ(n,s))|

pds

+KE

∫ t1

t0

(∫
Z

|γ(xnκ(n,s), z)− γ
n(xnκ(n,s), z)|

2ν(dz)
) p

2

ds

+KE

∫ t1

t0

∫
Z

|γ(xnκ(n,s), z)− γ
n(xnκ(n,s), z)|

pν(dz)ds

for any t ∈ [t0, t1]. The proof is completed by using Lemmas [3, 4] and Assumptions AB-3
and AB-4.

5 Numerical examples

Let us consider the following SDE

dxt = (xt − x3
t )dt+ x2

tdwt + xt

∫
R

zÑ(ds, dz) (5.1)

almost surely for any t ∈ [0, 1] with initial value x0 = 1. Let us assume that jump intensity
is 2 and mark random variable follows U(−1/4, 1/4). The explicit Euler-type scheme is
given by

xn(k+1)h = xnkh +
xnkh − (xnkh)3

1 +
√
h|xnkh|2

h+
(xnkh)2

1 +
√
h|xnkh|2

∆wk + xnkh

N((k+1)h)∑
i=N(kh)

zi (5.2)

almost surely for any k = 1, . . . , n, where nh = 1 and xn0 = x0. In the above, the last term
denotes the sum of the jumps in the interval [kh, (k + 1)h]. As equation (5.1) does not
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have any explicit solution, the scheme (5.2) with step-size h = 2−21 is treated as the
solution of the SDE (5.1) in the numerical experiment. The number of simulations is
60, 000. The numerical results of Table 1 and Figure 1 demonstrate that our numerical
findings are consistent with the theoretical results achieved in this paper.

h
√
E|xT − xnT |2 h

√
E|xT − xnT |2 h

√
E|xT − xnT |2

2−20 0.00084487 2−15 0.01090762 2−10 0.04841924

2−19 0.00175060 2−14 0.01535016 2−9 0.06225525

2−18 0.00297191 2−13 0.02114921 2−8 0.08096656

2−17 0.00474922 2−12 0.02838053 2−7 0.10263840

2−16 0.00744872 2−11 0.03768887 2−6 0.12921045

Table 1: L2-convergence of Euler-type scheme (5.2) of SDE (5.1)

Figure 1: L2-convergence of Euler-type scheme (5.2) of SDE (5.1)
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