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Abstract

We show that in a sample of size n from a GEM(0, θ) random discrete distribution,
the gaps Gi:n := Xn−i+1:n − Xn−i:n between order statistics X1:n ≤ · · · ≤ Xn:n of
the sample, with the convention Gn:n := X1:n − 1, are distributed like the first n
terms of an infinite sequence of independent geometric(i/(i+ θ)) variables Gi. This
extends a known result for the minimum X1:n to other gaps in the range of the
sample, and implies that the maximum Xn:n has the distribution of 1+

∑n
i=1Gi, hence

the known result that Xn:n grows like θ log(n) as n → ∞, with an asymptotically
normal distribution. Other consequences include most known formulas for the exact
distributions of GEM(0, θ) sampling statistics, including the Ewens and Donnelly–
Tavaré sampling formulas. For the two-parameter GEM(α, θ) distribution we show
that the maximal value grows like a random multiple of nα/(1−α) and find the limit
distribution of the multiplier.
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1 Introduction

Consider a sequence of real random variables X1, X2, . . . with order statistics

X1:n := min
1≤i≤n

Xi ≤ X2:n ≤ X3:n ≤ · · · ≤ Xn:n := max
1≤i≤n

Xi.

For an independent and identically distributed (i.i.d.) sequence (Xn) with a continuous
distribution function F (x) := P(Xn ≤ x), the probabilistic structure of order statistics is
well understood. Many exact distributional identities are obtained by reduction to the
simplest i.i.d. cases:
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Extremes and gaps in GEM samples

• Xi = Ui, signifying F (x) = x for 0 ≤ x ≤ 1, the uniform distribution on (0, 1);

• Xi = εi/λ for εi i.i.d. exponential(1) and a constant λ > 0, in which case F (x) =

1− e−λx for x ≥ 0, the exponential(λ) distribution on (0,∞).

This reduction involves the identity of n-dimensional joint distributions

(F (Xi:n), 1 ≤ i ≤ n)
d
= (Ui:n, 1 ≤ i ≤ n)

d
= (1− exp(−εi:n), 1 ≤ i ≤ n) (1.1)

which holds with almost sure identities if the Ui and εi are defined by Ui := F (Xi) and
εi := − log(1−Ui). For discrete distributions the situation is complicated by possible ties
but also well understood. See [14] [53] for further background on order statistics.

We are primarily interested here in the structure of the gaps between sample values
which we list from the top of the sample down, as

Gi:n := Xn+1−i:n −Xn−i:n (1 ≤ i ≤ n)

for distributions of Xi whose support has a minimal value m0 ≥ 0, with X0:n := m0.
So we interpret Gn:n := X1:n −m0 as the gap below the minimum of the sample, with
Gn:n = 0 iff some sample value hits the minimum of the range. The order statistics are
then encoded in the gaps as Xk:n = m0 +

∑k−1
i=0 Gn−i:n. In particular, the minimal and

maximal values of the sample are

X1:n := m0 +Gn:n and Xn:n = m0 +

n∑
i=1

Gi:n . (1.2)

According to a well known result of Sukhatme–Rényi [65], [53, Repr. 3.4], for i.i.d.
sampling the structure of the gaps is simplest for exponential variables:

for Xi =
εi
λ

the Gi:n are independent with (Gi:n, 1 ≤ i ≤ n)
d
=

(
Xi

i
, 1 ≤ i ≤ n

)
. (1.3)

Among absolutely continuous distributions, the family of shifted exponential distribu-
tions is characterized by quite weak forms of this assertion, for instance that G1:2 is
independent of G2:2. See Ferguson [27] and earlier work cited there, and [69] for more
recent results in this vein. Formulas (1.2) and (1.3) explain the well known identity in
distribution

Mn := max
1≤i≤n

εi
d
= Tn :=

n∑
i=1

εi
i

(1.4)

which implies the convergence in distribution, with centering but no normalization

Mn − log n
d
= Tn − log n

d→ − γ +

∞∑
i=1

(εi − 1)

i
(1.5)

where γ := limn→∞(− log n+
∑n
i=1 1/i) is Euler’s constant. The infinite sum converges

both almost surely and in mean square, by Kolmogorov’s theorem for sums of indepen-
dent random variables with mean 0, and the limit has the Gumbel distribution function
F (x) = exp(−e−x). More generally, the asymptotic behavior of the maximum Mn of an
i.i.d. sample from a continuous distribution is well understood. If after proper rescal-
ing, the distribution of Mn has a non-degenerate weak limit, that limit must have the
distribution function Fρ(x) = exp(−(1 + xρ)−1/ρ), for some ρ ∈ (−∞,∞) and x such that
1 + xρ > 0 (and Fρ(x) equals 0 or 1 for other x), see, e.g., [53]. Here ρ (and the scaling)
depends on the behavior of the distribution near the supremum of its support. Limits
can be also degenerate, and there exist distributions for which no non-degenerate limit
is possible.

EJP 22 (2017), paper 44.
Page 2/26

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP59
http://www.imstat.org/ejp/


Extremes and gaps in GEM samples

The situation is quite different for an infinite exchangeable sequence X1,

X2, . . .. In this case any distribution can appear as a limiting distribution of the fi-
nite sample maximum Mn := Xn:n, as shown by the following example, which seems
to be folklore. Let Z1, Z2, . . . be a sequence of i.i.d. random variables and let M be
a random variable, independent of this sequence, with some given distribution. Take
Xn = Zn + M to obtain an exchangeable sequence X1, X2, . . . . If the support of the
distribution of Z1 is bounded above then Mn converges a.s. to a shift of M , without any
rescaling. So to obtain results of any interest about limit distributions of maxima from
an exchangeable sequence, some further structure must be involved.

We are interested here in the distribution of sample gaps, sample extremes, and
related statistics, for exchangeable samples from a random discrete distribution P• :=

(P1, P2, . . .) on the set N := {1, 2, . . .} of positive integers, subject to

0 < Pj < 1 for every j = 1, 2, . . . and
∞∑
j=1

Pj = 1 almost surely. (1.6)

We specify P• by the residual allocation model (RAM) or stick-breaking scheme [42], [68]
[58, §5]

Pj := Hj

j−1∏
i=1

(1−Hi), with (1.7)

0 < Hi < 1 and
∞∏
i=1

(1−Hi) = 0 almost surely. (1.8)

The random variables Hi may be called residual fractions, random discrete hazards,
or factors. We use the term RAM to indicate that the Hi are independent, but not
necessarily that they are identically distributed. But we also consider these models in
the broader context of H• subject to (1.8), corresponding to P• subject to (1.6), without
any further dependence assumptions, which we call a generalized residual allocation
model (GRAM) [58, §5].

The case of i.i.d. factors Hi has been extensively studied by Gnedin and coauthors
[36], [30], who call this model the Bernoulli sieve. Another RAM of particular interest,
because of its invariance under size-biased permutation [59] is the GEM model with
parameters (α, θ). In this model, Hi has the beta(1− α, θ + iα) density on (0, 1)

P[Hi ∈ dx]

dx
=
x−α(1− x)θ+iα−1

B(1− α, θ + iα)
(0 < x < 1, i ∈ N), (1.9)

where 0 ≤ α < 1 and θ > −α are real parameters, and B(·, ·) is Euler’s beta function.
The GEM hazard variables are i.i.d. only in the important special case α = 0 covered by
the following theorem:

Theorem 1.1. Let X1, X2, . . . be an exchangeable sequence obtained by i.i.d. sampling
from the GEM(0, θ) distribution (1.7) for i.i.d. beta(1, θ) hazards Hi. For each fixed n ≥ 1,
the gaps Gi:n between the order statistics of the sample, read from right to left, with
Gn:n + 1 := min1≤i≤nXi, are independent geometric(i/(i+ θ)) variables, with means θ/i
for 1 ≤ i ≤ n.

As detailed in Section 3, this theorem contains most known results about GEM(0, θ)

samples, including the well known sampling formulas for GEM(0, θ), due to Ewens [23],
Antoniak [2], and Donnelly and Tavaré [18]. It is also very close to recent studies of
random compositions derived from RAMs with i.i.d. factors, as we acknowledge further
below. Our simple description of GEM(0, θ) gaps is hidden in these studies by different
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Extremes and gaps in GEM samples

encodings of the values and their multiplicities in discrete random sampling, based on
the count sequence N◦•:n := (N◦1:n, N

◦
2:n, . . .) defined by

N◦b:n :=

n∑
i=1

1(Xi = b) (b = 1, 2, . . .). (1.10)

Here 1(A) denotes the indicator of an event or set A. The notion of a random sample from
a random discrete distribution admits a variety of interpretations, some of which are
recalled in Section 3. But as our primary metaphor for sampling, we follow recent studies
of the Bernoulli sieve [30] in regarding the sample X1, . . . , Xn as an allocation of n balls
labeled by i = 1, 2, . . . , n into an unlimited number of boxes labeled by b ∈ {1, 2, . . .}. So
Xi is the label of the box into which ball i is thrown. Given P• the Xi are independent
allocations with P(Xi = b |P•) = Pb. The count N◦b:n is the number of balls thrown into
box b, the sample maximum Xn:n = max{b : N◦b:n > 0} is the label of the rightmost
occupied box, and so on.

The key to Theorem 1.1 is the close parallel between the structure of gaps in sampling
from GEM(0, θ), and from exponential(λ), as in (1.3). This parallel guided our choice to
list the gaps from top down rather than bottom up, as well as the definition of the final
gap Gn:n := X1:n− 1 in the discrete case. We show in Section 2 how Theorem 1.1 follows
easily from its exponential(λ) analog, using Ignatov’s construction [44] of GEM(0, θ) from
a Poisson point process.

This construction, and the change of variables (1.1), which maps sampling by indepen-
dent uniforms in (0, 1) to sampling by independent exponentials in (0,∞), was developed
and applied in a number of previous works [44], [30], to deduce results for sampling
from RAMs and related regenerative composition structures from corresponding results
in renewal theory. The method yields also the following corollary of Theorem 1.1:

Corollary 1.2. The GEM(0, θ) models for 0 < θ <∞ are the only RAMs with i.i.d. factors
such that for all sufficiently large n the gaps between order statistics in a sample of size
n are independent.

We conjecture that the GEM(0, θ) models are the only random discrete distributions
of any kind subject to (1.6) with this property of independence of sample gaps for all n,
or for all large n. But resolving this question seems beyond the reach of our current
methods.

We discovered these properties of gaps in GEM(0, θ) samples by seeking an adequate
explanation of the identity in distribution for the maximum Mn of a GEM(0, θ) sample,
presented in the next corollary of Theorem 1.1. We first found this identity by a different
method indicated in Section 4, without consideration of gaps. But the gaps explain it
much better:

Corollary 1.3. For the maximum Mn of a sample of size n from GEM(0, θ)

Mn := max
1≤i≤n

Xi = max{b : N◦b:n > 0} = 1 +

n∑
i=1

Gi:n
d
= 1 +

n∑
i=1

Gi (1.11)

for independent Gi with the geometric(i/(i+ θ)) distribution.

Since Gi has mean EGi = θ/i and variance VarGi = θ(i + θ)/i2 ∼ θ/i as i → ∞,
Lindeberg’s central limit theorem implies the limit in distribution

Mn − θ log n√
θ log n

d→ Z as n→∞, (1.12)

where Z has the standard normal distribution. This limit theorem for Mn is known as an
instance of a more general normal limit theorem for Mn in sampling from a large class of
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RAMs with i.i.d. factors [37, Theorem 2.1 (b)]. Also known [4, (5.22)] and [37, Theorem
2.3] is the fact that (1.12) holds also with Mn replaced by the number Kn of distinct
values in the sample, which may expressed in various ways parallel to the expressions
for Mn in (1.11):

Kn :=

n∑
j=1

1
(
Xj /∈ {X1, . . . , Xj−1}

)
=

∞∑
b=1

1(N◦b:n > 0) = 1 +

n−1∑
i=1

1(Gi:n > 0). (1.13)

In Section 3 we discuss further these different representations of Kn, their interpreta-
tions in various applications, and related representations of the counts

Kj:n :=

Mn∑
b=1

1(N◦b:n = j)

which for 1 ≤ j ≤ n gives the numbers of clusters of size j in the sample, and for j = 0

gives

K0:n := Mn −Kn =

Mn∑
j=1

n∏
i=1

1(Xi 6= j) = Gn:n +

n−1∑
i=1

(Gi:n − 1)+ (1.14)

which is the total count of all values between 1 and Mn that are missing in the sample
of size n. (Here and below (x)+ = 1

2 (x + |x|) is the positive part of x.) There is by
now a substantial theory of asymptotics for these and related statistics of samples from
RAMs with i.i.d. factors, developed by Gnedin and coauthors by various techniques. In
particular, the work of [37] shows that the central limit theorems (1.12) for Mn and the
same result for Kn hold jointly with the same limit variable Z, for the simple reason that
for a large class of RAMs with i.i.d. factors, including GEM(0, θ), the difference Mn −Kn

in (1.14) has a limit in distribution as n→∞, without any centering or scaling. See [37]
for further discussion, especially [37, Proposition 5.1] for a pretty formula involving the
gamma function for the probability generating function of the large n limit in distribution
of K0:n for GEM(0, θ), and [29] for generalizations to other RAMs. Other recent articles
about refined limit theorems for various counting processes derived from RAMs with
i.i.d. factors are [47] [46] [45] [1].

We find the normal limit law for Mn derived by sampling from a RAM with i.i.d.
factors interesting, because normal limits cannot occur for the maximum of an i.i.d.
sequence. Compare with the quite different conclusion of (1.5) for i.i.d. sampling from
an exponential distribution, where Mn has a limit in law with just centering and no
normalization. So, even though we regard Theorem 1.1 as a discrete analog of the
more familiar description of gaps in i.i.d. sampling from an exponential distribution, the
limit theorems for Mn implied by these results are quite different. Naively, it might be
expected that the discrete analog of the simple structure of gaps in an exponential(λ)

sample should be the gaps in sampling from a geometric(p) distribution, which is the
RAM (1.7) with deterministic factors Hi ≡ p. But apart from some simple results for a
sample of size n = 2, which are easily seen to hold for any RAM with H1 independent
of H2, H3, . . ., the possibilities of various configurations of ties for n ≥ 3 makes the
description of gaps and related statistics for geometric(p) sampling more complicated
than might at first be expected. The distribution of the count of missing values K0:n in
(1.14), as well as the number Ln of ties with the maximal value Mn

Ln := n−max{j : Xj:n < Xn:n} = N◦Mn:n = min{i : Gi:n > 0} (1.15)

have been the subject of many studies of i.i.d. sampling from fixed discrete distributions,
especially from the geometric(p) distribution. See for instance [10] [41] and earlier
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Extremes and gaps in GEM samples

literature cited there. In sampling from the geometric(p) distribution it is known the
distributions of K0:n and Ln remain tight as n→∞, but that they do not converge, due to
a periodic phenomenon which has been extensively studied in this literature. As shown
in [37] however, for a large class of RAMs including GEM(0, θ), the periodic phenomena
which arise from i.i.d. geometric(p) sampling get smoothed out very nicely: the count Ln
and related statistics such as the Kj:n have limits in distribution without any centering
or normalization as n→∞. The idea that such results should be informed by analysis of
gaps as well as counts leads to some developments of those limit theorems explored in a
sequel [61] of this article.

For RAMs with independent but non-identically distributed factors, our results are
more limited. For the two parameter GEM(α, θ) distribution the representation (1.11)
of Mn as a sum of independent random variables is no longer valid. Nevertheless we
show in Section 6 that in this case the maximum of a size n sample behaves as a random
multiple of nα/(1−α) as n → ∞, and in Section 7 we indicate some companion limit
theorems for Ln in this case. See also a sequel to this article [62], where for sampling
from GEM(α, θ) we derive a result presented here without proof as Theorem 3.4, which
gives the distribution of the value-ranked frequencies, meaning the sequence of non-zero
components of (N◦b:n, b = 1, 2, . . .).

2 Point processes associated with random discrete distributions

For a random discrete distribution P• := (Pj) on the positive integers governed by
the GRAM (1.7) let

F0 := 0 and Fj :=

j∑
i=1

Pi = 1−
j∏
i=1

(1−Hi) for k = 1, 2, . . . .

Thinking of P• as a random discrete distribution on the real line, which happens to be
concentrated on positive integers, Fj = P•(−∞, j] is the random cumulative distribution
function evaluated at positive integers j. In the stick-breaking interpretation, the
Fj ∈ [0, 1] are the break points. But we prefer the language of the stars and bars model,
discussed further in [61]. Following the method developed by Ignatov [44] for GEM(0, θ),
and further developed in [31] [33] [34] for various other models of random discrete
distributions, we treat the bars Fj as the points of a simple point process NF on (0, 1),
which counts bars not including endpoints of [0, 1]. So

NF (a, b] :=

∞∑
k=1

1(a < Fk ≤ b) (0 ≤ a < b < 1)

is the number of bars in (a, b]. The stars are the i.i.d. uniform on [0, 1] points U1, U2, . . .

which fall between bars and define a random sample X1, X2, . . . from P• as Xi =

NF (0, Ui] + 1. Then

P(Xi ≤ j |P•) = Fj (i = 1, 2, . . . , j = 1, 2, . . .).

In terms of Gnedin’s balls in boxes model of [36], the bars Fj in (0, 1) are the dividers
between boxes [Fj−1, Fj) which collect the stars (balls) Ui into clusters falling in the
same box. For the Fj , the prevailing assumption (1.6) becomes

0 < F1 < F2 < · · · ↑ 1 almost surely.

It is convenient to make the change of variable from [0, 1) to [0,∞) by the map
u 7→ x = − log(1 − u). This is the inverse of the cumulative distribution function
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x 7→ 1− e−x of a standard exponential variable ε := − log(1− U) for U uniform on (0, 1).
Let S0 := 0 and

Sj := − log(1− Fj) =

j∑
i=1

− log(1−Hi) (j = 1, 2, . . .).

We regard these images Sj of bars Fj as the points of an associated point process NS on
(0,∞):

NS(s, t] :=

∞∑
k=1

1(s < Sk ≤ t) = NF (1− e−s, 1− e−t] (0 ≤ s < t <∞).

Note that the assumption (1.6) translates into 0 < S1 < S2 < · · · ↑ ∞ a.s. For convenience
we recall the Ignatov’s construction of GEM(0, θ).

Lemma 2.1 ([44]). With above notation, the following conditions are equivalent:

(i) P• has the GEM(0, θ) distribution, meaning the Hi are i.i.d. beta(1, θ).

(ii) NF is an inhomogeneous Poisson process on (0, 1) with intensity θ du/(1 − u) at
u ∈ (0, 1).

(iii) NS is a homogeneous Poisson process on (0,∞) with intensity θ dt at t > 0.

(iv) The scaled spacings (Sk − Sk−1)/θ, k = 1, 2, . . . are i.i.d. exponential(1).

Proof of Theorem 1.1. Whatever the random discrete distribution P• subject to (1.6), for
the sample (X1, . . . , Xn) constructed as above, the order statistics of the discrete sample
are obtained by counting bars to the left of the order statistics of the corresponding
uniform and exponential samples, according to the formula

Xi:n − 1 = NF (0, Ui:n] = NS(0, εi:n], (2.1)

while the gaps between order statistics of the discrete sample are obtained by counting
bars between corresponding order statistics of the uniform and exponential samples:

Gi:n = NF (Un−i:n, Un−i+1:n] = NS(εn−i:n, εn−i+1:n]. (2.2)

According to Lemma 2.1 the point process NS is homogeneous Poisson with rate θ. By
construction it is independent of the gaps between exponential order statistics appearing
in (2.2), which due to (1.3) are independent and distributed like εi/i for 1 ≤ i ≤ n. It

follows that the Gi:n are independent, with Gi:n
d
= NS(0, ε/i] for ε standard exponential

independent of NS . So the distribution of Gi:n is the mixture of Poisson(θt) distributions
with t assigned the exponential(i) distribution of ε/i. It is well known that such a
mixture is geometric(p) for p determined by equating means: (1− p)/p = θ/i. This gives
p = i/(i+ θ), and the conclusion follows.

Proof of Corollary 1.2. For a RAM with i.i.d. factors the point process NS is a renewal
process. For each fixed δ with 0 < δ < 1, the number of points Fj such that Fj ≤ 1− δ is
NS(0,− log(δ)], which is well known to have finite exponential moments. On the other
hand, by the law of large numbers for the sampling process, provided − log(δ) is chosen
to be a continuity point of the renewal measure, with probability one, for sufficiently
large n, both the sum of gaps

∑n
j=δnGj:n and the sum of indicators of non-zero gaps∑n

j=δn 1(Gj:n > 0) will eventually equal the number of renewals NS(0,− log(δ)], because
every relevant box will be occupied. Assuming the gaps are independent, it then follows
from the Poisson approximation to sums of independent Bernoulli(pi) random variables
with small parameters pi that NS(0,− log(δ)] is Poisson distributed. A variation of this
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argument shows that NS has independent, Poisson distributed increments. In other
words, NS is a possibly inhomogeneous Poisson process. But the RAM assumption
makes NS a renewal process. By comparison of the Poisson and renewal decompositions
of NS at its first point S1, it is easily shown that the point processes that are both
Poisson processes and renewal processes are the Poisson processes of constant rate θ
for some θ > 0. So the conclusion follows from Ignatov’s construction of GEM(0, θ) in
Lemma 2.1.

As shown in [31] [29] [37] an asymptotic analysis of sampling statistics for a RAM
with i.i.d. factors can be made by exploiting properties of the renewal counting pro-
cess NS in this case. But for GEM(α, θ) with 0 < α < 1, the spacings between the
Sj are independent but not identically distributed, with Sj − Sj−1 converging almost
surely to 0 as j → ∞, by a simple Borel–Cantelli argument. It follows that in sam-
pling from GEM(α, θ) for 0 < α < 1 the behavior of the order statistics and gaps is
very different from the case α = 0, and not approachable by methods of renewal the-
ory.

Both to illustrate applications of Theorem 1.1 in the case α = 0, and to motivate study
of the GEM order statistics for 0 < α < 1, before proceeding with that study we first
show how Theorem 1.1 leads to some known results about the GEM model, and recall
some of its diverse applications.

3 Applications

The GEM acronym was assigned by Warren Ewens [24, p. 321] to acknowledge
the work of Griffiths [40], Engen [21] [20] and McCloskey [52] in developing the GEM
model for random frequencies in genetics and ecology. The GEM(0, θ) with i.i.d. beta(1, θ)

factors was studied first, following which the two parametric extension proposed by
Engen [20] has also been extensively studied [56, 60, 26], motivated by its appearance in
the structure of interval partitions generated by the zeros of various stochastic processes.
New models of stationary reversible dynamics for population frequencies consistent with
GEM(α, θ) for 0 < α < 1 have recently been developed and are of continuing interest
[57] [11]. The GEM model has also been applied in Bayesian non-parametric statistics as
a building block for Bayesian analysis and machine learning algorithms for inferences
about clustered data. See the recent review by Crane [12] [13].

3.1 Species sampling

The GEM distributions were first studied in the setting of ecology, where a random
discrete distribution P• may be regarded as a species abundance model, meaning an
idealized listing of frequencies of an unlimited number of distinct species in a population
of unlimited size. To justify the use of infinite models in this setting, some preliminary
remarks may be in order. All actual populations are finite, with only a finite number of
species. However ecologists discovered that while models with a large finite number
of species are quite intractable, remarkable simplifications occur in some particular
infinite models. In a sample of n individuals from a large population of size say m, one
can suppose that size m population itself is a sample from some ideal infinite population.
Finite samples from this population may be assumed to exchangeable, and de Finetti’s
theorem leads to a representation of consistent models of species sampling from a large
population in terms of limiting random frequencies, as shown by Kingman.

In the context of species sampling, in a sample of size n from some population, the
data acquired is most naturally regarded as just the partition of n, that is a collection
of positive integers that sum to n, obtained by classifying individuals by species, and
ignoring any species labels. Such a partition of n can be described in two different ways.
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The first is to list the number Ni:n of individuals of type i, for 1 ≤ i ≤ k, where k = Kn

is the number of distinct species in the sample, and there is some convention for the
ordering of types. The second is to provide for each j ∈ [n] the count

Kj:n :=

n∑
i=1

1(Ni:n = j) (j = 1, 2, . . .) (3.1)

of species with j representatives in the size n sample. The total number of distinct
species is then

Kn =

n∑
j=1

Kj:n .

The frequencies Pi of species in the ideal infinite population then arise as almost sure
limits of Ni:n/n as n→∞, for some consistently chosen ordering of N•:n.

It is an awkward aspect of random frequency models that most labeling of frequencies
Pi by integers or other countable sets are somewhat arbitrary. There are several possible
workarounds for this problem. The easiest way is to list the ranked sample frequencies,
meaning the numbers of representatives of various species in descending order as

N↓•:n = (N↓1:n, . . . , N
↓
k:n), N↓1:n ≥ · · · ≥ N

↓
k:n > 0,

which is the decreasing rearrangement of any other listing of the sample frequencies
(N1:n, . . . , Nk:n). This is also a common way to list parts of partitions in combinatorics.
Another way to arrange species is to obtain a size n sample by sampling the population
one by one and listing the species in order of their appearance in the sampling process.
Given that any particular species in the whole population has m representatives in a
sample of size n, the probability of that species being listed first in order of appearance is
m/n, by the assumed exchangeability of the sampling process. This leads to the general
notion of a size-biased random permutation of a finite or countably infinite index set I,
or of a collection of components of some kind Ci, i ∈ I that is indexed by I, for some
notion of sizes Vi := V (Ci) of the components being permuted [16] [59]. Typically V (Ci)

is the number of elements for a finite set Ci, or some measure such as length for infinite
sets Ci like intervals. The size function V of components is subject to the requirement
that Vi > 0 and that Σ :=

∑
i Vi <∞, which needs to hold almost surely for a collection

of random components (Ci, i ∈ I). Given such random components (Ci, i ∈ I), their
size-biased permutation is a random indexing of these components (Cσ(i), i = 1, 2, . . .),
indexed either by the set [k] := {1, 2, . . . , k} if there are a finite number k of components,
or by N if there are an infinite number of them. It is defined by a random bijection σ

from either [k] or N to I, such that P[σ(1) = j |Ci, i ∈ I) = Vj/Σ for j ∈ I, when Cσ(1) is
called an size-biased pick from the components, and for each m ≥ 1 and j1, . . . , jm with
Σm := Σ− Vj1 − · · · − Vjm > 0, the next component Cσ(m+1) is an size-biased pick from
the remaining components indexed by I \ {j1, . . . , jm}:

P[σ(m+ 1) = j|Ci, i ∈ I;σ(1) = j1, . . . , σ(m) = jm] = Vj/Σm for all j ∈ I \ {j1, . . . , jm}.

With component Ci being a non-empty set of representatives of some species type i
in an exchangeable random sample of size n, for some arbitrary labeling of species by
i ∈ [k], the sequence of sample frequencies in order of appearance

N∗•:n = (N∗1:n, . . . , N
∗
k:n)

is found to be the sequence of sizes N∗i:n = V (Cσ(i)) of a size-biased random permutation
of the clusters of different species found in the sample, with size V (Ci) = Ni:n being
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the number of each species present in the sample. The notation N∗•:n is a mnemonic
for this size-biasing which is involved in any ordering of species by appearance in an
exchangeable process of random sampling. This size-biased listing of sample cluster
sizes in order of appearance turns out to be very convenient to work with, especially
when the frequencies P• are in a size-biased random order themselves, an assumption
which is quite natural in this context. This assumption holds for GEM(α, θ) model, as
shown in [56], which is one of the reasons for use and study of this model.

In the context of species sampling, the values Xi in a size n sample from a random
discrete distribution such as GEM(α, θ) seem to be of little interest besides the way that
clusters of these values define a partition or a composition of n. However a natural
meaning for these sample values Xi and their order statistics X•:n can be provided using
the fact that GEM(α, θ) frequencies P• are already in size-biased random order, hence
invariant in distribution under size-biased permutation (ISBP) [59], meaning that

(P ∗1 , P
∗
2 , . . .)

d
= (P1, P2, . . .)

where (P ∗1 , P
∗
2 , . . .) is a size-biased permutation of (P1, P2, . . .).

Proposition 3.1. Consider an exchangeable process of species sampling (Y1, Y2, . . .)

from random frequencies P•. Split (Y1, Y2, . . .) into an initial sample (Y1, . . . , Yn) of size
n, followed by a secondary sample (Yn+1, Yn+2, . . .) of unlimited size. For each 1 ≤ i ≤ n
let Xi be the number of species discovered by the secondary sample up to and including
discovery of Yi in the secondary sample. Then (X1, . . . , Xn) is a sample of size n from
P ∗• , a size-biased random permutation of P•. In particular if P• is ISBP, as is the case for
GEM(α, θ), then (X1, . . . , Xn) is distributed like a sample of size n from P•. Moreover, for
a sample (X1, . . . , Xn) from P ∗• so constructed, as well as the usual interpretation of Kj:n

as numbers of species with j representatives in the initial sample, and Kn =
∑n
j=1Kj:n

the total number of species found by the initial sample, various features of the order
statistics in the sample can be interpreted as follows:

• the minimum sample value X1:n is the number of species encountered in the
secondary sample up to and including when the first species in the primary sample
is encountered.

• the maximum sample value Mn := Xn:n is the number of species encountered in
the secondary sample up to and including the first time τn that a member of each
of the initial Kn species has been encountered in the secondary sample.

• the number K0:n := Mn−Kn of missing values below the maximum of the sample, is
the number of new species, not present in the initial sample, which are encountered
in the secondary sample before this stopping time τn.

Proof. More formally, Xi = x iff i ∈ C(x), where C(1), C(2), . . . is the list of clusters
of individuals by species in the combined process, in their order of appearance in the
secondary sample. So for instance C(1) := {i ≥ 1 : Yi = YN(1)} with N(1) := n + 1,
C(2) := {i ≥ 1 : Yi = YN(2)}, where N(2) > N(1) is the index of the first individual of the
second species to appear in the secondary sample, and so on. The relabeling of species
by their order of appearance in the secondary sample yields a size-biased permutation
P ∗• of P• with P ∗x the almost sure limiting relative frequency of C(x) for each x = 1, 2, . . ..
It then follows by exchangeability that X1, . . . , Xn is a sample of size n from P ∗• . The
interpretations of the various statistics are then straightforward.

One can also give similar interpretations of the gaps G•:n, but this is a bit trickier. For
a sample X1, . . . , Xn let NX↑

•:n denote the list of sample frequencies in increasing order
of X values, that is the subsequence of all strictly positive counts in the complete list
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of counts N◦•:n derived from the sample X1, . . . , Xn as in (1.10). So the count of values
equal to X1:n comes first, and the count for Xn:n last. In any random sample X1, . . . , Xn,
it is clear from the definition that for any given composition (n1, . . . , nk) of n,

NX↑
•:n = (n1, . . . , nk)

if and only if the sequence of gaps G•:n between order statistics is such that

{1 ≤ i ≤ n− 1 : Gi:n > 0} ∪ {n} = {nk, nk + nk−1, nk + nk−1 + nk−2, . . . , n}. (3.2)

In the species sampling setting of Proposition 3.1, Xi is the number of species discovered
by the secondary sample up to and including discovery of the species of the ith initial
individual, and NX↑

•:n is the listing of cluster sizes in the primary sample in order of their
discovery by the secondary sample. In this setting the gaps can be described as follows:

• For ` ∈ {2, . . . , k}, Gn`+···+nk:n is the number of new species encountered in the
secondary sample after ` − 1 species of the primary sample are found up to and
including the time when `-th species from the primary sample is found.

• Gn:n := X1:n − 1 is the number of species encountered in the secondary sample
before some species present in the primary sample is found.

• All other gaps are zero according to (3.2).

3.2 Some corollaries of Theorem 1.1

We now explain how Theorem 1.1 implies a number of known results about GEM(0, θ)

samples. Most of these were first discovered in the context of population genetics, where
the age-ordering of alleles in a large population provides a natural indexing of allelic
types, and the age-ordering of clusters of alleles found in a sample is of interest. The
first result is an easy corollary of Theorem 1.1:

Corollary 3.2. (Gnedin-Pitman [34, (3.1)]) In sampling from GEM(0, θ), the sequence of
indicators of strictly positive gaps 1(Gi:n > 0) for 1 ≤ i ≤ n has the same distribution
as the initial segment of n trials in an unlimited sequence (B1, B2, . . .) of independent
Bernoulli trials with P(Bi = 1) = θ/(i+ θ):

(1(Gi:n > 0), 1 ≤ i ≤ n)
d
= (B1, B2, . . . , Bn). (3.3)

See also the work of Arratia, Barbour and Tavaré [3] [4] [5] [6] for further study of
this process of independent Bernoulli trials (B1, B2, . . .) and its relation to the Ewens
sampling formula (3.5) below.

Consider now the three random compositions of n defined above in terms of a sample
X1, . . . , Xn from a random discrete distribution P•:

• the value-ordered sample frequencies NX↑
•:n ,

• the appearance-ordered sample frequencies N∗•:n, and

• the ranked sample frequenciesN↓•:n, which are the decreasing rearrangement of
either NX↑

•:n or of N∗•:n;

For P• with GEM(0, θ) distribution, from (3.2) and (3.3) it is quite easy to deduce the
Donnelly–Tavaré sampling formula [18] for the value-ordered frequencies:

P0,θ(N
X↑
•:n = (n1, . . . , nk)) =

n! θk

(θ)n

k∏
i=1

1

ni + · · ·+ nk
(3.4)

for every composition (n1, . . . , nk) of n into k ≤ n parts, with (x)n := Γ(x + n)/Γ(x)

the Pochhammer symbol. The subscript notation Pα,θ or Eα,θ signals that probabilities
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or expectations are governed by the GEM(α, θ) model. As indicated by Donnelly and
Tavaré, summing (3.4) over all compositions of n with a prescribed weakly decreasing
rearrangement yields the celebrated Ewens sampling formula [2] [23] for the distribution
of the partition of n generated by sampling from GEM(0, θ). That is, for Kj:n the count
of clusters of size j as in (3.1), for each weak composition (m1, . . . ,mn) of k, meaning
mj ≥ 0 with

∑n
j=1mj = k, with

∑n
j=1 jmj = n

P0,θ(Kj:n = mj , 1 ≤ j ≤ n) =
n! θk

(θ)n

n∏
j=1

1

mj !jmj
. (3.5)

It is also easily seen from (3.4) and (3.5) that the composition probability function
displayed in (3.4) is also the composition probability function of the appearance-ordered
frequencies N∗•:n. Recalling from earlier discussion, that in sampling from any P•,

N∗•:n is a size-biased permutation of NX↑
•:n .

the Donnelly–Tavaré formula implies the following very special property of GEM(0, θ), in
which the roles of N∗•:n and NX↑

•:n can be reversed.

Corollary 3.3 (Donnelly and Tavaré [18, (4.4)]). In a sampling from GEM(0, θ), the sample
frequencies in value-order NX↑

•:n and in appearance-order N∗•:n are identically distributed.
Their common distribution is described by formula (3.4). Consequently, in sampling from
GEM(0, θ),

NX↑
•:n is a size-biased permutation of N∗•:n.

The question of how to extend this result to GEM(α, θ) for 0 < α < 1 led us combine
the representation of sampling from GEM(α, θ) provided by Proposition 3.1 with the
known description of the distribution of N∗•:n for GEM(α, θ) [58] [60, §3.2], to obtain the
following theorem, whose proof will be detailed elsewhere [62].

Theorem 3.4. In sampling from GEM(α, θ), for all 0 ≤ α < 1

NX↑
•:n is a (size−α)-biased permutation of N∗•:n. (3.6)

The meaning of (3.6) is that given N∗•:n = (n1, . . . , nk), the frequency NX↑
1:n of the

minimal value is distributed like a random choice of (n1, . . . , nk), with ni chosen with
probability (ni − α)/(n − kα), and so on, as in the general definition of a size-biased
permutation, just with the usual size ni of a cluster replaced by ni − α. In particular,
for 0 < α < 1 and n ≥ 3 the two random compositions NX↑

•:n and N∗•:n are not identically
distributed. Remarkably, the conclusion (3.6) holds not only for GEM(α, θ), but also for
the sampling from P• the size-biased presentation of frequencies in any of the Gibbs(α)

models introduced in [60, Theorem 4.6] and studied further in [32].
We note that Theorem 1.1 for GEM(0, θ) yields also the following further corollary,

which identifies the known distribution of the minimal order statistic X1:n. This can
be read from a result for the infinitely many alleles model, due to Saunders, Tavaré,
and Watterson [67, Theorem 8] and the fact that this model generates age-ordered
GEM(0, θ) frequencies. See Donnelly and Tavaré [18] and Donnelly [15, Proposition 3.5]
for further discussion. The independence assertion in the corollary is easily shown to
hold in sampling from any RAM with i.i.d. factors, due to the regenerative property of
these models discussed in [31].

Corollary 3.5. In sampling from GEM(0, θ), the minimum of the sample, X1:n = 1 +Gn:n

has a shifted geometric(n/(n+ θ)) distribution, and X1:n is independent of the pair of
random compositions NX↑

•:n and N∗•:n, hence also independent of the Ewens(θ) distributed
partition of n generated by the sample.
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Proof. The independence of Gn:n and NX↑
•:n is clear, because NX↑

•:n is a function of the Gi:n
1 ≤ i ≤ n− 1. But by exchangeability, conditionally given the entire collection of order
statistics, N∗•:n is just a size-biased permutation of NX↑

•:n . So the order statistics and N∗•:n
are conditionally independent given NX↑

•:n , from which the conclusion follows easily.

3.3 Combinatorial limit theorems

Combinatorial models often involve exchangeable random partitions of [n] into a col-
lection of subsets of various sizes, typically connected components of a graph associated
with the model, such as the cycles of a permutation, trees in a forest, or connected
components of a mapping digraph. It is known [4] [60] that in many models for such
a combinatorial structure picked uniformly at random, the sequence N↓•:n of ranked
component sizes converges in law after scaling by n:

n−1(N↓1:n, N
↓
2:n, . . .)

d→ (P ↓1 , P
↓
2 , . . .) ∼ PD(α, θ), n→∞, (3.7)

for some (α, θ), where PD(α, θ), the Poisson–Dirichlet distribution with parameters (α, θ)

is the distribution of the decreasing rearrangement of GEM(α, θ) [63]. According to the
general theory of such limit distributions [17] [35], this is equivalent to the corresponding
convergence

n−1(N∗1:n, N
∗
2:n, . . .)

d→ (P ∗1 , P
∗
2 , . . .) ∼ GEM(α, θ), n→∞, (3.8)

for the size-biased reordering N∗•:n of the component sizes, where the limit has the ISBP
GEM(α, θ) distribution. The treatment of [4] presents a large number of such examples
with α = 0. An example with α = θ = 1/2 is provided by the tree components of a uniform
random mapping digraph [60, (9.7)]. There are many similar examples, with ranked
and size-biased compositions of n derived from other constructions. For instance, if the
partition of n is the decreasing arrangement of lengths of excursions of an aperiodic
Markov chain away from some recurrent state 0 run for n steps, and the return time
of the state is in the domain of attraction of the stable law of index α ∈ (0, 1), then it
is known [63] that (3.7) holds for this α with θ = 0, for the Markov chain started in
state 0, and with the same α with θ = α for the Markovian bridge obtained by further
conditioning to return to state 0 at a late time n. In this setting, the lengths of excursions
are most naturally listed in their order of creation by the Markov chain, which is neither
ranked nor size-biased. Still, the analysis of such limit laws for excursions is assisted by
the device of deliberately size-biasing the order of excursions, to create a GEM(α, θ) limit
as in (3.8) which is much easier to deal with than the PD(α, θ) limit of ranked lengths.

In any of these settings where PD(α, θ) and GEM(α, θ) arise hand-in-hand as limit
laws for ranked and size-biased counts of some kind, it was shown by Kingman [50]
that the structure of the limit theorems extends to corresponding limit theorems for
sampling components of the structure of size n. To set this up, consider a limited sample
of n elements from a much larger set of size m supporting a combinatorial structure
whose ranked relative component sizes m−1N↓•:m are well approximated in distribution
by PD(α, θ) for some α, θ. Let each component in the structure of size m be labeled by
its index of appearance in a size-biased listing of components. If the components of
the combinatorial structure generate an exchangeable partition of [m], these labels can
be assigned to components in order of their least elements. If the components of the
combinatorial structure do not generate an exchangeable partition of [m], as in the case
of excursion lengths of a Markov chain run for m steps, let the component labels be
assigned by a size-biased random permutation of component sizes, as in Section 3.1. The
following proposition is an easy consequence of Kingman’s theory of partition structures
[50] [17] [35]:
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Proposition 3.6. Let U [m]
i for 1 ≤ i ≤ n < m be a simple random sample of size n from

[m], either with or without replacement, and let X [m]
i be the label of the component of the

combinatorial structure that contains U [m]
i , for a size-biased labeling of components, that

is independent of the random sample U [m]
i , 1 ≤ i ≤ n. Suppose there is the convergence

in distribution (3.8) of size-biased relative component sizes to GEM(α, θ) with n replaced
by m→∞. Then for each fixed n there is convergence of joint distributions

(X
[m]
i , 1 ≤ i ≤ n)

d→ (Xi, 1 ≤ i ≤ n) a sample from GEM(α, θ) as m→∞,

which implies also convergence in distribution of corresponding order statistics, counts
and gaps to those derived from the GEM sample.

This proposition shows how any exact result for a sample of size n from a GEM can
be turned into the conclusion of a limit theorem for sampling from various random
combinatorial structures. Just that a double sampling process is involved, much as in
Proposition 3.1, which acquires further interpretations in this context. The sample of
size n may be regarded as an initial sample of size n, as in Proposition 3.1. Then there
needs to be a secondary sample, to generate a size-biased labeling of components, run at
least long enough to allocate a label to every component that intersects the initial sample.
The limit in distribution as m→∞ of the list of secondary labels found in the primary
sample of size n is then a size n sample from GEM(α, θ). The case of exchangeable
partitions is particularly natural, as the initial sample of size n can be taken to be the set
[n] instead of a random subset of size n, and the secondary labeling of components can
be taken to be the order of least elements of components, starting the labeling afresh
after the initial sample of size n, as in Proposition 3.1. As m→∞ there is a negligible
difference between this construction and a completely independent size-biased listing of
components, so the conclusions of the above Proposition are valid in either setup.

For application to the excursions of a Markov chain, given the path of the Markov
chain of length m, due to lack of exchangeability, two random samples are required, one
to choose n sample times from [m], and the other to assign secondary labels to excursions
in their order of discovery by a random permutation of [m]. As in the exchangeable
case, it makes no difference if the second random sample is just a continuation of the
first, avoiding the first n elements drawn and continuing without replacement until all m
time points have been covered, and all the excursions found. In this scenario there is a
tiny probability that the first n time points sampled might find excursions which were
not part of the subsequent sample, and hence to which no label can be assigned, but
the probability of this event and all other differences in the distribution of the first n
sample labels is negligible in the large m limit, because the assumption of convergence
to GEM(α, θ) proper frequencies means that with overwhelming probability these first
n sample points will fall in some collection of Kn excursions each of which acquires a
significant fraction of the rest of the sample points in [m] and m→∞.

The interpretation in this setting of large n limit theorems for sampling a GEM
distribution is not immediate. But such interpretations might still be made with adequate
provision of a limit regime with both n and m tending to infinity. To adequately justify
such a double limit theorem, some estimate of the adequacy of the approximation of
m−1N∗•:m by GEM(α, θ) would be required, such as that provided in [5] for the random
permutation statistics approaching GEM(0, 1).

4 The maximum of a sample from a random discrete distribution

This section develops some general formulas for the distribution of the maximum of a
sample from a random discrete distribution on positive integers. These formulas allow
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us to check Corollary 1.3 without appeal to Ignatov’s representation of GEM(0, θ). Our
interest in this approach is that it at least gives us an explicit if difficult formula for the
distribution of the maximum of a sample from GEM(α, θ).

We begin with a well known representation of the probability generating function of
a discrete random variable in terms of its tail probabilities.

Lemma 4.1 ([25, p. 265, Theorem 1]). For X a non-negative integer valued random
variable, the probability generating function

EzX :=

∞∑
n=0

P[X = n]zn

may be represented for |z| < 1 as

EzX = 1− (1− z)
∞∑
m=0

P[X > m)zm (4.1)

= (1− z)
∞∑
m=0

P[X ≤ m)zm. (4.2)

This allows us to provide the following general expression for the distribution of the
maximum of a sample from a random discrete distribution:

Lemma 4.2. Let Mn = max1≤k≤nXk for a sequence of exchangeable positive integer
valued random variables X1, . . . , Xn which are conditionally i.i.d. P• given some random
discrete distribution P• with Rk := 1−

∑k
j=1 Pj ↓ 0 a.s. Then the probability generating

function of Mn − 1 admits the representation

EzMn−1 = (1− z)
n∑
j=0

(
n

j

)
(−1)j

∞∑
k=1

ERjk z
k−1. (4.3)

Proof. We apply (4.2) to X = Mn− 1. For k = 1, 2, . . . the term for m = k− 1 is evaluated
by taking expectations in the following identity:

P[Mn − 1 ≤ k − 1|P•] = P[Mn ≤ k|P•] = (1−Rk)n =

n∑
j=0

(
n

j

)
(−1)jRjk.

Now (4.3) follows easily from (4.2).

Since the GEM(α, θ) model makes the 1 − Hi independent with beta(θ + iα, 1 − α)

distributions, for j = 0, 1, . . .

Eα,θ(1−Hi)
j =

B(θ + iα+ j, 1− α)

B(θ + iα, 1− α)
=

(θ + iα)j
(θ + (i− 1)α+ 1)j

hence the GEM(α, θ) tail moment formula

Eα,θR
j
k =

k∏
i=1

(θ + iα)j
(θ + (i− 1)α+ 1)j

. (4.4)

Thus we obtain:

Proposition 4.3. The probability generating function of Mn − 1 for the maximum Mn

of a sample of size n from GEM(α, θ) is given by formula (4.3) for the GEM(α, θ) tail
moments (4.4).

EJP 22 (2017), paper 44.
Page 15/26

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP59
http://www.imstat.org/ejp/


Extremes and gaps in GEM samples

For j = 1 the product in (4.4) gives the tail probability formula

Pα,θ[X1 > k] =

k∏
i=1

θ + iα

1 + θ + (i− 1)α
(4.5)

for X1 a sample of size 1 from GEM(α, θ). For α = 0 the product reduces to (θ/(1 + θ))k.
This geometric distribution of X1 with parameter 1/(1 + θ) was indicated by Engen [21]
in the context of ecological models. Formula (4.3) in this case reduces easily to the
familiar formula for the probability generating function of the geometric distribution of
X1 − 1 on non-negative integers,

E0,θz
X1−1 =

1

1− θ(z − 1)
= 1 + θ(z − 1) + θ2(z − 1)2 + · · ·

whose binomial moments can be read from the expansion in powers of (z − 1):

E0,θ

(
X1 − 1

k

)
= θk (k = 0, 1, . . .). (4.6)

For 0 < α < 1 the tail probabilities (4.5) may be recognized as the terms of a hy-
pergeometric series. This allows the following evaluation in terms of the Gaussian
hypergeometric function 2F1:

Eα,θz
X1−1 = 1− (α+ θ)

(1 + θ)
(1− z) 2F1

(
1, 2 + θ/α

1 + (1 + θ)/α
; z

)
with associated binomial moments

Eα,θ

(
X1 − 1

k

)
=

k∏
i=1

θ + iα

1− (i+ 1)α
if 0 ≤ α < 1

k + 1
(4.7)

and∞ otherwise. Note that (4.7) reduces correctly to (4.6) for α = 0. The case k = 1 of
(4.7) is due to Kingman [49, (18)] for α = 0 and [49, (58)] for θ = 0. The case of (4.7) for
θ = 0 and general k = 1, 2, . . . was recently derived by Leisen, Lijoi, and Paroissin [51,
Proposition 1] using a much more difficult approach.

For j > 1 only in the case α = 0 does there seem to be much simplification in (4.3).
Then we can proceed as follows:

Computational proof of Corollary 1.3. For α = 0 in (4.4) we find that

E0,θR
j
k =

(
θ

θ + j

)k
and the series in (4.3) becomes

∞∑
k=1

E0,θR
j
kz
k−1 = z−1

∞∑
k=1

(
θz

θ + j

)k
=

θ

j + θ(1− z)

hence

E0,θz
Mn−1 = (1− z)

n∑
j=0

(
n

j

)
(−1)jθ

j + θ(1− z)
=

n∏
i=1

i

i+ θ(1− z)
. (4.8)

The last equality is the well-known partial fraction decomposition (see, e.g. [39, Eq. 5.41])

1

(x)n+1
=

1

n!

n∑
j=0

(
n

j

)
(−1)j

x+ j
(4.9)
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Extremes and gaps in GEM samples

which can be verified, for instance, by multiplying (4.9) by x+ k and plugging in x = −k
for k = 0, 1, . . . , n. Since the factors in the right-hand side of (4.8) are the probability
generating functions of geometric variables Gi with parameters i/(i+ θ), the conclusion
of Corollary 1.3 follows.

Remark 4.4. Looking on the form of (1.11) it is tempting to suppose that Gn is the
difference Mn − Mn−1 and is independent of Mn−1. However this is not the case,
because the new sample Un+1 gets into an arbitrary position ` in the order statistics and
hence changes a value of Gn−`. Moreover, unlike the independent case, the successive
maxima do not form a Markov chain. Heuristically, this happens because knowledge of
the history provides some information about the realization of Y. It can be shown, for
instance, that P

[
M1 = j,M2 = M3 = `|M1 = j,M2 = `

]
for j < ` depends on j, but we

omit this calculation. A similar issue arises in the identity in distribution (1.4) relating
the distribution of the maximum Mn of n i.i.d. exponential variables to the sum Tn of
scaled exponentials. But that identity fails to hold jointly as n varies for a more obvious
reason: P(Mn = Mn−1) > 0 while P(Tn = Tn−1) = 0.

5 A generalization in the GEM(0, θ) case

The result of Corollary 1.3 can be generalized as follows. According to (2.1), the
GEM(0, θ) model makes Mn − 1 = NF (0, Un:n] a sum of independent geometrics, where
NF := (NF (0, u], 0 ≤ u < 1) is the GEM(0, θ) barrier process, which is Poisson with
intensity θ(1−u)−1du at u ∈ (0, 1), and Un:n is independent of NF . Instead of NF (0, Un:n],
consider NF (0, β] for β with a suitable beta distribution, independent of NF .

Theorem 5.1. For n ∈ N and θ, b > 0, let βn,b with the beta(n, b) density at u proportional
to un−1(1− u)b−1 be independent of the GEM(0, θ) barrier process NF . Then

NF (0, βn,b]
d
=

n∑
i=1

Gi(b, θ) (5.1)

where the Gi(b, θ) are independent with geometric(pi(b, θ)) distributions, for

pi(b, θ) :=
b+ i− 1

b+ i− 1 + θ
. (5.2)

Proof. Consider first NF (0,W ] where W is a random variable with some arbitrary dis-
tribution on [0, 1], independent of NF . For W = u fixed, the distribution of NF (0, u] is
Poisson(−θ log(1− u)) with the probability generating function

EzNF (0,u] = exp [−(1− z)(−θ log(1− u)] = (1− u)θ(1−z) .

For general W the distribution of NF (0,W ] ranges over all mixed Poisson distributions.
Explicitly, the probability generating function of W is

EzNF (0,W ] = E(1−W )θ(1−z).

In particular, if W = βa,b has the beta(a, b) distribution then

EzNF (0,βa,b] = E(1− βa,b)θ(1−z) = Eβ
θ(1−z)
b,a

=
Γ(b+ θ(1− z))

Γ(a+ b+ θ(1− z))
Γ(a+ b)

Γ(b)
.

If a = n is a positive integer, then Γ(n+b)
Γ(b) = (b)n :=

∏n
i=1(b+ i− 1) so

EzNF (0,βn,b] =

n∏
i=1

b+ i− 1

b+ i− 1 + θ(1− z)
=

n∏
i=1

pi(b, θ)

1− (1− pi(b, θ))z
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for pi(n, θ) as in (5.2). Since the i-th factor is the probability generating function for the
geometric(pi(n, θ)) distribution, the claim (5.1) follows.

Remark 5.2. Notice that Un,n
d
= βn,1, so (5.1) is a generalization of (1.11).

6 The maximum of a GEM(α, θ) sample for 0 < α < 1

The technique of the previous sections does not seem to work for the case 0 < α < 1.
However the asymptotics of the GEM distribution in this case are known sufficiently well
to find the asymptotic behavior of Mn as n→∞. In particular, it is known that GEM(α, θ)

frequencies Pi almost surely decay as random factors of i−1/α. Similar behavior is also
known for the sampling from a random branching process model introduced by Robert
and Simatos [66] where different but similar aspects of samples are studied, such as the
limit behavior of the first unoccupied box, as the sample size grows.

A key role in the study of the GEM(α, θ) distribution for the case 0 < α < 1 is played
by the notion of the α-diversity of the exchangeable sample. It is known [60, Th. 3.8]
that for Kn defined by (1.13) from a GEM(α, θ) sample with 0 < α < 1 and θ > −α there
exists a limit

lim
n→∞

Kn

nα
= Dα > 0 almost surely (Pα,θ)

and also in p-th mean for every p > 0. The distribution of the limiting random variable
Dα, which depends on θ, is known as the α-diversity and is determined by its moments

Eα,θD
p
α =

Γ(θ + 1)

Γ( θα + 1)

Γ(p+ θ
α + 1)

Γ(pα+ θ + 1)
. (6.1)

Moreover, the α-diversity Dα is a.s. determined by P• and

Pα,θ[X1 > k|P•] ∼ αD1/α
α,θ k

1−1/α almost surely (Pα,θ) as k →∞,

see [28, Sec. 10] or [60, Lemma 3.11]. For such a power law it is well known that the
maximum of an independent sample of size n converges in distribution to the Fréchet
distribution. Namely, writing for short γ = 1/α− 1, for any fixed x > 0

Pα,θ
[
Mn ≤ xn1/γ

∣∣ P•] =
(
1− Pα,θ

[
X1 > xn1/γ

∣∣ P•])n
∼
(

1− αD1/α
α,θ

x−γ

n

)n
almost surely (Pα,θ)

→ exp
(
−αD1/α

α,θ x
−γ), n→∞.

Hence, by integration with respect to the distribution of the α-diversity, we have the
following result.

Theorem 6.1. Let Mn be the maximum of a size n GEM(α, θ) exchangeable sample with
0 < α < 1 and θ > −α. Then for each x > 0

Pα,θ
[
Mn ≤ xnα/(1−α)

]
→ Eα,θ exp

(
−αD1/α

α x−(1−α)/α
)

as n→∞. (6.2)

Remark 6.2. For the case α = 0 the asymptotic result Kn ∼Mn ∼ θ log n almost surely
(P0,θ) of [37] shows that asymptotically Kn and Mn have the same behavior. For α > 0

the situation is different: Kn should be divided by nα to get a proper limit, and Mn grows
much faster as a random factor of nα/(1−α).

Note that (6.2) expresses the cumulative distribution function of limn−α/(1−α)Mn

evaluated at x as the Laplace transform Eα,θ
[
e−yD

1/α
α

]
evaluated at y = αx−(1−α)/α.

Since the Pα,θ moments of Dα given by (6.1) determine its distribution, we can obtain
an explicit but clumsy expression for the limiting distribution function (6.2).
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Theorem 6.3. For the Pα,θ distribution of Dα determined by the moment function (6.1),

Eα,θ exp
(
−αD1/α

α,θ x
−(1−α)/α

)
=

2α1−θ−α Γ(θ + 1)

Γ( θα + 1)
x(1−α)(θ/α+1)

∫ ∞
0

vθ+2α−1e−(v2/α)αx1−α
Jθ(2v) dv, (6.3)

where Jθ is the Bessel function.

Proof. Writing for short y = αx−(1−α)/α we have, for any c > 0,

e−yD
1/α
α =

1

2πi

∫ c+i∞

c−i∞
Γ(s)

(
yD1/α

α

)−s
ds

because e−y and Γ(s) form the Mellin pair. We refer to [54] for the necessary information
about Mellin’s transform. By analyticity the expression (6.1) for Pα,θ moments of Dα

is valid also for complex p at least with Re p > −1 − θ
α . Hence taking expectation and

applying Fubini’s theorem yields

Eα,θ
[
e−yD

1/α
α,θ
]

=
1

2πi

Γ(θ + 1)

Γ( θα + 1)

∫ c+i∞

c−i∞
Γ(s)

Γ( θ−sα + 1)

Γ(θ − s+ 1)
y−sds (6.4)

for 0 < c < α + θ. Now, Γ(s)/Γ(θ − s + 1) is the Mellin transform of y−θ/2Jθ(2
√
y) in

the fundamental strip 0 < Re s < θ
2 + 3

4 ([54, II.5.38], where there is a misprint in the

right bound) and Γ( θ−sα + 1) is the Mellin transform of αy−α−θe−y
−α

for Re s < α + θ,
by the standard transformations of the Mellin pair e−y and Γ(s). Hence their product
in the intersection of fundamental strips is the Mellin transform of the multiplicative
convolution and for 0 < c < min{ θ2 + 3

4 , α+ θ} by the inversion formula

1

2πi

∫ c+i∞

c−i∞
Γ(s)

Γ( θ−sα + 1)

Γ(θ − s+ 1)
y−sds = α

∫ ∞
0

(y/u)−α−θe−(y/u)−αu−θ/2Jθ(2
√
u)
du

u
.

Plugging this into (6.4), changing the variable v =
√
u and returning to the variable x

yields the result.

The right-hand side of (6.3) does not seem to allow much simplification for general α.
For some rational α Mathematica evaluates this integral in terms of the hypergeometric
function. However for α = 1/2 the integral can be taken explicitly and leads to a simple

expression. In this case the integral is the Mellin transform of f(v) = e−v
√

2xJθ(2v)

evaluated at θ + 1. According to [54, I.10.7]∫ ∞
0

vs−1e−v
√

2xJθ(2v) dv = (2x)−(s+θ)/2 Γ(θ + s)

Γ(θ + 1)
2F1

(
θ+s

2 , θ+s+1
2

θ + 1
;− 2

x

)
and the last expression simplifies for s = θ + 1 because

2F1

(
a, b

b
; z

)
=

∞∑
k=0

(a)k
k!

zk =
1

(1− z)a

for |z| < 1 and by analyticity also for all z with Re z < 1. Hence∫ ∞
0

vθe−v
√

2xJθ(2v) dv =
Γ(2θ + 1)

Γ(θ + 1)

1

(2x+ 4)θ+1/2

and plugging it into (6.3) gives the following result.
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Corollary 6.4. Let Mn be the maximum of a size n GEM( 1
2 , θ) exchangeable sample with

θ > − 1
2 . Then Mn/n converges in distribution as n→∞ to a random variable with the

cumulative distribution function
(
x/(x+ 2)

)θ+1/2
.

Some simplification is also possible for rational α 6= 1/2 using the representation of
the α-diversity in terms of product of random variables with beta and gamma distributions
given in [48, Sec. 8].

7 Limit laws for the number of missing values and number of ties
at the maximum

This section offers some complements to the analysis of limit laws for Mn in GEM(0, θ)

settings, following the work of Gnedin et al. [37].
It was observed in other notation in [37, (19)] that in sampling from GEM(0, θ), for

the number of missing values in the range K0:n := Mn −Kn there is the representation
in distribution (1.14) in terms of independent geometric(pi) random variables Gi:n with
pi := i/(θ + i). Writing now G(pi) instead of Gi:n to emphasize the lack of dependence
on n in this representation, apart from the trivial term Gn:n which obviously converges
almost surely to 0 as n→∞, we deduce easily that

K0:n
d→ K0:∞ :=

∞∑
i=1

(G(pi)− 1)+ (7.1)

This is just an explicit presentation of a random variable with the limit distribution of
K0:n as n→∞ which was described in [37, Proposition 5.1] by the probability generating
function

gθ(z) := EzK0:∞ =
Γ(1 + θ)Γ(1 + (1− z)θ)

Γ(1 + (2− z)θ)
(|z| ≤ 1) (7.2)

which can be read from (7.1) as an infinite product of modified geometric generating
functions. This product simplifies to (7.2) due to the Weierstrass product formula for
the gamma function [22, Eq. (1.1.3), p. 1]. As observed in [37, Proposition 5.1], this
distribution of K0:∞ is a mixed Poisson distribution with random parameter distributed
as θ| log β1,θ| for β1,θ with the beta(1, θ) distribution of P1, the first GEM(1, θ) frequency.

That result may by understood as a refinement of (7.1) in which each term (G(pi)−1)+

is replaced by the distributionally equivalent random variable Ni(θB1−piεi/i) where the
εi are independent standard exponential variables, the B1−pi are independent Bernoulli
variables with the indicated parameters, independent also of the εi, and the Ni are
independent rate one Poisson processes independent of both the εi and the B1−pi . Then
there is the identity in distribution

∞∑
i=1

B1−pi
εi
i

d
= − log β1,θ where 1− pi = θ/(i+ θ) (7.3)

which can be checked by computing the Laplace transform of both sides at λ > 0. This
identity (7.3) is the instance a = 1, b = θ of the identity (7.4) presented in the following
proposition, which is the simpler variant for log beta variables of a representation of log

gamma variables due to Gordon [38]. This identity can be found in a not easily accessible
text by Pakes [55, (32.17)].

Proposition 7.1. For each a, b > 0, for 0 < βa,b < 1 with density proportional to
ua−1(1− u)b−1 at 0 < u < 1 there is the identity in distribution

∞∑
j=0

Bb/(a+b+j)
εj

a+ j

d
= − log βa,b, (7.4)
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where the εj are i.i.d. standard exponential variables, independent of a sequence of
independent Bernoulli variables Bpj with parameters pj = b/(a+ b+ j).

Proof. The well known identity in distribution βa,bγa+b
d
= γa for independent beta and

gamma variables with the indicated parameters, and known representations of log

gamma variables, show that the distribution of the non-negative random variable
− log βa,b is infinitely divisible with Lévy density at x > 0 which is given by the for-
mula [8, p. 769]

x−1

1− e−x
(e−ax − e−(a+b)x) =

∞∑
j=0

x−1(e−(a+j)x − e−(a+b+j)x). (7.5)

But it is also well known and easily checked that the jth term on the right side of (7.5) is
the Lévy density of the infinitely divisible law of the jth term in (7.4). So the conclusion
follows easily from the additivity of Lévy measures.

For z = 0 the generating function (7.2) gives the limiting probability of what is called
in [43] the event of a complete sample with no gaps:

lim
n→∞

P(K0:n = 0) = lim
n→∞

P(Kn = Mn) = gθ(0) =
Γ(1 + θ)2

Γ(1 + 2θ)
. (7.6)

If θ = m say is a positive integer, these formulas simplify by the gamma recursion
Γ(1 + x) = xΓ(x). The generating function (7.2) reduces to rational function of z, with
m linear factors in the denominator. This implies that K0:∞ is distributed as the sum
of just m independent geometrics Gi, with the by now familiar parameters i/(i+ θ) for
1 ≤ i ≤ m. This yields the remarkable chain of identities in law

K0:∞
d
=

m∑
i=1

Gi
d
= Mm − 1

d
= Xn:n −Xn−m:n for all n ≥ m if θ = m ∈ N.

where the first
d
= holds only if θ = m ∈ N, but the next two

d
= hold for all θ > 0 by

Theorem 1.1. Also for θ = m ∈ N, the right side of (7.6) is the inverse of the central

binomial coefficient
(

2m
m

)−1 ∼ 2−2m
√
πm as m→∞, and the approach of this probability

to 0 is similarly rapid for θ → ∞ through real values, due to Stirling’s approximation
to the gamma function. In particular, for θ = 1, the probability of a complete sample is
simply 1/2. This is also known [43] to be the common value of P(Kn = Mn) for every n
in the case of i.i.d. sampling from geometric(1/2). Some extensions of these results to
more general RAMs with i.i.d. factors will be given in [61].

Also either from (7.1) or from the probability generating function gθ given in (7.2) it
is easy to find the generating function for the Lévy measure of K0:∞ which has atoms λk
in k = 1, 2, . . .:

∞∑
k=1

λkz
k = − log gθ(0) + log gθ(z) = log

Γ(1 + 2θ)

Γ(1 + θ)

Γ(1 + (1− z)θ)
Γ(1 + (2− z)θ)

.

Its Taylor’s expansion gives an expression for the atoms λk in terms of the polygamma
function.

The right tail probability function of L∞, the limit in distribution of Ln can be read
from its definition (1.15): For k = 0, 1, 2, . . .

P(L∞ > k) = P(Gi = 0, 1 ≤ i ≤ k) =
(1)k

(1 + θ)k
∼ Γ(1 + θ)

kθ
as k →∞.

The tail probability generating function for L∞ is the Gaussian hypergeometric function
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∞∑
k=0

P(L∞ > k)zk =

∞∑
k=0

(1)k
(1 + θ)k

zk = 2F1

(
1, 1

1 + θ
; z

)
from which the limiting mean is found to be

lim
n→∞

E(Ln) = E(L∞) =

∞∑
k=0

P(L∞ > k) =
θ

(θ − 1)+

where the last expression should be read as θ/(θ − 1) < ∞ for θ > 1, and θ/0 = ∞ for
θ ≤ 1. Similarly, the limiting second moment is finite only if θ > 2 with the simple limit
formula for the second binomial moment

lim
n→∞

E

(
Ln
2

)
=

∞∑
k=0

kP(L∞ > k) =
θ

(θ − 1)+(θ − 2)+
.

It appears that this pattern continues, with finite third binomial moment 2!θ/(θ − 3)3 for
θ > 3, and so on.

Since the number of ties at the maximum Ln can be defined on a common probability
space, one can also be interested in some stronger types of convergence for these
random variables than the convergence in distribution. The answer to this question for
independent random variables is well known: Brands et al. [9] conjectured and Barysh-
nikov et al. [7] confirmed that the number Ln of maxima in a sample of n independent
discrete random variables can exhibit just three types of behavior as n→∞: either it
converges to 1 or to∞ in probability, or it does not have a limit. These three cases can be
distinguished in terms of the discrete hazards (1.7) of the distribution of X1, which are
nonrandom in this case, say, Hj = hj . If hj → 0 as j →∞, then the number of maxima
converges in probability to 1, and this is the only possibility for convergence to a proper
distribution. This result was extended to an almost sure convergence by Qi [64], who
showed that a.s. convergence holds if and only if the series

∑
j h

2
j converges. Later, a

probabilistic proof of this result was given by Eisenberg [19] along with some extensions.
His results are also formulated in terms of the discrete hazards:

Lemma 7.2 ([19]). Let X1, X2, . . . be a sequence of i.i.d. random variables with values
in N and infinitely supported distribution. Then, for any ` ∈ N, P[lim supn Ln = `] = 1 if
and only if

∑∞
j=1 h

`
j = ∞ and

∑∞
j=1 h

`+1
j < ∞. If the above series diverge for all ` ∈ N

then P[lim supn Ln =∞] = 1.

This result can be immediately translated to the exchangeable GEM case, because in
this case hazards are independent random variables. Heuristically, the next Theorem
means that for α ∈ (0, 1), as k becomes large, the GEM(α, θ) probabilities Pk a.s. tend
to zero regularly and the maximum is unlikely to be hit twice before a new maximal
value is reached, while for α = 0 the situation is opposite, there exist k such that Pk is
arbitrary large compared to the tail 1− Fk and such values k are repeated as maxima of
the sample many times.

Theorem 7.3. Let X1, X2, . . . have the GEM(α, θ) exchangeable distribution. Then

P
[
lim supn Ln = 1

]
= 1, α > 0;

P
[
lim supn Ln =∞

]
= 1, α = 0.

Proof. If the distribution of Hi is defined by (1.9) then

E[Hk
i ] =

(1− α)k
(1 + (i− 1)α+ θ)k

.
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Hence for α > 0

E[Hk
i ] ∼ (1− α)k

(iα)k
, i→∞,

and since Hi ∈ (0, 1) by Kolmogorov’s three series theorem the series
∑
H2
i converges

a.s. So P[lim supn Ln = 1|(Hi)] = 1 by Lemma 7.2, and also unconditionally. On the
other hand E[Hk

i ] does not depend on i for α = 0, so the series Hk
i diverges by the

same theorem and again Lemma 7.2 implies P[lim supn Ln = ∞|(Hi)] = 1 and hence
unconditionally.
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