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Rigorous results for a population model with
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Abstract

We consider a model of a population of fixed size N undergoing selection. Each
individual acquires beneficial mutations at rate uy, and each beneficial mutation
increases the individual’s fitness by sy. Each individual dies at rate one, and when a
death occurs, an individual is chosen with probability proportional to the individual’s
fitness to give birth. Under certain conditions on the parameters yux and sy, we
obtain rigorous results for the rate at which mutations accumulate in the population
and the distribution of the fitnesses of individuals in the population at a given time.
Our results confirm predictions of Desai and Fisher (2007).
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1 Introduction

We consider the following model of a population undergoing selection. We assume
there are exactly /N individuals in the population at all times. Each individual indepen-
dently acquires mutations at times of a Poisson process with rate u, and all mutations
are assumed to be beneficial. Each individual is assigned a fitness, which depends on
how many mutations the individual has acquired relative to the mean of the population.
More precisely, let X;(t) be the number of individuals with j mutations at time ¢. Let

M) = 1 D230
7=0

be the average number of mutations for the NV individuals in the population at time
t. Then the fitness of an individual with j mutations at time ¢, which we call a type j
individual, is

max {0, 1+ sy (j — M(t))}. (1.1)
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Rigorous results for a population model with selection I

Each individual independently lives for a time which is exponentially distributed with
mean one, then dies and gets replaced by a new individual. The parent of the new
individual is chosen at random from the population, and the probability that a particular
individual is chosen as the parent is proportional to that individual’s fitness. The new
individual inherits all of its parent’s mutations. Note that this model includes two
parameters: the mutation rate uy and the selection parameter sy.

This model is of interest mostly because it is essentially the simplest possible model
that allows for repeated beneficial mutations. The model has appeared previously in
the literature; see, for example, [3, 4]. Note that fitness is additive in (1.1), in the sense
that each additional mutation increases the individual’s fitness by sy. An alternative to
(1.1), which was considered, for example, in [2, 8, 20], is to assign a fitness of (1 + sN)j
to an individual with 5 mutations. However, assumption A3 below will ensure that for
the range of parameters that we will consider, sy(j — M (t)) is small and therefore the
approximation 1+ sy (j — M(t)) = (14 sx)U~M®) is valid. Consequently, the distinction
between these two choices of the definition of fitness is not important for our purposes.
A limitation to our model is that the selective advantage sy is assumed to be the same for
every beneficial mutation. Some authors have considered models in which the selective
advantage resulting from a mutation is random (see [7, 11, 18, 19, 24]), but we do not
consider this complication here.

Here we will be interested in determining how rapidly the population acquires
beneficial mutations, that is, how fast M (¢) grows as a function of ¢. This growth rate
is sometimes called the rate of adaptation or the speed of evolution. Also, we will
be interested in understanding the distribution of the fitnesses of individuals in the
population at a given time.

1.1 Previous work

The behavior of the population in this model can vary considerably depending on
the values of the parameters uy and sy. The simplest case to handle is when the
mutation rate puy is small enough that there is only one beneficial mutation in the
population at a time. This occurs, for example, when sy = s > 0 is a fixed constant
and limy 0o uy(Nlog N) = 0. In this case, there is approximately an exponentially
distributed waiting time until there is a so-called selective sweep, in which a beneficial
mutation appears on one individual and then spreads to the entire population, followed
by another exponentially distributed waiting time until another selective sweep occurs,
and so on. See, for example, Chapter 6 of [6] for details. However, the process becomes
much more complicated as soon as mutations occur rapidly enough that there can be
more than one beneficial mutation in the population at a time.

Another case that has been studied in detail is when Nuy — « € (0,00) and Nsy —
~v € (0,00) as N — co. That is, the mutation rate p and the selection parameter sy are
both of the order 1/N. In this case, one can describe the process using diffusion theory.
For a summary of results in this direction, see sections 7.2 and 8.1 of [6] and chapter 10
of [9].

An important paper which establishes rigorous results is the work of Durrett and
Mayberry [8], who were motivated by cancer modeling. They considered the variation
of the model in which the fitness of an individual with j mutations is given by (1 + s)7,
where s is a fixed constant not depending on N. They also assumed that yy ~ N—¢,
where 0 < o < 1. They showed that if 7 := min{t : X;(¢) > 1} is the first time when an
individual gets j mutations, then

log(1/un) "
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for a certain deterministic sequence of constants (¢;)32;, where —, denotes convergence
in probability as N — oco. They also obtained more precise results describing how the
number of type j individuals evolves over time.

Yu, Etheridge, and Cuthbertson [25] considered very fast mutation rates, where
un = > 0and sy =s >0 forall N. That is, neither the mutation rate nor the selection
parameter depends on N. The model they considered is slightly different from the one
presented here in that an individual’s fitness affects its death rate as well as its birth rate.
They observed that the process that keeps track of the differences between the fitness of
the individuals and the mean fitness of the population has a stationary distribution. They
proved that if the process starts from this stationary distribution, then for all § > 0, we
have

BIM(t) = M(t = 1)] > (log N)' =

if NV is sufficiently large, thus establishing a lower bound of (log N)'~% on the rate of
adaptation. Kelly [14] considered the same model and obtained a corresponding upper
bound by showing that if at time zero there are no mutations in the population, then

E[M(t)] Clog N
t ~ (loglog N)?

for t > loglog N, where C' is a positive constant. He also obtained a comparable lower
bound in [15].

Although there are only a few rigorous results available for this model, there has
been a considerable amount of previous nonrigorous work on this model and closely
related models, mostly appearing in the Biology literature. Of particular relevance for
the present paper is the work of Desai and Fisher [4], who carried out a precise and
detailed analysis of this model. They found, under certain conditions on the parameters
sy and up, that the difference in the number of mutations between the fittest individual
in the population and a typical individual in the population is approximately

2log(Nsn)

_— 1.2
log(sn/pn) (1:2)

and that in the long-run, the number of mutations carried by a typical individual in the
population increases at the rate of approximately

25y log(Nsn)

llog(sn/pn)]? (1.3)

per unit time. See the discussion around equations (4) and (5) on p. 1765 of [4] for a
brief explanation, and see the discussion around (40) and (41) on p. 1774 of [4] for a
more detailed analysis. See also Brunet, Rouzine, and Wilke [3] for further analysis of
these results. The heuristic arguments in [4] are discussed in more detail in section 2
below, and are largely the basis for the rigorous results proved in this paper.

Rouzine, Brunet, and Wilke [20] studied the same problem using a different approach,
building on earlier work of Rouzine, Wakeley, and Coffin [21], and estimated the rate of
increase in the number of mutations carried by a typical individual in the population to
be approximately

25y log(N/snpiN)
log((sn/pn)log(N/sniN))?’
which will match (1.3) asymptotically as long as the extra factors inside the logarithms
can be ignored. See equation (53) in [20], and see section A.1 of [20] for a discussion of
the assumptions required for (1.4) to be valid.

(1.4)
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In addition to obtaining the estimates (1.3) and (1.4) on the speed of evolution, these
and other authors have considered the distribution of fitnesses of individuals in the
population at a given time, coming to the conclusion that this distribution should be
approximately Gaussian. See, for example, the discussion at the top of p. 1775 in [4], the
mathematical appendix in [21], and the discussion around (11) of [20]. Other heuristic
arguments for why the distribution of fitnesses should be approximately Gaussian are
given in section 3 of [25] and in the supporting information to [2]. Because the mean of
this Gaussian distribution is increasing in time as the population evolves, the evolution
of the fitness distribution in the population can be modeled as a Gaussian traveling wave.
This point of view is emphasized in [2] and can be traced back at least to [23]. It should
be noted that Durrett and Mayberry [8] rigorously obtained traveling wave behavior
in their model. However, for the low mutation rates that they considered, the number
of values of j for which X;(¢) > 0 does not tend to infinity as N — cc. Consequently,
they did not observe a traveling wave with a Gaussian shape, and indeed the Gaussian
traveling wave picture has not been established rigorously for any range of parameter
values.

The goal of this paper is to carry out a detailed, mathematically rigorous analysis
of the model described above. Under certain conditions on sy and uy, we are able to
confirm several of the most important nonrigorous predictions about the model. We
obtain rigorous results concerning the speed of evolution and the distribution of fitnesses
of individuals in the population at a given time. We present our assumptions in section
1.2 and our main results in section 1.3. In section 2, we explain the heuristics behind
the results, most of which are adapted from the previous nonrigorous work mentioned
above. The rest of the paper is devoted to proving the main results.

This is the first in a series of two papers devoted to the study of this model. In the
follow-up paper [22], we show that the genealogy of the population can be described by
a process called the Bolthausen-Sznitman coalescent, confirming predictions of Desai,
Walczak, and Fisher [5] and Neher and Hallatschek [17]. The paper [22] uses extensively
the results and techniques developed here.

1.2 Assumptions on the parameters

For deterministic sequences (zn)%_; and (yn )3, depending on the population size
N, we write xny ~ yy if imy_ oo .’L’N/yN = 1. We write zny < yn if limy_, {L‘N/yN =0
and zy > yy if imy_ 00 N /yn = 00.
For our main results, we will need the following assumptions on the parameters sy
and py:
log N

Al: We have lim =00
N—oo log(sn/pn) log(1/sn)

log N log N
A2: We have lim ——2 —log ( o8 ) = 0.
N=oo [log(sn/pn)] log(sn /)

A3: We have lim sy log N

— =0.
N—oo log(sn /pn)

The biological meaning of these assumptions, and the reason why they are needed for
the main results, will be described later in section 2.3. Here we mention some of their
consequences.
Dividing A3 by A1, we see that the assumptions imply that limy_, o sx log(1/sy) =0
and therefore
lim sy =0. (1.5)
N —o00
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This result and A1 imply that

lim — 08N (1.6)
N—o0 log(SN/,uN)

and combining this observation with A2 gives

. log N
lim

— = =0. 1.7
N Tlog(sn /un )2 47

Dividing (1.7) by Al, we get limy_ o log(1/sy)/log(sn/pn) = 0. Thus, log(1/un) >
log(1/sn), which means that for all ¢ > 0, we have

N < s%. (1.8)

That is, the mutation rate uy tends to zero faster than any power of sy. Another
consequence of the fact that limy_,o log(1/sny)/log(sny/pun) = 0 is that log(sy/un) ~
log(1/un). In particular, (1.6) implies that log N > log(1/uy), which means that for all
a > 0, we have

1
N > m. (19)

That is, the mutation rate tends to zero more slowly than any power of 1/N. Also, note
that because log(sy/un) ~ log(1/un), the expression log(sy/un) could be replaced by
log(1/uy) in any of the conditions Al, A2, and A3. We state the conditions in their
current form because log(sy /) arises more naturally, as we will see later. We will
always assume N is large enough that ux < sy, so log(sy/un) > 0.

To illustrate how these assumptions can be satisfied, we observe thatif 1/2 <b < 1
and 0 < a <1 -, and if for all NV we have

LN = o (log N)°
and 1
—(log N)* <
(& S )
== Vg N
then assumptions A1-A3 hold.
1.3 Main results
Let
1
ay == — log (SN> (1.10)
SN KN

We will see later that, as was observed in [5], the quantity ay is approximately the
amount of time between when the first individual with j mutations appears and when
individuals in the population have j mutations on average. This is the time scale on
which we will study the process. Also, define

log N

ey = ——2
M log(sw /)

(1.11)

which we will see is the natural scale on which to consider the number of mutations. For
t >0, let
M*(t) == max{j : X;(¢t) > 0}

be the number of mutations carried by the fittest individual in the population, and let

Q(t) == M*(t) — M(%) (1.12)
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be the difference in the number of mutations between the fittest individual in the
population and an individual of average fitness. Our first theorem is an asymptotic
result for Q(¢). Here and throughout the paper, the notation —, denotes convergence in
probability as N — oo.

Theorem 1.1. Assume A1-A3 hold. There is a unique bounded function q : [0,00) —
[0,00) such that

R ifo<t<l 113)
alt) = ftt_l qu)du ift>1. ’
If S is a compact subset of (0,1) U (1,00), then
t
D Q(aN)—q(t)‘ —, 0. (1.14)
tes N
Furthermore, we have
lim q(t) = 2. (1.15)

t—o0

Note that Theorem 1.1 implies that for large ¢, we have
Q(aNt) %2]6]\[, (1.16)

which is consistent with Desai and Fisher’s prediction (1.2) because |log sy| < log N
when assumptions A1-A3 hold. Note also that the function ¢ is discontinuous at 1, which
is why we can not expect uniform convergence to hold over intervals containing 1.

104
8_
6 m*(t)
4
2
O T T T 1
0 1 2 3 4
34 8
7 t
) q(t) 6
~
4 m(t)
14
9
0 T T T 1 0 | T T 1
0 1 2 3 4 0 1 2 3 4

Figure 1: The functions ¢, m, and m*.

The next result is our main theorem concerning the speed of evolution. It shows
how the number of mutations carried by the fittest individual in the population and an
average individual in the population change over time.

Theorem 1.2. Let m : [0,00) — R be the function defined by

0 if0<t<1
t) == — _ 1.17
m(t) { 1+f0t Yw) du ift>1, el
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where ¢ is the function defined in (1.13). Also, for allt > 0, let

m*(t) =m(t) +q(t) =1+ /t q(u) du. (1.18)
0

Assume A1-A3 hold. If S is a compact subset of [0,1) U (1, c0), then

Mant
sup (aN)—m(t)‘ —, 0. (1.19)
tes N
If S* is a compact subset of (0, 00), then
M*(ant
sup | M lant) m*(t)‘ —, 0. (1.20)
tes+| kN

Note that the function m is discontinuous at 1, so Theorem 1.2 implies that the
average number of mutations of individuals in the population stays close to zero until
time ay, then rapidly increases to approximately ky. To see the long-run rate at which
the population acquires beneficial mutations, note that (1.15) implies that

M = lim L*(t)

t—o0 t—o0

=2, (1.21)

Therefore, for large t,

M(ant)  m(t)ky 2sy log N
~ — . (1.22)
ant ant [log(sn/pn)]

The right-hand side of (1.22) can be viewed as the rate of adaptation, or the rate per
unit time at which new mutations take hold in the population. Because |log sy| < log N
and log(1/un) < log N when A1-A3 hold, as can be seen from (1.8) and (1.9), and
loglog N < log(sn/un) by (1.7), this result is consistent with the predictions (1.3) and
(1.4).

Remark 1.3. The functions ¢ and m have a renewal theory interpretation, which helps
to explain (1.15) and (1.21). Consider a renewal process in which the distribution of
the time between renewals is uniform on (0,1). Let N(t) be the number of renewals
by time t, and let U(t) = E[N(t)]. Recall that the renewal equation states that if the
time between renewals has probability density function f and cumulative distribution
function F', then

Ut) = F(t) +/0 f(@)U(t —x) dx.

Therefore, in our setting in which the time between renewals has a uniform distribution,

we get
t

tAl
U(t):(t/\1)+/ U(t—x)da:z(t/\l)—F/ U(zx) dx.
0 (t—1)Vvo
Let U’ denote the right derivative of U. If 0 < t < 1, then U'(¢t) = 1 + U(t), and
since U(0) = 0, it follows that U(t) = e' — 1 and thus U'(t) = et. Ift > 1, then
Ut)y=U@t)-Ut-1) = f:_l U’(u) du. It follows that U’ satisfies (1.13), and therefore
U'(t) = q(t) for all t. Also, fort > 1,

t—1
m(t) =1+ U'u)du=1+U(t—1).
0
For large t, because the uniform distribution on (0,1) has mean 1/2, we have U (t) ~ 2t,
which explains (1.21).
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Next we state our main result for the distribution of fitnesses of individuals in the
population at a given time. Let 7o = 0 and for j € IN, let

= inf{t L Xa(t) > S’N} (1.23)
uN

which we will see later is approximately the time when some individuals with j — 1
mutations start to acquire a jth mutation. Also, let

Vi =T+ an- (1.24)

We will see later that most individuals in the population between times v; and ~y;4 1 will
have j mutations. For¢ > 1, let

J(t) == max{j : y; < ant}, (1.25)

which typically will be the most common type in the population at time axt. On the event
that v, < 7j#)+1 < oo, which we will see later has probability close to one, let d(t) be
the number in [—1/2,1/2) such that

ant = (1/2 = d(t)yy0 + (1/2 + d(t) 011 (1.26)

Otherwise, let d(t) = 0. Note that d(¢) increases from —1/2 to 1/2 as ayt increases from
Yit) t0 Yj¢)+1, and d(t) = 0 if ayt is half way between ;) and ;4. The result below
compares the number of individuals with j(¢) mutations to the number of individuals
with j(¢) + ¢ mutations at time anyt.

Theorem 1.4. Assume A1-A3 hold. For eachn > 0 and t € (1,2) U (2,00), there exists
0 > 0 such that

- Xjw+elant) | [log(sn/pn)? (¢ — 2td(t)) | _ ne*[log(sn/pn)]?
1\/lg>noop( 1og< Xj(:)r(aNt) ) * 2q(t—1)log N = log N

forall¢ € [-0ky,0kn] N Z) =1

Furthermore, § = 0(n,t) can be chosen as a function of ) and t such that for each fixed
n > 0 and a > 2, we have

inf 0y, 1) > 0. (1.27)
t€la,00)

Recall from the discussion in section 1.1 that it has been conjectured that for popula-
tion models of this type, the distribution of fitnesses of individuals in the population at a
typical time is approximately Gaussian. To compare the result of Theorem 1.4 to this
conjecture, first note that if Z is a random variable having a Gaussian distribution with
mean z + d and variance o2 and f is the probability density function of Z, then

e+ O\ _ 1 g o2
log( @) )— 202[(€ d)* — d? SYCRRE

Therefore, the form of the result in Theorem 1.4 suggests that, in some sense, the
distribution of the fitnesses of individuals in the population at time axt is approximately
Gaussian with a mean of j(¢) + d(¢) and a variance of

q(t —1)1log N
log(sn/pn)J*

o (t) ==

However, equation (1.7) implies that for the range of parameter values considered in
this paper, we have limy_ 012\, (t) = 0. Consequently, the distribution of fitnesses of
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individuals in the population at time axt does not actually converge to a Gaussian distri-
bution as N — oco. Rather, there is usually a single dominant type in the population. The
fraction of individuals with exactly j(¢) mutations will be close to 1, unless |d(t)] is very
close to 1/2. Nevertheless, the appearance of ¢2 — 2/d(t) in Theorem 1.4 demonstrates
Gaussian-like tail behavior.

The rest of this paper is organized as follows. In section 2, we describe heuristically
why the main results are true. In section 3, we present the structure of the proofs.
Proposition 3.1 describes how the process behaves close to time zero. Propositions 3.2,
3.3, 3.5, and 3.6 describe some of the finder details of how the process evolves at later
times. These four propositions, which are proved in tandem, all follow from Proposition
3.8, which is explained at the end of section 3. In section 4, we show how Theorems
1.1, 1.2, and 1.4 follow from the results in section 3. The rest of the paper is devoted to
technical proofs. In section 5, we introduce a martingale that is useful for these proofs.
In section 6, we prove Proposition 3.1. Finally, in sections 7, 8, and 9, we prove the three
parts of Proposition 3.8.

1.4 Notation

We collect here for the convenience of the reader some of the most important notation
used throughout the paper. Because most of this notation has not yet been introduced,
the reader is encouraged to skip this section for now and refer back to it as needed.

an (1/s)log(s/u), natural time scale for the process

b Defined in (3.14), used to determine which mutations are “early”
By (t) Birth rate of a type j individual at time ¢, see (5.1)
)

Dj(t Death rate of a type j individual at time ¢, see (5.2)

(Ft)e>0 Natural filtration of the process

G,(t s(j — M(t)) — p, growth rate of type j population at time ¢

J(t) max{j : 7; < ant}, corresponds to most common type at time ant

J 3knT + k* + 1, bound on number of types likely to appear by time ayT
kn log N/log(s/p), natural scale for the number of mutations

ky, k;{[ numbers slightly smaller and larger than ky, see (3.2) and (3.3)

k* largest integer less than k;{,

K lkn/4]

L [17kn]

m(t) Scaling limit of (M(¢),¢ > 0), defined in (1.17)

m*(t) Scaling limit of (M*(t),t > 0), defined in (1.18)

M(t) Mean number of mutations in the population at time ¢

M (t) Approximation to mean number of mutations at time ¢, defined in (8.14)
M*(t) Number of mutations carried by fittest individual at time ¢

N Population size

Q(t) Difference in number of mutations between fittest individual and average
q(t) Scaling limit of (Q(¢),t > 0), defined in (1.13)

q; Approximately the value of Q(7;), see (3.15)

R(t) Number of 7; between ¢t — ay and ¢, see (3.23)

s =sny  Selective advantage resulting from a mutation

S;(t) Number of individuals with j or fewer mutations

t* Time before which individuals of types up to ky appear, defined in (3.6)
T Large positive number; the process is studied up to time ayT

x;(t) Approximation to number of type j individuals at time ¢ for ¢t < ¢*

X,(t) Number of individuals with j mutations at time ¢
X;,1(t)  Number of type j individuals descended from mutations before §;

EJP 22 (2017), paper 37. http://www.imstat.org/ejp/
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Xjo(t)  X;(t) — X;a(0)

Z;(t) Martingale associated with evolution of type j individuals, see Prop. 5.1
Vi 7j + an, approximately when most individuals have acquired j mutations
6 Small positive number, bounds error in various approximations

€ Small positive number, bounds probability that conclusions of results fail
¢ First time that the conclusion of Proposition 3.2, 3.3, 3.5, or 3.6 fails

u = py Mutation rate for each individual

& Time before which type 7 mutations are early, see (3.16)

T; inf{t : X;_1(t) > s/p}, approximately when type j individuals appear

T; Tj +aN/(4TkN)

2 Heuristics

In this section, we discuss the key ideas behind the main results in the paper. The goal
is to explain to the reader, in just a few pages of calculations, why the main results are
true. Most of these heuristics have already appeared in the Biology literature, particularly
in the work of Desai and Fisher [4]. We postpone rigorous proofs of the results, and
justification for the approximations used, until later sections, and in this section we
assign no precise meaning to the approximation symbol ~. Here and throughout the
rest of the paper, to lighten notation we write  and s in place of n and sy respectively,
even though these parameters depend on the population size N.

2.1 The initial stage

Consider first the initial stage of the process, when the average number of mutations
in the population is close to zero. For times ¢ in this range, we have X(¢) ~ N and
M (t) = 0. During this stage, we can approximate the process by a multitype branching
process in which a type j individual dies at rate 1, gives birth to another type j individual
at rate 1 + sj, and mutates to type j + 1 at rate u. This means that the total rate at which
type j + 1 individuals appear due to mutations is X (¢), and if such a mutation appears
at time u < ¢, the expected number of descendants of this individual in the population
at time ¢ is e(37—#)(t=4) ~ esi(t=u) where the approximation is valid because p is much
smaller than s. This leads to the approximation

t t N st _ 1
E[X,(t)] ~ / UE[Xo(t)]e* Y du ~ / Npest-w) gy = YET D o)
0 0 s
Then an inductive argument gives
E[X;(t)] m/ pE[X; 1 (u)]e?* % du ~ sj?' (et — 1), (2.2)
O .

The approximation (2.2) only holds when the mean number of mutations is close to
zero, which can be true only when X; (¢) is much smaller than N. From (2.1), we see
that X;(¢) will be of order N when e*! is comparable to s/u, which happens near time

1 s
t = —log <) =an.
5 J

Before time ay, the average number of mutations in the population will be close to zero,
and the approximation (2.2) will be valid.

For the approximation (2.2) to be useful for understanding the evolution of the number
of type j individuals, we need to know that X;(¢) ~ E[X,(t)]. We will calculate, using a
second moment argument, that this approximation holds for small times ¢t when j < ky.
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This is true essentially because, for j < ky, type j individuals appear in the population
very quickly. See Proposition 3.1 below for a precise statement of this result. For larger
values of j, however, it is not true that X;(¢t) ~ E[X;(t)]. Rather, the expectation is
dominated by rare events in which an individual acquires a jth mutation much earlier
than usual, causing the number of type j individuals at later times to be unusually large.
Therefore, for j > ky, we can not approximate X (¢) by its expectation, and we need a
different technique to understand the process (X;(t),t > 0).

2.2 Evolution of the number of type j individuals

We now consider the evolution of type j individuals when j > ky. The key idea is
to break the process into two stages: an initial stage in which the type j population
becomes established as a result of mutations experienced by type j — 1 individuals,
and a second stage in which these mutations are no longer important and the type
j population evolves essentially in a deterministic way. This idea has been used in
previous work on this model, and in particular many of the calculations in this section
strongly resemble those in [4]. Recall that 7; is the first time when there are at least s /1
individuals of type 7 — 1 in the population. We will show using a first moment argument
that with high probability, no type j individuals will appear before time 7;. The type j
population becomes established during the interval [7;, 7;41], then evolves approximately
deterministically after time 7;, 4.

After time 7;;, we will see that mutations from type j — 1 to type j no longer have a
significant impact on the size of the type j population. Consequently, at a time u > 7,1,
the number of type j individuals will be growing approximately deterministically at the
rate s(j — M(u)), which is the size of the selective advantage that a type j individual
has over an individual of average fitness. That is, if £ > 7,11 but the population of type j
individuals is not yet near extinction, then

X (1)~ Sl s M) du (2.3)
o
A rigorous statement is given in (3.20) below.

Consider next what happens between times 7; and 7,11, when the type j population
gets established. We can use (2.3) to approximate the number of type j — 1 individuals
shortly after time 7;. As long as no type j individual appears before time 7;, we have
(j —1) — M(7;) = Q(75), so (2.3) suggests the approximation

X;1(t) ~ %SQWW—TH. (2.4)

As long as the average fitness of the population does not change much shortly after time
7j, a new type j individual that appears because of a mutation at time u will have on
average e5(Q(7)+1)(t-u) descendants at time ¢t. Thus, we have the approximation

t
X;(t) ~ / I iesmm(u—m 8@ D) gy,

t
_ 5@ (t=1;) / o= g,

~ eS(Q(Tj)-i-l)(t—Tj)’ (2.5)

where the last approximation requires ¢ — 7; > 1/s. A rigorous statement is given in
(3.19) below. Therefore, 7;4; should occur approximately when the expression in (2.5)
equals s/u, which leads to

1 S a
Tiv1 — T = 78(@(7}) 1) log (,u> R Q(Tj). (2.6)
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To estimate ()(7;), note that (2.4) and (2.5) lead to

X;(t) eS(Q(7y)+1)(t—T;)

Xja(t)  (s/mes@Em) ~ s

1 s
t—Tj:glog " =an.

That is, the number of type j individuals surpasses the number of type j — 1 individuals
approximately ay time units after type j individuals first appear. Around that time,
there will be more type j individuals than individuals of any other type, and the mean
number of mutations in the population will be approximately j. It follows that M(7;)
will be approximately the type that first appeared roughly ay time units in the past,
and Q(7;) will be approximately the number of new types that have appeared in the last
ay time units. Because the rate per unit time at which new types are appearing can
be approximated by the reciprocal of the expression in (2.6), we obtain for ¢ > 1 the
approximation

:u‘es(tf'rj)

)

which equals one when

ant t
Ci(;j) du = /t—l Q(anv) dv. 2.7)

Qant) /
an(t—1)
For t < 1, we know from the discussion in section 2.1 that M(ant) ~ 0, so Q(ant) is
approximately the number of types that have originated before time ayt. Since we know
from the discussion in section 2.1 that ky types appear at very small times, we have for
t < 1 the approximation
ant t
Qant) =~ ky + Mdu: kN—i—/ Q(anv) dv,
0 an 0
which implies Q(ant) =~ kyet. This result and (2.7) lead to the approximation to Q(ayt) in
Theorem 1.1. The result (1.15) then follows from the renewal theory argument outlined
in Remark 1.3.

To understand Theorem 1.2, recall again that M (axt) = 0 for ¢t < 1. For ¢ > 1, we
know from the discussion in the previous paragraph that M (ant) is approximately the
number of types that appear before time ay (¢t — 1). Because ky types appear near time
zero and the rate at which new types appear can be approximated by the reciprocal of
the expression in (2.6), we get for ¢ > 1 the approximation

an(t—1) Q(U) t—1

M(aNt)%kN—l—/ ——du=ky+ Q(anv) dv,
0 an 0

which leads to (1.19). Likewise, because M*(axt) is approximately the number of types

that appear before time ayt, the same reasoning gives

t
M*(ant) = kn + [ Q(anv) dv,
0
which leads to (1.20).

Finally, to obtain the result of Theorem 1.4, we use the approximation (2.3) to compare
Xjt)+¢ and X;,y. We refer the reader to the proof of Theorem 1.4 in subsection 4.2 for
the details of this calculation.

Although the main ideas discussed in this section come from [4], it has been assumed
in most previous work on this model such as [4, 20] that the population is already in
equilibrium. Then one can argue that this equilibrium is only possible when (1.16) and
(1.22) hold. One of the contributions of the present work is to show how the process
arrives at such a state, beginning from a population in which no mutations are present.
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2.3 Meaning of the assumptions

We briefly discuss here the assumptions required for these results to be valid. Note

that (1.6) is equivalent to the condition

A}gnoo kn = oo.
Since Q(ant) is of the order ky, assumption Al implies that the number of different
types in the population at a given time tends to infinity as N — oco. This condition is not
satisfied in the parameter regime considered by Durrett and Mayberry [8]. Assumption
A1l also ensures sy is large enough for mutations to take hold in the population in the
manner described above.

For the heuristics described in section 2.2 to be valid, the type j population must
be growing approximately exponentially after time 7;,,, which will happen as long as
additional mutations from type j — 1 to type j are no longer having a significant impact
on the population size. The contribution to the type j population from mutations at
different times can be seen from the integral in the second line of (2.5). The primary
contribution to this integral comes when w« is comparable to 1/s. Consequently, we need
Tj+1 — 7; > 1/s for the number of type j individuals to be growing exponentially after
time 7,41. In view of (2.6) and the fact that Q(7;) is the same order of magnitude as ky,
this is equivalent to the condition

1 s 1
—log () > -,
skn I S
which is equivalent to (1.7). Thus, the role of assumption A2 is to ensure that the
mutation rate p is slow enough that we can ignore mutations from type j — 1 to type
Jj after time ;. For technical reasons, assumption A2 is slightly stronger than (1.7),
but we conjecture that the main results of the paper are still true if assumption A2 is
replaced by (1.7). It remains an open question to understand how the process evolves if
the mutation rates are fast enough that (1.7) fails to hold.
Assumption A3 is equivalent to the condition
lim sky =0. (2.8)

N —oc0

Because the difference in fitness between the fittest individual and an individual of
average fitness is of the order sky, assumption A3 implies that we are not considering
very strong selection. Note that because Durrett and Mayberry [8] take the selection
parameter s to be a fixed constant not depending on N, nothing like (2.8) holds in their
setting.

3 Structure of the proofs

In this section, we state some intermediate results that will lead to the proofs of the
main results. Some of these intermediate results may also be of independent interest, as
they provide some insight into how the number of individuals with j mutations evolves
over time. Throughout the section, we will fix three positive numbers: ¢, §, and 7. We
will use ¢ € (0,1) for the maximum allowable probability of some “bad” event and

1

— 1
0<<5<100 (3.1)

for the maximum allowable error in certain approximations. We will study the process
up to time ay7, where T' > 1. Throughout the paper, we will introduce some positive
constants C),. These constants may depend on the three parameters ¢, J, and 7, even
though this dependence will not be specifically mentioned each time.
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3.1 The process until time ¢*

We begin by considering the initial stage of the process. Recall from subsection
2.1 that for j < ky = log N/log(s/1), we expect individuals of type j to appear in
the population very early, and we expect the number of type j individuals to be well
approximated by the right-hand side of (2.2). To state a precise result, define

P logN  logN g< log N > (3.2)
N log(s/u)  log(s/n)? log(s/p) '
and
log N 2log N log N
[P LA £ T ( o8 ) (3.3)
log(s/p) ~ log(s/p) log(s/p)
Also, let
E* = [kf — 1] (3.4)
be the largest integer less than k:j{, Assumption A2 implies that
lim (k% — ky) =0, (3.5)

N—oc0

so for sufficiently large N, the number of integers j such that ky < j < k‘]f, must be
either zero or one. Hereafter, we will assume N is large enough that this is the case.
Define the time

N s)logkny  1f there exists an integer j such that £, < j <
- 4/s)logk if th i i ] h that £ ] k]f, (3.6)

(2/s)logky  otherwise

The following proposition, which we prove in section 6, describes how the process
evolves before time t*.

Proposition 3.1. For all nonnegative integers j and all t > 0, define

_ Npi(est —1)

o] (3.7)

zj(t) :

Then there exist positive constants C, and C5, not depending on ¢, such that for suffi-
ciently large N, the following four statements all hold with probability at least 1 — £/2:

1. Forall j < ky, we have

sup |X;(t) — x; ()] < dz;(t7). (3.8)
t€[0,t*]

2. If there is an integer j € (kjy, kj;), write

= log N Bjlog N 10g< log N ) (3.9)
log(s/p) ~ log(s/p)? log(s/n) )’ '
where —1 < f8; < 2, and let d; := max{0, 5;}. Then
Crky™a(t7) < X, (t%) < Coky™a;(t%). (3.10)
3. Forallt € [0,t*], we have Xy« (t) < s/p.
4. Forall j > k¥ and t € [0,t*], we have X;(t) = 0.
EJP 22 (2017), paper 37. http://www.imstat.org/ejp/
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3.2 Evolution of type j individuals

In this subsection, we consider how the population evolves after time ¢*. Recall the
definitions of 7; and ~; from (1.23) and (1.24). For nonnegative integers j and ¢t > 0,
define also

G(t) = s(j — M(t)) — p, (3.11)

which we can interpret as the rate of growth for the number of type j individuals at time
t. We will also define the integers

K = U/ﬂN/4J, L= (17]43]\[]

The next proposition describes the evolution, after time ¢*, of the number of individuals
with £* or fewer mutations. The first part of the proposition controls the evolution of the
type j individuals after time ¢*. The second and third parts provide upper bounds on the
number of type j individuals as these individuals get close to extinction.

Proposition 3.2. For sufficiently large N the following statements all hold with proba-
bility at least 1 — e:

1. Forall j < k* andt € [t*, v+ K|, we have

(1-6)X exp</ a5 ) X;(t) < (146)X eXp(/ a5 ) (3.12)

2. Forall j <k* andt € [y4+Kk,anT], we have

t

X;(t) < 3, (%) exp ( /

*

G (v) dv). (3.13)

3. On the event that v+, < anT, we have X;(t) =0 forall j < k* and t > -4 .

We next consider the individuals of type j for j > k* + 1. By part 4 of Proposition
3.1, individuals of these types typically do not appear until after time t*, so we need to
consider how these types originate. Define the positive number

24000T
Forj > k* 4+ 1, let
.. j*kN ifaN72aN/k}N§Tj§aN+2aN/kN
%=\ j—M(r;) otherwise
and
gj = max{l,q;f}. (3.15)
Then define
1 1 b
& :=max T, Tj + —log + — . (3.16)
54q; 54 54;

When an individual with j7 — 1 mutations gets an additional mutation, we call this
a type j mutation. Each type j individual in the population at time ¢ has an ancestor
that got a type j mutation at some earlier time. We call the individual an early type
Jj individual if this type j mutation happened at or before time ;. Let X;(t) be the
number of early type j individuals at time ¢, and let X, »(¢) be the number of other type j
individuals at time ¢. This means, of course, that

X;(t) = X;1(t) + Xj2(t).
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Also, define the time

=T+ LL;—JI;’N. (3.17)
Note that ay/ky — 0o as N — oo by (1.5) and (1.7).

The result below describes the evolution of the type j individuals for j > k* + 1.
The first two parts of the proposition concern the evolution of the type j individuals up
to time 7,1, and require classifying the type j individuals as being early or not early.
Early type 7 mutations are rare, and when they occur, they produce a large number of
descendants, so in part 1 of the proposition, we are only able to get an upper bound on
the number of early type j individuals. On the other hand, we see from part 2 of the
proposition that the number of type j individuals that are not early is tightly controlled.
The cutoff time &; defined in (3.16) was chosen so that this bound will hold. Parts 3, 4,
and 5 of the proposition describe the behavior of the number of type j individuals after

time 741 and parallel the three parts of Proposition 3.2.

Proposition 3.3. There exists a positive constant C's such that for sufficiently large N,
the following statements all hold with probability at least 1 — ¢:

1. Forallj > k* + 1 and allt € [7},7;+1] N [0,anT], we have

¢
X;1(t) < Csexp (/ G,(v) dv). (3.18)

Also, X;1(t) < s/2u forallt < 77 AanT, and no early type j individual acquires a
type j + 1 mutation until after time 7,1 A anT.
2. Forall j > k*+1and allt € [7},7;11] N[0,anT], we have

(1 — 48) exp (/Tt G, (v) dv) < X;o(t) < (1+46) exp (/: G, (v) dv). (3.19)

Moreover, the upper bound holds for all t € [¢;,7;41] N [0, anT].
3. Forallj > k*+1andallt € [tj41,7+k] N [0,anT], we have

a=9s </: ;) dv) < X,(1) < (IJLCS)Sexp </Tt 5 (v) dv). (3.20)

K 1 j+1

4. For all j > k* 4+ 1 such that v;1x < ayT, we have

k2 s ¢
X;(t) < M exp (/ G;(v) dv) (3.21)
H Tj+1
forallt € [vj+k,anT].
5. Forall j > k* + 1 such that v;4+1 < anyT, we have X,(t) =0 for allt > ;4.

Remark 3.4. When the statement of part 1 of Proposition 3.3 holds, the number of
early type j individuals can not reach s/p until after time 7; A ayT, and because §; > T;
by definition, no other type j individuals appear until after time 7;. It follows that if
j > k*+1, then Tjt1 = Tj NanT.

The next proposition shows how the mean number of mutations in the population
evolves over time. Note that the mean number of mutations in the population is near
zero before time ay and is near j during the time interval [v;,v,+1).

Proposition 3.5. There exist positive constants C, and C5 such that for sufficiently
large N, the following statements all hold with probability at least 1 — ¢:
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1. Forallt € (t*,ay], we have M (t) < 3e~s(an—1),
2. Forallt € (aN,’yk*Jrl), we have M(t) < kn + Cy.
3. Forallj > k*+1andt € [y;,vj+1) N [0,anT], we have

|M(t) — j| < Cs(e™*(t%) 4 g=s(r17)), (3.22)

4. Forallj > k*+1andt € [1j,7;1+1), we have M (t) < j — 1.

Next, we state a result concerning the differences 7,1 — 7;. Here ¢ is the function
defined in (1.13).

Proposition 3.6. Fort € [0,anT)], let
R(t) = k* Lcany + #{ > K +1:t —an <7 < t}, (3.23)

where #5 denotes the cardinality of a set S. For sufficiently large N, the following
statements all hold with probability at least 1 — ¢:

1. We have 1y+41 < 2an/kn.

2. We have
R(aNt)
kn

- q(t)’ < 0.

te[0,T

3. Forall j > k* + 1 such that either 7; + 2an /kn < anT or ;11 < ayT, we have

Ti+1/an 1426
/ q(t) dt < 20 (3.24)
Ti/an kn
Also,
Tiv1/an 1-26
/Tj/aN (q() + Livenn yn yr fan)y) dt > . (3.25)
and
an 2a
ET <Tjt1—7; < Ty (3.26)
Remark 3.7. Let
J :=3kNT + k* + 1. (3.27)

If the statement of part 3 of Proposition 3.6 holds, then (3.26) implies that

a
> 4N

> N (J—(k*+1)) AanT = anT. (3.28)
3ky

T] > Tj — Tk*+1
Assuming, in addition, that the last statement of part 1 of Proposition 3.3 holds, it follows
that no individual of type J + 1 or higher can appear until after time ayT. Consequently,

throughout the paper, it will usually only be necessary to consider individuals of type j
for0<j <J.

In section 4, we show how Theorems 1.1, 1.2, and 1.4 follow from Propositions 3.2,
3.3, 3.5, and 3.6.
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3.3 Waiting for the time (

Although Proposition 3.1 is proved in section 6 independently of the other results in
this section, it does not seem to be possible to prove Propositions 3.2, 3.3, 3.5, and 3.6
sequentially. Proving Propositions 3.2 and 3.3 requires that we have some control over
the quantities M (t) and 7,41 — 7;, which are established in Propositions 3.5 and 3.6. On
the other hand, to prove Propositions 3.5 and 3.6, it will be necessary to have control
over the quantities X (t), as established by Propositions 3.2 and 3.3. Consequently, we
will prove these propositions simultaneously by defining a random time ¢ which will be
the first time that one of the statements in the above propositions fails. We will then
show that { > ayT with high probability.

Choose constants C; and C5 as in Proposition 3.1. Let

Co := inf{t <t*: either |X;(t) — x;(t)| > dx;(¢*) for some j < ky,
t = t* and (3.10) fails to hold for some j € (ky, k%),
or X;(t) > 0 for some j > kj;}.
Note that () = o if the four statements of Proposition 3.1 all hold.

Next, for all nonnegative integers j, we will define a random time (; ;, which is
essentially the first time that the behavior of the type j individuals violates the conditions
of Proposition 3.2 or Proposition 3.3. First consider j < k*. For ¢ € [t*, vx+4 k], let A;(?)
be the event that (3.12) fails to hold. For ¢ € (yx++x, Vk+1), let A;(t) be the event that
(3.13) fails to hold. For ¢t > 74«41, let A;(t) be the event that X;(¢) > 0. Now consider
j > k* + 1. Choose a constant C3 as in Proposition 3.3. For ¢t > t*, we say that A;(t)
occurs if t € [TJ’-“,TjH] and (3.18) or (3.19) fails to hold, if ¢ € [¢;,7;4+1] and the upper
bound in (3.19) fails to hold, if ¢ < 77 and X;1(t) > s/2p, if t < 7541 and an early type j
individual acquires a type j + 1 mutation at time ¢, if ¢ € [7;41,7;+x] and (3.20) fails to
hold, if ¢ > ;4 x and (3.21) fails to hold, or if ¢ > ;1 and X, (¢) > 0. Then let

C1,j := inf{t : A;(t) occurs for some ¢ < j}
and
Cl = CLJ = inf{(l,j . 0 S j S J}

Next, we will define (, to be the first time when the result of Proposition 3.5 fails.
More precisely, choose Cy and Cj5 as in Proposition 3.5, and let

(o :=inf{t: eithert € (t*,an] and M(t) > 3e3av =),
t € (an,vk++1) and M (t) > ky + Cy,
for some j > k* 4+ 1 we have ¢ € [y;,v;41) but (3.22) fails to hold,
or for some j > k* 4+ 1 we have t € [rj, 7j41) but M(t) > j — 1}.

Also, let

(3 :=inf{t: either ¢t = 2ay/ky and 74-41 > 2an/kn,
|R(t)/kn —q(t/an)| = 6,
there exists j > £* 4 1 such that 7;; < ¢ but (3.24), (3.25), or (3.26) fails,
or there exists j > k* + 1 such that 7;,1 >t and t = 7; + 2an/kn},

which can be interpreted as the first time when Proposition 3.6 fails. Finally, let

C = min{(()aChCQvaﬂ}- (329)
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Note that ¢ depends on § and depends also on ¢ and 7' through the choice of b in
(3.14). Also, ¢ depends on the constants (', ..., C5. The constants C; and C5 are chosen
independently of the others in Proposition 6.9 below. The constant C5 is specified
below in (9.54). The constants C; and C5, which depend on Cj3, are obtained below in
Propositions 7.4 and 7.7 respectively. The constants C,...,Cs do not depend on N.

Proposition 3.8. There exist positive constants C1,...,Cs such that for sufficiently
large N, the following hold:

1. On the event {(y = oo}, either (s > (G A (3 0r {3 A(a A3 > anT.

2. On the event {(y = oo}, either (35 > (1 A (, with strict inequality on the event
{¢2 < (1}, orelse (1 AGa A (3 >anT.

3. We have

P({¢o =00} N{C,; SLAGBAG j—1NanT}) <

b

| ™

J
=0

using the convention that (; 1 = oo.

We prove parts 1, 2, and 3 of Proposition 3.8 in sections 7, 8, and 9 respectively. Here
we show how Proposition 3.8, along with Proposition 3.1, implies Propositions 3.2, 3.3,
3.5, and 3.6. Essentially, parts 1, 2, and 3 of Proposition 3.8 show that (5, (3, and (3
respectively are unlikely to be the first of these three times to occur. This forces ( to be
pushed beyond time a7 with high probability. Note that a consequence of this result is
that for sufficiently large IV, the conclusions of Propositions 3.1, 3.2, 3.3, 3.5, and 3.6
simultaneously hold with probability at least 1 — ¢.

Proof of Propositions 3.2, 3.3, 3.5, and 3.6. By Proposition 3.1, we have P({; = c0) >
1 — /2 for sufficiently large N. By Proposition 3.8, we have

| ™

7
P({Co =00} N ( U{Cl,j <QAGAC -1 A aNT})> <

=0

for sufficiently large N. Combining these results, we get

J
P({Co =00} N ( m{Cl,j > (o AC3ACj—1 A aNT})> >1-¢ (3.30)

=0

for sufficiently large N.

We claim that for sufficiently large N, we must have { > anyT on the event in (3.30).
By part 1 of Proposition 3.8, for sufficiently large N, on {(y = oo} N {¢ < ayT}, we must
have (» > (1 A (3, which implies either ( = (; or ( = (5. Likewise, part 2 of Proposition
3.8 implies that for sufficiently large N, on {(y = oo} N{¢ < anT}, either ( = (; or { = (o.
Since the strict inequality required by part 2 of Proposition 3.8 rules out the possibility
that ¢ = (3 < (3, it follows that for sufficiently large N, on {{o = oo} N {¢ < anT}, we
must have ¢ = (;, and therefore ¢ = (; ; for some j. However, on the event in (3.30), we
see by induction on j that we can not have ( = ¢; ; forany j < J.

Hence, for sufficiently large N, we have ¢ > ayT on the event in (3.30). Thus, by
(3.30), for such N we have

P(¢(>anT)>1—c¢. (3.31)

Propositions 3.2, 3.3, 3.5, and 3.6 follow from (3.31). Note that Remark 3.7 implies that
on {¢ > anyT}, no individual of type J + 1 or higher appears until after time ax7, which
is why it is only necessary to consider ¢; ; for 0 < j < J. O
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4 Proof of Theorems 1.1, 1.2, and 1.4

In this section, we will show how Theorems 1.1, 1.2, and 1.4 follow from Propositions
3.2, 3.3, 3.5, and 3.6, which, as noted in section 3, all follow from Proposition 3.8. We
prove Theorems 1.1 and 1.2 in section 4.1, and Theorem 1.4 in section 4.2.

4.1 The speed of evolution

In this section, we prove Theorems 1.1 and 1.2, which describe the asymptotic
behavior of the processes (Q(t),t > 0), (M(t),t > 0), and (M*(¢),t > 0) as the population
size tends to infinity. We first establish a lemma which collects some properties of the
function ¢ defined in (1.13).

Lemma 4.1. There is a unique bounded function q : [0,00) — [0,00) satisfying (1.13).
The function q is right continuous on [0,00) and continuous on [0,1) U (1,00). Also,
1<q(t) <eforallt>0and

lim ¢(t) = 2. (4.1)

t—o00

Proof. Note that (1.13) is equivalent to the renewal equation

a(t) = g(t) + / g(t — ) () du, 4.2)

where f(u) = g(u) = lyo<u<1y. That this equation has a unique solution which is
nonnegative and bounded on every finite interval is a consequence of Theorem 2 in
[10]. Another consequence of Theorem 2 in [10] is that the function t — ¢(t) — g(¢t)
is continuous, which implies that ¢ is right continuous on [0,c0) and continuous on
[0,1) U (1,00).

To obtain the bounds on ¢, let u = inf{t > 1: q(u) > e or ¢(u) < 1}. Suppose u < co.
Then either g(u) = e or q(u) = 1. However, q(u) = ["  ¢(t) dt € (1,¢), a contradiction.
Thus u = oo, which means 1 < ¢(¢) < e for all ¢ > 0. Equation (4.1) is a consequence of
Theorem 4 in [10]. See also Remark 1.3. O

For ¢t > 0, write
h(t) := max{j : 7; < ant},

and recall from (1.25) that if ¢t > 1, then
J(t) =max{j : v; < ant} =h(t—1).

The next proposition shows that with high probability, the number of mutations carried
by the fittest individual in the population at time axt will be close to h(t).

Lemma 4.2. Fixt € (0,T). Suppose the conclusions of Proposition 3.3 and part 1 of
Proposition 3.6 hold. For sufficiently large N, we have

h(t) — 1 < M*(ant) < h(t) + 1.

Proof. By part 1 of Proposition 3.6, for sufficiently large N we have 74~y < aynt. There-
fore, in view of Remark 3.4, for sufficiently large N we have 7,,) < ant < 7j,(4)4+1 with
h(t) > k* 4+ 1. By part 1 of Proposition 3.3, no type Ai(t) + 2 individual can appear before
time 7,(;)41, which implies that M*(ayt) < h(t) + 1. By part 3 of Proposition 3.3, we
have Xh(t),l(a]vt) > 0 and thus M*(aNt) > h(t) — 1. O

Lemma 4.3. Suppose 0 < u < v < T. Suppose the conclusion of Proposition 3.6 holds.
Then for sufficiently large N,
h(t)

)

< 20h(t) + (2e + 1)
kn - '

kn

sup
teu,v)
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Proof. As noted in the proof of Lemma 4.2, we have 7;-41 < ayu for sufficiently large N.
Therefore, for all ¢t € [u,v],

t
m*(t) =1 —l—/o q(u) du
Tk*+1/aN h(t)— TJ+1/¢1N t
=1+ / u) du + Z / u) du + / q(u) du (4.3)
0 j=k*417Ti/an Th(t)y/anN

if IV is sufficiently large. To obtain an upper bound, we use (3.24) along with part 1 of
Proposition 3.6 and the fact that ¢(¢) < e for all ¢ by Lemma 4.1 to get

m(t) < 1+€7’k +1 +(h(t) — k") - 1426 < h(t)(1 + 26) L (1_ k*) +27e. 4.4)
anN kn kn

For the lower bound, we use (3.25) and the fact that (y4-41/an) — 1 < 2/kx by part 1 of
Proposition 3.6 to get

m(t) > 1+ (h(t) — k* — 1) -

1-26 2>h(t)(1—25)+<1_k*+1) 2

- — - —. 4.5
kn kny — kn kn kn ( )

The result follows from (4.4), (4.5), and the fact that |ky — k*| < 1 for sufficiently large
N by (3.4) and (3.5). O

Proof of Theorem 1.2. We first prove (1.20). It suffices to prove this result for S* = [u, v],
where 0 < u < v. Fixe >0, § > 0, and T > max{1, v}. When the conclusion of Proposition
3.6 holds, for all ¢ € [u, v] we have

3k
h(t) < (K* +1) + TN cayv < (K* +1) 4 3vky. (4.6)
N
Therefore, it follows from Lemmas 4.2 and 4.3 that when the conclusions of Propositions
3.3 and 3.6 hold,

M* t
sup |- IEGN ) ) <
teu,v] N

20(k* + 14 3vkn)+ (2e+1) +1
kn

For sufficiently large N, the right-hand side is bounded above by C4d, where C is a
positive constant that depends on v but not on N. Because, for sufficiently large N, the
conclusions of Propositions 3.3 and 3.6 hold with probability at least 1 — ¢, the result
(1.20) follows.

We next prove (1.19). It suffices to prove (1.19) when S = [u,v], where either
0<u<wv<lorl<wu<wv< oo. Suppose first that 0 < u < v < 1. Then m(¢) = 0 for all
t € S. By part 1 of Proposition 3.5, for all € > 0, we have

P( sup M(aNt)§3> >1—c¢

t€[u,v]

for sufficiently large N. The result (1.19) follows immediately.

Suppose instead 1 < u < v < co. We fixe > 0, § > 0, and T > max{1,v}. Suppose
for now that the conclusions of Propositions 3.5 and 3.6 hold. Then j(t) > k* + 1 and
Vi) < ant < yj)41 for all t € [u,v] if N is sufficiently large. Therefore, by part 2 of
Proposition 3.5, for sufficiently large N we have

sup |M(ant) —j(t)| < 2C5. 4.7)
te(u,v]
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Because j(t) = h(t — 1) and m(t) = m*(t — 1) for all ¢ € [u,v], it follows from (4.7) and
Lemma 4.3 that

M (ant) _ 20h(t = 1) + (2¢ + 1) +2C;

sup e m( )’ .

t€[u,v]

In view of (4.6), the right-hand side is bounded above by C§, where C is a positive
constant that depends on v but not on N. Because, for sufficiently large N, the conclu-
sions of Propositions 3.5 and 3.6 hold with probability at least 1 — ¢, the result (1.19)
follows. O

Proof of Theorem 1.1. For t > 0, we have Q(t) = M*(t) — M(¢t) by (1.12) and ¢(t) =
m*(t) — m(t) by (1.18). Therefore, (1.14) is an immediate consequence of (1.19) and
(1.20). The rest of Theorem 1.1 was proved as part of Lemma 4.1. O

4.2 The distribution of fitnesses in the population

In this subsection, we prove Theorem 1.4, which describes the distribution of the
fitnesses of individuals in the population at time at. We begin by proving two lemmas.
The first one concerns the differences 7;;; — 7;. The second gives a useful bound that
follows from (3.18) and (3.19). Recall again the definition of j(¢) from (1.25).

Lemma 4.4. For eachn > 0 and t € (1,2) U (2,00), there exists 8 = 6(n,t) > 0 such that

. (1—-n/3)an (1+n/3)an
lim P|~—20N < < DO
oo <q(t—1>kN =TT S S Dk

and, for each fixedn > 0 and a > 2,

forall j € [j(t)—Gk‘N,j(t)—i—HkN]ﬂZ) =1

N —oc0

inf 0(n,t) > 0. (4.8)

t€la,00)

Proof. Lemma 4.1 states that the function ¢ is continuous on [0,1) U (1, c0). Also, we can
see from (1.13) and the fact that 1 < ¢(¢) < e for all ¢ > 0 that ¢ is uniformly continuous
on [1,00). Therefore, we may choose § = 6(n,t) > 0 such that the following hold:

1) Jg(t —1) —q(u)| <n/7 forallue[t—1—2360,t—1+ 30],
2) [t—1-30,t—1436] C (0,1)U(1,00),
3) (4.8) holds for each fixed n > 0,a > 2.

Fixe > 0, 6 € (0,n7/14), and T > t. We may assume N is large enough that the
conclusions of Proposition 3.6 hold with probability at least 1 — €. For now, we will
work on the event that the conclusions of Proposition 3.6 hold. By (1.25), we have
Vi) < ant < vjy+1, and it follows that 7,y < an(t — 1) < 7j(+)+1. Therefore, by (3.26),
for all j € [j(t) — 0kn,j(t) + 0kn] N Z such that j > k* + 1, we have

2 2
an(t—1)— (Oky +1) "N < 7 <7y <an(t—1) + Oy - —.
k‘N kN
It follows that for sufficiently large N,
an(t—1-360) <71; <7j41 <an(t—1+30). (4.9)

Because [t — 1 —360,t — 14 360] C (0,1) U (1,00), we can see from part 1 of Proposition
3.6 that for sufficiently large N, we have j(t) — 0ky > k* + 1. Also, in view of part 1
of Proposition 3.6, for sufficiently large N the interval [t — 1 — 36,¢ — 1 + 36] will not
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intersect [1,vx++1/an]. Therefore, for sufficiently large N, equations (3.24) and (3.25)
imply that for all j € [j(t) — 0kn, j(t) + 0kn] N7Z, we have

1-20 _ /Wl/“N 1+26

< .
. q(u) du < .

j/an
Combining this result with (4.9) and condition 1) above, we get that for sufficiently large
N,
(1—20)an (1+20)an
<Tiy1—T7; <
(a(t = 1) +n/Dky = 777 = (gt = 1) —n/Tkn

forall j € [j(t) — 0kn,j(t) + Okn] N Z. Because ¢g(u) > 1 for all © > 0 by Lemma 4.1 and
0 < n/14, we have

L < (1-26)q(t—1) < (1+20)q(t—1) < 140
37 qt=1)4n/T = qt—=1)—n/7 3
if n is sufficiently small. Because ¢ > 0 is arbitrary, the result follows. O

Lemma 4.5. Let Cs := C3 + 1+ 46. Suppose j > k* + 1. Suppose 7,41 < (1; and
Tj+1 < anT. Suppose also that either 7;.1 < (3 or j < J. Then for sufficiently large N,

¥ < (/Tj+1G()d><25 (4.10)
— < exp (v)dv | < —. .
CGH“ Tj ! H
Also, suppose k* +1 < j < J, 7; <t < (1,5, andt < anT. Then for sufficiently large N, if
t
2
exp </ G, (v) dv) > 22 (4.11)
- J

we have 7,1 < t.

Proof. Suppose j > k* +1, 7541 < (1,5, and 7541 < anyT. If 7541 < (3, then (3.26) gives
Tjt1 > 7; +an/3kn > ij". Now suppose instead j < J. Then for ¢ < TJ* A (1,5, part 1 of
Proposition 3.3 gives X 1(t) < s/2u. Since X ,(t) = 0 for t < ¢;, part 2 of Proposition
3.3 gives for t <7/ A (1,5,

G (o) du ) J/4Tkn
X;a(t) < (1+48)el7s W < (14 48)e27 0 =) = (1 + 46) (S) :
"

which by (3.27) is less than s/2u for sufficiently large N. Thus, X;(t) < s/p if N is
sufficiently large and ¢ < 7/ A (1,j, which means 7,4, > 77 in this case also.

Recall from (1.23) that X,(741) = [s/p]. When 7,41 > 77, equations (3.18) and (3.19)
with t = 74, give

(1 - d8)e " GOP < [5/u] < (14464 Cy)el T G0,

The result (4.10) now follows immediately from rearranging this equation and observing
that [s/u]/((s/u)(1 — 46)) < 2 for sufficiently large N.

To prove the last statement of the lemma, suppose £* +1 < j < J, 7; <t < (14,
t <an7T, and (4.11) holds. For t < 77, if N is sufficiently large, then

t
/ Gj(v)dv < sJ(1] —7;) < log <S),
o Iz
contradicting (4.11). Therefore, we must have t > T;. If Tf <t < 7j4+1, then equation
(3.19) gives X;(t) > 2(1 — 46)(s/n) > s/p, contradicting the definition of 7,14. Thus, if N
is sufficiently large, then 7;; <t, as claimed. O
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Proof of Theorem 1.4. Let n > 0 and ¢t € (1,2) U (2,00). Choose 6 = 6(n,t) such that
0 < 6 < 1/4 and the three conditions at the beginning of the proof of Lemma 4.4 are
satisfied. As in the proof of Lemma 4.4, choose € > 0, § € (0,1/14), and T > t. We may
assume that V is large enough that the conclusions of Propositions 3.3 and 3.6 hold with
probability at least 1 — €. For now we will suppose the conclusions of Propositions 3.3
and 3.6 hold.

Suppose £ is an integer with |¢| < 6ky. As noted following (4.9) in the proof of Lemma
4.4, the fact that [t — 1 —30,t — 14 36] C (0,1) U (1,00) implies, if N is large enough,
that j(t) + ¢ > k* + 1. Furthermore, because 6 < 1/4, for sufficiently large N we have
Vi) +e+K = Vit+1 > ant and, by (4.9), 74041 < an(t — 1+ 30) < ant. Therefore, by
(3.20),

(1- 5)‘9@[%;““ Gjt)+e(v) dv < X pelant) < (1+ 6)561":1_1(3;Hl Ginre(v) dv.

1 1
Consider first the upper bound when 1 < ¢ < 0ky. We have

X_ t 1 ant ant
log (W) < log (Jﬁ) +/ Gtyae(v) dv —/ G0 (v) dv

j(t) (aNt) () +e4+1 Ti(t)+1

146 Ti(t)+e+1
= log ( 1_5) - / Ciwe(v) dv + stlant = 7j()+1)

J(t)+1

1+9 £ Ti(t)+i+1
= log (1_5> - ;/T Git)+i(v) dv

J(t)+i
14

— Z S(é - i)(Tj(t)+i+1 — Tj(t)-‘ri) + SZ(CLNt - Tj(t)-‘,—l)' (412)
i=1

By Lemma 4.5,
¢

T dv < —01 i 413
—Z/T j(ty+i(v) dv < —Llog (C’gp) (4.13)

i=1 Y Ti(t)+i
By Lemma 4.4, with probability tending to one as N — oo, we have
¢

_ —n/3)san — :
- ; (=) (Tj)+it1 — Tjt)+i) < —W Z(f — 1)

_ _U=nBie-1), (Z) (4.14)

Also, by (1.26) and Lemma 4.4, with probability tending to one as N — oo we have

(1/2—d(t))(1 —n/3)an
q(t — l)k‘N ’

Yiwy+1 —ant = (1/2 = d@#)(viy+1 — Vi) =
which leads to

st(ant — Tj)+1) = LV +1 — Tiw+1) — L(Vw+1 — ant)

< llog (Z) _ 2= dw) A =n/3) <Z) (4.15)

q(t — 1)I€N
Combining (4.12), (4.13), (4.14), and (4.15) and using that
o0 —1) 1 02— 2d(t)¢
= —d(it)) = ——— 4.16
5t (2 ( )> 5 ; (4.16)
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we get

Xiw+elant) 1+0 (L—n/3) (2 —2d(t)l s
10g( Xj(t)(aNt) <log 1-5 —I—flogCe—q(ti o 5 log L) 4.17)

The argument for the lower bound follows the same steps. From Lemma 4.5, we get 2 in
place of 1/C% in (4.13), and the result becomes

X selant) 1-6 (1+n/3) (€2 —2d(t)¢ s
lo W) > 1o () — llog2 — log (= ). (4.18)

s < Xjwlant) )~ B\1+s BTt Dk 2 S\u
Since |d(t)| < 1/2, we have (¢£2 —2d(t)¢)/2 < (£* +¢)/2 < ¢*. Since g(t — 1) > 1 by Lemma

4.1 and log(s/p)/kn — 0o as N — oo by (1.7), it follows that when (4.17) and (4.18) hold
and N is sufficiently large, we have

Xioye(ant) 02 —2d(t)¢ s n?log(s/p)
1 JW)+e > + 1 <>’ < 2 O8B/H) 4.19
o8 < Xj(t)(aNt) 2q(t — l)k’N 8 W - kn ( )

Suppose now that —0ky < ¢ < —1. The proof is similar to the case in which ¢ is
positive. For an upper bound, note that

X; t)+Z(aNt)> ( ) ant
lo ZIW+ATNT) —_— v) dv —/ G (v) dv
g( Xj(t)(aNt) 5 Ti(t)+e+1 J(t)+f( ) Tj(t)+1 J(t)( )

+0 TJ(f)+1

< 5) + Git)+e(v) dv + sl(ant — Tj()41)

Ta<r>+i+1
1490 Ty(f)+7+1
<1 5) Gjt)+i(v) dv
i=0+1 TJ(f)-H
+ S(€=0)(Tj()+it1 — Ti(o+i) + sllant — Tjy41).  (4.20)
i=0+1

Using Lemma 4.5 again,

0

Ti(t)+i+1 2
Z / Gjty+i(v) dv < —Llog <N> (4.21)

i=041 Y Ti(t)+i

By Lemma 4.4, with probability tending to one as N — oo, we have

0
3 sl D — i) < LD ST ()

i—tt1 q(t = Dkn i—l+1
(1-n/3)0(¢ - 1) ()

= — log [ — |. (4.22)

2q(t— Dk \n

Repeating the reasoning that leads to (4.15) gives
s £(1/2 —d(t))(14+n/3) s
— T < /1 - - 1 — . 4.2

sl(ant — T 41) < Llog (N) = 1kn og p (4.23)

Combining (4.20), (4.21), (4.22), and (4.23), and then using (4.16) again along with the
inequality £(¢ — 1)/2 — £(1/2 — d(t)) < £2/2 — 3(/2 < 202, we get

X, (ant) 1+96 02 —2d(t)¢ s 2n0%log(s/ )
lo W) <lo ()—élo 2———— o <)—|—
& < X;m(ant) ) = B\1=% &L 2t — Dky 2\ 1) T 3¢t - Dy
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By following the same steps, we obtain the analogous lower bound

Xiyrelant) 1-6 02 —2d(t)¢ s 2102 log(s/ )
lo W) > lo <>+€10 Ce—————1o )—.
g( X;m(ant) ) = B\1+0 856 T o0t — Dky 2\ 1) T 3qlt — Dkn

Since ¢(t — 1) > 1 by Lemma 4.1 and log(s/u)/ky — o0 as N — oo by (1.7), it follows
from these upper and lower bounds that (4.19) holds for sufficiently large NV in this case
as well.

Since (4.19) is trivial when ¢ = 0, equation (4.19) holds for all ¢ € [0k, 0kn] N Z with
probability at least 1 — ¢, if N is large enough. Recalling (1.11), since € > 0 was arbitrary,
Theorem 1.4 follows. O

5 A useful martingale

In this section, we introduce a martingale which will be useful throughout the paper
for controlling the fluctuations of the number of type j individuals in the population.

5.1 Constructing the martingale

We first record the birth and death rates for different types of individuals. Let F}(t)
be the fitness of a type j individual at time ¢, which is max{0,1 + s(j — M(t))}, divided
by the sum of the fitnesses of the N individuals in the population. Note that, if there is a
birth event at time ¢, then F;(¢—) is the probability that a particular type j individual is
the one chosen to give birth. As long as every individual’s fitness is strictly positive, the
sum of the fitnesses of the N individuals in the population is

DX s = M) =D X;(0) + s iX;(8) = sM(1) Y X;(t)
=0 7=0 7=0 j=0
— N+ sM(t)N — sM(t)N

in which case F;(t) = (1+ s(j — M(¢)))/N.
There are three ways that the number of type j individuals could change at time ¢:

1. If j > 1, a type j — 1 individual could acquire a jth mutation at time ¢. This event
happens at rate 4X;_1(t—). So that our formulas hold also when j = 0, we adopt
the convention that X _(¢) = 0 for all ¢ > 0.

2. The number of type j individuals could increase by one because of a birth. This
happens if one of the N — X (t—) individuals that is not type j dies at time ¢, and the
new individual born has type j. Because each individual dies at rate 1, and when a
death occurs, the probability that a type j individual is born is X;(t—)F};(t—), the
rate at which new type j individuals are born is (N — X;(t—))X;(t—)F;(t—). We
define

Bj(t) == (N — X; () Fj (1), GRY

which can be interpreted as the rate at which a particular type j individual gives
birth following the death of an individual with a different type.

3. The number of type j individuals could decrease by one because of a mutation or
death. The rate at which one of the type j individuals acquires a (j + 1)st mutation
is pX;(t—). The rate at which the number of type j individuals decreases due
to a death is given by X, (t—)(1 — X;(t—)F;(t—)) because there are X;(t—) type
j individuals each dying at rate one, and when a death occurs, the probability
that the new individual born is not a type j individual is 1 — X;(t—)F;(t—). Thus,
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the total rate of events that reduce the number of type j individuals is ©X;(t—) +
X,;(t-)1 - X;(t—)F;(t—)). We define

Dj(t) = p+1 = X; () F(1), (5.2)

which can be interpreted as the rate at which a particular type j individual either

acquires a mutation or dies and gets replaced by an individual with a different

type.
Let X!(t) be the number of times in [0, ] that the number of type j individuals increases
by one. Let X ;l(t) be the number of times in [0, ¢] that the number of type j individuals
decreases by one. Then X (t) = N + X{(t) — X{(t) forall t > 0, and X;(t) = X?(t) — X{(t)
forall j e Nandt > 0.

From the rates obtained above, we see that if we define

W;’(t) = le?(t) — /Ot(,qul(u) + Bj(u)X;(u)) du (5.3)

and .
Wﬁ%ﬂ::‘Kf&)—p/ADﬂuLXﬂu)du, (5.4)
0

then the processes (WP(t),t > 0) and (W (t),t > 0) are martingales for all j € Z.
Therefore, if we define W (t) := ij(t) —Wjd(t) forall¢ > 0, then the process (W;(t),t > 0)
is a martingale for all j € Z*. Let AW;(t) = W;(t) — W;(t—). Because the process W; is
locally of bounded variation, the quadratic variation is given by

Wilt) = > AWj(w)?® = X(8) + X{ (1)

u€l0,t]

(see (8.19) of [16]). Because Wf + Wjd, being the sum of two martingales, is a martingale,
we get (see Definition 8.22 of [16])

(W) (t) = /O (1Xj-1(u) + Bj(u)X;(u) + Dj(u) X;(u)) du. (5.5)

We will work primarily with a different martingale. For all t > 0 and j € Z™T, let
G3(t) = By(t) — D;(t) = NF;(t) — 1 — .
As long as every individual’s fitness is strictly positive, we have

L = M)

Gi(t) = N -

—1—p=s(j— M) — p = Gy(0), (5.6)

where G(t) was defined in (3.11). We interpret G’ (¢) as the growth rate of the type j
population a time ¢. In Proposition 5.1 below, we define a martingale that will be very
useful for studying how the number of type j individuals evolves over time. This is similar
to the martingale studied in section 4 of [8].

Proposition 5.1. Forallt > 0 and j € Z*, let
t
4@:5%®W®&@—/M&q@fHQWMm—&wy (5.7)
0
Then (Z;(t),t > 0) is a mean zero martingale with

var(Z;(t)) = EU 2T E O WX () + By ()X (u) + Dy (u) X () du|
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Proof. Fort > 0and j € Z*, define
Li(t) == e Jo Gi(w) dv, (5.8)

The processes X; and I; are both semimartingales, so the Integration by Parts Formula
(see Corollary 8.7 of [16]) gives

Ii(t)X;(t) = 1;(0)X;(0) + /Ot Xj(u—) dI;(u) + /Ot Ii(u=) dX;(u) + [X;, Ll (5.9)

Because the processes X; and I; are locally of bounded variation, and the process I; has
continuous paths, we have (see (8.19) of [16])

[X;,I;ls =0 forallta.s. (5.10)
Also,
t ¢
/ X;(u—)dl;(u) = —/ X (u)G5(u)1;(u) du. (5.11)
0 0
Because

X;(t) = X;(0) + X3(t) — X'(t) = Xo(t) + W;(t) + /O (nXj—1(u) + G5 (u) X;(u)) du

and I;(t) is a continuous function of ¢, we get

/ I (u=) dX;(u) = / () (X1 () + G5 () X, () du + / I;(u) dW,(w).  (5.12)
0 0 0

Combining (5.9), (5.10), (5.11), and (5.12) and using that 7;(0) = 1, we get

Ii(1)X;(t) :Xj(0)+/0 Ii(u)pXj—1(u) du+/0 Ii(u) dWj(u).

Therefore, in view of (5.7) and (5.8), we have

7,(t) = / 1;(u) dW; (u).

Note that D;(t) < 1+ p for all ¢. Also, because 0 < F;(¢) < 1 for all ¢, we have B;(t) < N
for all ¢, and so the process (G (t),t > 0) is bounded. Therefore, using (5.5), for each
fixed t > 0, we have

5| [ 12 aow;)w

= E{/te—z.ﬂ,“ G v (X (u) + Bj(u) X (u) + Dj(u) X, (u)) du| < oo.
0

Therefore (see Theorem 8.32 of [16]), the process (Z;(t),t > 0) is a square integrable
martingale and

(Z,)(1) = / 12(u) d(W;) (u) = / €208 G0 (X (u) + By () X () + Dy (u) X, () .

Because Z;(0) = 0, the process (Z;(t),¢ > 0) is a mean zero martingale. Finally, because
Var(Z;(t)) = E[Z;(t)] = E[(Z;)(t)] (see Corollary 8.25 of [16]), the result follows. O
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5.2 Generalizations

It will often be useful to consider the martingale of Proposition 5.1 started or stopped
at a stopping time. Let (F;):>0 be the natural filtration of ((Xo(¢), X1(t),...),t > 0). Let 7
be a stopping time with respect to (;):>o. Let X7 (¢) := X;(¢tA7) and Z7 (t) := Z;(tA7) for
all t > 0. Then the process ((X{(t), X7 (t), X (t),...),t > 0) represents the population
modified so that it does not change after time 7. Because stopped martingales are
martingales, the process (Z7(t),t > 0) is a martingale with (Z7)(t) = (Z;)(t A7), and we
have the following corollary.
Corollary 5.2. Let 7 be a stopping time, and let Z7(t) := Z;(t A7) for allt > 0 and
j € Z7*. Then (Z](t),t > 0) is a mean zero martingale with

Var(Z1 (1)) = E { /0 T eI GO (X () + By ()X () + D () X, (1)) .

Also, the process ((Xo(t), X1(t), X2(¢),...),t > 0) is a Markov chain on the countable
state space S = {(zo,21,...) : &; € Z" for all j and Z;’;O z; = N} and therefore sat-
isfies the Strong Markov Property. Combining Corollary 5.2 with the Strong Markov
Property leads to the following result.

Corollary 5.3. Let x and 7 be stopping times with k < 7. For all j € Z*, let Z;”(t) =0
ift < K, and ift > &, let

tAT
ZET(t) = e I TG W v (A7) — / pXj 1 (w)e™ I G v gy — X (k).

J
K

Then (Z]""(k +1),t > 0) is a mean zero martingale with

Var(Z;"" (k +t)|F)

(k+t)AT —
N E{/ e 21 GO X; 4 (w) + By (u)X;(w) + Dy(u) X, (u) du

7|

Also, we will sometimes need to consider the type j individuals that are descended
from an individual that gets its jth mutation during some time interval. The following
result is established in the same way as Proposition 5.1 and Corollary 5.3 except that
the mutation rate is set to zero outside of the time interval (x,~].

Corollary 5.4. Let x and ~ be stopping times with k < ~. Letj € Z*. Fort > 0,
let X][K’V] (t) be the number of type j individuals in the population at time t that are
descended from individuals that acquired a jth mutation during the time interval (k,~],

which will be zero fort < k. Let ZJ[“’V] (t) :=0ift < k. Ift >k, let

rt * K t/\'Y " *
Zj[/i,’)’] (t) — e /. G} (v) dej[_ ] (t) _ / /J;Xj_l(u)(’,7 S G (v) dv du.
Then (ZJ[.“’“” (k +1t),t > 0) is a mean zero martingale. Denoting by Bj[-'”] (t) and D][-””] (t)
the expressions on the right-hand sides of (5.1) and (5.2) with X\""(t) in place of X;(t),

J
we have
K+t "
Var(Zj[”’W](m +t)|Fs)=F [/ 2/ Gj(v) dv (X1 (W)L e (1,4]
K

+ B w) X (@) + D ) X I () du

J J

.7:,{] . (5.13)

Furthermore, if T is a stopping time with x < 7, then (Z][K’V]((m +t)AT),t >0)isa

mean zero martingale, and Var(Z][»“‘”] ((k +t) AT)|F.) is obtained by replacing k + t with
(k+1t)ATin (5.13).
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Remark 5.5. By the Strong Markov Property, the result of Corollary 5.4 holds even if j
is random, as long as j is F,-measurable.

5.3 A related supermartingale

We will also need to consider a supermartingale that involves not just the individuals
of type j but the individuals of all types less than or equal to j. For j € Z1 and ¢t > 0, let

Si(t) := Xo(t) + X1(t) + - + X;(t).
There are two ways that the value of the process S; could change at time ¢:

1. The number of individuals with j or fewer mutations could increase by one because
of a birth. This happens when one of the N — 5;(¢—) individuals with more than j
mutations dies and is replaced by an individual with j or fewer mutations. Because
each individual dies at rate 1, and when a death occurs at time ¢, the probability
that a type ¢ individual is born is X,(t—)F,(t—), the rate at which this occurs is

(N = S;(t-)) zjj Xo(t—)Fo(t—). (5.14)
£=0

2. The number of individuals with j or fewer mutations could decrease by one because
of a mutation or death. The rate at which one of the type j individuals acquires a
(j+1)st mutation is X, (t—). There are S;(t—) individuals with j or fewer mutations
that could die, and when a death occurs, the probability that the new individual
born has more than j mutations is 1 — Y ;_, X¢(¢t—)F;(t—). Therefore, the total rate
of events that reduce the number of type j individuals is

S;(t—) (1 - le(t—)m(t—)> + uX;(t—). (5.15)
=0

Let ‘
J
Vi) == N Y Xe(8)Fo(t) — S;(t) — nX;(0),
£=0
and note that the difference between the expressions in (5.14) and (5.15) is Vj(t—). Thus,
reasoning as in the argument after (5.3) and (5.4), the process (5;(t) — fot Vj(u) du, t > 0)
is a martingale. This leads to the following proposition.

Proposition 5.6. For all j € Z* andt > 0, let

Gj(t) := NE)(t) =1 — pllgp;
i) =, ax | (NE() il ge=5y),

and let Y;(t) == e~ J§ Gi@) dvS.(t). Then (Y;(t),t > 0) is a supermartingale for all j € Z.*.

Proof. Lemma 3.2 in Chapter 4 of [9] states that if (X (¢),t > 0) is a process which
takes its values in a complete separable metric space F and is adapted to (F;);>o, and if
f:E —= Randg: E — R are bounded measurable functions such that inf,.cg f(z) > 0
and (f(X(t)) — fotg(X(u)) du, t > 0) is a martingale with respect to (F;);>o, then the
process whose value at time ¢ is

sxwyes (- | t 2 )
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is a martingale with respect to the filtration (F;);>o. We can apply this result with
X(t) = (Xo(t), Xa(t),...), f(X(t)) = S5;(t) +n where n > 0, and g(X(t)) = V;(t)L(s;t)>0}

to get that if
v = i+ we (- [ oA
<

then (Y}'(t),t > 0) is a martingale. Note that Fj(t)

1is. (0 dv |,
Ty Bi@>0 v)
F;(t) for all £ < j. Therefore,
Vi) N~ Xl LX) i
(NE,(t) =1 — plg_jy) < ) < G;(t). (5.16)
SRR nE =) g&anj ’
If0 <wu <t then foralln > 0,

= B[]
< E[Y)(t

:Y??( Ye = [ (G (0)=(V;(v) /(S () +m)) s, (v) >0} dv

E[ei fot Gj (U)Il{sj<v)>0}dv(5j (t) + 77) ’]:“]
. (t)e-.f(:(éj(v)—(vj<v>/<sj<v>+n>>ﬂ{sj<v>>°}d”!fu]
(

[ Fule™ 151 (@50 =V @)/(S; ) Hm s, 050y o

IR CORE)
Letting n — 0, we get
Ee™ o G100t )| F,] < o7 I8 G0 000 g, () (5.17)

Because S;(t) = 0 whenever S;(v) = 0 for some v < ¢, the indicators on both sides of
(5.17) can be removed. It follows that E[Y;(t)|F.] < Yj(u). Thatis, (Y;(t),t > 0)is a
supermartingale. O

Remark 5.7. As long as G(t) = G} (t), since we are assuming N is large enough that
s > u, for all ¢ < j we have

NF(t) =1 =Gp(t) + p=G(t) + p = s(t = M(t)) < s(j — M(t)) — p = G, (1),
and therefore G(t) = G;(t).

6 Proof of Proposition 3.1

In this section, we study the behavior of the process before the time ¢* defined in
(3.6). We prove Proposition 3.1. Recall the definitions of ky, &y, k;]f, and k£* from (1.11),
(3.2), (3.3), and (3.4). Part 1 of Proposition 3.1 says that for j < kj;, the number of type j
individuals at time ¢ € [0, ¢*] is well approximated by z;(t), which is defined in (3.7). Part
2 handles the delicate case in which there is an integer j in the interval (ky, k};). Parts
3 and 4 say that for j > k&, no type j individuals appear before time ¢*, and there are
fewer than s/ individuals of type k* through time ¢*.

6.1 Bounding the mean number of mutations
Before time t*, the mean number of mutations in the population is close to zero.
Accordingly, let n := uk?;/s, and define the stopping time
= inf{t: M(t) > n}.
Recall the definition of the martingale (Z;(t),¢ > 0) from (5.7). We will consider the
processes (X7 (t),t > 0) and (Z7(t),t > 0), where X7 () = X;(t A7) and Z7(t) = Z;(t A7)
for all ¢ > 0. From assumption A3 and (1.8), we see that for all a > 0,

Boa _ M
gkNis“‘H

(skny)* =0 as N — oo, (6.1)
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so in particular n — 0 and s — 0 as N — oo. Therefore, we may and will assume
throughout this section that N is large enough that sn < 1. This implies that the fitness
of every individual is strictly positive before time 7, which means, as noted in (5.6), that
G5(t) = Gj(t) = s(j — M(t)) — pforall j € Z* and t < 7. Our first goal is to show that
with high probability, we have 7 > t*, and so stopping the process at time 7 does not
change the behavior of the process before time ¢*. To do this, we need the upper bound
on E[X](t)] provided by the following lemma. This lemma will also be useful for first
moment estimates later in the proof.

Lemma 6.1. Forallt > 0 and j € Z*, we have

< Np?(est —1)7

EIX7 ()] < (6.2)

sl
Proof. Let t > 0. Let m € IN, and for i € {0,1,...,m}, let t; := (i/m)t. Let X"""*')(z)
be the number of type j individuals at time ¢ that are descended from individuals
that acquired their jth mutation during the time interval (¢;,¢;.1]. Then the process

(Z}ti’ti+1] (t;+t),t > 0) introduced in Corollary 5.4 is a mean zero martingale. The process

stopped at time 7 is also a mean zero martingale, so
— [T G (v) dv o[t tis] b1 AT — [ Gy (v) dv
Ele 't X;H(tAT)| = E / pX7 g (u)e Tt dul.
t;

Now sj — sn — p < Gj(v) < sj for all v € [0, 7), which implies that
[ti,tit1) sj(t—t;) = [N Gi(v) dv o [titiga]
BIXt (AT < e E[e D ¢ (20 T)}

tit1 AT
Sesj(t—ti)E[/ * ’uXJTl(u)e—(sj—sn—u)(u—ti)du]

ti

tit1 .
< e(sn+#)(ti+1*ti)/ ueSJ(t*")E[X;q(u)] du.

t;

Summing overi € {0,1,...,m — 1} gives

t

BIXG (1)) < e [ eI BIXT (u)] du
0
and then letting m — oo gives
t .
E[XT(t)] < / eI BIXT_ (u)] du. (6.3)
0

We now use (6.3) to prove (6.2) by induction. Because X[ (t) < N forall ¢ > 0, we
have E[X[(t)] < N for all ¢t > 0, which establishes the result when j = 0. Suppose j > 1
and (6.2) holds with j — 1 in place of j. Then by (6.3),

t j—1 j sgt t
_ N J _ N 19 e57 . )
E[X] ()] < / pesit—n) B _(gsu _qyitgy < —FET / e~ s (e5% — 1)1~ 1 g,
0 si=1(j —1)! si= i =11 Jo
Because . i
s s ; 1—e™s%)/
/ emsn(en 1yt gy = L2 (6.4)
0 S¥)
the result follows by induction. O
Lemma 6.2. We have A}im P(r<t)y=0.
—00
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Proof. If 7 < t*, then M (t* A7) = M(7) > 1, so by Markov’s Inequality,
E[M(t* A T)]

P(r<t*) < P(M(t"AT) 2 1) < 7

By Lemma 6.1,

E[M(t* AT)] = % ZjE[X

j=1
SN e =y
= -ny srm(ier-n)
=ye’,

where y = (u/s)(e*"” — 1). Recalling (3.6), we have y < (u/s)e®t < (u/s)k};. Therefore,
in view of (6.1), we have y — 0 as NV — oo, and thus ye?¥ < 2y for sufficiently large N.
Using (1.6), for sufficiently large N,

2y _ 2(u/s)ky
n = (u/s)k3y

as claimed. O

P(r <t*) <

—0 as N — oo,

6.2 Controlling the fluctuations in X

Our goal in this subsection is to obtain sharp bounds on the fluctuations of the number
of type j individuals before time ¢*. Because the randomness can be expressed in terms
of the martingales Z;, the key result is the next lemma, which will provide control on
the value of | Z;(t)|. Before stating this lemma, we establish a simple bound on the birth
and death rates that will be useful throughout the paper. Note that for all £ such that
all individuals at time ¢ have a strictly positive fitness, and in particular for all ¢t < 7, we
have

Bj(t) + Dj(t) = (N = 2X;(8)) F5(t) + 1 + p

_ (N—2Xj(t))(§v+8(j_M(t))) F14p

<2455+ p.

Because sk:j{, — 0 as N — oo by (3.5) and assumption A3 and p — 0 as N — oo, we have
for j < ki,
B;(t)+ D;(t) <3 for sufficiently large N. (6.5)

For future reference, note that (6.5) also holds for all j < J = 3knyT + k* + 1.
Lemma 6.3. Let ¢ > 0. For sufficiently large N, we have

Npit*ky . €
Pl s ZT()| < 164 ———= forall j <kt ]| >1-— —.
(ﬁ&?q' j (O =16\ = j < N) 5

Proof. By Corollary 5.2, the process (Z7(t),t > 0) is a mean zero martingale. Since
Gi(t) = G;(t) for t < 7, we have

Var(Z; (1)) = E[/ T2 GO B (X, () 1 By ()X, () + Dy ()X (1)) du.
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Combining this result with (6.5) and Lemma 6.1, we get

t* ) N‘j Su_lj—l N‘] Su—IJ
Var(Z7 (")) g/ 62(Sanu)u< P — 171 BN (e — 1) )du
0

sI=1(G —1)! 87!

. Nyl [t , , ,
< 2wt Sj/;' / e 2 (e — 1) tsj 4 3(e* — 1)) du
Mo
5 t+*
< 2l % / (e *UHDugj 4 3657 du, (6.6)
577 Jo

For j < k7, the result (6.1) implies that
. ; 4
2(sn + p)t* < 2(uky + p) ( log kN> -0 asN— oo (6.7)
S

and therefore ¢2(s7+W)t" 3 1 as N — co. Also, as a consequence of assumption A3, we
have e 50+ Dusj 4 3¢9 < skl +3 — 3as N — oo for all u € [0,*]. Thus, for sufficiently
large N,

AN pIt*

Var(Zj (t*)) < 71

(6.8)

forall j < kj{, By the L? Maximum Inequality for martingales,

Nuittkyn es7 4! €
P sup |Z7(1)] > 16~ < avar(Z7 (1)) - A < 6.9
(tg;gg*] ; (B> 571 )— ar(Z; (t")) WON ity = 16ky 0V

forallj < k;]f, if N is sufficiently large. Since kny — oo as N — oo by (1.6) and kj{,—kN —0
as N — oo by (3.5), we have (kj{, +1)/ky — 1 as N — oo. The result thus follows from
(6.9) by taking the union over j € {0,1,..., |k} |}. O

The next lemma shows that when the processes Z; are bounded as indicated in Lemma
6.3, the processes X; will stay fairly close to the deterministic functions x; defined in
(3.7). Because the difference between X; and x; depends in part on the difference
between X;_; and z;_,, the proof proceeds by induction. Rather precise bounds are
needed to prevent the errors from accumulating too rapidly during the induction process,
so some technical work is required to obtain sufficiently sharp estimates.

Lemma 6.4. On the event that t* < 7 and

Nuit+k
sup |Z;(t)| < 16y~ forall j < kf;, (6.10)
te[0,t%] esty!

we have, for allt € [0,t*] and ¢ < k},,

sitiky 0
eNpijl (£—j

4
|Xo(t) — 2o(t)] < wo(t) ((E +1)(sn+p)t+16> I (1- e—st)—f) (6.11)
=0 ’

In particular, for all ¢ < k., we have

) ;
sIt*kn £ et
sup | Xp(t) —ze(t)] < xp(t* <€—|—1 sn+u)t* +16 —_ (1 —¢"° J).
S X0 =0 < 2et) (4400 4163 255 =)

(6.12)
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Proof. Throughout the proof, we will assume that t* < 7 and that (6.10) holds. This
implies that G (u) = G;(u) for u < t*. For j < kj; and t € [0,t*], define

it | Npit*kyn

We will first show by induction that for £ € {0,1,..., |k};|} and ¢ € [0,¢*], we have

-1 0—j t ‘
|Xo(t) — zo(t)] < Ho(t) + = L ESE /O Hj(u)es ) (1 — e=st=u)ye=i=1 gy
=0 '

(6.13)
Consider first £ = 0. Suppose t € [0,t*]. From (5.7), we get

Xo(t) = elo G dv (N 4 7,(1).

Because —sn — u < Go(v) < 0 for all v € [0, ¢], it follows that

. Nt*k
1 Xo(t) = N| < N(1 — elo Go®) dvy 4 70 (6)| < N(sn + p)t + 164/ - N

Therefore, since z((t) = N for all ¢ € [0,t*], we have

| Xo(t) — zo(t)| < N(sn+ p)t+ 164/ Nt:kN = Hy (1),

so (6.13) holds for ¢ = 0.
Next, suppose (6.13) holds for £ — 1, where ¢ > 1. Let ¢ € [0,¢*]. Equation (5.7) gives

t
Xg(t) = efot G (v) dv(/ /Lngl(U)e_fOu Gy (v) dv du + Zg(t))
0

t
N /0 pX o1 (u)els G gy elo Gel) dv 7, (1)

t "t t rt
= / U(XZ—I('UJ) — l'e_1(u))€ju Gy(v) dv du +/ ,uxg_1(u)(€J" Ge(v)dv _ esf(tfu)) du
0 0

¢
+ / pe—q (u)e* T duy + elo Ge) wZ,(t). (6.14)
0
Equation (6.4) gives
t N'uéesét t
0(t— _ s -1, —st _
/0 pxe—y (u)e* T duy = m/o (e — 1) e du = x4(¢). (6.15)

AlSO, ‘ef;’ Gy(v) dv _ esé(tfu)| _ 6s[(tfu) |€_ fi(s]%(v)-ﬁ-u) dv 1| S esl(tfu) (577+ ,LL) (t o U) There-
fore, (6.15) implies that
t t
/ pzo—y (w)]els Ge0) dv _ gstl=w)| gy < (sp + u)t/ pze_1 (u)e* T du = (s + p)txe(t).
0 0
(6.16)
Furthermore, because elo Ge(v) dv < e%% and we are assuming that (6.10) holds,

” Nplt+k

Combining (6.14), (6.15), (6.16), and (6.17) leads to

+

| Xo(t) — xo(t)] < Ho(t) + /o Pl X o1 () = zo—y (u)]e* =) du.
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Using the induction hypothesis to bound the integral, we get

,1,‘

t 0—2
X0(0) ~ 0] < Hulo) + [ e (i REDI
0

Jj=

></ Hj(v)es(E—l)(u—v)(l_e—(s(u—/u)>é—j—2 dv) du. (6.18)
0

—3—2'553 2

The first term fot pe*t @ H, | (u) du in the integral on the right-hand side of (6.18)
matches the j = ¢ — 1 term on the right-hand side of (6.13). For j € {0,1,...,¢ — 2}, the
term corresponding to j in the sum on the right-hand side of (6.18) can be expressed as

t M€—1—j u )
/ iy e (/ H, (v)es(E=Du=0) (1 _ g=s(u=v)yt=j=2 dv) du
0 —j—2)s

sft v —s(u—v —s(u—v)\l—j—2
== J_Z'SMQ/H ></ (u=v) (] — gms(umv)yt= du)dv,

which matches the term corresponding to j on the right-hand side of (6.13) because the
substitution z = v — v combined with (6.4) gives

t t—v
/ e—s(u—v)(l _ e—s(u—v))[—j—Q du :/ e—sm(l _ e—sm)@—j—2 do = (
v 0

1— e—s(t—v))[—j—l
s(—j5-1)

Thus, by induction, (6.13) holds for all ¢ € {0, 1,..., |k% |} and ¢ € [0,¢*].
Next we will obtain (6.11) from (6.13). For j € {0,1,...,£—1}, the term corresponding
to j in the sum in (6.13) can be written as

=i ¢ - [Npit*k ,
H sju 1% N sl(t—u s(t—u)\f—j—
((—j—1)lst—1 /0 ((sn+u)uxj(u) + 16e* Hissjj' )e Htw)(] - emstw)yii—1 gy,

(6.19)

The first of the two terms in this expression is bounded above by

Nyt g , . )
(377 + )t - H ) / (e — 1>Jes€(t—u)(1 _ e—a(t—u))Z—J—l du.

st=151(0— 5 —1)!

By making the substitution z = ¢** and y = ¢** and then applying the result (3.199) of
[12], we see that

t - - 10— j—1)!
su _ 1)J sl(t—u) 11— —s(t—u)\f—j—1 du = (et — 1 L. J J
[ e =yt eyt = e -y g
so upper bound on the first term in (6.19) becomes
N 14 6st -1 V4
(sm+ p)t- Np(e” = 1) = (sn+ p)t - xe(t). (6.20)

sto!

The second term in (6.19) equals

o — .
164 ]z _ Npittky .esft/ ¢S (=i (] _ gmst=u)y =i gy,
(6 —j—1)lst—i— esijl 0

Making the substitution z =t — u, we get

t ) ) ) t ) (1 _ e—st)é—j
/ e—s([—])u(l _ e—s(t—u))é—y—l du = e—s(i—j)t/ esx(esx _ 1)4—]—1 dr = / /
0 0 s(€—j)
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Also, e5(1 — e=*1)¢77 = (est — 1)*(1 — e~**)~7 so the second term in (6.19) equals

16u47 Npittkyn . ‘ sth—i sTt*ky 14 b
- - e =D (1—-e%)7 =16 — . 1—e %) Ta(t
(€= j)st= \| " esig! (" =171 —e™) Nl it e ) ),

(6.21)

which matches the term corresponding to j in (6.11). Furthermore, we have

Hy(t) = (sn+ p)tze(t) + 16 %.0(1— =)l (t) (6.22)
0 - 577 /’L Ly eNu[€| : € Ty 9 .

and the second term matches the j = £ term in (6.11). Combining the bound in (6.20)
with the results in (6.21) and (6.22) gives the bound in (6.11).
Finally, note that if t € [0,#*] and 0 < j < ¢ < k}}, then

P =€) = (e = ) =) e ()

est _ 1)[ g(e _ 1)7£estjxe(t*)

= (e
=
(e — 1) e (1)
=

1—e ") Tay(t),

IA

so (6.12) follows from (6.11). O

6.3 Proof of part 1 of Proposition 3.1

Here we show how the results in the previous section can be used to obtain the
desired control on the difference between X; and x; up to time t* for j < k. The result
(6.24) below is essentially a restatement of part 1 of Proposition 3.1.

Proposition 6.5. Let t; := (1/s)log ky. For sufficiently large N, we have

P(IX;(t) — a;(t)] < da;(t) forall j < ky and t € [to, t*]) > 1 — % (6.23)
and
P( sup | X;(t) — z;(t)| < dx;(t") forall j < k;,) >1- 2 (6.24)
te[0,t*] 12

Proof. It follows from Lemmas 6.2 and 6.3 that the probability that t* < 7 and (6.10)
holds is at least 1 — ¢/12 for sufficiently large N. Thus, the proposition will follow from
Lemma 6.4 provided that for sufficiently large N, we have

Sjt*kN il
eNpijl (£—j)!

(0 +1)(sn + p) t+16z (1—e™*h)77 <6 (6.25)

for all ¢t € [to,t*] and ¢ < k. It will suffice to show that the two terms on the left-hand
side of (6.25) each tend to zero as N — oo uniformly in £ < k; and ¢t € [to,t*]. The first
term tends to zero by the reasoning in (6.7), so it remains to consider the second term.

For j < ¢ < ky and t* > (1/s)logky, we have (1 —e™*")77 < (1 — ky')™"¥ — e as
N — oo. Therefore, for sufficiently large N, we have (1 — e™*!)77 < 3. It now follows
from the Binomial Theorem that

4
sit*k €! s t*k sJ t*k
2 R (1—6‘“)‘333 G —Va(1+
=V eNwit (6—j)! eN W
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for sufficiently large N. To show that this expression tends to zero as N — oo for all
¢ <k}, it suffices to show that

. t*kN _ S k;]
S ' —_— = —
J\}l_lgolog <\/ N \/k:N.(l—i—\/;) ) 00. (6.26)

We use o(ky) to denote a term which, when divided by ky, tends to zero as N — oo and
O(1) to denote a term that stays bounded as N — co. Because n! ~ /2mn"+1/2¢=" by
Stirling’s Formula, we have

1
logky! = (k;, + 2) loghky —ky+0Q1) =kylogky — ky + o(kn). (6.27)

Also, because s/u — oo as N — oo by (1.8),

log ((1 + \/i> kﬁ) = ky log <1 + \/j> = %J_V log (Z) +o(kn),

and because assumption Al implies that

. kN
| —_— = 6.28
NSse log(1/s) > (6.28)

we have
logt* =loglog kn +log(1/s) + O(1) = o(kn).

Finally, note that ky logky = kn log kn +o(kn). Therefore, the logarithm on the left-hand
side of (6.26) is

.

1 N

2<logt* + logkn —logs—logN) +logy/ky +log <(1+ \/§> )
1

1
= 2(—logN+k:N10gkN —ky + kylog (s>> + o(kn)
1

1 _ _ _ log N log N
—| —log N +kylogky —ky +log N — log( )>+0k
o wlosky = fiy tog(s/m % \Tog(s/ ) ) O

1
= —ikN +o(kn), (6.29)

which tends to —oo as N — oo. The result follows. O

6.4 Proof of part 2 of Proposition 3.1

In this subsection, we consider the case in which there is an integer j € (ky, k).
As noted before the statement of Proposition 3.1, for sufficiently large N there can
be at most one such integer, so we will assume that N is large enough to ensure this.
Also, such a j may not exist for every N, so in this subsection asymptotic statements
as N — oo should be understood to mean that we consider a subsequence of integers
(IV;)$2, tending to infinity such that there is an integer in (ky, k}) for all :.

Recall that we can write j as in (3.9), with —1 < 8; < 2, and d; = max{0, 5,}. Recall
also that when such a j exists, we have t* = (4/s) log k. In this case, we can not use the
same argument as in the proof of Part 1 of Proposition 3.1 because the expression in
(6.29) does not tend to —oco as N — oo if k is replaced by kﬁ Instead, we will break
the type j individuals into three subpopulations. Define the times

(B; + 1) logkn —2}
s b

(dj + 1) log kN
—8 .

71 := max {0,
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Note that 0 < r; < r9 < t*. For each type j individual in the population, we can consider
the time when this individual or its ancestor acquired its jth mutation. For ¢t € [0,t*],
using the notation of Corollary 5.4, we can write

X;(t) = Xy + x4 x ), (6.30)

Here we are dividing the type j population into three groups, depending on whether the
jth mutation occurred before time r;, between times r; and r,, or after time r,. We will
consider these three subpopulations separately in the next three lemmas.

Lemma 6.6. We have
lim P(X\ ") =0) = 1.

N —oc0

Proof. Clearly Xj[o’rl](t) =0forall ¢t € [0,t*] when r; = 0, so we will assume that r; > 0.
Each type j — 1 individual is acquiring mutations at rate p. Therefore, by Lemma 6.1,
the expected number of times, before time r; A 7, that a type j — 1 individual acquires a
jth mutation is at most

J 1 )
Ny )'/ (et — 1Y~ dt. (6.31)
+JO

T < —
/0 HELX] () dt < oot

We have

1 T1 esjrl kj(5j+1)672j
/ (et — 1)y tdt < / etdt < —— =N .
0 0 sJ S

Therefore, for sufficiently large N, the expression in (6.31) is bounded above by

Nujk%BjH)e_Qj
595! '

By Markov’s Inequality, this expression also gives an upper bound for the probability
that at least one type 7 — 1 individual acquires a jth mutation by time r; A 7. Using (3.9),
the reasoning in (6.27), and the fact that

jlogj=jlogky + o(kn) = knlogkn + o(ky), (6.32)

we get

N Jk](ﬁj"rl) —2j
log ( o ffsjj' ¢ ) —1log N — jlog <Z> +(B; + 1)jlogky — 2j — log j!
= —Bijknlogkn + (85 +1)jlogky —2j — (jlogj — j) + o(kn)

= —j+o(kn),

which tends to —oo as N — oco. Thus, the probability that some individual acquires a
jth mutation by time r; A 7 tends to zero as N — co. Combining this observation with
Lemma 6.2 gives the result. O

For the following lemma, recall that because d; = max{0, ﬂj}, we have d; <0, and
therefore k;;,d-’ is either constant or tending to infinity as N — oo.

Lemma 6.7. For sufficiently large N,

195 —d;

1,72 * * €
P<X][ %) > — k" (t )) <=

12°
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Proof. First, suppose 3; > 0. By applying the argument that leads to (6.3) followed by
the result of Lemma 6.1 and then (6.4), we get

T2 .
EXI (e AT < / pei = BIXT ) (u)] du

71

Nﬂjesjt /7-2 e—sju(esu _ 1)j—1 du

s,
Npdesit” i i
- % ((1 —em2) — (1 - e_“l)]). (6.33)

Since L (1 —e752)) = j(1 — e*%)"1se% < sje~*" and ro — r; = 2/s if N is sufficiently

large, we have

(1 B efsm)] _ (1 _ efsrl)j < (7,2 _ 7’1)5‘]'6787”1 < 262jk;[(/3j+1)' (6.34)
Since j/ky — 1 as N — oo and

st™ _ 1\J J
= (Y L asN oo (6.35)
esit* k3 ’

it follows from (6.33) and (6.34) that for sufficiently large N, we have

15N (et —1)7

[r1,72] (4 =B _ —Bj,. (4%
E[le 2t A7) < sl kT =16k (t7).

When 3; < 0, we can use instead Lemma 6.1 to get E[X][-”’TZ] (t*AT)] < E[XT(8%)] < a;(t%).
Combining these results gives

1,7 * —d; *
BIXI (e A7) < 15k " (1)
for sufficiently large N. By Markov’s Inequality,

eBIX (A 7))
195k ™" 25 (%)

. . 195 4, N €
P(XJ[’" Pl nr) > ke )> < <
The result now follows from Lemma 6.2. O

Lemma 6.8. There exist positive constants ¢ and ¢/, not depending on ¢, such that for
sufficiently large N,

P(eky"a;(t*) < XV (#7) < kg (t9) > 1 - (6.36)

ol ™

Proof. Fort € [rq,t*], write

t * * t u *
ZJ[.T"”t ](t) — e G Ul”X][.TZ’lt ](t) — / pX;—1(u)e” 5wy dv g

ro
as in Corollary 5.4. Then
* tAT tEAT vk t*AT G d *
XJ[""%t ](t* A 7_) — / ’quil(u)e.fu Gj (1’) dv du _|_ e-]T'Q j(v) ’UZJ[vT%t ](t* A\ ’T). (637)
To
Note that 2 > (1/s) log kn. Assume for now that 7 > ¢* and that the event in (6.23) holds

so that, in particular,

(1 — (5).%&;1(15) < Xjfl(t) < (1 + (5)1&;1(?5) forallt e [Tg,t*]. (6.38)
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Using (6.4),

+ i +
. N 2 es? . .
/ ,uacj,l(u)e“(t —u) du = %/ e—sju(esu _ 1)]—1 du

Npdesit”
- sig!

Nyl est 1Y’ 1y
=—(1-— - |1— — . 6.39
515! (( k%) ( k}f}“) > (6:39)

We need to consider the asymptotic behavior of hy := (1 — ky*)7 — (1 — k:]?,(dﬁl))j as
N — oco. First suppose 3; < 0. Note that & (1 — z)/ = —j(1 — z)7~!. Therefore, using ~
to denote that the ratio of the two sides tends to one as N — oo, we have

T2 T2

(L—e) — (1 —e7*m2))

hy < (kg — k) < gk @ < k™ (6.40)

and

h > (1= kg kT — k) ~ ey (6.41)

Combining (6.35), (6.38), (6.39), (6.40), and (6.41), we get that there are positive
constants c; and c; such that for sufficiently large N,

"
clk;,dj z;(t%) < / qu_l(u)eSj(tt“) du < CQk;/dej(t*). (6.42)

T2

In view of (3.1), the constants ¢; and ¢y can be chosen so that the equation holds for all
allowable values of §. Also, using (6.38) and then reasoning as in (6.16), we get

¢ AT Lk
og/ X (u)(elu TG v psi Ty gy < (14 6) (sm + p)tta; (7). (6.43)

T2

Since (14 6)(sn + u)t*k}i\? — 0 as N — oo by the reasoning in (6.7), it follows from (6.42)
and (6.43) that there are positive constants c3 and c4 such that for sufficiently large N,

't AT —d.
Cgk;fdjfﬂj (t*) S / ,qu_l(u)efut Gj (v) dv du S C4kNdJ$j (t*) (644)

T2

We still need to ?ont}rol the second term on the right-hand side of (6.37), which
Tz,t*

requires bounding Z; (t* A 7). By Corollary 5.4,

t AT u
Var(Z™" 1t A7) Fy) = E U RGO ()

T2

N Bj[_rz’t*] (u)XJ[-TZ’t*] (u) n D;”?,t*] (U)X][_m.,t*] (u)) du

7).

We now take expectations of both sides of this equation. Using that X][-”’t*] (u) < Xj(u)
for u < 7, that B][m’t*](u) + Dj[-rz’t*](u) < 3 by the reasoning that leads to (6.5), and that
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Lemma 6.1 holds, we get for sufficiently large N,

E[Var(Z!""(t* A 7)|F,)]

5

t
< E[/ e 21 Gi) dv(uX]T_l(u) +3X7 (u)) du}

T2

t* j ( pSU j—1 j ( pSU j
< / 672(sjfsnfy)(u7r2) Np“j (6 ‘_ 1)] + 3N:uj (6‘ : — l)J du
sI=1(j —1)! 83!

T2

e o Npdo [V _ . .
S e2(577%*#)25 62537“2 . — / 6725]u((esu _ 1)j718]. 4 3(esu _ 1)]) du
S ]' T2

*

Nuyi [t _ .
e / (73U DUg) 4 36754 du,
ro

< 2(smtmt” 2sjr2

- si 4!
Reasoning as in the derivation of (6.8) from (6.6), we have e sUtDugj 4 3e—siu <
e=sIm2(e=s%g5 + 3) for u > ry, so for sufficiently large IV,

AN pIt*

[ro,t™] (4
E[Var(Z™" ((t* A7)|Fpy)] < i

eI (6.45)

Note that if Y is a random variable and G is a o-field such that E[Y|G] = 0, then by the
conditional Chebyshev’s Inequality,

P(|Y| > a) = E[P([Y| > alG)] < E[Vawlg)] _ B[Var(v)|g]

a? a?

Therefore, (6.45) implies

e [48N pitresit2\ e
P<Z][.2’t e Ar) > 53131) <. (6.46)

In view of (6.35), when the event in (6.46) holds, for sufficiently large N we have

ef:z*AT G, (v) dv|Z[r2,t*] (t* A T)l < esj(t*—Tz) 48N/Aj.t*esjr2 < 498jj!t*e-—sjr2 . (t*)
J = gsdj! - eNp !

Combining this result with (6.37) and (6.44), we get that when equation (6.38) and the
event in (6.46) hold and when 7 > t*, we have

(s — yw)ky Tz (%) < XY < (ea + yn kg™ 2 (8) (6.47)

for sufficiently large NV, where

_ |49sTjltre—sir: X

In view of Lemma 6.2, Proposition 6.5, and equation (6.46), the result will follow if we
can show that yy — 0 as N — oo. To show this, we make a calculation similar to the
calculation in the proof of Part 1 of Proposition 3.1. Noting that e 5772 = ¢~ (dj+1)ilogkn
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and using (6.27), (6.28), and (6.32), we get

1 4957 jlt*e—sir2 &
O - as -
& eNpl N

log49 + jlog (Z) +logj! +logt* — (d; + 1)jlogkn —loge —10gN> +d;logkn

N = N = N =

log N + Bjknlogkn + knlogkny — 5 — (dj + 1)kn logky — 10gN> +o(kn)

(jlog (Z) +jlogj—j—(dj+1)jlogky —logN> +o(kn)
J
2

(B; —dj)knlogkn .

5 (kn),

which tends to —oco as N — oo. Thus, yy — 0 as N — oo, which completes the proof. O

Combining Lemmas 6.6, 6.7, and 6.8 and using (6.30), we arrive immediately at the
following result, which is essentially part 2 of Proposition 3.1.

Proposition 6.9. There exist positive constants C; and Cs, not depending on ¢, such
that if j € (ky,k};) and N is sufficiently large, then
€

P(Crky"zj(t) < X;(t*) < Coky™a;(t*)) > 1 — 5

6.5 Proof of parts 3 and 4 of Proposition 3.1

In this subsection, we complete the proof of Proposition 3.1. We will need the
following lemma. Recall from (3.4) that £* is the largest integer less than k:]f,.
Lemma 6.10. We have
Nk +1esk™t"
lim

— =0.
N—oo sk +1f*

Proof. We have, using the reasoning in (6.27),

Nk +lesk™t” X s s .
log </;k+1k*'> =log N — (k* +1)log <M) + sk*t" —log k™!

= (k" +1—ky)log <5> + sk*t* — k* log k* 4+ k* + o(ky). (6.48)
n

We consider two cases. First, suppose k* + 1 — ky > 1/2. It follows from assumption
A2 that (kylogkn)/log(s/p) — 0 as N — oo. Therefore, the first term dominates the
expression in (6.48), so the expression tends to —oo as N — oo. On the other hand,
suppose k* + 1 — ky < 1/2. Then k* < kx — 1/2, which for sufficiently large N implies
that k* < ky by (3.5). It follows that there are no integers in the interval (ky, k%), which
means t* = (2/s)log kx. Because k* + 1 > k};, we have k* + 1 — ky > ki, — kx, so in this
case, starting from (6.48),

Nﬂk*+1esk*t* N s
= —2ky logky + 2k* logkny — k™ log k™ + k* + o(kn),
which tends to —oco as N — oo because ky ~ k* as N — oo. The result follows. O

The results below establish parts 3 and 4 of Proposition 3.1. Proposition 3.1 follows
immediately from Propositions 6.5, 6.9, 6.11, and 6.12.
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Proposition 6.11. For sufficiently large N,

P(X)(t) < s/p forall t € [0,t7]) > 1 — %.
Proof. For t < 7, we have By (t) — Di-(t) = Gj.(t) = Gp+(t) > s(k* —n) —u > 0 for
sufficiently large N. Since the rate of events that increase the number of type £*
individuals by one is thus always greater than the rate of events that decrease the
number of type k£* individuals by one, the process (X/.(t),t > 0) is a submartingale. By
Doob’s Maximal Inequality and Lemma 6.1, for sufficiently large NV,

BIXL.(£)] _ Np¥ (e — ¥
s/ 1 - ELARRY

P( sup X7.(t) > S) <
te[0,t%] 1%

This expression tends to zero as N — oo by Lemma 6.10 which, in view of Lemma 6.2,
implies the result. O

Proposition 6.12. For sufficiently large N,

P(X;(t*) =0 forall j > k} and t € [0,7]) > 1 — i.
Proof. Each individual of type £* acquires mutations at rate p. Therefore, by Lemma 6.1,
the expected number of times, before time t* A 7, that a type k* individual acquires a

(k* + 1)st mutation is at most

r T Nﬂk*+1 v st k* N/u’k*JrleSk*t*
/0 pE[XE (8)] dt < W/o (€ =1)" dt < —

This expression tends to zero as N — oo by Lemma 6.10 and the fact that £* — oo as
N — o0. The result now follows from Markov’s Inequality and Lemma 6.2. O

7 Proof of part 1 of Proposition 3.8

Recall that Proposition 3.5 states that M (t) is close to zero for ¢ < ay and close to
j during the time interval [v;,7;+1). The time {» can be interpreted as the first time
at which the approximation to M(¢) given in Proposition 3.5 fails to hold. Part 1 of
Proposition 3.8 stipulates that, during the time interval [t*,anT], the time (> can not
happen until either (; or (3 has occurred. That is, as long as the behavior of the type j
individuals follows the description in Propositions 3.2, 3.3, and 3.6, the mean number of
mutations in the population must satisfy the approximation in Proposition 3.5.

Note that part 1 of Proposition 3.8 is a deterministic statement. To prove it, we will
assume that (; = oo, meaning that until time ¢* the population behaves according to
Proposition 3.1. We will show that if ¢ € (t*,anT] and {; A {3 > ¢, then the approximation
in Proposition 3.5 is valid up through time ¢.

Some of the arguments in this section and subsequent sections may appear at first
glance to be circular. For example, in this section, we will need to use results from
Propositions 3.2, 3.3, and 3.6 to establish the approximation in Proposition 3.5, even
though Propositions 3.2, 3.3, and 3.6 have not yet been proved. The reasoning is valid,
however, because we will be working under the assumption that {; A (3 > ¢, in which
case the results of Propositions 3.2, 3.3, and 3.6 must hold at least through time ¢.

We begin with a lemma which shows that if ¢ < 7,41, then type j individuals contribute
little to the mean number of mutations at time ¢.

Lemma 7.1. Ift € (t*,anT] and (1 A (3 > t, then

1 Js
N Z FXi Oz 050 < Nu
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Proof. Suppose j > k* + 1. If the statement of part 1 of Proposition 3.3 holds, then no
early type j individual can get a type j + 1 mutation until after time 7,11 A anyT. No
other type j individual appears until after time {; > 7;. Thus, we have X;; = 0 for
t <T7jt1 ATj AanT. Also, 7j41 > 7; AanT, as noted in Remark 3.4. Thus, since we are
assuming that ¢; A (3 > ¢, we have X, (¢) = 0 on the event that ¢t < 7;. Therefore, when
t € (t*,anT] and (; A (3 > t, there can be at most one value of j for which 7;,; > t but

Xj (t) > 0.
Because (3 > t, the calculation in (3.28) implies that 7; > ¢ and thus X, (¢) = 0 for all
j > J. Because X,(t) < s/u when t < 7;;, the result follows. O

The approximation in Proposition 3.5 has four parts. The first part pertains to the
case t < ay, the second part pertains to the case t € [an,Yg++1), and the third part
pertains to the case in which ¢ € [y;,7,+1) for some j > k* + 1. The fourth part will be a
consequence of the first three. Proposition 7.2 below handles the case of t < ay.

Proposition 7.2. For sufficiently large N, on the event that (; = co and (1 A (3 > t, we
have for allt € (t*,an],
M(t) < 3e~slan =0,

Proof. Fix t € (t*,ay]. We will assume throughout the proof that {5 = oo and ¢; A {5 > ¢.
Suppose first that 0 < j < ky. Let a := (1 +6)?/(1 — §)%. By equations (3.12) and (3.8)
and the fact that G;(t) — Go(t) = sj for all t > 0, we have

t . * . . .
Xi(t) _ X(t) _ ow(t)ele GOV apd (e 1Y ey apdet

= . 7.1
N - Xo(t) - xO(t*)eftt* Go(v) dv sij! - sijl ( )
Therefore,
Lkn] lkn] . StN\ J st Lhn]-1 st\ J st
1 ) 7 [ ue _aue 1 (e ape® (/e
IR IVELDS ],<s> - X ﬂ( ) ST
j=1 j=1 Jj=0
Now
Hest _ HesaNefs(ath) _ efs(ath)' (72)
S S
Because e—$(e¥~%) < 1 and thus eln/s)e < e, it follows that
1 Lk~ ]
v > iX;(t) < aeemsen T, (7.3)
j=1

Next, suppose j € (k;,, k}) Then, using (3.10) instead of (3.8), the same reasoning
used in (7.1) gives that for some positive constant C,
X;(t) - Crpl edst
N —  sijl

For sufficiently large N, there will be at most one integer in the interval (&, k}) In this
case, using (7.2) and then using that (u/s)e®? < 1 for the last inequality, we get

1 ) C est 1 est j—1 C _ B
SN TR Dl 1O = e
j€lkn kt)NZ je(k;,k;)mzj' N

Consider now the case in which j > k* 41 and 7,11 < t. Then by (3.20),

Gj(v) dv

X;i(t) < (1+ 5)(8/u)ef:f+1 (7.5)
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The assumption that ¢ < (; entails that t* < 7«41 < 7541 in view of part 3 of Proposition
3.1 and Remark 3.4, so using (3.12), we get

S/,LL < Xp- (Tk*+1) < (1 + 5)Xk* (t*)ef;k*Jrl G (v) dv.
Therefore, another application of (3.12) leads to

't 1—20)s [t G (v) dv
X > (1 — )X (tF jt*Gk*(v)dU>(7.rk* e .
k (t) _( 5) k (t )e (1 (5) e +

Thus, since G;(v) — G+ (v) = s(j — k*) for all v > 0, combining (7.5) and (7.6) leads to

(7.6)

2 i
Xi(t) o (A+0)" (k) (t=rysn) o= [T, Gre (@) v
X (t) = 139

Now

Ti+1 ik’ Thk*+m+1
/ G (v) dv = Z (/ Grriem (V) dv — sm(Trr1me1 — Tk*+m))

k*4+1 k*+m

>

-
J
><

1
LA S

/ Gre4m(v) dv) =80 = K" ) (i1 — The41).
=1

m= Tk*4+m

By Lemma 4.5, for sufficiently large N we have

iE e o \IR
exp / Gl 4m (V) dv) > () .
(=1

m=1

Combining these observations gives that for sufficiently large IV,

=k
<a(l - 5)65(J*k*)(t*71+1) <CGM> eSU—R ) (Ti1—Trx41)
s

=k
— a1 ) <06M> 3Gk ) (t=Ten41)
S

Since 7y+41 > t* and e SU—FI < kR,Q(j*k*), it follows that for sufficiently large N,

g . e
a(CG,M)j es(j_k*)tk;/?(jfk:*) _ a(CﬁMe t>J

2
s skx,

X;(t)
K= (t) —

A

Thus, making the substitution ¢ = j — k*, for sufficiently large N,

1 o0 o0

, X (t S Copest\ "
N Z JXj(t)1{7j+1St} < Z &kzgtiﬂ{‘fwrl@f} < aZ(k +€)( o ) - (7.7
=1

2
sk
j=k*+1 j=k*+1 N

In view of (7.2), we see that C’6,ue‘9t/sk]2\, — 0 as N — oo, and therefore the infinite
sum on the right-hand side of (7.7) is dominated by the leading term when N is large.
Therefore, for sufficiently large N, using (7.2) again,

= . 2aCsk*  pest  2aCek* _,
§ : JXj(t)IL{TjJrlSt} < k2 : = e (
j=k*+1 N

an—t) (7.8)

==

= 2
s k%,

It remains only to consider the case in which j > £* + 1 and 7,11 > ¢, for which the
necessary bound is given in Lemma 7.1. Combining (7.3), (7.4), (7.8), and Lemma 7.1,
we get that for sufficiently large N,

Cr . 2aCek* Jse“““))es(am)
R, N '

M(t) < <ae +
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As N — oo, clearly C7/[ky]! — 0 and 2aCsk* /k3 — 0. As for the fourth term, we have
esan—t) < gsan — /i, which means

Jsesan—1) - Js?

7.9
N S0 (7.9)

as N — oo by (1.8) and (1.9). The result M(t) < 3e~(@~—*) follows because ae < 3 by
(3.1). O

We next consider the case in which ¢ € (an,Vk++1). During this period of time, the
mean number of mutations in the population increases rapidly from near zero at time ay
to near k* at time ~j+-41. The upper bound on the mean number of mutations given by
Proposition 7.4 below will be sufficient for our purposes. Before stating this proposition,
we prove a lemma which will also be useful in studying the population at later times.

Lemma 7.3. Suppose j and ¢ are positive integers with j > k*. Let a; = (14 6)%/(1 — §)
ifj=k"and a;j = (1+9)/(1+0)ifj > k* + 1. Supposet € [Tj1o11,7j+k]| N [0,anT].
Suppose also that (y, = co and (; A (3 > t. Then for sufficiently large N,

£ £(€—-1)/6k
X]"FZ (t) < a; CG/'[/ ﬁ ( )/ Nese(t—‘l'j+1)
X;t) — 7\ s s '

Proof. Assume for now that 5 > k* + 1. Then because (; > t, the bounds in (3.20),
combined with the facts that ¥4 x < Vj4s4+x and 741 < Tj4¢41 by Remark 3.4, give

Xj+l (t) aj eftJ-%—H—l Gite(v) dv
X, — ejtﬁl 3(v) dv
— e [T Graew) dv L 41 (Gt (0)=G;(v) dv
= aje
= aje” JGHT Grew) dv  sl(t—Tj41) (7.10)

If instead j = k*, then we use (3.12), as in (7.6), rather than (3.20) to get the lower
bound on X;(t), and we again obtain (7.10). In both cases,

Ti+e+1 Tjt+m+1
/ ]-‘ré v) dv = g / ]+€ v) dv
-

J+1 Tj+m

¢ Tj+m+1
=2 (/ Gjtm(v) dv+ s({ = m)(Tjrms1 — Tj+m)>~
m=1 .

Jj+m
We now apply Lemma 4.5 and (3.26) to get that for sufficiently large IV,

£

Tjte+1 s \* GN)
e G dv)| > (=) e s(l —m) - ——
Xp(fm s+el®) >— <06u> Xp(z E=m) S

J m=1
s\ sanl(l—1)
= —_— ex —_— .
Cep P 6kn
Because e**Y = s/u, combining this inequality with (7.10) gives the result. O

Proposition 7.4. There is a positive constant Cy such that if N is sufficiently large, then
forallt € (an,7vk++1), on the event that {y = oo and {; A (3 > t we have

M(t) < kn+ Cy.
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Proof. Suppose t € (an,Vk++1). Suppose also that (o = co and (; A (3 > t. Note that

1 1 =, 1 &
:NZJXj(t)g NZI@ X;(t) N;eka ) =k* +NZ€X,C*+[( ). (7.11)

j=0 =0

By Lemma 7.3, for sufficiently large IV,

ka*+tz
ZEXk i ]l{rk*+,3+1<t} < Z X (¢ Lir i<ty

1+6 ZOO <Ceu> (u)f(“)/ﬁk” S(t—Tpe 1)
M e k/*+l.
=

Because ¢ — T« 41 < Vi1 — The41 = ay and %Y = (s/u)*, we have for sufficiently large
N,

(1 + 6)2 u £(0—1)/6ky
N fok O i<y € 275 2206( ) : (7.12)
=1
If r, denotes the /th term in the sum on the right-hand side of (7.12), then r; = Cg and
for ¢ > 1,
Z/3k1\/ 1/3k7N
1
revr _ Collt )(“> < 206(“) , (7.13)
Te V4 S S

which tends to zero as N — oo because

1og % Ve tog ((2) = _ llog(s/n)?
s 3k 1 3logN ’

which tends to —oo as N — oo by (1.7). Therefore, the first term dominates the sum on
the right-hand side of (7.12) for sufficiently large N, so for sufficiently large N we have

1 & 1+46)2
~ > Xt (W) <ty < % - 2C5. (7.14)

=1
Finally, Lemma 7.1 and equations (1.8) and (1.9) give

o0

1 ) Js
¥ > X, < N 0 asNooe (7.15)

j=k*+1

Because k* —ky < kj{, —ky — 0as N — oo by (3.5), the result follows from (7.11), (7.14),
and (7.15). O

It remains to consider the case in which ¢ € [y;,v,41) for some j > k* 4 1. In this case,
we will need to consider carefully the contributions to M(¢) not just from individuals
with an unusually large number of mutations, as in the proofs of Propositions 7.2 and
7.4, but also from individuals with an unusually small number of mutations. Therefore,
we will use the following two lemmas, which parallel Lemma 7.3.

Lemma 7.5. Suppose j and /¢ are positive integers such that j — ¢ > k* + 1. Suppose
thatt € [’Yja'}/j—i-K} N [O, CLNT]. Let

ay(t) = (1+0)/(1=06) ift <oy
T R/ -9) it 7 k.

Suppose also that (y = co and (; A (3 > t. Then for sufficiently large N,

¢ £(6-1)/6k
Bt (2 (2) "
X;t) — W s
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Proof. Because (1 A (3 >t and t € [y;,7,+k|, we can use (3.20) to obtain a lower bound
on Xj(t). Also, we can obtain an upper bound on X;_, from (3.20) when ¢ < v,_/4 k, and
from (3.21) when ¢ > v;_¢4 x. This leads to

X]*f(t) < Qy ( ) J Ti—041 Gj_¢(v) dv

< 7 (7.16)
Xj (t) ej ]+1 i (v) dv
Therefore,
X;_o(t) - ae(t)eJ'Tjtj,,;Jrl Gje(v) dv Jr; Gi—e(v) dv B ae(t)efff,gﬂ Gj—e(v) dv ,—st(t—7;) 717
X;t) — o I G dv J7 Gy (v) dv B o I Gy() dv C
Because (; A (3 > t, it follows from Lemma 4.5 that for sufficiently large N,
eI Gy v 28 (7.18)

Also, using (3.26),

/TTJ Gij_e(v)dv = = </ij+1 Gj—m(v) dv — s({ —m)(Tj_m41 Tj_m))

Tj—m+1 _
S L7 ) -

j—m

so using Lemma 4.5 again, for sufficiently large N,

‘ -1 0(6—1)/6kn
Y e 2
elrimern Gt dv o (;) <‘:> . (7.19)

The result now follows from (7.17), (7.18), and (7.19). O

Lemma 7.6. Suppose i and j are positive integers such that 0 < i < k* and j > k* + 1.
Let
1 + (S if't S Yk*+ K
~(t) ::{ B it s s
N Ve + K-

There is a positive constant Cs such that if N is sufficiently large, then for all t €
[, vj+k] N [0,anT], on the event that {; = oo and {; A (3 >t we have

Xi(t)
X;(t)

o= 3G=D) (=)

< Cglﬁ(t)2j_k*k;[(k*_i) <M
S

>(jk*)(jk*1)/6kzv
Proof. Because (; > t, equations (3.12) and (3.13) give

X; (t*)e—s(k* —i)(t—t")
K (%)

Xi(t) < k(t)X;(tF)el i Gl dv — (g - X () el G () dv (7 90

Because we are working on the event that (; = co, we can use the bounds on X;(¢*) and
X~ (¢*) from (3.8) and (3.10). Recall that for sufficiently large N, there is at most one
integer j such that ky < j < ki, which then must be k*. Let

1 ifi =k~

Ni=14 (1+0kE/Cy  ifi<k®and ky < k* <k
(146)/(1—6) ifi<k*and k* <ky
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Because d; > 0, it follows from Proposition 3.1 that for sufficiently large N,

Xi(t) _ Nwi(t*) <s>kk' e
< =Ai| — et — 1)k,
X () = e (1) €™ =1

Now k*!/i! < (k*)* ~% and

st* 1 i—k* 1 —k*
(e pe > <<1—> —1 as N — oo,
est k.2
N

so for sufficiently large IV,

Xi (t*)efs(k* —i)(t—t*
X (%)

k*—i

: < 2/\i<5> (k7 )N st (i=k") gms(k” i) (1=t")

o

S\ K _ 4

=2\; () (k*)k —ip—s(k* i)t (7.21)

I

Also, equation (3.12) implies that for sufficiently large N,
Tk 41
142> Xy (rpe 1) > (1= 0)Xe (t9)el 7 Gro ) o,
7

and therefore,

“t 1 ¢ (V) dv
ka(t*)ejt* G (v) dv S ( ]j"sél’[’)effk*+l G+ (v) d ] (722)

Combining (7.20), (7.21), and (7.22), we get that for sufficiently large N,

k*—i

1 k. Lk 't = (v) dv

Xi(t) < 2Xin(t) - s{;” (8) (k) e s =t ey G002, (7.23)
-6 \p

By (3.20), for sufficiently large N,

Xj(t) > (]. — 5)86'[:.7"*'1 Gj(v) dv.
1

Combining this result with (7.23) gives that for sufficiently large N,

*_g J! Gpx (v) dv
Xl(ﬁ) 1+[,L/S S k B* i . e’ Tk*+1
< 2\;k(t Z ErVk T iemskTot 2 7.24
X](t) S K}( )(1 7 5)2 U ( ) € ef,:j+1 G]‘(’U) o ( )

Note that the ratio of exponentials on the right-hand side of (7.24) is the same as the ratio
of exponentials on the right-hand side of (7.16) with ;7 — £* in place of {. Consequently,
the argument used to prove Lemma 7.5 gives

Jon gy Grr (@) dv gk =k (G=k"=1)/6kn
e (23) (M) o3k t5).
/i1 G dv u s

Putting this result together with (7.24) gives that for sufficiently large N,

Xi(t) _ 2)\,H(t)2j—k* 1+ N/S (S)ji (’u) (G—k*)(G—k*—1)/6kn
T # s

% (k*)k*7i€75(]€*7i)tefs(j7k*)(t7‘rj)' (725)
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Because (y = oo, we have 7; > t* = (0/s)log ky, where § = 4 if kyy < k* < kj; and § = 2
otherwise. Therefore, recalling (1.24),

e Sk =iyt o=s(G—k")(t—75) — o=s(F—D)(t—T5)o—s(k"—i)7;

< e—S(j—i)(t—Tj)k;IG(k* —1)

j—i .
= <M) e*S<H><tﬂj>k1‘V9(k -9, (7.26)
S

Also, because k* — ky < kj; — ky — 0as N — oo by (3.5), we have

w\ kKT—1 +\ k=1
k kEy

1 N .
(kN) (m) 1 asN oo

Recall that A; = 1 when i = k*. Also, for i < k*, we have \; = (1+6)/(1 — ) when 6§ =2
and \; = (1 + 6)k%/C1 when 0 = 4. It follows that for sufficiently large N,

e IV 2(1+46) —(k*—i
(k* E*—ig,—0(k™—1i) < 92\, (0—1)(k™—i) [ S A— ( l). 7.27
Ai(k*)" Tk < 2Aiky =~ min{l —46,C} N ( :

Combining (7.25), (7.26), and (7.27) gives the result. O

Proposition 7.7. There exists a positive constant Cs such that for sufficiently large N, if
t € [vj,7j+1) N[0,anT] for some j > k* + 1, then on the event that (, = co and (; A (3 > t,
we have

|M(t) — j| < 05(675(%%-) + 6*5(7j+1*t))_

Proof. Throughout the proof, we work on the event that {; = oo and (; A (5 > t. We also
assume that ¢ € [y;,7;41). Note that

S 1<
|M(t) —j| < NZ jre(t) + NZEXj*K(t)
1 oo j—k*—1 1 k*
:NZK et +7 Z (X 4(t Z(]—Z)X (t). (7.28)
=1 =0

The argument for bounding the first term is similar to that in the proof of Proposition
7.4. By Lemma 7.3, for sufficiently large NV,

(X ye(t)
N ZéXJ+F OLfrsy <ty < Z S X, (t) oy Lo <t}

(=1
4 L(L—1)/6k
= 71 5 V4 —CGM It (/o s(t—Tj41)
= e .
1-46 — s s

Now t — Tj+1 = t— Yi+1 + Yi+1 — Tj+1 = t— Yi+1 +apn. Since ese‘”\’ = (S/M)E, it follows
that e3/(t=75+1) = (s/p)fe~*¢(i+1=1) and therefore
1 & 1 + 5 £(e—1)/6kxN
¥ 2 Kol zny < ZECG< ) e =0, (7.29)
=1

Let r; be the ¢th term in the sum on the right-hand side of (7.29). Then r; = Cﬁe_s(’y'j+l_t)
and for ¢ > 1,

2/3k 1/3k
Tet1 Co(£ + 1)6*8(%“*75) <,u> ; < 2Cs (u) N,
Ty l S B s
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which goes to zero as N — oo by the argument following (7.13). Therefore, the first term
dominates the sum on the right-hand side of (7.29), so for sufficiently large N we have

1 — e
N 2 XDy <ty < 20e 170, (7.30)
(=1
Also, by Lemma 7.1,
1 Js JsesOivr=w)
Zf ]1{71+ﬁ+1>t} < N Z JX; (t )]1{71+1>t} < — N < Te (Vi+1—t)
Jj=k*+1
(7.31)
Because t > (3, equation (3.26) gives vj41 — v = Tj+1 — 75 < 2an /kn. Therefore,
Jses(Vi+1=75) - i < s > 1+2/kn o
Nu N\ pu
as N — oo by (7.9). Combining this result with (7.30), we get that for sufficiently large
N,
ZeXM < (205 4 1)es0i+=1), (7.32)

Consider now the second term in (7.28). Suppose ¢ < j—k* —1,sothat j — ¢ > k* + 1.
As in Lemma 7.5, write ay(t) = (14 8)/(1 — 8) if t < vj_r4x and ay(t) = k%, /(1 —6) if
t > vj_e+x. Then Lemma 7.5 implies that for sufficiently large N,

14 £(¢—1)/6k
Xj—e(t) 25\ (VO
< ay(t) e i),
X;(t) p) \s

Because v; — 7, = ay and e**Y = s/u, we have
j j

L
e—sZ(t—‘rj) — e—sl(t—’yj)e—séaN _ <M> e—sﬁ(t—’yj). (7.33)
S

Therefore, for sufficiently large N,
£(6—1)/6k
Xj*f(t) < O[z(t)2€ a4 ( )/ Ne—sl(t—'yj)
Xj (t) - S ’

and so
j—k*—1

0(0—1)/8ky
Z (X, o(t <Za ezf( ) e stt=) (7.34)

Let v, denote the Kth term on the rlght-hand side of (7.34). Note that ¢ < v;41 < vj—14K
as long as N is large enough that K > 2. Therefore, v; = 2((1 + 6)/(1 — 6))e~**¢=%) and

for ¢ > 1,
o 2 0/3kn 1/3kn
V41 < 2k]\/v (f + 1) ﬁ e—s(t—’yj) < 4k,2 H

v T ¢ 5 = TN s '

To see that this expression tends to zero as N — oo, note that
1/3kn 2
1 s [log(s/1)]
1 k2 L =2logky — —1 — ) =2logky — ——"—"— 7.35
Og( N(S) ) T Og(u) BN gy T

which tends to —oco as N — oo by assumption A2. Therefore, the first term dominates
the sum on the right-hand side of (7.34) when N is large. For sufficiently large N, we
therefore have

1 j—k*+1
Z (X, _o(t) < 3et=m), (7.36)
/=1
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Finally, we consider the third term in (7.28). Suppose 0 < i < k*. Define k(t) as in
the statement of Lemma 7.6. By Lemma 7.6, for sufficiently large N,

E* k* . .
1 . (J —9)Xi(t)
N Z(] - l)Xz(t) < Z Xi(t)

i=0 i=0 J

o\ GEOGR D ek o
< Car(? () SO — ik e,
i=0
Because j — k* > 1, we have e =50 —0(t=%) < ¢=5(t=%) for i € {0,1,..., k*}. Also, if we let

vi=(j — z’)k;,(k*_i), then v;_1/v; <2/ky — 0as N — oo fori € {1,2,...,k*}. Therefore,
for sufficiently large N, the sum Z?:o v; is dominated by the ¢ = k* term, and we get

.
STG - ik T <205 - k).
1=0

It follows that

e~ 5(t=75) (7.37)

(G—k")(G—k"—1)/6kn
)

i
1 .. R "
G- %) < 2Can(2 -k (-
i=0
for sufficiently large N. If j = k* 4+ 1 and N is sufficiently large, then x(t) = 1+ 4§, and so

(I—k*)(G—k" 1) /6kn
) = 4(1 + 6)Cs. (7.38)

2Csk(1)297F (j — k*) (”

S
If j — k* > 2, then k(t) < k%. For £ > 2, let

S

£(0—1)/6kn
wyp 1= 20@@%2%(”) .

Then, for ¢ > 2, we have w1 /wy < 3(u/s)%/3*~, which tends to zero as N — oo by the
argument following (7.13). Therefore, for sufficiently large N, the ¢ = 2 term is largest,
so if j > k* + 2, then

. [ (G—k")(G—k"—1)/6kn 1 1/3kn
205k ()27 7K (j k)(8> < 16Csk% <S> ; (7.39)

which tends to zero as N — oo by the argument around (7.35). Combining (7.37) with
the bounds in (7.38) and (7.39) gives that for sufficiently large N,

o
1
T 20 = D)Xi(t) < 5Cge ), (7.40)
i=0
The result now follows from (7.28), (7.32), (7.36), and (7.40). O

Remark 7.8. Ift € [t*,v;41] N [0,anT), then on the event that {, = oo and (1 A (3 > t, it
follows from (7.30) and (7.31) that

I & (i — s
~ Z Xi(t) < Cse (i1=1) 4 ma
i=j+1

where we get s/Np in place of Js/Np for the second term from the argument in the
proof of Lemma 7.1 that there can be at most one value of ¢ for which 7,41 > t but
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X,(t) > 0. Likewise, ift € [v;,vj+x] N [0,anT], then on the event that {;, = oo and
(1 N (3 > t, equations (7.36) and (7.40) imply that

J

I
—_

1
. X;(t) < Cyest=),

3

Il
<

In particular, fort € [v;,v,+1), unless t is close to 7; or «y,+1, nearly all individuals in the
population at time t will be of type j.

Proposition 7.9 below establishes the fourth part of Proposition 3.5. Part 1 of
Proposition 3.8 follows immediately from Propositions 7.2, 7.4, 7.7, and 7.9.

Proposition 7.9. For sufficiently large N, ift € [1;,7;41) for some j > k* + 1, then on
the event that (o = co and (1 A (3 > t, we have M (t) < j — 1.

Proof. Suppose (y = oo and (3 A {3 > t. Suppose t € [7j,Tj4+1), where j > k* + 1. We
consider three cases. First, suppose ¢t < ay. Then M (t) < 3 < j — 1 by Proposition 7.2
for sufficiently large N.

Second, suppose t € (an,Vg++1). Then M(t) < ky + C4 for sufficiently large N by
Proposition 7.4. Because t > (3, the result of part 1 of Proposition 3.6 implies that
Trr+1 < 2an/kn. Therefore, (3.26) implies that for sufficiently large NV,

2an 2any  ky 2 2
- . < — _— = = — — ) < .
Tk +l+kn/3 S k‘N + kN 3 an k’N + 3 anN

Therefore, 711 > an > Ty« 414k, /3, Which means j > k* + ky /3. For sufficiently large N,
we are guaranteed ky + Cy < k* + ky/3 — 1, and thus M(¢) < j — 1.

Finally, suppose ¢ € [y, v¢+1) for some ¢ > k* + 1. Then M (t) < £+ 2C5 for sufficiently
large N by Proposition 7.7. Also, since t > v, = 7 + ay, equation (3.26) gives

2a k
Te+kn /2 <7+ TCN : 71\[ <t< Tj+1,
N

which means j > ¢+ ky/2 — 1. Since ¢ 4+ 2C5 < ¢ + ky /2 — 2 for sufficiently large N, we
again obtain M (t) < j — 1. O

8 Proof of part 2 of Proposition 3.8

Recall that Proposition 3.6 consists of three parts. The first part simply bounds 7y« .
The second part is concerned with R(t), which can be interpreted as the number of new
types that have emerged between times ay (¢ — 1) and axt. The third part pertains to
the spacings between the times 7;.

The time (3 is the first time at which one of the statements of Proposition 3.6 fails to
hold. Part 2 of Proposition 3.8 stipulates that (5 can not happen until either {; or (> has
occurred. That is, as long as the behavior of the type j individuals follows the description
in Propositions 3.1 and 3.2, and the mean number of mutations in the population behaves
as described in Proposition 3.5, the results of Proposition 3.6 must continue to hold. Part
2 of Proposition 3.8, like part 1, is a deterministic statement. To prove it, we will assume
that (p = co. We will fix a time ¢ € [t*, anT] and show thatif (; > ¢ and {3 > ¢, then (5 >,
which means that the conclusions of Proposition 3.6 are valid through time ¢.

8.1 An upper bound on 7~
We now establish the following result, which gives part 1 of Proposition 3.6.

Proposition 8.1. For sufficiently large N, on the event that (; = oo, {; > 2ay/ky, and
CQ > 2aN/kN, we have Thk*+1 < 2(1N/]€N.
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Proof. Suppose (y = oo, (1 > 2an/kn, and (o > 2an/kn. We need to show that
X+ (2an /kn) > s/p. By (3.12),

Xpoe 2an [kn) > (1 — 8) X (%)l Gie () o, (8.1)

Because (» > 2ay/kyn, we have ftz*aN/kN M (v) dv < 3/s by part 1 of Proposition 3.5.
Therefore, since 2uay/ky — 0as N — oo by (1.8), for sufficiently large N we have

2(11\7/]@]\] 2UIN/kN
/ G- (v) dv:sk*(QaN/kN—t*)—u(QaN/kN—t*)—/ sM(v) dv.
t

* t*

> sk*(2an /kn — t*) — 4. (8.2)
Also, by Proposition 3.1, if we set d = 0 when £* < ky, and d = dj- when k* >k, we get
Xp- (%) > min{(1 — &), Cy Yoy ap- (). (8.3)

Combining (8.1), (8.2), and (8.3), we see that there is a constant ¢ > 0 such that

N k* st* _ 1 k* .
X+ (20,N/]€N) > %(”) k;{de2sk: aN/kN.
S : e’

Because (1 — e " )¥" — 1 as N — oo, to show that X;-(2ay/kx) > s/u for sufficiently
large N, it suffices to show that

Nk +1

lim —2

ke kan/ky = o, 8.4
Nooo sk*+1fxI"N 8.4)

Arguing as in (6.48), we get
Nuk*Jrl —d 2sk™an/k
10g (Wk]v e N/ N
25k*aN
kn

= (ky — k* — 1)log (Z) — k*logk* + k* + +o(ky)

- (k:N Sk 14 ) log (;) K logh* + k" +o(ky).  (8.5)

Because k*/ky — 1as N — oo, and ky — k* > ky — kj{, — 0 as N — oo by (3.5), the
first term on the right-hand side of (8.5) is at least (1/2) log(s/u) for sufficiently large N.
Because (ky logkn)/log(s/p) — 0 as N — oo by assumption A2, it follows that the first
term dominates the right-hand side of (8.5), and thus the expression in (8.5) tends to
infinity as N — oo. Hence, (8.4) holds, which completes the proof. O

8.2 Approximating R(ant)/ky by q(t)

In this subsection, we establish the second part of Proposition 3.6, which states that
R(ant)/kn can be well approximated by ¢(t), where ¢ is the function defined in (1.13).
The first lemma controls the value of R(t) for ¢ < ay.

Lemma 8.2. Let 0 < n < 1. If N is sufficiently large, then for allt € [0,ay), on the event
that ¢y = oo, (1 > t, and (3 > t, we have

(1 — n)kne=MaN < R(t) < (14 n)kyetTmt/an, (8.6)

Proof. On the event (y = oo, Proposition 3.1 implies that 7; > t* forall j > k* +1 and
therefore R(t) = k* for t € [0,t*]. Because k*/ky — 1as N — oo and ¢t*/ay — 0 as
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N — oo by (1.7), it follows that for sufficiently large N, equation (8.6) holds for all
t € [0,t*].

Consider next the case in which t* < t < ay. Suppose also that (, = oo, (1 > ¢,
and (; > t. Let0 > 0. If k* +1 < /¢ < J and 741 < t, then Lemma 4.5 implies that for
sufficiently large NV,

Sl G £ 28 (8.7)
Cop 1%
Note that
Te+1 Te+1
/ Gy(v) dv = sl(Tp41 — Te) — 8 M) dv — p(Tex1 — 7). (8.8)
Te Te

Note that 7, > t* by parts 3 and 4 of Proposition 3.1. Therefore, because (s > t, part 1 of
Proposition 3.5 implies that
Te+1 anN anN
0<s Mw)dv<s M) dv < 38/ e =v) gy < 3. (8.9)
Ty t* t*
Since 2¢% < 41 and pay — 0as N — oo, it follows from (8.7), (8.8), and (8.9) that for
sufficiently large N,

S < e3(Ter1—=e) <= 418
CG,“ 2
Therefore, for sufficiently large N,
1-6 1-6 1+6 146
( Jan _ log (2) < ropr —m < Llog 5 2 M. (8.10)
14 st 1 st I l

Furthermore, by repeating the above argument with ¢ in place of 7,11, we see that for
sufficiently large N, if rp < tand ¢t — 7, > (1 4 6)an/¢, then

¢ 2
/ Go(v)dv > (14+0)ays — 3 — pan > log (8), (8.11)
. 1

in which case the last statement of Lemma 4.5 implies that 7,4; < ¢.
Therefore, if £* +1 < j < J and 7; < ¢, then (8.10) implies that for sufficiently large

N,
j—1 j—1 1 J
22 Y a2 (- 0ay Y 1> ax(l —9>log(k*+1),
l=k*+1 l=k*+1

and rearranging this equation gives j < (k* + 1)e t/lan(1=0)] In view of (3.23), it follows
that for sufficiently large N,

R(t) < (k" + 1) exp (M) (8.12)

Likewise, equation (8.10) and Proposition 8.1 imply that if £* +1 < j < Jand 7; <%,
then for sufficiently large NV,

= %N = 1 2 j—1
Tj = Tkx41+ Z (Tg+1fTZ)< k;N 1+9 aN Z Z <+(1+9)10g( e >>7
L=k*+1 f=k*+1

and the observation following (8.11) thus implies that if

tZaN(;+(l+9)log (Jk_*l)),
N
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or equivalently if j < 1+ k*exp([t/an — 2/kn]/(1 + 0)), then 7; < t if N is sufficiently
large. It follows that

. t P
R(t) > 1+ k" exp <CLN(1+9) — kN(1+9)) (8.13)

for sufficiently large N. Because ky — oo and k*/kny — 0 as N — oo, we can see from
(8.12) and (8.13) that for sufficiently large N, equation (8.6) holds for all ¢t € (t*,an) as
long as 6 is chosen to be sufficiently small relative to 7. O

We next consider the value of R(¢) for ¢ € [an,anT]. We will find it useful to introduce
the following notation. For ¢ € [0,{; A anT), let

0 ift<ay
M) ={ K ifte [an, Tes1) (8.14)
j ift e [’Yjv'yj-‘rl) fOI‘jZk*—Fl.

Note that M (t) is well-defined because, by Remark 3.4, we have 7; < 7;41, and therefore
v; < vj+1, whenever 7; < (;. As long as the conclusions of Proposition 3.5 hold, M(t) is
a good approximation to the mean number of mutations in the population at time ¢.

Lemma 8.3. If (; > ay, then

W | w

[ e - arw)ar <

For sufficiently large N, if (3 > yi+4+1 and (1 > 2an/kn, then

Vie*+1 _ 2k*
/ M) — B dt < 2 ay.
a kN

N

Finally, for all j > k* + 1, if (2 > ~yj41 then

Vi+1
/ : |M(t)—M(t)\dt§%. (8.15)
-

J

Proof. The first and third statements follow immediately from integrating the result
of Proposition 3.5. For the second statement, note that for sufficiently large N, we
have kx + Cy < 2k*. Then for t € [an,7Vk++1), it follows that when (3 > ~i+11, We
have 0 < M(t) < 2k* and thus |M(t) — M (t)| < k*. The result follows because when
¢ > 2an/ky and (o > Yg+11, We have Yg«11 — ay = Tp-r1 < 2an/ky by Proposition
8.1. O

Lemma 8.4. Suppose j > k* + 1. Also, suppose t € [1;,7j;+1) and either (; >t or (3 > t.
Then R(t) = j — M(t).

Proof. First suppose that ¢ > -1, so that t — ay > 7,-41. Then M(t) = £ implies that
t € [ve,7ve+1), and thus t — ay € [r4, 7¢+1). Thus, in view of Remark 3.4 when ¢; > t or
(3.26) when (3 > ¢, the times 7y11,T¢42, ..., 7; occur in the interval (¢t — ay, t]. Because
R(t) is the number of integers ¢ > k* + 1 such that t —ay < 7; <t, we have R(t) = j — ¢,
as claimed. The other possibility is that ¢ < y;+«41. Because t — ay < Ti-4+1, the times
Tk*4+1, - - -, 7; occur in the interval (t—ay, t]. Therefore R(t) = j—k* ift > ay and R(t) = j
if t < an, which again matches the conclusion of the lemma in view of (8.14). O

The lemma below is the key to obtaining the integral equation for the limit function g¢.
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Lemma 8.5. Let 0 < n < 1. If N is sufficiently large, then for allt € [ay,anT], on the
event that {y = oo, (1 > t, and (; > t, we have

(1_”)/ R(u)du<R(t)<(1+n)/t R(u) du

an t—an an —anN

provided that

— < inf R(u) < sup R(u) < 3ky. (8.16)
u€[0,¢] u€(0,t]

Proof. Fix t € [an,anT], and suppose (y = o0, {1 > t, and {» > t. Let L; := min{j : 7; >
t —an} and Ly := max{j : 7; < t}. In view of Remark 3.4, we can write

Lo—1

(t—an,t] = (t —an,72,]U ( U (Tj77j+ﬂ> U (72, 1].

j=I
For u € [0, ], let

S(U) L 0 lfu < Tk*+1
T GJ(U)/S iftG[Tj,Tj+1) fOI']Zk*+1

If L1 < j < Lo, then since j < J by Remark 3.7, Lemma 4.5 implies that for sufficiently

large N,
s Titl 2s
log [ — S/ G;(u) du <lo (>
g(CG,lff) - J( ) g L

J

Dividing by s, we get that for sufficiently large N,

- Nay< [ s 1
3 any < | (u) du < 1—|—3 an. (8.17)

J

Because (; > t, we have S(u) > 0 for all u € [0,¢) by the result of part 4 of Proposition
3.5. Combining this observation with the last statement of Lemma 4.5, we get

t 1/t 1 2
og/ S(u) du = g/ Gy(u) du < - log (:) < (1+g>aN (8.18)

for sufficiently large N. Likewise, if L; = k* + 1, then S(u) = 0 for v < 7r,, and if

Ly > k*+1, then
TL TL G
/ 1 S(u)dug/ ' Ll(u)du.
t

—an TLi—1 8

Therefore, Lemma 4.5 implies that for sufficiently large N,

L 1 2
0< / S(u) du < - log (5) < <1 + ")aN. (8.19)
t—an S 14 3
By Remark 3.4, the times 7,,7,41,...,7L, @re in (t — an,t], so R(t) = Ly — L1 + 1.

Therefore, we can sum (8.17) over j from L; to L, — 1 and combine this result with
(8.18), and (8.19) to get that for sufficiently large N,

(R(t) — 1) (1 - ;’)w < /tt S(u) du < (R(t) + 1) <1 + g)aN.

—an

Rearranging this equation, we get, for sufficiently large N,

1 ¢ 1 !
U ey ., SO B S RO St [ s @20
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We now relate S(u) to R(u). By Lemma 8.4, if u € [1,7,41) N[0,t] with j > k* + 1,
then R(u) = j — M(u). Therefore, for u € [}, 7j4+1) N[0, 1],

_ Gi(w) y Iz

= (j = M(u)) + (M(u) = M(u)) — = = R(u) + (M (u) — M(u)) —

® 1%

If0 <t < Tk+11, then S(u) = 0 and R(u) = k*. Therefore,

t

t
/ |S(u) — R(u)| du < k*Tk*+1+/ \M(u)fM(u)\dquﬁaN. (8.21)
t—an (t—an)VTE* 41 §
By Proposition 8.1, for sufficiently large IV,

2K (8.22)
kn

k71 <

The number of values of v, between ¢t — ax and ¢ is the same as the number of values of
T¢ between ¢ — 2ax and ¢t — ay, which is either R(t — ay) or R(t — an) — k* depending on
the value of ¢. This means that at most R(¢ — ayx) + 1 intervals of the form [y, v,+1) can
intersect the interval [t — ay, t]. Therefore, by Lemma 8.3, for sufficiently large N

! . 2k 2
/ |M(u) — M(u)| du < §—|— aN—i—&(R(t—aN)—i—l). (8.23)
( s kn s

t—an)VTi* 41
Therefore, combining (8.21), (8.22), and (8.23), we get that for sufficiently large NV,

i 3 4k 20,
[ s - rldes 4 e+ 2R  ax) 4 1)+ R
t—an S kn S S

Therefore, if (8.16) holds, then for sufficiently large NN,

1/t 3+205(3ky + 1 4k*
— 1S(u) — R(u)| du < B )+< +“).
an Ji—ay san kn s
Because say — oo by (1.8), it follows that for sufficiently large N, when (8.16) holds we
have
1 t n n t
— |S(u) — R(u)| du < EkN < — R(u) du. (8.24)

an Ji—ay T 3an Ji—ay

From (8.20) and (8.24), we conclude that for sufficiently large N, when (8.16) holds we
have

1-1n/3 /t 1+1n/3 /t
14— Ru)du < R(t) <1+ —->F— R(u) du.
/B Joogy T =S G gy
The result follows since 1 —n < (1 —1n/3)/(1 +7n/3) < 1+1/3)/(1 —n/3) < 1+ nif
0<n<l. O

The following deterministic result will help us to obtain the second part of Proposition
3.6 from Lemmas 8.2 and 8.5.

Lemma 8.6. Let 0 < 1 < 1. Suppose r : [0,T] — R is a right continuous function such
that (1 —n)e =Mt < r(t) < (1 +n)e*Mt for0 < ¢t < 1 and (1 —7) ftt_l r(u) du < r(t) <
(1+n) ftt_l r(u) du for1 <t < T. Let q be the function defined in (1.13). Then

sup [r(t) — q(t)] < dne 7T
t€[0,T]
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Proof. Let ry : [0,T] — [0,00) and 73 : [0,T] — [0,00) be the unique bounded functions
satisfying

W=d 1 et =t if0<t<1
Y = () du if1<E<T,
and
(t) = (14 n)etmt ifo<t<1
P ) [ () du f1<E<T.

The existence and uniqueness of these functions, and their continuity away from 1,
follows from Theorem 2 in [10] as in the proof of Lemma 4.1 because the functions r; and
ro satisfy (4.2) if we replace the functions f and g by f; and g; or f> and g5 respectively,
where fi (1) i= g1(u) i= (1 — 1)1 o<ue1y and fo(u) == go(u) i= (1 +n)L{ocucr).

We claim that r1(¢) < r(t) < ro(t) and r1(t) < g(t) < ro(¢t) for all ¢ € [0, T]. To see this,
let w = inf{t : r(t) > ro(t)}. Seeking a contradiction, suppose u < T'. Clearly u« > 1, and
sora(u) —r(u) > (1+mn) [ (r2(t) — r(t)) dt > 0, which contradicts the right continuity
of r and ry. Therefore, r(t) < ro(t) for all ¢t € [0,T]. A parallel argument gives r(t) > r1(t)
for all ¢ € [0, T]. The result for g is a special case of the result for r, which completes the
proof of the claim.

Let d(t) := ro(t) — r1(¢) for all ¢ € [0,T]. The claim above implies that

sup |r(t) —q(t)] < sup d(t). (8.25)
t€[0,7] tel0,T

We have d(t) = (14 n)e*Mt — (1 —n)e(1="* for ¢ € [0, 1]. Note that if ¢ € [0, 1], then

d(t) < d(1) < e — 71 4 2pel T < 4pel . (8.26)

If1<t<T,then

t t t t

d(u) du+ 277/ r1(u) du.

t—1

ity =(1+) [

t—1

rau) du—(1-1) |

t—1

r1(u) du = (1+n)/

t—1
Therefore, using that 0 < r1(t) < ¢(t) < e for all ¢t by Lemma 4.1, we see thatif 1 <¢ < T,
then

d'(t) = (1+n)(dt) —dt—1))+2n(ri(t) —ri(t — 1)) < (14 n)d(t) + 2en.

Solutions to the differential equation f'(t) = (1 + 7)f(t) + 2en can be expressed in
the form f(t) = Ce(**M* — 2en/(1 + 7)), where C is a constant. If f(1) = d(1), then
C = (d(1) + 2en/(1 4 n))e~ (1", Therefore, if 1 <t < T, then

2en

d(t) < Celtmt — 221 < g+t 8.27
(t) < Trn =4 (8.27)
The result follows from (8.25), (8.26), and (8.27). O

Proposition 8.7. For sufficiently large N, on the event that {; = oo, we have

R(ant
‘ laxt) —q(t)’ <9
kn
for allt € [0,T) such that ¢; > ant and (3 > ayt.
Proof. Suppose that {j = oo, (1 > ant, and (3 > ant. Choose 1 > 0 small enough that
4ne*+MT < 5. For u € [0,T], let r(u) := R(anu)/ky. Lemma 8.2 implies that if u < 1 and
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u < t, then (1 —n)e =M% < r(u) < (1 4+ n)e M, Define  := inf{u : r(u) > 3 or r(u) <
1/2}. By Lemma 8.5, if 1 < u < x and u < t, then

u

(1- 77)/ r(v)dv <r(u) <1+ 77)/ r(v) dv.
u—1 u—1

Note that R is right continuous, and therefore so is r, so we can apply Lemma 8.6 to the
function r to get

sup  |r(u) —gq(u)] <. (8.28)

u€[0,t])N[0,K)

The result will follow from (8.28) if we can establish that x > ¢. In view of Remark
3.4, we have |R(u) — R(u—)| € {-1,0,1} for all v € [0,ant]. In particular, if x < ¢,
then |r(k) — r(k—)| < 1/kn, which contradicts (8.28) for sufficiently large N because
1< q(u) <eforall u >0 by Lemma 4.1. Therefore, x > ¢, and the proof is complete. O

8.3 The spacings between 7; and 7;;

The third part of Proposition 3.6 primarily pertains to the spacings between 7; and
Tj+1. The proposition below establishes the necessary relationship between the times 7;
and the function ¢, and leads easily to the main result (3.26).

Proposition 8.8. If N is sufficiently large, then for all j € {k* +1,...,J — 1} such that
Co = 00, Cl > Tjt1, CQ > Tj+1, and Tj+1 < an7T, we have

Tiai/an 1428
/ q(u) du < ZN (8.29)
Ti/an
and
Ti1/an 1-26
L a0+ e b2 (830

Also, if N is sufficiently large, then for all j € {k*+1,...,J — 1} and allt € [0,anT], on
the event that (o = oo, (1 > t, and (o > t, if

t/aN
/ q(u) du > Lt 25, (8.31)
Tj/an kn

then 71 <t.

Proof. We prove the result by induction on j. Suppose ¢y = oo, (1 > Tj41, (2 > Tj4+1,
and 741 < anT. Suppose also that (8.29) and (8.30) hold with ¢ in place of j for
te{k*+1,...,5—1}. Letn > 0. From (8.17) we see that if V is sufficiently large, then

(1-nay < / o Gj;v) dv < (1+n)ay. (8.32)
By Lemma 8.4, for v € [7},Tj11),
G. _
G M) 2 = BE) + (1)~ M)~ £ (8.33)

Let L; be the number of integers ¢ > k* + 1 such that v, € [7;,7,41). Then the interval
[7;,Tj+1) intersects at most L; + 1 intervals of the form [y,_1,7¢), so by Lemma 8.3, if N
is sufficiently large, then

2(L; +1)Cs
s

Ti+1 3
/ M (v) = M) fuglan e )y @ S 2 F (8.34)

J
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By the induction hypothesis, (8.30) holds if j is replaced by ¢ € {k* + 1,...,5 — 1}. By
Lemma 4.1, we have ¢(u) < e for all u > 0. Also, Vg=y1/an = 1+ Tpeq1/an < 1+ 2/kn
for sufficiently large N by Lemma 8.1. Since ¢ is right continuous and ¢(1) = e — 1, it
follows that for sufficiently large NV, we have

sti% (q(w) + Ljue(t e 1 /an)y) < €+90. (8.35)

Thus, using (3.1) and (8.30), for sufficiently large N,
> aN(l — 2(5) an
— Yo = To41 — T .
Ye+1 — Ve 0+1 L Z kn(e +0) = 3kn
It follows that L; < 1+ (3kn/an)(7j4+1 — 7;). Combining this observation with (8.34)
gives

3+4Cs n 6knCh
s ans

)(Tj+1 =)

Write C = 34 4C5. Because ky/(ans) - 0as N — oo by (1.7) and p/s - 0as N — oo, it
follows that for sufficiently large N,

Titl
/ T (0) = M)/ oglan e )y & <

J

Tjt1 B C
/ QM@ UW%wwmﬁ->M<+Ww1 ). (8.36)

J

Combining (8.36) with (8.32) and (8.33), we get that for sufficiently large N,
TJ+1 _ C
‘/ + (M (v) - M(U))]l{ve[aN7’Yk*+1)})dvaN‘ < T]CLN+§+7](7‘]'+1 7Tj)'
To simplify notation, write h(v) = (M (v) — M(v))L{e]
u = v/ay and divide both sides by axky to get

‘ 7-;+1/aN ( (anu) n h(aNu)> du— 1‘ <N C n (Tj+1 — 7j)
kn

kn kn - H sankn ankn

}- Make the substitution

an'Yk*+1)

TJ/U.N

for sufficiently large N. By Proposition 8.7, we have |R(anyu)/kny — q(u)| < ¢ for u <
Tj+1/an, so for sufficiently large N,

Ti+1/an ) — T
‘/ ( +h(aNU))d“_l‘fn+ € i~ ) M0a 2T (g a7)
Ti/an kN k‘N kN saNkN CLN]CN an

We now pursue the upper and lower bounds separately. In view of part 2 of Proposition
3.5, because {» > 741, we have h(v) > k* — ky — Cy for all v € [an, Yr=41) N [T}, Tj41).
Therefore, because k*/ky — 1 as N — oo and Y11 — any = Tpey1 < 2an/kn by
Proposition 8.1, for sufficiently large N we have

/Tj+1/aN h(aNu) du > (k;* _ k’N — 04) (’Yk*-‘rl — aN) > _i

ji/an N kn ayn - kN

Combining this result with (8.37) yields

/Tj+1/azv o) du < 1+ 2n n C n n(7j+1 — 75) n 6(Tjt1 — Tj).

8.38
j/an ~ ky sankn ankn an ( )

Since say — oo, we have C/(say) < n for sufficiently large N. Therefore, bringing the
last two terms on the right-hand side of (8.38) to the left-hand side, we get

Tit+1/an 1+ 3n
u)—— —0 | du<
/rj/aN (q( ) kN ) T kn
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for sufficiently large N. Also, since g(u) > 1 for all v > 0 by Lemma 4.1, we have
q(u)(1 — a) < q(u) — a for all w > 0 and « > 0. Therefore, for sufficiently large N,

Ti+1/an -1
/ q(u)du<<1—n—5> (1"‘377).
i /an kn kn

J

The upper bound (8.29) follows as long as 7 is chosen to be small enough relative to 4.
To obtain (8.30), note that h(v) < k* for all v € [an,Yg++1) N [T}, Tj+1). Therefore, for
sufficiently large NN,

Tit1/an h(ayu) Ti+1/an k* —kn Ve*+1 — AN
———du< / 1p, i /an)} du+ ( ) ( - )
/‘rj/aN kn Ti/an fuctlonsa/an)) ky aN

Tiv1/an .
= / ]l{ue[lx’Yk*+1/aN)} du + H

j/an

Combining this result with (8.37) and using that say — o0 as N — oo, we get for
sufficiently large N,

1 du >
j/an (gw) + {ue[lﬁk*“/am}) “= kn ankn an

/Tj“/aN 1-3n _ n(mn—7) 0140 —1))
and therefore

1—-3n
o

Tiv1/an 7
/ <q(u) + l{uE[l,'yk*+1/(LN)} + H -+ 5) du Z

j/an
Ifz > 1and a > 0, then (1 + «) > x + a. Therefore, for sufficiently large N,

Tj+1/an -1
I 7 1-3n
[ () 4 et du > (145 4 0) (1220,

The lower bound (8.30) follows as long as 7 is chosen to be small enough relative to J.
It remains to prove the last statement of the proposition. Suppose now that (y = oo,
(1>t ¢ >t t<anT, and (8.31) holds. We need to show that 7,1 < ¢. By Lemma 4.5,
if N is large enough, it suffices to show that
ef:i Gjv)dv 2j
o

Therefore, it suffices to show that for sufficiently large N,

t
G
/ ﬂdvz (1+n)an. (8.39)
s
75
Using (8.33), the bound in part 2 of Proposition 3.5, and the reasoning leading to (8.36)
with ¢ in place of 7;1, we get for sufficiently large IV,

t G t C
/ ‘75(1) dv > / Rv)dv— — = n(t = 7;) = (k" = ky = Ci) (31 —an).  (8:40)

By Proposition 8.7, for sufficiently large NV,

t/a]\]

t t/an
/ R(v) dv = aN/ R(ayu) du > aNk;N/ (¢(u) = 9) du. (8.41)

j Tj/an Tj/an
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Using Proposition 8.1, we have (k*—kny—C4)(Vi+r1—an) < (k*—kn—C4)(2an/kn) < nay
for sufficiently large N. Combining this bound with (8.40) and (8.41), and then using
(8.31), we get that for sufficiently large N,

t oy t/an
/MdeaNkN/ (q(u)—é_kn)dU—C_naN
Tj S T S

j/an N

t/aN
zaNkN(l—é—n)/ q(u)du—g—na]v
kN T S

j/an

ZaN(l—(S—n>(1+25)—C—7]aNa
kN S

which implies (8.39) as long as 7 is chosen to be small enough relative to 4, in view of
the fact that say — o0 as N — . O

Proof of part 2 of Proposition 3.8. Recall that ¢(u) > 1 for all v > 0 by Lemma 4.1.
Therefore, if (8.29) holds, then

Tj+1 — T4 S 1+25< 2

an kv~ kn
Also, in view of (8.35), for sufficiently large N, if (8.30) holds, then

Tj+1_7—j> 1—25 1
an (e+8)kn ~ 3kn'

Thus, if (8.29) and (8.30) hold, then so does (3.26). Also, if 7; + 2an/ky < anT, then
(8.31) holds with ¢t = 7; + 2an /kn. Therefore, part 2 of Proposition 3.8 follows from
Propositions 8.1, 8.7, and 8.8. O

9 Proof of part 3 of Proposition 3.8

To prove part 3 of Proposition 3.8, we need to show that with high probability, the
results of Propositions 3.2 and 3.3 hold as long as the results of Propositions 3.5 and 3.6
hold. Propositions 3.2 and 3.3 describe the behavior of the number of type j individuals.
The proof proceeds by induction on j, in the sense that to show that the number of type
7 individuals behaves as predicted, we will need to know that the number of type j — 1
individuals does so. Define the stopping time

pi=CAGQAGAG ;-1 ANanT.

We then need to show that

(9.1)

M-

I
o

P({¢o =00} N{C1,; < pj}) <

| ™

J

Essentially, this means that the number of type j individuals behaves as expected with
high probability until after time p;.

Note that if ¢ < p;, then the reasoning in Remark 3.7 implies that no individual of
type J + 1 or higher can appear until after time ¢. Because assumption A3 implies that
sky — oo, we have sJ < 1 for sufficiently large N. It follows that 1 + s(j — M (¢)) > 0
for all j > 0, and therefore G (t) = G,(t) for all j > 0 as noted in (5.6). Throughout this
section, we will assume that N is large enough that sJ < 1, which will make it possible
to ignore the distinction between G’ (t) and G (t).
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9.1 Individuals of type j < k*

In this subsection, we consider the behavior of type j individuals for j € {0, 1,...,k*}
and show that with high probability the behavior matches what is described in Proposition
3.2. Central to the analysis will be the martingales Z f '™ from Corollary 5.3, with x = t*
and 7 = (p; A yk++xk) V t*. To lighten notation, we denote this process by Z;. We let
p; = (pj AN vk=+x) V t* and then, for t > t*, we let

tApk tAP w
Zi(t) = e S T W dUXj(t/\p;-‘)—/t* pXj o (we =G dv gy x5 (17). (9.2)

Note that when j = 0, we are using the convention X_;(u) = 0. For ¢ € [t*, pj],
¢
X;(t) = e Gi(v) dej (t*) + / ,qu,l(u)ef«f Gi(W)dv g, 4 ofie Gi(v) dvzj’_ (t)
-
=Tja(t) + Tj2(t) + Tj3(0), (9.3)

where T 1(t), T 2(t), and T} 3(¢) denote the three terms in the previous line. To establish
the result of part 1 of Proposition 3.2, we need to show that |7} 2(t) + T},3(t)|/Tj,1(t) < 0
with high probability for ¢ € [t*, pj]. We first bound T} »(t)/T} 1(t).

Lemma 9.1. For sufficiently large N, if 1 < j < k*, then on {{, = oo},

pXja(t) 0
SX]' (t*) 3
Proof. Suppose (yp = oc. By (3.8), if j < k}, then

,lth_l(t*) < w(l+9) ' xj_l(t*) . 1+(5' J < 1—}—6. k*
sX;(t*) T s(1-08) xt*)  1-0 et"—171-§ k% -1

(9.4)

Suppose instead j € (ky, kj{,) Because k;{, —ky — 0as N — oo by (3.5), for sufficiently
large N we know that j — 1 < k. For such IV, because d; < 2, equation (3.10) yields

/LXjfl(t*) < /L(1+5) _ Qij,l(t*) . 1456 ) j 146 . I{/’]Q\fk*
sXj(tr) = Cis  pyPatr) Cil=0) k(e —1) ~ Ci(1-9) ky _(91;.5)
Because the right-hand sides of (9.4) and (9.5) tend to zero as N — oo, the result
follows. O

Lemma 9.2. For sufficiently large N, if0 < j < k* and t € (t*, pj], then T} 2(t)/T;1(t) <
5/2.

Proof. Since To,g(t) =0, we may assume 1 < j < k*. Because (; ;1 < p;f, the conclusion
of part 1 of Proposition 3.2 holds for j — 1 up to time p}. Therefore, if u € (t*, p}), then
Xjoa(u) < (14 6)X,_y (t7)el a0 v,

It follows that if ¢ € (t*, pj], then
t u t
T, a(t) < u(1+ 5)Xj_1(t*)/ eJit G () do [ Gs ) v g,
-
t
= p(1+ 5)Xj71(t*)eft* Gj(v) dv / et gy

"
< i1 +9)

Xj—l(t*)eftt* Gj(v) dv,
s
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Thus, if ¢t € (t*, p;‘} then
Tjo(t) _ p(1+0)X;1(t")
Tia(t) — sX;(t%)

The result now follows from Lemma 9.1. O

To bound T 3(t)/Tj1(t), we will need to control the fluctuations of the process
(Z;(t),t > t*). The following preliminary bound will be useful.

Lemma 9.3. For sufficiently large N, if0 < j < k* and u € (t*, pj], then

*

exp < - / G;(v) dv> < w(u)e W=t
¢

where
21 ifu € (t*,an]
w(u) = { (s/p)?N/3 ifu > ay. oo
Proof. Note that
o [ Gi() dv _ g si(u—t®) ofk sM(v) dvotp(u—t”) 9.7)

In view of parts 1 and 3 of Proposition 3.6, we have
p(u —t*) < pypeyx < plan +2Kan /kn) =0

as N — oo. If u < ay, then ftu M (v)dv < 3/s by Lemma 8.3 and therefore, for sufficiently
large N,
ol sM(v) dotp(u—t") < 3t u(u—t") < 21 = w(u). (9.8)

Suppose instead any < u < ;-4 k. By the results of Propositions 3.5 and 3.6,

Ve* 4241

u an Vie* 41 K—-1
/ M) dv < M(v)dv+/ M(v)dv+2/ M (v) dv
t* t* = I

anN k*+e
3 K-1
< 5 Ty +C) (e —an) + ) (K" + £+ 205) (Y o1 = Tor+0)
=1

+ (kny +Cy) + (K = 1)(k* + K + 205)>.

< 2aN 3]4;1\[
~ kn \2san

Because K = |ky/4], we have K(ky + K) < (5/16)k%. Since the other terms are of
a smaller order of magnitude for large N, it follows that there is a positive constant
¢ < 1/3 such that 3ky/(2san) + (kn + Cy4) + (K — 1)(k* + K +2C5) < ck?, for sufficiently
large N. Hence, for sufficiently large NN,

u
M(v) dv < 2canky
.

and therefore
2kn /3
el sM @) dvt(ut) < g2sankn/s — <S> = w(u). (9.9)
w

The result follows from (9.7), (9.8), and (9.9). O
Lemma 9.4. For sufficiently large N, if 0 < j < k*, then

9
64kN

0
P< sup |Zj(t)] > Xj(t*)> <
te(t, 3] 2
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Proof. The process (Z}(t),t > t*) is a mean zero martingale. By Corollary 5.3 and (6.5),
fort > t*,

tApj -
Var(Z;(t)|Fi+) < E{/ T2 Gi) P (X1 (u) +3X;(u)) du ]:t*}
.
t
- E |:/ e~ 5% Gj(v) dv (/Le— 5% Gj(v) dUXjfl(U) + 3e—f;1 Gj(v) d’qu(u))]l{ugp;} du ]:t*] .
o
(9.10)

For u < p3, the conclusion of part 1 of Proposition 3.2 holds for j — 1 through time u, and
SO

e [ Gi(0) dejfl(u) < (1 + (5)Xj,

= (14 0)X;_1(t")e s, (9.11)

1(t*)eft’i Gji_1(v) dve— % Gj(v) dv

Plugging this result and the result of Lemma 9.3 into (9.10), and then bringing the
conditional expectation inside the integral, we get for ¢t > t*,

t

Var(Z;(t)|Fe-) < E[ / eI (w) (L + 8) X (¢)e >t
t

*

+ 3¢ Jix Giv) dej (u))]l{ugp;} du ]:t*:|
¢
< /t eI (u) (u(1 + 8) X1 (¢7)e st
+3E [e_-m" G dv X (u) ]) du

Because (Z(u),u > t*) is a martingale with Z/(t*) = 0, we have E[Z}(u)|F;-] = 0 for
u > t*. Using this fact along with (9.2) followed by (9.11), we get for u > t*,

EfeJ& G dv x () ]

[ G(U)d'UX (U/\Pj ’ft*}
u/\p]
{/ _1(r)e” jt*G(“d”dr}"t*}—FX( )
uApj .
E{u 1+46)X *)/ e=sr=t) gy ft*} + X, (1)
t*

1)X

) 4 x00),

Thus, for ¢ > t*,

Var(Z)(1)| Fiv) < /

*

t

e =)y (u) (p(l +8) X, _1(t%) (1 - ‘:) + 3Xj(t*)> du.

By Lemma 9.1, for sufficiently large N we have p(1 4+ 6)X,;_1(¢t*)(1 + 3/s) < X,(t*) on
{Co = oo}. Therefore, for t > t*, if N is sufficiently large, then on {{; = oo} € F;-,
t
Var(Z} ()| Fp-) < 4X;(t7) / e 5= )y (u) du. (9.12)
-
When j = 0, we take N large enough that (s/u)?*~/3 > 21, and then, using the bound
that e=%/(*—*") < 1, equations (9.12) and (9.6) imply that on {¢o = 0},

2kn/3
Var(Z;(t)|F-) < 4X;(t%) (u) t. (9.13)
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When 1 < j < k*, we break the integral in (9.12) into two pieces and use (9.6) to get that
on {(p = oo},

an ) . s 2kN/3 oo ] .
Var(Z;(t)|Fi-) < 4Xj(t*)(21/ e S W=t go, + (u) / e—si(u—t )du)
t* anN

2kn/3 —sjlan—t*)
21 J
ame(B (1)

8] J sJ
4X;(t* - —J+2kn/3
_ 4 )(214—657’5 (8) ) (9.14)
8] I

Parts 1 and 3 of Proposition 3.6 imply that if 4+« x < (3, then

2K 3
’Yk*+K:Tk*+K+a/NS an +0JNS% (915)

N

In particular, we must have p; < 3ay /2. Combining this observation with the L?
Maximum Inequality, we get that on {(p = oo},
fﬁ)

)
P( sup | Z;(t)] > 5 X;(t")
te(t, 3] 2

5
fﬁ) < P( sup[Z)(1)] > 2 X, (1)
teft*,3an /2] 2

4Var(Z}(3an /2)|F-)

- (6.X;(t*)/2)?
e 1024kyVar(Z}(3an/2)|F:-) 9.16
T 64ky £62X;(t*)2 ' (9.16)

If we can show that, on {(; = oo}, the second factor on the right-hand side of (9.16) is
less than one for sufficiently large N, the result will follow by taking expectations of
both sides in (9.16). We will assume that (; = co and show that this factor tends to zero
as N — oo, uniformly in j.

We consider separately the cases j = 0 and 1 < 5 < k*. Suppose first that j = 0. We
have X (t*) > (1 — 0) N by Proposition 3.1, so using (9.13),

knVar(Zj(3an/2)| Fe) - 6knaN (S)ZkN/3 g ka\/(s>2m/3
I ~( '

Xo(t*)? = Xo(t*) 1—6)N \

(9.17)

Note that

k 2kn /3 1 2%
log NAN (2 =logky +1og | — ] +loglog 2) - log N + =N log Sl
N 7 S 7 3 1

1 1
= logkyn + log <S> + loglog (Z) ~3 log N,

which tends to —oco as N — oo because (log ky)/(log N) — 0 as N — oo and because, by
assumption Al, we have log(1/s)/log N — 0 and (loglog(s/u))/log N — 0as N — oco. It
follows that the expression in (9.17) tends to zero as N — oo.

Next, suppose 1 < j < k*. Then, using (9.14),

knVar(Z' (3ax /2)|Fp - —J+2kn/3
N ar( j( aN/ )| t ) < 4kn )(21+€Sﬂ <8) ) (9.18)

X;(t7)? —sj Xt 1

We will show that the two terms on the right-hand side of (9.18) each go to zero as
N — oo. For the first term, we use Proposition 3.1, equation (6.27), and the fact that
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log(1/s)/kn — 0 by assumption Al to get

1 N_) <1 iy s J!
(0] — (0] - -
& sjX;(t*) ) — & min{Cy,1 — d}sjNui(est” —1)J
k3 s .
=1 N —log N +jlog [ = ) +1logj! — jlog(e® —1
og (min{Cl,lé}sj) og N + jlog (u) + log j! — jlog(e )

— _log N + jlog (Z) +jlogj — j — sjt* + o(kn). (9.19)

If j < kjy, then —log N + jlog(s/u) <0, and sjt* > 2jlog ky. Therefore, the expression
in (9.19) tends to —co as N — oo. If instead j € (ky, kY, then t* = (4/s)log ky, and we
can we write j as in (3.9) to get

k
log [ —— ) < —log N +log N + B;kn log kn + jlogj — j — 4jlog kn + o(kn),
sjX;(t*)

which tends to —oo as N — oo because ; < 2 and (6.32) holds. Thus, the first term on
the right-hand side of (9.18) tends to zero as N — oo. To bound the second term, we use
(9.19) to get

kn T —J+2kn/3 2kn S . . .
10g<,~e‘”t <) =—logN+—log|— ) +jlogj—j+olkn).
sJX;(t) I 3 1 (k)
1 .
= —glogN +jlogj—j+o(kn),
which tends to —co as N — oo because (ky logky)/log N — 0 as N — oo. It follows that

the right-hand side of (9.18) tends to zero as N — oo. O

Proposition 9.5. For sufficiently large N, if 0 < j < k*, then

P((1—8)X;(t*)el G0 & < X(1) < (14 8)X;(t*)el- 1 & for all t € (1%, p3])
g

1 .
~ T By

Proof. By (9.3), we have
(1= 8)X;(t*)el G0 < X5(1) < (14 8)X;(t)elir Catv) v (9.20)

as long as T 2(t)/T;,1(t) < 6/2 and [T} 5(t)[/T;1(t) = [Z;()|/ X;(¢*) < 6/2. Therefore, the
result follows from Lemmas 9.2 and 9.4. O

Proposition 9.6. For sufficiently large N, if 0 < j < k*, then

g

P(Xj(t) > k?\,Xj(t*)efft* G dv for some t € (yk*+K,pj]) < 155 (9.21)
N
and .
P(X;(t) > 0 for some t € [+, p5]) < g (9.22)

Proof. Fix j € {0,1,...,k*} Assume for now that (9.20) holds for all ¢ € (¢*, p?]. Then, on
the event {yy~4x < p;}, forall £ € {1,...,j} we have

_ (4 )Xoy (t)el T Geadv (14 §) X, (#)e s —t)

(1= 8) Xy (tr)el s Ge(w) dv (1 —6)Xe(t)

Xo—1(Me+K)
Xé(’Yk*JrK)

(9.23)
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Note that on {y++x < p;}, the result (3.26) implies that for sufficiently large N,

(lN(K— ].) > 14@]\]

9.24
3kn - 13 ( )

Ytk — > an + Ttk — Ter41 > an +

Combining (9.23) and (9.24) with Lemma 9.1, we get that on {y-+x < p,}, for sufficiently
large N,

Xg_l("j/k*+[() < (1 + 6)55 67145611\7/13 —_ (1 + 6)5 (S> _1/13 (925)

Xe(veex) ~ 3(1—=0)p 31-6)\n
which tends to zero as N — oo. This means that, among individuals with j or fewer

mutations, the fraction with j mutations at time ;-4 x must tend to one as N — oo.
Recalling that S;(t) = Xo(t) + X1(t) + - - - + X;(¢), for sufficiently large N we have

3
i (1) < 5K (V+x) (9.26)
on the event {vyi-yx < p;}.
By Proposition 5.6 and Remark 5.7, the process

(Vi 4+ AP

(e_-’*k*JrK Gj(v) dvsj((fyk*JrK + t) A pj), t> 0)

is a nonnegative supermartingale. Therefore,
— It Gj(v) dv k2 2
te(Vi* 415 P4 N

Combining this result with (9.26), we get

2

3k ¢ Gj(v) dv 2
P(Sj(t) > 4NXj('yk*+K)er*+K )9 for some ¢ € (Ve 165 P5)| Frpe v | < -
N
(9.28)

Taking expectations of both sides of (9.28), and then using Proposition 9.5 along with the
facts that X;(t) < S;(t) for all t > 0 and €/64ky + 2/k3; < €/48ky for sufficiently large
N, we obtain (9.21).

To get (9.22), observe that when the complement of the event in (9.27) holds and
pj = Vk*+L, We have

2 Yk
k TETHL G (v) do

Si(Met1) < TNSj('Yk*-&-K)e Nt K¢ (9.29)

For v € [yx++k, p;), the result of Proposition 3.5 implies that for sufficiently large N,

Gjv)=s(j—Mw))—p<sk*—(k"+K—2Cs)) < fSkTN. (9.30)

Also, the result of Proposition 3.6 implies that if p; > v4-4 1, then for sufficiently large IV,

. an > 16aN

kv = 3 (9.31)

Ver+L — W4k = (L — K)

Also, Sj(vk++Kx) < N, so combining (9.29), (9.30), and (9.31), we get that when the
complement of the event in (9.27) holds and p; > -4 1, for sufficiently large N,

9 9 —16kn /15
) () < TN =10/ NN (S> . (9.32)
i
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The logarithm of the right-hand side of (9.32) is

log N — 16ky log (s) + 2logky —log?2 = _1 log N + 2log kn — log 2
15 I 15
which tends to —oco as N — oo. Thus, the right-hand side of (9.32) tends to zero as
N — oo and thus is guaranteed to be less than one if N is sufficiently large. Since
S;(Yk++1) is an integer, it must be zero. Furthermore, if S;(yx+4+1) = 0, then S;(t) =0
for all ¢ > -+, which implies that X;(¢t) = 0 for all ¢ > 744 ,. We can now conclude
(9.22). O

Remark 9.7. It follows immediately from Propositions 9.5 and 9.6 that if 0 < j < k*,
then for sufficiently large N,

L
£ £ 5 €

= <)) < (K £
JZ:%P({CO oo} N{G; < pj}) < (K" + 1)<64kN + yr + 48k:N) <1

9.2 Other type ;j individuals before time 7,

For the rest of section 9, we assume that j € {k* +1,...,J}. In this subsection, we
focus on type j individuals that are not early, meaning they are descended from type
j mutations that occurred after the time ¢; defined in (3.16). We will show that the
claim in part 2 of Proposition 3.3 holds with high probability. We will begin with three
preliminary lemmas.

Define the random set

2 2
9::{j:aN—aN<Tj<aN+aN}. (9.33)
]{1]\/ kN

Recall from (3.15) that as long as ¢; > 1, we have ¢; = j —ky if j € © and ¢; = j — M(7;)
if j ¢ ©. When j € ©, it will be difficult to bound X (¢) as tightly as when j ¢ ©, so we
will structure the proof so that we can allow a larger probability of (; ; < p; when j € ©.
Because the times 7; are spaced at least ay /3ky apart until time (3 by Proposition 3.6,
there can be at most 12 values of j for which 7; < p; and j € ©.

Lemma 9.8. There is a positive constant Cy for sufficienty large N, the following hold:

1. Ify ¢ © andt € [Tj,Tj_H /\pj), then S((]j — Cg) < Gj(t) < S(Qj + Og)
2. Ift € [1,7j41 A pj), then (1 —26)sky < G;(t) < G;(t) + pu < (e+ 20)skn.
3. Iij < pj, then (1 - 26)1{/’]\[ < q; < (€+ 25)1{/’]\].

Proof. First suppose t € [1j,7;4+1 A p;) and j ¢ ©. In view of part 4 of Proposition 3.5, we
have j — M(7;) > 1 and therefore ¢; = j — M(7;). Therefore,

Gj(t) — sq; = s(M(7;) — M(1)) —
which means
G5(0) = sl < (1M1(ry) = M) + 188(r5) = (@) + 1810 - b0 + ). @30
It follows from Proposition 3.5 that
|M(u) — M(u)| < max{3,2C5} ifu ¢ [an, Ve 11)- (9.35)

The results of Proposition 3.6 imply that since j ¢ ©, we have [7;, Tj411 Ap;)N[an, Ve +1) =
(. Also, because t — 7 < 2an /kn by the upper bound in (3.26), the lower bound in (3.26)
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implies that at most six of the times 7; can occur between times 7; —ay and t —ay. It
thus follows from (8.14) that |M(r;) — M (t)| < 6. Since u/s < 1 for sufficiently large N
by (1.8), combining these observations with (9.34) gives

|Gj(t) — SQj| < 8(7—|— 2max{3,2C'5}),

which implies part 1 of the lemma.
To prove part 2, we assume ¢ € [7;,T;+1 A p;) but no longer assume that j ¢ ©. It
follows from Lemma 8.4 that R(t) = j — M (¢). Therefore,

Gi(t) = sR(t) + s(M(t) — M(t)) — p. (9.36)
By part 2 of Proposition 3.6 and Lemma 4.1, we have
k‘N(l — (S) < R(t) < k:N(e =+ (5) (9.37)

Also, /s — 0 as N — oo by (1.8). Therefore, if t ¢ [an,Vk++1), then part 2 of the
lemma follows from (9.35), (9.36), and (9.37). Now suppose instead that ¢t € [an, Vi+41)-
Proposition 3.5 implies that k* — ky — Cy < M(t) — M(t) < k*. Therefore, using (9.36)
and part 2 of Proposition 3.6 again, we have

skn(q(t/an) — )+ s(k* —kny — Ca) — p < Gj(t) < skn(q(t/an) +0) + sk™ —p. (9.38)

Since Yx+11/any — 1 as N — oo by part 1 of Proposition 3.6, and since ¢ is a right
continuous function with ¢(1) = e — 1 by Lemma 4.1, we have

e—1-0/2<q(t/any) <e—144/2

for sufficiently large N. Part 2 of the lemma follows because k*/ky — 1 as N — co.

Finally, we prove part 3. When j ¢ ©, we have sq; = G,(7;) + p, so part 3 follows
immediately from part 2. Suppose instead 7; < p; and j € O, which means that
an —2an/kn < 1; <an + 2an/ky. Since ¢(1) = e, it follows from part 2 of Proposition
3.6 that ky(e — 20) < R(any — 2an/kn) < ky(e + §) if N is sufficiently large. Therefore,
in view of (3.26), we have ky(e — 20) < j < kny(e+ d) + 12 and thus

kn(e—1—20) <gqj <kn(e—1+49)+12
if IV is sufficiently large. Therefore, part 3 of the lemma holds in this case as well. O

Define b
1 1
5; =7;+—log <) - —. (9.39)
Sq]‘ qu' SQj
Lemma 9.9. For sufficiently large N, if 7; < p;, then we have 7; < §; < §; < 7; and
7'7* —fj Z (LN/ST/{N.

Proof. Because sky — 0 by assumption A3, we have log(1/(3sky)) > b for sufficiently
large N. Whenever 7; < p;, Lemma 9.8 implies that ¢; < (e 4+ 2§)kn. Therefore,
for sufficiently large N, we have 7; < ;7 < ;. Also, because ¢; > (1 —20)kn for
sufficiently large N if 7; < p;, and because (1.8) implies that log(s/u)/log(1/skn) >
log(s/u)/log(1/s) — oo as N — oo, for sufficiently large N we have

1 1 b an
=71+ —lo — |+ —<T74+ —. (9.40)
& J 5Q; & <5qj> 5q; 7 8TkNn
Therefore, 7 — &; > an/(8Tkn) if 7j < p;. O
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Lemma 9.10. For sufficiently large N, if 7; <t < v;_14x and t < p;, then
1-— 't ; v) dv 1 't i_1(v) dv
( 36)Sejrj Gij-1(v)d S Xj—l(t) S ( + Sé)sejq—j Gj-1(v)d )
12 w

Proof. If j > k* + 2, the result is immediate from (3.20). If instead j = £* + 1, then by
(3.12) when ¢ = 73«41 and the fact that s/p < Xp« (T 41) < 14 s/, we get

s Th* 41 1+s/p
— < X (t)eler T Gre(w)dv < Z T2 9.41
Higg) = e (E)e =15 (9.41)
Because 1 —30 < (1—06)/(1+0) < (1+6)(1+s/p)/[(1 —6)(s/pn)] <1+ 36 for sufficiently
large N, another application of (3.12) gives the result. O

Recall that X »(t) denotes the number of type j individuals at time ¢ descended from
an individual that acquired a type j mutation after time &;. Then, using the notation of
Corollary 5.4, for t € [£;,7;4+1 A p;], we have

ZJ[‘fij](t) _ ¢ e G dej,2(t) a /:M]ﬂ HXjfl(U)ei'[;" GO gy,
Let
Pj = Tj+1 A\ pj;
and for t > ¢;, let
Zy(t) = 277t A py),
with the convention that Z/(t) = 0 if p; < &;. Then for t > {;, we have
tAB;

tAp; tAD; . I G.(v) d
Xalthp) = [ nXa(a)el " GO gy el T OO
3

“Zi(). (9.42)

We will separately consider the two terms on the right-hand side of (9.42). Lemma 9.11
below gives the required bounds on the first term.

Lemma 9.11. For sufficiently large N, we have

t o
/ qu,l(u)efi Gj(v)dv gy, < 1+ 35)6ij G;(v) dv
1

J

forallt € [§;, p;] and

t : S\ [t Gi(o) do
/ :qu—l(U)ef“ Gj(v)dv du > (1 N 72)6171 Gj(v)d

&

forallt € [}, p;].

Proof. Suppose t € [{;, p;]. By Lemma 9.10, for sufficiently large IV,

t . b g, ) de o
/ HXj_1(u)eju Gi(dv gy, < (1+ 35)8/ el Tt ela Gi(Wdv g,
' &

3
¢ i(v) dv ¢
=1+ 35)sef7.7 Gi(v) / esTi) gy,
&

= (14 38)el7s T W (gmsl&s=m) _ gmst=m)), (9.43)

Because ¢; > 7;, we have e *(&~7) — ¢=5(!=7) < 1, which gives the upper bound in the
lemma.
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Now suppose t € [T;‘, p;]. The same argument that yields (9.43) implies that for
sufficiently large N,

¢ 't 't (v) dv
/ ,qu_1(U)eJu Gidv gy > (1 — 35)ejfi Gyl d (e*S(ErTj) — e*S(t*Tj)). (9.44)
&5
Now if 7; < p;, then
s(§ ) 110g(1>+b (9.45)
)= - el )
T g sq;i) a4

For sufficiently large N, part 3 of Lemma 9.8 gives ¢; > (1 — 26)ky when 7; < p;, which
by assumption Al implies that s(§; — 7;) — 0 and therefore e~*&=7) — 1 uniformly in j
as N — oo. Furthermore, if t > 77, then e 5(t=7) < gmsan/ATkn 5 () as N — oo by (1.7).
Consequently, the lower bound in the lemma follows from (9.44). O

It remains to show that the second term on the right-hand side of (9.42) is small. We
know from Corollary 5.4 that the process (Z’'(§; +t),t > 0) is a mean zero martingale, so
the problem is to control the fluctuations of this process. The next result gives the key
second moment estimate.

Lemma 9.12. For sufficiently large N, we have, for allt > 0,

S a ) de 1
Var(Z4(&; + )| Fe,) < belw Git)dv. -
N
Proof. By Corollary 5.4, we have
(EGHONPT g fu Gj(v) dv
Var(zj(g; + 07 = B| [ O
3
+ B‘Egj’TjJrl}(u)Xj’Q(u) + Dj[_&j,'rjﬂ](u)ng(u)) du ]:fj:|'
We now can use the reasoning leading to (6.5) to get
, SH o[ 6wy dv
Var(Z;(§; +t)|Fe,) < E e T (X (u) + 3X0(w) Ljucp;y du| T, |-
’ (9.46)
Using Lemma 9.10, we get that if u < p;, then
¢ I G dU,UXj71<u) < (1+3d)se Jg; Giw)dv [ Gima(v) dv
S .
= (14 368)sel™ Gi(W) dv—s(u=) (9.47)

Also, from (9.42) and (9.47), if u < p;, then
¢ I G dUXjQ(u) = / qu_l(w)eifg: GV gy 4 Z3(u)
&

£ u
<1+ 36)se-f’f Gy () dv / e duy 4 Z5(u)
&

S
=(1+ 35)ejTj Gi0) dv(o=s(&=75) _ g=s(u=mi)) 4 Zl(u). (9.48)
Combining (9.46), (9.47), and (9.48), and using that 3(1 + 30) < 4 by (3.1), we get
i+t w4 o) dv €.
Var(Z;(fj + t)‘]:gj) < 4E|:/ e jfj Gj(v)d (ef-rj] Gj(v) dU(Se_S(u_TJ)
J

+ e 87 — ) 4 Zh(w) Lucp,y du

.ng] . (9.49)

EJP 22 (2017), paper 37. http://www.imstat.org/ejp/
Page 74/94


http://dx.doi.org/10.1214/17-EJP57
http://www.imstat.org/ejp/

Rigorous results for a population model with selection I

By part 2 of Lemma 9.8, we have G,(v) > (1 — 2§)sky for all v € [r;, p;), which means
that for u > §;, we have

e Jgj G;(v) dv]l{u<ﬁj} < e—(1—25)SkN(u—fj). (9.50)

Also, although Z}(u) can be negative, it can be seen from (9.46) that the integrand in
(9.49) must be nonnegative so, in particular,

¢
eli G dv(gems(u=ms) | gms(Ei=m) _ gmslumi)y 4 Zi(u) >0 (9.51)

for u € [&;,pj). Because s < 1 for sufficiently large N, we see that ses(u=7j) _ g=s(u—T;)
is an increasing function of u. Also, Z’(u) = Z}(p;) for all u > p;. Therefore, (9.51) holds
for all u > ;. Thus, combining (9.49) and (9.50) gives

i+t &
Var(Zj(&; +t)|F,) < 4E[ / e~ (1m20)skn (=€) (75 Ca(0) dv (g =slu=r)
&

4 e s _ 6*5(“*71‘)) + Z]'- (u)) du

fgj]. (9.52)

Every expression in the integrand in (9.52) is F¢,-measurable except Z(u). Since
(Z'(& +t),t > 0) is a mean zero martingale by Corollary 5.4, we can apply Fubini’s
Theorem and then evaluate the conditional expectation in (9.52) to get

Var(Z§- (fj + t)‘fgj)

&5 G d £j+t N ) (4 . e
< 4efrj () v/ e—(1—26)5k1\/(u—§j)(Se—a(u—rj) + e—s(éj—rj) _ e—s(u—‘rj)) du.
&

Now for all u > ¢,
se 5T =8 =T) _ oms(u—T) < g 4 e—S(ﬁj—TJ)(l _ e—S(u—fj))

<s4e &) L g(u— &)

so for sufficiently large N,

£5 &+t
Var(Zj(6; + 1) < 48 0 [T 0651 )

&5
£ o]
< 4l G dv/ e~ (=20)3kxu6(1 4 y) dy
0
&5 S S
—4 [ Gj(v) dv
“ (1= 20)skn | (1= 20)skn)?
< 5€jfﬂ7 Gj(v)dv 1
- sk]2V7
as claimed. O

Lemma 9.13. For sufficiently large N, if §; < p;, then

&
Gj(v)dv > sq;(& — 75) — 9.

Ti
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Proof. Suppose ; < p;. Consider first the case in which j ¢ ©. Then for sufficiently
large N, we have G;(v) > s(q; — Cy) for v € [7;,&;] by part 1 of Lemma 9.8. Therefore,

9]
Gj(v) dv > s(q; — Co)(& — 75) = s5¢;(§5 — 75) — Cos(&5 — 75,

Tj

and the result follows because s({; — 7;) — 0 as N — oo by the argument following
(9.45).
Next, suppose j € ©, which means ¢; = j — kn. Using (9.40), we get

2an 1 \a
N——<Tj§§j§a1v+ 2+7 .
k‘N kN

By Proposition 3.5, if t < ay A pj then M(t) < 3. If ay <t < y-41 A pj, then we have
M(t) < kn + Cs. In view of (3.26), if yp+11 <t < (an + (2+ 1/8T)an/kn) A p;, then
t < vp++s and therefore M (t) < k* 4+ 7+ 2C5. Combining the results for these three cases,
there is a positive constant C' such that if ¢ € [}, §;], then M (t) < ky + C. It follows that

&5 &5
[ oz 76—k =€) = i) do = (s(a; - €)= i ~ ),

and the result follows because (C's + p)(§; — 7j) — 0 as N — oc. O

Lemma 9.14. For sufficiently large N,

[ Gj(v) dv é j Gj(v) dv _ £
P(e & ‘Z’( )| 5 fOl‘&]]tE[Q,pﬂ) Zl_ﬁ

Proof. By the L? Maximum Inequality and Lemma 9.12,

(sup|Z’<£J o) > Dot G

16 _ & S(v) dv
ng) <25 2[5 G(v)d ingar( Zi(& + )| Fe,)

30 7f£.jG'(v)dv
< JTi I . 9.53
- 52514:12\,6 (9.53)

By Lemma 9.13 and part 3 of Lemma 9.8, if {; < p; then

§j
e~ fT]? Gj(v) dv < eéefsqj(.fjf‘rj) — 6667175(]]' < 367bSkN.

Plugging this result into (9.53), then taking expectations and using (3.14) and the fact
that J < 4Tky for sufficiently large N, we get that for sufficiently large N,

240e™" _ 960e"T _ e

ky —  62J  25J°

(Sup|Z(£j+t)|> el G “>d”><

The lemma follows. O

Combining (9.42) with Lemmas 9.11 and 9.14 and then summing over j immediately
yields the following corollary, which shows that the result of part 2 of Proposition 3.3
holds with high probability.

Corollary 9.15. For sufficiently large N,

J
> ({ —4d)e [5G0 v g some t € (75, p;1}
j=k*+1
U {Xj,Q(t) N (1 +45)€fTJ Gj(v) dv for somet € [&,ﬁﬂ}) < 2%
EJP 22 (2017), paper 37. http://www.imstat.org/ejp/

Page 76/94


http://dx.doi.org/10.1214/17-EJP57
http://www.imstat.org/ejp/

Rigorous results for a population model with selection I

9.3 Early type ;j individuals before time 7,

In this subsection, we continue to assume j € {k* + 1,...,J}. We consider early type
j individuals, which are descended from type j mutations that occur at or before the time
&;. We will show that the claims of part 1 of Proposition 3.3 hold with high probability.
Note that (3.18) involves a constant C3, which we will define to be
2040bT

Cy = . (9.54)
13

We will assume throughout this section that NV is large enough that the conclusions of
Lemma 9.9 hold.

From part 1 of Proposition 3.3, we know that if j > k* + 2, then no early type j — 1
individual acquires a jth mutation until time 7; A p; A ayT'. In particular, no type j
individual can appear until time £;_; A p;. This result is also true when j = £* 4+ 1 if
we define ;- = t* because, according to Proposition 3.1, on {(y = oo}, no individuals
of type k* + 1 appear until after time ¢*. Therefore, using the notation from Corollary
5.4 in which X J[“’”] (t) denotes the number of type j individuals at time ¢ descended
from individuals that acquired a jth mutation during the time interval (u, v], as long as
&j—1 < pj, we have

~ 1,7 i85 SR
Xj,l(t)ZX][-gj b ]](t)+XJ[- ](t)+XJ[- . (9.55)

We will consider these three processes separately.

Lemma 9.16. Let (Z(t),t > 0) be a continuous-time birth and death process in which
each individual independently dies at rate v > 0 and gives birth to a new individual at
rate A\ > v. Assume that Z(0) = 1. Then

A—v
Also, if n € IN, then
P(supZ(t) > n) = Loy (9.57)
A S 75y ‘

Proof. It is well-known (see section 5 of Chapter IIl in [1]) that the generating function
for this process is

v(s—1)—e At\s — 1)
As—1) —e=A=t(\s — )’

F(s,t) = ZP(Z(t) =k)sh =
k=0
Because P(Z(t) > 0) = 1 — F(0,t), the result (9.56) follows after some algebra.

Also, at any given time, the probability that the next event is a birth is A/(A + v),
while the probability that the next event is a death is v/(A + v). Therefore, (9.57) follows
from well-known results for asymmetric random walks (see, for example, section 3 of

chapter 3 in [13]). O

Lemma 9.17. Suppose k is an (F;);>o stopping time such that ¢;_; < x < &; and, with
positive probability, a type j mutation occurs at time . For sufficiently large N, the
following hold:

1. Given that a type j mutation occurs at time k, the probability that the number
of type j descendants of this mutation exceeds (s/u)' =% before time p; is at most
38]6]\[.

EJP 22 (2017), paper 37. http://www.imstat.org/ejp/
Page 77/94


http://dx.doi.org/10.1214/17-EJP57
http://www.imstat.org/ejp/

Rigorous results for a population model with selection I

2. Given that a type j mutation occurs at time «, the probability that k+an /8Tkn < p;
and at least one type j individual descended from this mutation is alive at time
k+ an/8Tky is at most 3sky.

Proof. Suppose a type j mutation occurs at time . By the reasoning leading to (5.1),
each type j descendant of the individual that gets this mutation gives birth at rate less
than or equal to 1+ s(j — M(¢)). Since s(j — M (t)) = G,(t) + w. it follows from Lemma
9.8 that until time p;, the birth rate is at most A := 1 + (e + 20)skn. As long as the
number of type j individuals descended from this mutation is less than (s/u)'~%, the
reasoning leading to (5.2) implies that the rate at which each such individual either
acquires a mutation or dies and gets replaced by an individual that is not a type j
individual descended from this mutation is at least 1 + 1 — (s/u)* (1 + s(j — M (t)))/N.
Using Lemma 9.8 and (1.9), we see that for sufficiently large N, this quantity is at
least v := p + 1 — dsky until time p;. Therefore, until time p; occurs or the number
of type j individuals descended from this mutation reaches (s/u)!~, the number of
such individuals is dominated by a continuous-time branching process in which each
individual gives birth at rate A and dies at rate v.

By Lemma 9.16, the probability that the number of type j individuals descended from
this mutation exceeds (s/p)!~? before time p; is at most

1—-v/A

1— (v/A)s/w=2

Likewise, the probability that « + an/8Tky < p; and at least one type j individual
descended from this mutation is alive at time x + ay/8Tky is less than or equal to

A—v
N\ — ve—(—v)(an/8Tky) "

(9.58)

(9.59)

We must show that the expressions in (9.58) and (9.59) are bounded above by 3sky for
sufficiently large N. We have

1—v/A<A—v<(e+30)skn.

Because e 4+ 36 < 3 by (3.1), it remains only to show that the denominators of the
expressions in (9.58) and (9.59) tend to one as N — oo. If N is large enough that
v < 1, then we have (v/\)(/®'™° < (1 + (e + 26)sky)~(/®" ", which tends to zero as
N — oo because (sky)(s/u)' =% — oo as N — oo by (1.8). Likewise, ve~(A—)an/8Tkn _;
as N — oo because (A — v)an/8Tky > (e + 3d)san /8T — oo as N — oo. The result

follows. O

Lemmas 9.18, 9.19, and 9.20 below give us the bounds that we will need to establish
that the result of part 1 of Proposition 3.3 holds with high probability. We will use the
notation o(ky") for a collection of probabilities p; y such that

lim ky sup pin = 0.
Nooo ek, d)
Lemma 9.18 shows that it is highly unlikely that any type j mutations appearing before
time 7; will have descendants alive in the population after time 7. As a result, it will be
possible essentially to ignore such mutations.

Lemma 9.18. We have

1-46
P(Xj['gj_h‘rj](t) > <Z) for somet €< [5].7177—; A pj]) = O(k]:fl) (960)
and : |
P(XJ-EJ‘”-7 (t) > 0 for some t € [17, p;]) = o(ky'). (9.61)
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Proof. Write p; := 7; A p;. Suppose first that j > k£* + 2. Because p; < (1 ;_1, the result
of part 2 of Proposition 3.3 holds for type j — 1 individuals up to time p;, which means

ﬁJ ﬁJ ¢ j v v
/ pXj_12(t) dtgu(1+45)/ e-ij_lGJﬂ( )d dt.
A &i—1

Also, since p; < (1 ;—1, Lemma 4.5 implies that

ef.,ilI Gj—1(v) dv < é
I

for sufficiently large IV, which leads to
5]‘ ﬁj B
/ uX;_1(t) dt < 2s(1+ 45)/ e~ Ji7 Gimat)dv gy, (9.62)
§i-1 §i—1

Now suppose instead that j = £* + 1, and recall that &~ = t* by definition. Then because
pj < (1,51, the result of part 1 of Proposition 3.2 gives

pj i .
/ pXj-1,2(t) dt < p(l+9) X (t)ele G dv g,
§i—1 &i—1

Reasoning as in the proof of Lemma 4.5 but using (3.12), we get that for sufficiently
large N,

Xj—1(t*)eff5*j G dv < §7

"

so (9.62) holds in this case as well. Therefore, combining (9.62) with part 2 of Lemma
9.8 and writing C1o = 2(1 +44)/(1 — 26), we get

& P51 28)shy (5t Cho
/ pXj—1,2(t) dt < 2s(1+ 45)/ e ( Jskn (P =1) gt < —.

&1 §i—1 N

Because p; < (;,;-1, the last statement of part 1 of Proposition 3.3 implies that no
early type j — 1 individual acquires a jth mutation before time p;. Because each type j —1
individual acquires mutations at rate p, the number of times that type 7 — 1 individuals
that are not early acquire a jth mutation between the times £;_; and

inf {u : / uX;_12(t) dt > ilo}

§i—1 N

is Poisson with mean C1¢/kx. In particular, the probability that at least one such mutation
occurs during this time period is at most Co/ky, and the probability that two or more
such mutations occur during this time period is at most C%,/k3;. If such a mutation
occurs before time p;, then by Lemma 9.17, the probability that the number of type j
descendants of this mutation exceeds (s/u)!~? before time p; is at most 3sky. Likewise,
the probability that some type j descendant of this individual is still alive at time 77 A p; is
at most 3sky. Thus, the probabilities of the events in (9.60) and (9.61) are both bounded
above by

C? C

k%, kN
This expression is o(k;[l) because sky — 0 as N — oo by assumption A3. O
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Lemma 9.19 bounds the probability that, when j ¢ O, we have an early type j
mutation with descendants alive after time T;. This bound is given in (9.64) below. A
sharper bound is given in (9.63) for the probability that such a mutation occurs before
time & .

J

Lemma 9.19. For sufficiently large N, we have

[TJWE;] 3

P({X; (t) >0 for some t € [, p;]} N{j ¢ O}) < TR (9.63)
and
[75,€5] « . 136b
P({X;7*(t) > 0 for some t € [77,p;]} N {j ¢ ©}) < T (9.64)
N
Proof. By Lemma 9.10 and part 1 of Lemma 9.8, on the event {j ¢ O}, we have
&5 Apj NP a0 do
/] pX 1 (t) dt < (1+36)s/ L el G gy
&5 Npj
< (1+ 3(5)5/ 54 +Co)(t=75) 1t
£
e8(ai+09) (&5 —75)
<(1+38)s — (9.65)

s(q; + Cy)

By part 3 of Lemma 9.8, we have (1 + 30)/(g; + Cy) < 2/ky for sufficiently large N.
Also, recalling (9.39) and observing that log(1/sg;)/q; — 0 as N — oo on {7; < p;}
by assumption Al and part 3 of Lemma 9.8, we get that for sufficiently large N, on

{rj <pik
5@ +C) (& =) _ € exp (Cblog( 1 ) — C9b) < 2e . (9.66)
s \4gj

Therefore, on the event {j ¢ ©}, we have

& Npj 4ot
X;_q1(t) dt < . 9.67
[ uamas 2 967)

J

Likewise, if we replace fj_ by ¢; in (9.65), (9.66), and (9.67), we get that on the event

{i¢eh

EiNP;
/ qu_l(t) dt < (9.68)

J

Let I'y be the number of type j mutations between times 7; and {; A p;, and let I'
be the number of type j mutations between times 7; and &; A p;. Because each type
j — 1 individual acquires mutations at rate u, equations (9.67) and (9.68) imply that
E[Fl]l{jg(_)”]:rj] < 46_1)/(8]{51\7(]]‘) and E[Fg]l{j¢@}|]:-,-j] < 46b/(SkNQj). Let A; be the event
that 7 < p; and the individual that gets the ith type j mutation between times 7; and ¢;
has type j descendants alive at time 7. By Lemma 9.9, this individual must have type j
descendants alive for at least a time ay/8Tky after the time of the mutation. Therefore,
by Lemma 9.17, we have P(A;|I" > i) < 3sky. Using part 3 of Lemma 9.8, equation (3.1),
and the fact that J/ky < 4T for sufficiently large N, we get

1 —b —b —b
12e 13e e 832Te
Pl{j¢otul| |A4l|F. ) <3sknE[l1l;:¢er|Fr] < < <=
({J ¢ ©} g J) ~E1 1 gey|Fr] o w167 .
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Equation (9.63) follows because e b < €/832T by (3.14). Likewise,

(w@}uUA

) < 38/€NE[F2]l{]¢@}|.F ]

which implies (9.64). O

Lemma 9.20. For sufficiently large N, on the event {p; > 7;}, we have

P(XJ[-T-“@]( t) > Cs el G o some t € (75, 41 A ps]|Fry) < % (9.69)
and
L€ t -(v) dv
P(X;Ej ’5'7](t) > Cgef?f G for some t € (75, i1 A pil| Fry) < % (9.70)
Also,
s\ 19
P(X}Tj’fj](t) > (M) for some t € [1;, 7] A p]-]> = o(ky"). (9.71)

Furthermore, (9.69) holds even if j is random, as long as 7; is a stopping time.

Proof. Let p; := 741 A p;. Using the notation of Corollary 5.4, if ¢ > 7;, then

tAE; AP

t/\p] s —[v -(v) dv T & _
_j Gj( v)deJ[‘],&](t/\ﬁj):/ MXj—l(u)e f,rj Gj(v)d dquZ][]’éJ](t/\Pj) (972)

Tj

By Corollary 5.4, the process (Z[TJ’gjl(Tj +t), t > 0) is a martingale. Therefore, if we
define

Y (t) := effr 7G(v) dUX["'7 fj](t/\pj)
for all ¢ > 7, then the process (Y'(t),t > 7;), having been expressed in (9.72) as the

sum of an increasing process and a martingale, is a submartingale. By Doob’s Maximal
Inequality,

1
P(Y(t) > Cs for some t € [15, p;]|Fr;) < FE[Y(ﬁj)U:TJ (9.73)
3

By (9.72) and Lemma 9.10,

PiN&i — f“ j(v) dv
B IF =8| [ axpae a7
PiNE;
<(1+ 35)3E[/ e dy fﬁ}
<1+ 36. (9.74)

Now (9.69) follows immediately from (9.73) and (9.74), as long as C5 > 97(1 + 39) /e,
which is true by (9.54). Note that Remark 5.5 implies that (9.69) holds when j is random,
provided that 7; is a stopping time.

To obtain (9.71), note that if t < T; A p;, then by part 2 of Lemma 9.8, we have

¢ —(e+26) /4T
o e G dv o —(an /ATN ) (e428)skn) _ (3> '

I
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Therefore,

1-5
P(X][Tj’gj](t) > (Z) for some t € [7;, 7} A p]-]>

o
g\ 10— (e+28)/4T
< P(Y(t) > <)

W

¢ Goto) do 1-5
P<Y(t) > ¢ dn G <8) for some ¢ € 7,7} A pj])
for some t € [7;, 7] A pﬂ).

Write 6 := 1 — 6 — (e + 26) /4T, which is positive by (3.1). Arguing as in the derivations of
(9.73) and (9.74) but using (s/u)e in place of C3 and T;‘ A p; in place of p;, we get

1-0 —0
P(X][-T"’gj](t) > (Z) for some t € t € [, 7] A pﬂ) < (14 30) <Z> .
The result (9.71) follows because (s/u)*ekN — 0 as N — oo, as can be seen by taking
the logarithm and using (1.7).
The argument for (9.70) is similar to the argument for (9.69). Using Corollary 5.4,
we have
-/

e 5.7‘

TG dv e e LAEjAP; — [ Gy(v) dv oy
U e = [ e 5T a2 ),
&
(9.75)
Z[S;,fj]

where (Z; (§; +1), t > 0) is a martingale. Fort > ¢, let

I G () du [67,¢5]
Wit)y=e % X7 A py).

By (9.75), the process (W(ﬁj_ +t),t > 0) is a submartingale. By Doob’s Maximal Inequality,

&
£5 *j,-jj Gj(v) dv
P(e I G0 W (1) > €5 for some t € [€5, ]| F-) < %E[W([yﬂ}'&—].
J 3 J
(9.76)
By (9.75) and Lemma 9.10,
_ PiNgs — [ Gi(v) dv
EW ()71 = 5| [ e a7 |
J
PiNE  ru () do — S G(v) dv
< (1+35)SE|:/ eij Gj-1(v)d e & 7 du‘]:g_:|
£ K
I3 PiNE;
=(1+ 35)86IUJ Gi(v)dv {/ e s(u=Ti) gy ]:gl
& ’

J

I3
< (1+438)s(g — & el G,
2(1 + 36)b €f‘f3; Gj(v) dvl
qj
Since ¢; > (1 — 26)/ky on {1; < p;} for sufficiently large N by part 3 of Lemma 9.8, it

follows that for sufficiently large N, we have, on {7; < p,},

3b 5 a.
E[W(ﬁj)|f€—] < 2. efrj Gj(v) dv.
J kN
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Therefore, recalling (9.54) and noting that J < 4Tky for sufficiently large N, we get

I
— [ Giv)dv [ o 3b 12T €
P(e W (t) > C5 for some t € [Tj7p]]|]—'£j_) < Gk < Gl 17T

Taking conditional expectations of both sides with respect to 7, yields (9.70). O

We now combine Lemmas 9.18, 9.19, and 9.20 to establish that the result of part 1 of
Proposition 3.3 holds with high probability. In view of the fact that 2(s/u)' =% < s/2u for
sufficiently large N, Proposition 9.21 establishes the first two statements of this result.
Proposition 9.22 establishes the last statement.

Proposition 9.21. For sufficiently large N,

J t
Z P<{ijl(t) > Cge'[Tj G (v) dv for somet € [’7’;, Tj+1 AN ,0]]}
Jj=k*+1
bl

1-6
M) forsometST]’»“/\pj}> <

U {ijl(t) > 2(

I

Proof. Recall from the discussion before (9.55) that if a type j individual appears before
time &;_1, then p; occurs at that time, so we only need to consider type j mutations after
time &;_;. Combining (9.60) and (9.71), we see that for sufficiently large N,

P(X;1(t) > 2(s/p)' ~° for some t < TS Apj) = o(kyh). (9.77)

By (9.55), (9.61), (9.63), and (9.70),

J t
Z P({X;(t) > Cge'[ff G4 for some t € [r, i Apilt n{i ¢ 0}) <
j=k*+1

€
- (9.78
3 ( )
for sufficiently large IN. Because we observed that there can be at most 12 values of j for
which 7; < p; and j € O, it follows from (9.61) and (9.69) that for sufficiently large IV,

J "t Gj(v) dv
Z P({X;(t) > Ozl P for some ¢ € [T, i Apsl} N{j€O}) <
j=k*+1

(9.79)

| ™

Note that the values of j that are in © are random, so we are using the statement in
Lemma 9.20 that (9.69) holds when j is random, as long as 7; is a stopping time. O

Proposition 9.22. Let p; := 7,41 Ap;. Let A; be the event that an early type j individual
acquires a (j + 1)st mutation at or before time p;. Let

Ey = {X;1(t) <2(s/p)' " forallt <77 Apjandj € {k*+1,...,J}}

By = {X;1(t) < C3effj G forallt € [77,p;] and j € {k* +1,...,J}}

.{77- Gj(v)dv SXJ‘Q(t) S (1+45)ef7] Gj(v) dv

forallt € [r},p;] and j € {k* +1,...,J}}.

Bz = {(1 - 4d)e

Then, for sufficiently large N,

J
g
P(( U Aj)ﬂElﬁEgﬂE;g) <5

j=k*+1
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Proof. We first bound the probability that an early type j individual gets a (j + 1)st
mutation between times ¢;_; and T;‘. When F; occurs, we have, using (3.26),

J T NPj S 1=9 J
3 / pX;a(t)dt < 2”(/1) D (T Api—&)

j=k*4178i-1 j=k*+1

oS =0 1
(g NI =R () (s
= <4+ 2T> . <5> log <M> —0 (9.80)

as NV — oo. Because each type j individual acquires mutations at rate u, the expression
on the right-hand side of (9.80) bounds the probability that F; occurs and, for some
je{k*+1,...,J}, an early type j individual gets another mutation between times &;_;
and 7;.

Consider next the possibility that such a mutation occurs between times 7/ and
Ti+1 A pj. In view of (9.64) and the fact that there are at most 12 values of j for which
7; < p; and j € O, the probability that there are fewer than k:]l\,/2 values of j for which
Xj1(t) > 0 for some ¢ € [77, p;] tends to one as N — oc. Suppose there are indeed fewer

than kjl\,/z such values of j, and suppose E5 and E5 occur. Then, for sufficiently large IV,

oI5 Giw) dv < X;2(p)) < L+s/p < 25.
1—46 1—-46 I

Therefore, using part 2 of Lemma 9.8,

J Pj Pi ot (o) do
3 / ,quJ(t)dtSC'gk]lv/zlu/ el G gy

j=k*4+1Y7; ’r

= Cgkjl\r/zue-f’f G dv/

T~
J

2 12 e
< 0314211\[/2” . ;3/ e—(1—25)5kN(pj—t) dt

pj P
’ e~ ftpj Gj(v) dv dt

2C5

< — .

< (1—26)k]1\,/2 —0 (9.81)
as N — oo. The expression on the right-hand side of (9.81) bounds the probability that
for some j € {k* +1,...,J}, an early type j individual gets another mutation between
times 7-; and p;. Equations (9.80) and (9.81) thus imply that the probability that £, F»,
and Ej3 occur but A; also occurs for some j € {k* +1,...,J} tends to zero as N — oc.
The result follows. O

9.4 Type j individuals between times 7, ; and v, x

In this subsection, we show that the number of type j individuals behaves quite
predictably between times 7,1, and 7,4 k. In particular, we show that the result of part 3
of Proposition 3.3 holds with high probability. The key to the argument will be showing
that the fluctuations in X;(¢) are small. We assume throughout the subsection that
je{k*+1,...,J} Let

P = pi NVjrx-
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We apply Corollary 5.3 with 75, in place of x and p;. in place of T to get that fort > 7,4,

AP tAp, e v )
X;(t A pj) = el G (Xj(7j+1)+/ ],qufl(u)e Iy Gilo) de

j+1

du+ 2" (t)).

(9.82)
To lighten notation, we will set

TP
Z7(t) =2, (),

and then the process (Z7 (741 +t),t > 0) is a mean zero martingale. By definition, we
have s/ < X;(7j4+1) <14 s/p, so the first term in (9.82) is very close to the expression
in (3.20). Therefore, to show that (3.20) holds with high probability, we need to show
that the second and third terms in (9.82) are small relative to the first term with high
probability. We begin with a result similar to Lemma 9.10 that holds between times
Vi—1+k and V1 k.

Lemma 9.23. For sufficiently large N, if v;_1+x <t < pj, then

(1 + 25)](:]2\/'86‘]% Gji_1(v) dv
i

Proof. If j > k* 4+ 2, the result is immediate from (3.21). Suppose instead j = k* + 1.
Then (9.41) holds. Because (1 + s/u)/[(1 —8)(s/p)] < 1+ 26 for sufficiently large N, an
application of (3.13) then gives the result. O

X;1(t) <

The next lemma controls the second term in (9.82). We will consider the event
Ti+1 (v) dv

Fy = {X;a(rj51) > (1 —48)el7 G dvy, (9.83)
By Corollary 9.15, with probability at least 1 — ¢/25, for all j € {k* +1,...,J} either F;
OCcurs or 741 > pj-
Lemma 9.24. For sufficiently large N, ift € [7;11, p}] and F}j occurs, then

t
“ v) dv 1)
/ pXj-1(u)e Tl G gy, < 25

Jj+1 SM

Proof. First suppose 711 < u < p; A7v;j-1+x. Then by Lemma 9.10,

pXj-1(u)e T G <(1+ 35)sef:j Gj-a(v) dv 7J*u+1 j(v) dv
— (14 36)sel " Co) dv—s(u=—ry),
On the event F};, we have
f—:ij+l Gj(v) dv 1+ S/ILL
“ ST (9.84)
so for sufficiently large N, on F},
v v)dv _ 28?
X1 (w)e T GO < %eﬂ(“*ﬁ‘). (9.85)

Next, suppose v;_1+x < u < pj Then by Lemma 9.23 and (9.84), for sufficiently large
N, on F; we have

pXji-1(u)e T G (1+25)stef Gima@)dv = [, G(v) dv
= (1+20)k% sel7 T Giw) dv —s(u—r;)
2k2
< B8 s (9.86)
"
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By (9.85) and (9.86), if t € [Tj+1,p;.) then on F,

¢ “ i(v) dv

1
92g2 [tNVi-1+K

os(u=ry) gy 4 2KNS" / (=7 du.
K Yi—1+K

:u“ Tj+1
< 28( —s(Ti4imT) 4 2 e T)) (9.87)
7]

Ift € [7j+1,p}), then 711 < p;, which means 7,1 — 7; > an/3ky by (3.26) and also
Vi—14K — Tj > Yi — T = an. Therefore, by (1.7), we have

) > anNs log(s/u)z

$(Tjp1 — 1) > kv - 3logN — o0 asN — (9.88)
and
k2
Ko=) < 2 emsan = INT 0 as N — oo. (9.89)
s
The lemma follows from (9.87), (9.88), and (9.89). O

It remains to bound the third term on the right-hand side of (9.82). To bound this
term, we will need to control the fluctuations of the martingale (Z7 (741 +t),t > 0).
Lemma 9.27 below gives the required second moment bound. Before stating this lemma,
we provide some estimates on G;(v) in the following two lemmas.

Lemma 9.25. For sufficiently large N, if j > k* + 1+ K and u € [Tj41,7j—k A p;-), or if
E*+1<j<k*+Kandu € [tj41,an /\p;), then

_ [“7+1 Gj(v) dv < e skn(u=Tj11)/5 (9.90)
Proof. We will use the results of Proposition 3.5, which by definition hold up to time p;.
Also, recall that K = |ky/4]. First, suppose j > k*+ 1+ K and ¢t < p;.. If t < ay, then by
part 1 of Proposition 3.5, for sufficiently large IV,

G5(t) = 5 = M(0) — > 5 —3) — > 2. 9.91)

Ift € (an,vk++1), then by part 2 of Proposition 3.5, for sufficiently large N,

k
G(t) = s(j = M(1) = 2 s(j — kn = Ca) =i 2 = (9.92)

If t € [Yg*41,7j—K ), then by part 3 of Proposition 3.5, for sufficiently large IV,

Gi(t)=s(— M) —p>s(— (=K —1)—2C5) —p > 8"% (9.93)

Combining (9.91), (9.92), and (9.93), we get for u € [Tj4+1,vj—k A p;-)

v skn
Gj(v) dv = T(U — Tj+1),

Ti+1

which leads to (9.90). Next, suppose k* +1 < j < k*+ K. If t <any A p;-, then (9.91)
holds as before, which again yields (9.90). O
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Lemma 9.26. For sufficiently large N, if j > k* +1+ K and u € [y;-k,pj), or if
k*+1<j<k*+ K and u € [an, p}), then

- —kn /241
SO <s> _
W

Proof. Recall the definition of M (t) from (8.14). Write v* = 11 if k* + 1 < j < k* + K
andy" =v_gifj > k" +1+ K. Also, writei = k*+1ifk*+1 < j<k*+Kandi=j—-K
if j > k* + 1+ K. Suppose u € [y*, p), and note from the definition of p; that this means
u < Yj+x. Now

/j Gj(v)dv= /7: (s(j — M(v)) + s(M(v) — M(v)) — p) dv
JHE-L oy Au
= Z / (s(j =€) + s(M(v) — M(v)) — p) dv. (9.94)
e=i YN

Because positive terms can be bounded below by zero, we have, using (3.26),

JHE—1 HK—1

Ye+1N\u
[ sim0az Y s- Ot Au-nw)
=i Jehu £=5+1
2ay TE!
N .
T 2 00

l=j+1
KK -1

:_w. (9.95)
kn

Using (3.26) and (8.15) and the fact that there are at most 2K terms in the sum, we get

JTE-1 Yer1A\u B 2.
3 / (s(M(v) — M(v)) — p) dv > —2K <205 + kN“). (9.96)
=i v N

e A\U

Now since s/u — oo as N — oo by (1.8) and say/ky — oo as N — oo by (1.7), we have
4C5 + danp/kn < san/kn for sufficiently large N. Combining this observation with
(9.94), (9.95), and (9.96) yields

2
K?san _  kysay kn <s> 9.97)

, > _ > =N
/7* Gj(v) dv > v 16 16 log

It remains to consider the integral between times 7;,, and «*. Suppose first that
j > k*+ 1+ K. In view of part 3 of Proposition 3.6, for sufficiently large N, as long as
v* < pj, we have

% 2(K -1 an anN
V= Tit1 = Yj-K ~ Ti—k + Tj—Kk — Tj+1 = an — (Tj41 — Tj—Kk) = an — % Z 5

Thus, assuming that v* < p;-, Lemma 9.25 implies that for sufficiently large N,

v k k k
Gj(v) dv > X () > TN = ZN og (Z) (9.98)

5 15 15

Ti+1
Suppose next that £* +1 < j < k* + K. Then, as long as ay < p;, parts 1 and 3 of
Proposition 3.6 imply that for sufficiently large NV,

2&]\7 2KaN > an

AN = Tj41 Z ON = Theg1t + The 1 = Tjpl Z AN = 73— — —— 2 3
N N
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and the same reasoning that yields (9.98) gives

- G,(v) dv > k—N log (S) (9.99)
15 p

Now suppose u € [an, Vi<+1 A p;-). Then for v € (an,u), since k* +1 > kj{, > ky and
M (v) < kn + Cy by the result of part 2 of Proposition 3.5, we have
Giw)=s(j—M@w))—p>s(k"+1—kny—Cs) —pp>—5Cs — p.

Therefore, since (=41 A pz) —an < 2ay/ky by part 1 of Proposition 3.6, for sufficiently
large N we have

/“ Gj(v)dv > —(sCy + p)(u — an)
S 72(5C4+u)aN
e
_ 2(Ca+p/s) oo [ £
B kn ! g(#)

> —log (Z) (9.100)

By combining (9.97) and (9.98) when j > k*+1+4+ K and u € [y;_x, p;-), and by combining
(9.97), (9.99), and (9.100) when k* +1 < 5 < k*+ K and u € [aN,,o;-), we obtain for
sufficiently large NV in both cases,

“ kn  kn s s kn s
G,;(v)dv > ( — ) log () —log () > —log|—|.
P 15 16 W W 241 W
The result of the lemma follows. O

Lemma 9.27. For sufficiently large N, we have, for allt > 0,

21
Var(Z! (t; OF. )< —
( j (TJ+1 + )| J+1> = ,UkN

on the event F}.
Proof. By Corollary 5.3 and (6.5), for all ¢ > 0,
Var(Z;’/(Tj"rl + t)‘ij+l)

F

Ti+1

Tit1+t cu () dv
< E|:/ . 2f7j+1 Gj(v)d (qu_l(u) +3Xj(u))]1{u<p;} du

j+1

]. (9.101)

Using (9.85) when u < «;_14x and using (9.86) combined with (9.89) when u > ~v;_14x,
we obtain that if u € [7;11, p}), then for sufficiently large N,

— [ v) dv 2 2
e jTj+1 Gj(v)d MXj—l(u) < % (9.102)

Also, by (9.82) and Lemma 9.24, if u € [1j41, p;) then on the event Fj, for sufficiently
large N,

—[* Gj()dv “ Gj(v) dv

e JTit X;(u) = X;(1j41) + / pXj—1(w)e S dw + Z7 (u)
Tj+1
)
<14+ 242 4 7). (9.103)
woo3p
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Combining (9.101), (9.102), and (9.103), and noting that 2s2/u+3(1+s/u+38s/3u) < 4s/p
for sufficiently large N, we get

Tj+1+t e

; G,j(v) dv 4s
j1 7 ('u +3Z”( ))]l{u<p3_} dul|F,

Tj+1}

(9.104)

Var(Z{(ry11 + 01, < B |

41

on F} for sufficiently large N.

To bound the right-hand side of (9.104), we split the integral into two pieces. Let
v =7j-kifj>k*+1+ K, andlet vy = ayn if k* +1 < j < k* + K. Consider first the
contribution to the integral from u < +'. Because the integrand in (9.101) is nonnegative
and 77 (u) = Z](p}) for all u > p};, we have 4s/p + 37}/ (u) > 0 for all u > 7;,1. Then by
Lemma 9.25, for all v > 0,

— [ (v) dv 4 4
R R A ) e e RO}

Combining this observation with Fubini’s Theorem and the fact that (Z}(7;41 + 1), > 0)
is a mean zero martingale, we get for all ¢t > 0,

Tit1+t oy v 4
E[/ e i G0 < ; +3Z] (u )>]l{u<v’m>3-} du ]-‘7_7.“}
i1

< EUOO ok (u=Ti)/5 (43 + 32 (u )) du
Ti+1 K

_4s

678’(}N(u77‘]‘+1)/5 du

'FTJ'+1:|
Ko Jrj
20

=, (9.105)
pkn

Likewise, by Lemma 9.26,

—[*  Gj(w)dv S ~hw /241 4s
LS (L ey < (2) T (Baszrw). @109

Also, using (3.26), which is valid up to time p},

2Ka 3a
Py —Tjy1 =an +pj —vip1 < ay + B N < TN (9.107)
N

Combining (9.106) and (9.107) with with Fubini’s Theorem and the fact that the process
(Z}(7j+1 +1t),t > 0) is a mean zero martingale, we get for all ¢ > 0,

TJ+1+t _ru “(v) dv [ 4s
E{/ J541 Gi) (M +3Zj (u ))ﬂwgu@;} du
Tj+1

‘7:7.7‘+1}

T]‘+1+3G.N/2 s —kN/241 43
< E[/ () ( + 3Z”(u)) du .7:7,-“}
Tj+1 ® K
< 6san <S> ki /241
[N
—kn /241
6
_ 2 (3> log (5) (9.108)
IUANY w
Because ky(s/p) #~/?*'log(s/u) — 0 as N — oo, as can be easily seen by taking
logarithms, the lemma follows from (9.104), (9.105), and (9.108). O
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Lemma 9.28. For sufficiently large N,

ds 756
P({|ZJ’/(1§) > 3 for somet € [Tj+17p;~]} ﬂFj) < Py

Proof. By the L? Maximum Inequality for martingales and Lemma 9.27, on the event F},

s 362 7561
. 1 3 -7 . Q 1 X e
p(igg |Z5 (Tj41 +1)| > 3 T-THI) < 2 gg\/ar(Zj (Tjr1 + 1) Fryyy) < sthn
Taking expectations of both sides yields the result. O

Corollary 9.29. For sufficiently large N,

1- ! i(v) dv 1 t (o) do
> P(Xj(t) ¢ {(5)36%“ Gy () dv. A+9)s 1, Giwad ]
j=k*+1 H 1

for some t € [Tj+1,p;‘]> < 2%

Proof. By (9.82), Lemmas 9.24 and 9.28, and the fact that s /u < X;(741) < (s/p)(146/3)
for sufficiently large N by (1.8), we have

J
1-6 "t ((wydv (L1496 ¢ i(v) dv
Z P(Xj(t) ¢ |:()8617j+1 Gi(v)d , @JUHGJ( ) d ] for some t € [Tj+1,p;])
e u 7

J
7560 .
< Z (523%\[ + P(Fjn{p; = Tj+1}))-

Because Z;.]:k*ﬂ P(FfN{p; > 7j11}) < &/25 by Corollary 9.15 and Jyu/(6*s*ky) — 0 as
N — o0 by (1.8), the result follows. O

9.5 Type j individuals after time ~; x

In this subsection, we show that the number of type j individuals decreases rapidly
after time 7,4 k. More specifically, we show that the results of parts 4 and 5 of Proposition
3.3 hold with high probability. We will consider the event

oo {(1 - 5)S€jfﬁf G0 < X () < (1+ 6)361.%]'++1x G (v) dv}.
I I

Corollary 9.29 implies that when ¢t = 7,4k, with probability at least 1 — ¢/24, for all
je{k*+1,...,J} either H; occurs or v,k > p;. Recall also the definition of the event
F}; from (9.83).

Lemma 9.30. Suppose j € {k* +1,...,J}. For sufficiently large N, if{ < j — 1, then
X (s —-1/13
M < 3k]2\f (s) (9.109)
X (Vj+x) I

on the event F; N H; N {vj+x < p;}.

Proof. We will assume throughout the proof that v, x < p;. It follows from Lemma 9.23
thatif k* </ <j—1and 4k < pj;, then

(1 + 2(5)]@2\786]'_&1:11( Ge(v) dv’
1

Xe(vj+r) < (9.110)
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Therefore, on the event H,

2 . .
XE(7j+K) < (1 + 2§)kN efTZJ:l Gy(v) dve Tj]:IK (Ge(v)—Gj(v)) dv. (9.111)
Xi(y+x) = 16

Ti+1 .
Recall that on the event F};, equation (9.84) holds, and therefore ef i TG (v) dv < 2s/u for

sufficiently large N. Also, by Lemma 4.5, in view of the assumption that v, x < p;, the
same result holds when j is replaced by h € {k*+1,...,j — 1}. Therefore, for sufficiently
large N, we have

. i it
S G o [T e Gnr o (2:> . 9.112)
h=(+1

By (3.26), we have 7,1k — Tj41 = an + Tj+x — Tj+1 > an + an(K — 1)/3kn > 1dan/13
for sufficiently large N. Therefore,

/ T Guw) - Gy ) dv = —s(j — ) — i)

J+1

< ~14(j — Osan

= 13

_ M-8, (5) (9.113)
13 o

By (9.111), (9.112), and (9.113), on the event F; N H; N {v;4+x < p;}, we have for
sufficiently large N,

Xo(Vj+K) < (14 20)k3 <2<s> 1/13>je

Xij(vj+x) = 1-6 I

Because 2(s/pu)'/13 — 0 as N — oo, for sufficiently large N this expression is largest
when ¢/ = j — 1, and thus (9.109) holds whenever k* </ < j — 1.
Next, suppose 0 < ¢ < k* — 1. Then by (3.12), we have

XZ(’}/k*J,-K) > (1 _ 5)X£(t*)€f;k*+f< Gy (v) dv,
and by (9.26), we have X(vi++ k) < Xg= (vk++ K ). Therefore, by (3.13),

~

Xo(vj+K) < k?vXe(t*)eft*k*M G () dv i 5 Gev) dv

k2 Vi+ K Y
1 N(SX@(rYk*-kK)e RUSES ¢ Ge(v) d

2 i
< 1kN5Xk* (Ye=+x)€ L Grr (0) v

<

Now using Lemma 9.10,

(1 + 35)kJ2VSe[:I:*++I(1 Gp= (v) dv’
(1—-0)u

which is the same as (9.110) when ¢/ = k* except for the constant in front involving .

Therefore, (9.109) holds on F; N H; N {v;+x < p;} in this case as well. O

Xe(vj+x) <

Proposition 9.31. For sufficiently large N,
J

k‘2 't i(v) dv
) P({Xj(t) > INE T GO for some t € ('Yj+K7pj]}
j=k*+1 "
U {X;(t) >0 for some t € ["Yj.ﬂ,-L,pj]}) < 16—2 (9.114)
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Proof. Suppose j € {k* +1,...,J}. Recall that S;(t) = Xo(t) + X1(¢t) +--- + X;(¢) for all
t > 0. By Proposition 5.6 and Remark 5.7, the process

(vj+ K +IAP;

(6_ f"fjJrK Gj(v) dU57((’7.7'+K + t) A pj)’t > O)
is a nonnegative supermartingale. Therefore,

2 2

Gj(v) dv k
VG 1) > N (k) | Frpn ) < o (9.115)
2 K2

P ( sup e Bivx
tE[Vj+ K051

Since j < J < 4Tk for sufficiently large N, on the event F; N H; N {v;1x < p;} € F,

Lemma 9.30 implies that for sufficiently large N,

K’

1/13 1/13
. s . /s
Si(vi+x) < (1 +3(j — DEY <M> >Xj(7j+K) < (1 + 12Tk, <M> >Xj(7j+K)-

Since k3,(s/p)~ /1% — 0as N — oo, as can be seen by taking the logarithm and applying
(1.7), for sufficiently large N we have S, (vj+x) < (3/2)X;(vj+k) on F;NH;N{vj+x < p;}.
Combining this observation with (9.115) gives that for sufficiently large NV,

Sklz\f I Gj(v) dv

P(Sj(t) > e X;(vj+x) for some t € (vj+x, ;]

2
]ZW4J(> < 7.2
N

Vi+K

on F; N H;. Since X,;(t) < S;(t) for all t > 0 and (3/4)X;(vj+x) < (s/p)e’ i+ i) on
Hj, it follows that on F; N Hj,

k2 ¢ i(v) dv
P60 > B2 s SO forsome t € (3101
1

2
Frrin ) < o (9.116)
J kN

Also, on the complement of the event in (9.115), if p; > ;1 then

'7j+K)-

]{)2 Vi+L o~ ¢, ,
SJ(’YJ+L) S ?Nef“’HK GJ(U) dr SJ(

Reasoning exactly as in (9.29), (9.30), (9.31), and (9.32) but with 5 in place of £*, we get
that on the complement of the event in (9.115), if p; > ;41 then for sufficiently large NV,

NK (5 —16kn /15
2 \u '

Si(vj+1) <

As in the discussion following (9.32), we see that the right-hand side tends to zero as
N — oo and thus must be less than one if N is large enough. Because S;(vy;+z) is an
integer, it follows that S;(v,+r) = 0, and therefore that X,(¢) = S;(t) =0 forall ¢t > ;4 1.
Combining this observation with (9.116), we get that the sum of the probabilities in
(9.114) is bounded above by

J 9
> <k2 + P(F;U Hj)) .
j=k*4+1 NN

By Corollaries 9.15 and 9.29, this expression is at most 2.J/k%; + £/25 + /24, which is
less than £/12 for sufficiently large N. O

We now combine the results of this section to complete the proof of Proposition 3.8.
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Proof of part 3 of Proposition 3.8. From Corollary 9.15, Proposition 9.21, Proposition
9.22, Corollary 9.29, and Proposition 9.31, we get

J
13 19 19 19 13
j_zk*HP({Co b G Sgrt ittty

for sufficiently large N. Also, Remark 9.7 gives that for sufficiently large N,

J

€

P({¢o =00} N{C1,; <pj}) < 6
§=0

Since €/25+¢/4+4¢/48+¢/244¢/124+¢/16 < £/2, it follows that (9.1) holds for sufficiently

large N. As noted at the beginning of section 9, this completes the proof of part 3 of

Proposition 3.8. O
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