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Abstract

We consider a model of a population of fixed size N undergoing selection. Each
individual acquires beneficial mutations at rate µN , and each beneficial mutation
increases the individual’s fitness by sN . Each individual dies at rate one, and when a
death occurs, an individual is chosen with probability proportional to the individual’s
fitness to give birth. Under certain conditions on the parameters µN and sN , we
obtain rigorous results for the rate at which mutations accumulate in the population
and the distribution of the fitnesses of individuals in the population at a given time.
Our results confirm predictions of Desai and Fisher (2007).
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1 Introduction

We consider the following model of a population undergoing selection. We assume
there are exactly N individuals in the population at all times. Each individual indepen-
dently acquires mutations at times of a Poisson process with rate µN , and all mutations
are assumed to be beneficial. Each individual is assigned a fitness, which depends on
how many mutations the individual has acquired relative to the mean of the population.
More precisely, let Xj(t) be the number of individuals with j mutations at time t. Let

M(t) :=
1

N

∞∑
j=0

jXj(t)

be the average number of mutations for the N individuals in the population at time
t. Then the fitness of an individual with j mutations at time t, which we call a type j
individual, is

max
{

0, 1 + sN (j −M(t))
}
. (1.1)
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Rigorous results for a population model with selection I

Each individual independently lives for a time which is exponentially distributed with
mean one, then dies and gets replaced by a new individual. The parent of the new
individual is chosen at random from the population, and the probability that a particular
individual is chosen as the parent is proportional to that individual’s fitness. The new
individual inherits all of its parent’s mutations. Note that this model includes two
parameters: the mutation rate µN and the selection parameter sN .

This model is of interest mostly because it is essentially the simplest possible model
that allows for repeated beneficial mutations. The model has appeared previously in
the literature; see, for example, [3, 4]. Note that fitness is additive in (1.1), in the sense
that each additional mutation increases the individual’s fitness by sN . An alternative to
(1.1), which was considered, for example, in [2, 8, 20], is to assign a fitness of (1 + sN )j

to an individual with j mutations. However, assumption A3 below will ensure that for
the range of parameters that we will consider, sN (j −M(t)) is small and therefore the
approximation 1 + sN (j −M(t)) ≈ (1 + sN )(j−M(t)) is valid. Consequently, the distinction
between these two choices of the definition of fitness is not important for our purposes.
A limitation to our model is that the selective advantage sN is assumed to be the same for
every beneficial mutation. Some authors have considered models in which the selective
advantage resulting from a mutation is random (see [7, 11, 18, 19, 24]), but we do not
consider this complication here.

Here we will be interested in determining how rapidly the population acquires
beneficial mutations, that is, how fast M(t) grows as a function of t. This growth rate
is sometimes called the rate of adaptation or the speed of evolution. Also, we will
be interested in understanding the distribution of the fitnesses of individuals in the
population at a given time.

1.1 Previous work

The behavior of the population in this model can vary considerably depending on
the values of the parameters µN and sN . The simplest case to handle is when the
mutation rate µN is small enough that there is only one beneficial mutation in the
population at a time. This occurs, for example, when sN = s > 0 is a fixed constant
and limN→∞ µN (N logN) = 0. In this case, there is approximately an exponentially
distributed waiting time until there is a so-called selective sweep, in which a beneficial
mutation appears on one individual and then spreads to the entire population, followed
by another exponentially distributed waiting time until another selective sweep occurs,
and so on. See, for example, Chapter 6 of [6] for details. However, the process becomes
much more complicated as soon as mutations occur rapidly enough that there can be
more than one beneficial mutation in the population at a time.

Another case that has been studied in detail is when NµN → α ∈ (0,∞) and NsN →
γ ∈ (0,∞) as N →∞. That is, the mutation rate µN and the selection parameter sN are
both of the order 1/N . In this case, one can describe the process using diffusion theory.
For a summary of results in this direction, see sections 7.2 and 8.1 of [6] and chapter 10
of [9].

An important paper which establishes rigorous results is the work of Durrett and
Mayberry [8], who were motivated by cancer modeling. They considered the variation
of the model in which the fitness of an individual with j mutations is given by (1 + s)j ,
where s is a fixed constant not depending on N . They also assumed that µN ∼ N−α,
where 0 < α < 1. They showed that if Tj := min{t : Xj(t) ≥ 1} is the first time when an
individual gets j mutations, then

sTj
log(1/µN )

→p tj
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Rigorous results for a population model with selection I

for a certain deterministic sequence of constants (tj)
∞
j=1, where→p denotes convergence

in probability as N →∞. They also obtained more precise results describing how the
number of type j individuals evolves over time.

Yu, Etheridge, and Cuthbertson [25] considered very fast mutation rates, where
µN = µ > 0 and sN = s > 0 for all N . That is, neither the mutation rate nor the selection
parameter depends on N . The model they considered is slightly different from the one
presented here in that an individual’s fitness affects its death rate as well as its birth rate.
They observed that the process that keeps track of the differences between the fitness of
the individuals and the mean fitness of the population has a stationary distribution. They
proved that if the process starts from this stationary distribution, then for all δ > 0, we
have

E[M(t)−M(t− 1)] ≥ (logN)1−δ

if N is sufficiently large, thus establishing a lower bound of (logN)1−δ on the rate of
adaptation. Kelly [14] considered the same model and obtained a corresponding upper
bound by showing that if at time zero there are no mutations in the population, then

E[M(t)]

t
≤ C logN

(log logN)2

for t ≥ log logN , where C is a positive constant. He also obtained a comparable lower
bound in [15].

Although there are only a few rigorous results available for this model, there has
been a considerable amount of previous nonrigorous work on this model and closely
related models, mostly appearing in the Biology literature. Of particular relevance for
the present paper is the work of Desai and Fisher [4], who carried out a precise and
detailed analysis of this model. They found, under certain conditions on the parameters
sN and µN , that the difference in the number of mutations between the fittest individual
in the population and a typical individual in the population is approximately

2 log(NsN )

log(sN/µN )
(1.2)

and that in the long-run, the number of mutations carried by a typical individual in the
population increases at the rate of approximately

2sN log(NsN )

[log(sN/µN )]2
(1.3)

per unit time. See the discussion around equations (4) and (5) on p. 1765 of [4] for a
brief explanation, and see the discussion around (40) and (41) on p. 1774 of [4] for a
more detailed analysis. See also Brunet, Rouzine, and Wilke [3] for further analysis of
these results. The heuristic arguments in [4] are discussed in more detail in section 2
below, and are largely the basis for the rigorous results proved in this paper.

Rouzine, Brunet, and Wilke [20] studied the same problem using a different approach,
building on earlier work of Rouzine, Wakeley, and Coffin [21], and estimated the rate of
increase in the number of mutations carried by a typical individual in the population to
be approximately

2sN log(N
√
sNµN )

[log((sN/µN ) log(N
√
sNµN ))]2

, (1.4)

which will match (1.3) asymptotically as long as the extra factors inside the logarithms
can be ignored. See equation (53) in [20], and see section A.1 of [20] for a discussion of
the assumptions required for (1.4) to be valid.
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Rigorous results for a population model with selection I

In addition to obtaining the estimates (1.3) and (1.4) on the speed of evolution, these
and other authors have considered the distribution of fitnesses of individuals in the
population at a given time, coming to the conclusion that this distribution should be
approximately Gaussian. See, for example, the discussion at the top of p. 1775 in [4], the
mathematical appendix in [21], and the discussion around (11) of [20]. Other heuristic
arguments for why the distribution of fitnesses should be approximately Gaussian are
given in section 3 of [25] and in the supporting information to [2]. Because the mean of
this Gaussian distribution is increasing in time as the population evolves, the evolution
of the fitness distribution in the population can be modeled as a Gaussian traveling wave.
This point of view is emphasized in [2] and can be traced back at least to [23]. It should
be noted that Durrett and Mayberry [8] rigorously obtained traveling wave behavior
in their model. However, for the low mutation rates that they considered, the number
of values of j for which Xj(t) > 0 does not tend to infinity as N → ∞. Consequently,
they did not observe a traveling wave with a Gaussian shape, and indeed the Gaussian
traveling wave picture has not been established rigorously for any range of parameter
values.

The goal of this paper is to carry out a detailed, mathematically rigorous analysis
of the model described above. Under certain conditions on sN and µN , we are able to
confirm several of the most important nonrigorous predictions about the model. We
obtain rigorous results concerning the speed of evolution and the distribution of fitnesses
of individuals in the population at a given time. We present our assumptions in section
1.2 and our main results in section 1.3. In section 2, we explain the heuristics behind
the results, most of which are adapted from the previous nonrigorous work mentioned
above. The rest of the paper is devoted to proving the main results.

This is the first in a series of two papers devoted to the study of this model. In the
follow-up paper [22], we show that the genealogy of the population can be described by
a process called the Bolthausen-Sznitman coalescent, confirming predictions of Desai,
Walczak, and Fisher [5] and Neher and Hallatschek [17]. The paper [22] uses extensively
the results and techniques developed here.

1.2 Assumptions on the parameters

For deterministic sequences (xN )∞N=1 and (yN )∞N=1 depending on the population size
N , we write xN ∼ yN if limN→∞ xN/yN = 1. We write xN � yN if limN→∞ xN/yN = 0

and xN � yN if limN→∞ xN/yN =∞.
For our main results, we will need the following assumptions on the parameters sN

and µN :

A1: We have lim
N→∞

logN

log(sN/µN ) log(1/sN )
=∞.

A2: We have lim
N→∞

logN

[log(sN/µN )]2
log

(
logN

log(sN/µN )

)
= 0.

A3: We have lim
N→∞

sN logN

log(sN/µN )
= 0.

The biological meaning of these assumptions, and the reason why they are needed for
the main results, will be described later in section 2.3. Here we mention some of their
consequences.

Dividing A3 by A1, we see that the assumptions imply that limN→∞ sN log(1/sN ) = 0

and therefore
lim
N→∞

sN = 0. (1.5)
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This result and A1 imply that

lim
N→∞

logN

log(sN/µN )
=∞, (1.6)

and combining this observation with A2 gives

lim
N→∞

logN

[log(sN/µN )]2
= 0. (1.7)

Dividing (1.7) by A1, we get limN→∞ log(1/sN )/ log(sN/µN ) = 0. Thus, log(1/µN ) �
log(1/sN ), which means that for all a > 0, we have

µN � saN . (1.8)

That is, the mutation rate µN tends to zero faster than any power of sN . Another
consequence of the fact that limN→∞ log(1/sN )/ log(sN/µN ) = 0 is that log(sN/µN ) ∼
log(1/µN ). In particular, (1.6) implies that logN � log(1/µN ), which means that for all
a > 0, we have

µN �
1

Na
. (1.9)

That is, the mutation rate tends to zero more slowly than any power of 1/N . Also, note
that because log(sN/µN ) ∼ log(1/µN ), the expression log(sN/µN ) could be replaced by
log(1/µN ) in any of the conditions A1, A2, and A3. We state the conditions in their
current form because log(sN/µN ) arises more naturally, as we will see later. We will
always assume N is large enough that µN < sN , so log(sN/µN ) > 0.

To illustrate how these assumptions can be satisfied, we observe that if 1/2 < b < 1

and 0 < a < 1− b, and if for all N we have

µN = e−(logN)b

and

e−(logN)a ≤ sN ≤
1√

logN
,

then assumptions A1-A3 hold.

1.3 Main results

Let

aN :=
1

sN
log

(
sN
µN

)
. (1.10)

We will see later that, as was observed in [5], the quantity aN is approximately the
amount of time between when the first individual with j mutations appears and when
individuals in the population have j mutations on average. This is the time scale on
which we will study the process. Also, define

kN :=
logN

log(sN/µN )
, (1.11)

which we will see is the natural scale on which to consider the number of mutations. For
t ≥ 0, let

M∗(t) := max{j : Xj(t) > 0}

be the number of mutations carried by the fittest individual in the population, and let

Q(t) := M∗(t)−M(t) (1.12)
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Rigorous results for a population model with selection I

be the difference in the number of mutations between the fittest individual in the
population and an individual of average fitness. Our first theorem is an asymptotic
result for Q(t). Here and throughout the paper, the notation→p denotes convergence in
probability as N →∞.

Theorem 1.1. Assume A1-A3 hold. There is a unique bounded function q : [0,∞) →
[0,∞) such that

q(t) =

{
et if 0 ≤ t < 1∫ t
t−1

q(u) du if t ≥ 1.
(1.13)

If S is a compact subset of (0, 1) ∪ (1,∞), then

sup
t∈S

∣∣∣∣Q(aN t)

kN
− q(t)

∣∣∣∣→p 0. (1.14)

Furthermore, we have
lim
t→∞

q(t) = 2. (1.15)

Note that Theorem 1.1 implies that for large t, we have

Q(aN t) ≈ 2kN , (1.16)

which is consistent with Desai and Fisher’s prediction (1.2) because | log sN | � logN

when assumptions A1-A3 hold. Note also that the function q is discontinuous at 1, which
is why we can not expect uniform convergence to hold over intervals containing 1.
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Figure 1: The functions q, m, and m∗.

The next result is our main theorem concerning the speed of evolution. It shows
how the number of mutations carried by the fittest individual in the population and an
average individual in the population change over time.

Theorem 1.2. Let m : [0,∞)→ R be the function defined by

m(t) :=

{
0 if 0 ≤ t < 1

1 +
∫ t−1

0
q(u) du if t ≥ 1,

(1.17)
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Rigorous results for a population model with selection I

where q is the function defined in (1.13). Also, for all t ≥ 0, let

m∗(t) = m(t) + q(t) = 1 +

∫ t

0

q(u) du. (1.18)

Assume A1-A3 hold. If S is a compact subset of [0, 1) ∪ (1,∞), then

sup
t∈S

∣∣∣∣M(aN t)

kN
−m(t)

∣∣∣∣→p 0. (1.19)

If S∗ is a compact subset of (0,∞), then

sup
t∈S∗

∣∣∣∣M∗(aN t)kN
−m∗(t)

∣∣∣∣→p 0. (1.20)

Note that the function m is discontinuous at 1, so Theorem 1.2 implies that the
average number of mutations of individuals in the population stays close to zero until
time aN , then rapidly increases to approximately kN . To see the long-run rate at which
the population acquires beneficial mutations, note that (1.15) implies that

lim
t→∞

m(t)

t
= lim
t→∞

m∗(t)

t
= 2. (1.21)

Therefore, for large t,

M(aN t)

aN t
≈ m(t)kN

aN t
=

2sN logN

[log(sN/µN )]2
. (1.22)

The right-hand side of (1.22) can be viewed as the rate of adaptation, or the rate per
unit time at which new mutations take hold in the population. Because | log sN | � logN

and log(1/µN ) � logN when A1-A3 hold, as can be seen from (1.8) and (1.9), and
log logN � log(sN/µN ) by (1.7), this result is consistent with the predictions (1.3) and
(1.4).

Remark 1.3. The functions q and m have a renewal theory interpretation, which helps
to explain (1.15) and (1.21). Consider a renewal process in which the distribution of
the time between renewals is uniform on (0, 1). Let N(t) be the number of renewals
by time t, and let U(t) = E[N(t)]. Recall that the renewal equation states that if the
time between renewals has probability density function f and cumulative distribution
function F , then

U(t) = F (t) +

∫ t

0

f(x)U(t− x) dx.

Therefore, in our setting in which the time between renewals has a uniform distribution,
we get

U(t) = (t ∧ 1) +

∫ t∧1

0

U(t− x) dx = (t ∧ 1) +

∫ t

(t−1)∨0

U(x) dx.

Let U ′ denote the right derivative of U . If 0 ≤ t < 1, then U ′(t) = 1 + U(t), and
since U(0) = 0, it follows that U(t) = et − 1 and thus U ′(t) = et. If t ≥ 1, then
U ′(t) = U(t)− U(t− 1) =

∫ t
t−1

U ′(u) du. It follows that U ′ satisfies (1.13), and therefore
U ′(t) = q(t) for all t. Also, for t ≥ 1,

m(t) = 1 +

∫ t−1

0

U ′(u) du = 1 + U(t− 1).

For large t, because the uniform distribution on (0, 1) has mean 1/2, we have U(t) ≈ 2t,
which explains (1.21).
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Next we state our main result for the distribution of fitnesses of individuals in the
population at a given time. Let τ0 = 0 and for j ∈ N, let

τj := inf

{
t : Xj−1(t) ≥ sN

µN

}
, (1.23)

which we will see later is approximately the time when some individuals with j − 1

mutations start to acquire a jth mutation. Also, let

γj := τj + aN . (1.24)

We will see later that most individuals in the population between times γj and γj+1 will
have j mutations. For t > 1, let

j(t) := max{j : γj ≤ aN t}, (1.25)

which typically will be the most common type in the population at time aN t. On the event
that γj(t) < γj(t)+1 <∞, which we will see later has probability close to one, let d(t) be
the number in [−1/2, 1/2) such that

aN t = (1/2− d(t))γj(t) + (1/2 + d(t))γj(t)+1. (1.26)

Otherwise, let d(t) = 0. Note that d(t) increases from −1/2 to 1/2 as aN t increases from
γj(t) to γj(t)+1, and d(t) = 0 if aN t is half way between γj(t) and γj(t)+1. The result below
compares the number of individuals with j(t) mutations to the number of individuals
with j(t) + ` mutations at time aN t.

Theorem 1.4. Assume A1-A3 hold. For each η > 0 and t ∈ (1, 2) ∪ (2,∞), there exists
θ > 0 such that

lim
N→∞

P

(∣∣∣∣ log

(
Xj(t)+`(aN t)

Xj(t)(aN t)

)
+

[log(sN/µN )]2(`2 − 2`d(t))

2q(t− 1) logN

∣∣∣∣ ≤ η`2[log(sN/µN )]2

logN

for all ` ∈ [−θkN , θkN ] ∩Z
)

= 1.

Furthermore, θ = θ(η, t) can be chosen as a function of η and t such that for each fixed
η > 0 and a > 2, we have

inf
t∈[a,∞)

θ(η, t) > 0. (1.27)

Recall from the discussion in section 1.1 that it has been conjectured that for popula-
tion models of this type, the distribution of fitnesses of individuals in the population at a
typical time is approximately Gaussian. To compare the result of Theorem 1.4 to this
conjecture, first note that if Z is a random variable having a Gaussian distribution with
mean x+ d and variance σ2 and f is the probability density function of Z, then

log

(
f(x+ `)

f(x)

)
= − 1

2σ2
[(`− d)2 − d2] = −`

2 − 2`d

2σ2
.

Therefore, the form of the result in Theorem 1.4 suggests that, in some sense, the
distribution of the fitnesses of individuals in the population at time aN t is approximately
Gaussian with a mean of j(t) + d(t) and a variance of

σ2
N (t) :=

q(t− 1) logN

[log(sN/µN )]2
.

However, equation (1.7) implies that for the range of parameter values considered in
this paper, we have limN→∞ σ2

N (t) = 0. Consequently, the distribution of fitnesses of
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Rigorous results for a population model with selection I

individuals in the population at time aN t does not actually converge to a Gaussian distri-
bution as N →∞. Rather, there is usually a single dominant type in the population. The
fraction of individuals with exactly j(t) mutations will be close to 1, unless |d(t)| is very
close to 1/2. Nevertheless, the appearance of `2 − 2`d(t) in Theorem 1.4 demonstrates
Gaussian-like tail behavior.

The rest of this paper is organized as follows. In section 2, we describe heuristically
why the main results are true. In section 3, we present the structure of the proofs.
Proposition 3.1 describes how the process behaves close to time zero. Propositions 3.2,
3.3, 3.5, and 3.6 describe some of the finder details of how the process evolves at later
times. These four propositions, which are proved in tandem, all follow from Proposition
3.8, which is explained at the end of section 3. In section 4, we show how Theorems
1.1, 1.2, and 1.4 follow from the results in section 3. The rest of the paper is devoted to
technical proofs. In section 5, we introduce a martingale that is useful for these proofs.
In section 6, we prove Proposition 3.1. Finally, in sections 7, 8, and 9, we prove the three
parts of Proposition 3.8.

1.4 Notation

We collect here for the convenience of the reader some of the most important notation
used throughout the paper. Because most of this notation has not yet been introduced,
the reader is encouraged to skip this section for now and refer back to it as needed.

aN (1/s) log(s/µ), natural time scale for the process
b Defined in (3.14), used to determine which mutations are “early”
Bj(t) Birth rate of a type j individual at time t, see (5.1)
Dj(t) Death rate of a type j individual at time t, see (5.2)
(Ft)t≥0 Natural filtration of the process
Gj(t) s(j −M(t))− µ, growth rate of type j population at time t
j(t) max{j : γj ≤ aN t}, corresponds to most common type at time aN t
J 3kNT + k∗ + 1, bound on number of types likely to appear by time aNT
kN logN/ log(s/µ), natural scale for the number of mutations
k−N , k

+
N numbers slightly smaller and larger than kN , see (3.2) and (3.3)

k∗ largest integer less than k+
N

K bkN/4c
L d17kNe
m(t) Scaling limit of (M(t), t ≥ 0), defined in (1.17)
m∗(t) Scaling limit of (M∗(t), t ≥ 0), defined in (1.18)
M(t) Mean number of mutations in the population at time t
M̄(t) Approximation to mean number of mutations at time t, defined in (8.14)
M∗(t) Number of mutations carried by fittest individual at time t
N Population size
Q(t) Difference in number of mutations between fittest individual and average
q(t) Scaling limit of (Q(t), t ≥ 0), defined in (1.13)
qj Approximately the value of Q(τj), see (3.15)
R(t) Number of τj between t− aN and t, see (3.23)
s = sN Selective advantage resulting from a mutation
Sj(t) Number of individuals with j or fewer mutations
t∗ Time before which individuals of types up to kN appear, defined in (3.6)
T Large positive number; the process is studied up to time aNT
xj(t) Approximation to number of type j individuals at time t for t ≤ t∗
Xj(t) Number of individuals with j mutations at time t
Xj,1(t) Number of type j individuals descended from mutations before ξj
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Xj,2(t) Xj(t)−Xj,1(t)

Zj(t) Martingale associated with evolution of type j individuals, see Prop. 5.1
γj τj + aN , approximately when most individuals have acquired j mutations
δ Small positive number, bounds error in various approximations
ε Small positive number, bounds probability that conclusions of results fail
ζ First time that the conclusion of Proposition 3.2, 3.3, 3.5, or 3.6 fails
µ = µN Mutation rate for each individual
ξj Time before which type j mutations are early, see (3.16)
τj inf{t : Xj−1(t) ≥ s/µ}, approximately when type j individuals appear
τ∗j τj + aN/(4TkN )

2 Heuristics

In this section, we discuss the key ideas behind the main results in the paper. The goal
is to explain to the reader, in just a few pages of calculations, why the main results are
true. Most of these heuristics have already appeared in the Biology literature, particularly
in the work of Desai and Fisher [4]. We postpone rigorous proofs of the results, and
justification for the approximations used, until later sections, and in this section we
assign no precise meaning to the approximation symbol ≈. Here and throughout the
rest of the paper, to lighten notation we write µ and s in place of µN and sN respectively,
even though these parameters depend on the population size N .

2.1 The initial stage

Consider first the initial stage of the process, when the average number of mutations
in the population is close to zero. For times t in this range, we have X0(t) ≈ N and
M(t) ≈ 0. During this stage, we can approximate the process by a multitype branching
process in which a type j individual dies at rate 1, gives birth to another type j individual
at rate 1 + sj, and mutates to type j + 1 at rate µ. This means that the total rate at which
type j + 1 individuals appear due to mutations is µXj(t), and if such a mutation appears
at time u < t, the expected number of descendants of this individual in the population
at time t is e(sj−µ)(t−u) ≈ esj(t−u), where the approximation is valid because µ is much
smaller than s. This leads to the approximation

E[X1(t)] ≈
∫ t

0

µE[X0(t)]es(t−u) du ≈
∫ t

0

Nµes(t−u) du =
Nµ(est − 1)

s
. (2.1)

Then an inductive argument gives

E[Xj(t)] ≈
∫ t

0

µE[Xj−1(u)]ejs(t−u) du ≈ Nµj

sjj!
(est − 1)j . (2.2)

The approximation (2.2) only holds when the mean number of mutations is close to
zero, which can be true only when X1(t) is much smaller than N . From (2.1), we see
that X1(t) will be of order N when est is comparable to s/µ, which happens near time

t =
1

s
log

(
s

µ

)
= aN .

Before time aN , the average number of mutations in the population will be close to zero,
and the approximation (2.2) will be valid.

For the approximation (2.2) to be useful for understanding the evolution of the number
of type j individuals, we need to know that Xj(t) ≈ E[Xj(t)]. We will calculate, using a
second moment argument, that this approximation holds for small times t when j ≤ kN .
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This is true essentially because, for j ≤ kN , type j individuals appear in the population
very quickly. See Proposition 3.1 below for a precise statement of this result. For larger
values of j, however, it is not true that Xj(t) ≈ E[Xj(t)]. Rather, the expectation is
dominated by rare events in which an individual acquires a jth mutation much earlier
than usual, causing the number of type j individuals at later times to be unusually large.
Therefore, for j > kN , we can not approximate Xj(t) by its expectation, and we need a
different technique to understand the process (Xj(t), t ≥ 0).

2.2 Evolution of the number of type j individuals

We now consider the evolution of type j individuals when j > kN . The key idea is
to break the process into two stages: an initial stage in which the type j population
becomes established as a result of mutations experienced by type j − 1 individuals,
and a second stage in which these mutations are no longer important and the type
j population evolves essentially in a deterministic way. This idea has been used in
previous work on this model, and in particular many of the calculations in this section
strongly resemble those in [4]. Recall that τj is the first time when there are at least s/µ
individuals of type j − 1 in the population. We will show using a first moment argument
that with high probability, no type j individuals will appear before time τj . The type j
population becomes established during the interval [τj , τj+1], then evolves approximately
deterministically after time τj+1.

After time τj+1, we will see that mutations from type j − 1 to type j no longer have a
significant impact on the size of the type j population. Consequently, at a time u ≥ τj+1,
the number of type j individuals will be growing approximately deterministically at the
rate s(j −M(u)), which is the size of the selective advantage that a type j individual
has over an individual of average fitness. That is, if t ≥ τj+1 but the population of type j
individuals is not yet near extinction, then

Xj(t) ≈
s

µ
e
∫ t
τj+1

s(j−M(u)) du
. (2.3)

A rigorous statement is given in (3.20) below.
Consider next what happens between times τj and τj+1, when the type j population

gets established. We can use (2.3) to approximate the number of type j − 1 individuals
shortly after time τj . As long as no type j individual appears before time τj , we have
(j − 1)−M(τj) = Q(τj), so (2.3) suggests the approximation

Xj−1(t) ≈ s

µ
esQ(τj)(t−τj). (2.4)

As long as the average fitness of the population does not change much shortly after time
τj , a new type j individual that appears because of a mutation at time u will have on
average es(Q(τj)+1)(t−u) descendants at time t. Thus, we have the approximation

Xj(t) ≈
∫ t

τj

µ · s
µ
esQ(τj)(u−τj) · es(Q(τj)+1)(t−u) du

= ses(Q(τj)+1)(t−τj)
∫ t

τj

e−s(u−τj) du

≈ es(Q(τj)+1)(t−τj), (2.5)

where the last approximation requires t − τj � 1/s. A rigorous statement is given in
(3.19) below. Therefore, τj+1 should occur approximately when the expression in (2.5)
equals s/µ, which leads to

τj+1 − τj ≈
1

s(Q(τj) + 1)
log

(
s

µ

)
≈ aN
Q(τj)

. (2.6)

EJP 22 (2017), paper 37.
Page 11/94

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP57
http://www.imstat.org/ejp/


Rigorous results for a population model with selection I

To estimate Q(τj), note that (2.4) and (2.5) lead to

Xj(t)

Xj−1(t)
=

es(Q(τj)+1)(t−τj)

(s/µ)esQ(τj)(t−τj)
=
µ

s
es(t−τj),

which equals one when

t− τj =
1

s
log

(
s

µ

)
= aN .

That is, the number of type j individuals surpasses the number of type j − 1 individuals
approximately aN time units after type j individuals first appear. Around that time,
there will be more type j individuals than individuals of any other type, and the mean
number of mutations in the population will be approximately j. It follows that M(τj)

will be approximately the type that first appeared roughly aN time units in the past,
and Q(τj) will be approximately the number of new types that have appeared in the last
aN time units. Because the rate per unit time at which new types are appearing can
be approximated by the reciprocal of the expression in (2.6), we obtain for t > 1 the
approximation

Q(aN t) ≈
∫ aN t

aN (t−1)

Q(u)

aN
du =

∫ t

t−1

Q(aNv) dv. (2.7)

For t < 1, we know from the discussion in section 2.1 that M(aN t) ≈ 0, so Q(aN t) is
approximately the number of types that have originated before time aN t. Since we know
from the discussion in section 2.1 that kN types appear at very small times, we have for
t < 1 the approximation

Q(aN t) ≈ kN +

∫ aN t

0

Q(u)

aN
du = kN +

∫ t

0

Q(aNv) dv,

which implies Q(aN t) ≈ kNet. This result and (2.7) lead to the approximation to Q(aN t) in
Theorem 1.1. The result (1.15) then follows from the renewal theory argument outlined
in Remark 1.3.

To understand Theorem 1.2, recall again that M(aN t) ≈ 0 for t < 1. For t > 1, we
know from the discussion in the previous paragraph that M(aN t) is approximately the
number of types that appear before time aN (t− 1). Because kN types appear near time
zero and the rate at which new types appear can be approximated by the reciprocal of
the expression in (2.6), we get for t > 1 the approximation

M(aN t) ≈ kN +

∫ aN (t−1)

0

Q(u)

aN
du = kN +

∫ t−1

0

Q(aNv) dv,

which leads to (1.19). Likewise, because M∗(aN t) is approximately the number of types
that appear before time aN t, the same reasoning gives

M∗(aN t) ≈ kN +

∫ t

0

Q(aNv) dv,

which leads to (1.20).
Finally, to obtain the result of Theorem 1.4, we use the approximation (2.3) to compare

Xj(t)+` and Xj(t). We refer the reader to the proof of Theorem 1.4 in subsection 4.2 for
the details of this calculation.

Although the main ideas discussed in this section come from [4], it has been assumed
in most previous work on this model such as [4, 20] that the population is already in
equilibrium. Then one can argue that this equilibrium is only possible when (1.16) and
(1.22) hold. One of the contributions of the present work is to show how the process
arrives at such a state, beginning from a population in which no mutations are present.

EJP 22 (2017), paper 37.
Page 12/94

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP57
http://www.imstat.org/ejp/


Rigorous results for a population model with selection I

2.3 Meaning of the assumptions

We briefly discuss here the assumptions required for these results to be valid. Note
that (1.6) is equivalent to the condition

lim
N→∞

kN =∞.

Since Q(aN t) is of the order kN , assumption A1 implies that the number of different
types in the population at a given time tends to infinity as N →∞. This condition is not
satisfied in the parameter regime considered by Durrett and Mayberry [8]. Assumption
A1 also ensures sN is large enough for mutations to take hold in the population in the
manner described above.

For the heuristics described in section 2.2 to be valid, the type j population must
be growing approximately exponentially after time τj+1, which will happen as long as
additional mutations from type j − 1 to type j are no longer having a significant impact
on the population size. The contribution to the type j population from mutations at
different times can be seen from the integral in the second line of (2.5). The primary
contribution to this integral comes when u is comparable to 1/s. Consequently, we need
τj+1 − τj � 1/s for the number of type j individuals to be growing exponentially after
time τj+1. In view of (2.6) and the fact that Q(τj) is the same order of magnitude as kN ,
this is equivalent to the condition

1

skN
log

(
s

µ

)
� 1

s
,

which is equivalent to (1.7). Thus, the role of assumption A2 is to ensure that the
mutation rate µ is slow enough that we can ignore mutations from type j − 1 to type
j after time τj+1. For technical reasons, assumption A2 is slightly stronger than (1.7),
but we conjecture that the main results of the paper are still true if assumption A2 is
replaced by (1.7). It remains an open question to understand how the process evolves if
the mutation rates are fast enough that (1.7) fails to hold.

Assumption A3 is equivalent to the condition

lim
N→∞

skN = 0. (2.8)

Because the difference in fitness between the fittest individual and an individual of
average fitness is of the order skN , assumption A3 implies that we are not considering
very strong selection. Note that because Durrett and Mayberry [8] take the selection
parameter s to be a fixed constant not depending on N , nothing like (2.8) holds in their
setting.

3 Structure of the proofs

In this section, we state some intermediate results that will lead to the proofs of the
main results. Some of these intermediate results may also be of independent interest, as
they provide some insight into how the number of individuals with j mutations evolves
over time. Throughout the section, we will fix three positive numbers: ε, δ, and T . We
will use ε ∈ (0, 1) for the maximum allowable probability of some “bad” event and

0 < δ <
1

100
(3.1)

for the maximum allowable error in certain approximations. We will study the process
up to time aNT , where T > 1. Throughout the paper, we will introduce some positive
constants Cn. These constants may depend on the three parameters ε, δ, and T , even
though this dependence will not be specifically mentioned each time.
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3.1 The process until time t∗

We begin by considering the initial stage of the process. Recall from subsection
2.1 that for j ≤ kN = logN/ log(s/µ), we expect individuals of type j to appear in
the population very early, and we expect the number of type j individuals to be well
approximated by the right-hand side of (2.2). To state a precise result, define

k−N :=
logN

log(s/µ)
− logN

log(s/µ)2
log

(
logN

log(s/µ)

)
(3.2)

and

k+
N :=

logN

log(s/µ)
+

2 logN

log(s/µ)2
log

(
logN

log(s/µ)

)
. (3.3)

Also, let

k∗ := dk+
N − 1e (3.4)

be the largest integer less than k+
N . Assumption A2 implies that

lim
N→∞

(k+
N − k

−
N ) = 0, (3.5)

so for sufficiently large N , the number of integers j such that k−N < j < k+
N must be

either zero or one. Hereafter, we will assume N is large enough that this is the case.
Define the time

t∗ :=

{
(4/s) log kN if there exists an integer j such that k−N < j < k+

N

(2/s) log kN otherwise
(3.6)

The following proposition, which we prove in section 6, describes how the process
evolves before time t∗.

Proposition 3.1. For all nonnegative integers j and all t ≥ 0, define

xj(t) :=
Nµj(est − 1)j

sjj!
. (3.7)

Then there exist positive constants C1 and C2, not depending on ε, such that for suffi-
ciently large N , the following four statements all hold with probability at least 1− ε/2:

1. For all j ≤ k−N , we have

sup
t∈[0,t∗]

|Xj(t)− xj(t)| ≤ δxj(t∗). (3.8)

2. If there is an integer j ∈ (k−N , k
+
N ), write

j =
logN

log(s/µ)
+

βj logN

log(s/µ)2
log

(
logN

log(s/µ)

)
, (3.9)

where −1 < βj < 2, and let dj := max{0, βj}. Then

C1k
−dj
N xj(t

∗) ≤ Xj(t
∗) ≤ C2k

−dj
N xj(t

∗). (3.10)

3. For all t ∈ [0, t∗], we have Xk∗(t) < s/µ.

4. For all j ≥ k+
N and t ∈ [0, t∗], we have Xj(t) = 0.
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3.2 Evolution of type j individuals

In this subsection, we consider how the population evolves after time t∗. Recall the
definitions of τj and γj from (1.23) and (1.24). For nonnegative integers j and t ≥ 0,
define also

Gj(t) := s(j −M(t))− µ, (3.11)

which we can interpret as the rate of growth for the number of type j individuals at time
t. We will also define the integers

K := bkN/4c, L := d17kNe.

The next proposition describes the evolution, after time t∗, of the number of individuals
with k∗ or fewer mutations. The first part of the proposition controls the evolution of the
type j individuals after time t∗. The second and third parts provide upper bounds on the
number of type j individuals as these individuals get close to extinction.

Proposition 3.2. For sufficiently large N the following statements all hold with proba-
bility at least 1− ε:

1. For all j ≤ k∗ and t ∈ [t∗, γk∗+K ], we have

(1−δ)Xj(t
∗) exp

(∫ t

t∗
Gj(v)dv

)
≤ Xj(t) ≤ (1+δ)Xj(t

∗) exp

(∫ t

t∗
Gj(v)dv

)
. (3.12)

2. For all j ≤ k∗ and t ∈ [γk∗+K , aNT ], we have

Xj(t) ≤ k2
NXj(t

∗) exp

(∫ t

t∗
Gj(v) dv

)
. (3.13)

3. On the event that γk∗+L ≤ aNT , we have Xj(t) = 0 for all j ≤ k∗ and t ≥ γk∗+L.

We next consider the individuals of type j for j ≥ k∗ + 1. By part 4 of Proposition
3.1, individuals of these types typically do not appear until after time t∗, so we need to
consider how these types originate. Define the positive number

b := log

(
24000T

δ2ε

)
. (3.14)

For j ≥ k∗ + 1, let

q∗j :=

{
j − kN if aN − 2aN/kN ≤ τj ≤ aN + 2aN/kN
j −M(τj) otherwise

and
qj := max{1, q∗j }. (3.15)

Then define

ξj := max

{
τj , τj +

1

sqj
log

(
1

sqj

)
+

b

sqj

}
. (3.16)

When an individual with j − 1 mutations gets an additional mutation, we call this
a type j mutation. Each type j individual in the population at time t has an ancestor
that got a type j mutation at some earlier time. We call the individual an early type
j individual if this type j mutation happened at or before time ξj . Let Xj,1(t) be the
number of early type j individuals at time t, and let Xj,2(t) be the number of other type j
individuals at time t. This means, of course, that

Xj(t) = Xj,1(t) +Xj,2(t).
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Also, define the time
τ∗j := τj +

aN
4TkN

. (3.17)

Note that aN/kN →∞ as N →∞ by (1.5) and (1.7).
The result below describes the evolution of the type j individuals for j ≥ k∗ + 1.

The first two parts of the proposition concern the evolution of the type j individuals up
to time τj+1 and require classifying the type j individuals as being early or not early.
Early type j mutations are rare, and when they occur, they produce a large number of
descendants, so in part 1 of the proposition, we are only able to get an upper bound on
the number of early type j individuals. On the other hand, we see from part 2 of the
proposition that the number of type j individuals that are not early is tightly controlled.
The cutoff time ξj defined in (3.16) was chosen so that this bound will hold. Parts 3, 4,
and 5 of the proposition describe the behavior of the number of type j individuals after
time τj+1 and parallel the three parts of Proposition 3.2.

Proposition 3.3. There exists a positive constant C3 such that for sufficiently large N ,
the following statements all hold with probability at least 1− ε:

1. For all j ≥ k∗ + 1 and all t ∈ [τ∗j , τj+1] ∩ [0, aNT ], we have

Xj,1(t) ≤ C3 exp

(∫ t

τj

Gj(v) dv

)
. (3.18)

Also, Xj,1(t) ≤ s/2µ for all t ≤ τ∗j ∧ aNT , and no early type j individual acquires a
type j + 1 mutation until after time τj+1 ∧ aNT .

2. For all j ≥ k∗ + 1 and all t ∈ [τ∗j , τj+1] ∩ [0, aNT ], we have

(1− 4δ) exp

(∫ t

τj

Gj(v) dv

)
≤ Xj,2(t) ≤ (1 + 4δ) exp

(∫ t

τj

Gj(v) dv

)
. (3.19)

Moreover, the upper bound holds for all t ∈ [ξj , τj+1] ∩ [0, aNT ].

3. For all j ≥ k∗ + 1 and all t ∈ [τj+1, γj+K ] ∩ [0, aNT ], we have

(1− δ)s
µ

exp

(∫ t

τj+1

Gj(v) dv

)
≤ Xj(t) ≤

(1 + δ)s

µ
exp

(∫ t

τj+1

Gj(v) dv

)
. (3.20)

4. For all j ≥ k∗ + 1 such that γj+K ≤ aNT , we have

Xj(t) ≤
k2
Ns

µ
exp

(∫ t

τj+1

Gj(v) dv

)
(3.21)

for all t ∈ [γj+K , aNT ].

5. For all j ≥ k∗ + 1 such that γj+L ≤ aNT , we have Xj(t) = 0 for all t ≥ γj+L.

Remark 3.4. When the statement of part 1 of Proposition 3.3 holds, the number of
early type j individuals can not reach s/µ until after time τj ∧ aNT , and because ξj ≥ τj
by definition, no other type j individuals appear until after time τj . It follows that if
j ≥ k∗ + 1, then τj+1 ≥ τj ∧ aNT .

The next proposition shows how the mean number of mutations in the population
evolves over time. Note that the mean number of mutations in the population is near
zero before time aN and is near j during the time interval [γj , γj+1).

Proposition 3.5. There exist positive constants C4 and C5 such that for sufficiently
large N , the following statements all hold with probability at least 1− ε:
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1. For all t ∈ (t∗, aN ], we have M(t) < 3e−s(aN−t).

2. For all t ∈ (aN , γk∗+1), we have M(t) < kN + C4.

3. For all j ≥ k∗ + 1 and t ∈ [γj , γj+1) ∩ [0, aNT ], we have

|M(t)− j| < C5(e−s(t−γj) + e−s(γj+1−t)). (3.22)

4. For all j ≥ k∗ + 1 and t ∈ [τj , τj+1), we have M(t) < j − 1.

Next, we state a result concerning the differences τj+1 − τj . Here q is the function
defined in (1.13).

Proposition 3.6. For t ∈ [0, aNT ], let

R(t) := k∗1{t<aN} + #{j ≥ k∗ + 1 : t− aN < τj ≤ t}, (3.23)

where #S denotes the cardinality of a set S. For sufficiently large N , the following
statements all hold with probability at least 1− ε:

1. We have τk∗+1 ≤ 2aN/kN .

2. We have

sup
t∈[0,T ]

∣∣∣∣R(aN t)

kN
− q(t)

∣∣∣∣ < δ.

3. For all j ≥ k∗ + 1 such that either τj + 2aN/kN ≤ aNT or τj+1 ≤ aNT , we have

∫ τj+1/aN

τj/aN

q(t) dt ≤ 1 + 2δ

kN
. (3.24)

Also, ∫ τj+1/aN

τj/aN

(q(t) + 1{t∈[1,γk∗+1/aN )}) dt ≥
1− 2δ

kN
(3.25)

and
aN
3kN

≤ τj+1 − τj ≤
2aN
kN

. (3.26)

Remark 3.7. Let

J := 3kNT + k∗ + 1. (3.27)

If the statement of part 3 of Proposition 3.6 holds, then (3.26) implies that

τJ > τJ − τk∗+1 ≥
aN
3kN

(J − (k∗ + 1)) ∧ aNT = aNT. (3.28)

Assuming, in addition, that the last statement of part 1 of Proposition 3.3 holds, it follows
that no individual of type J + 1 or higher can appear until after time aNT . Consequently,
throughout the paper, it will usually only be necessary to consider individuals of type j
for 0 ≤ j ≤ J .

In section 4, we show how Theorems 1.1, 1.2, and 1.4 follow from Propositions 3.2,
3.3, 3.5, and 3.6.
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3.3 Waiting for the time ζ

Although Proposition 3.1 is proved in section 6 independently of the other results in
this section, it does not seem to be possible to prove Propositions 3.2, 3.3, 3.5, and 3.6
sequentially. Proving Propositions 3.2 and 3.3 requires that we have some control over
the quantities M(t) and τj+1 − τj , which are established in Propositions 3.5 and 3.6. On
the other hand, to prove Propositions 3.5 and 3.6, it will be necessary to have control
over the quantities Xj(t), as established by Propositions 3.2 and 3.3. Consequently, we
will prove these propositions simultaneously by defining a random time ζ which will be
the first time that one of the statements in the above propositions fails. We will then
show that ζ > aNT with high probability.

Choose constants C1 and C2 as in Proposition 3.1. Let

ζ0 := inf{t ≤ t∗ : either |Xj(t)− xj(t)| > δxj(t
∗) for some j ≤ k−N ,

t = t∗ and (3.10) fails to hold for some j ∈ (k−N , k
+
N ),

Xk∗(t) ≥ s/µ,
or Xj(t) > 0 for some j ≥ k+

N}.

Note that ζ0 =∞ if the four statements of Proposition 3.1 all hold.
Next, for all nonnegative integers j, we will define a random time ζ1,j , which is

essentially the first time that the behavior of the type j individuals violates the conditions
of Proposition 3.2 or Proposition 3.3. First consider j ≤ k∗. For t ∈ [t∗, γk∗+K ], let Aj(t)
be the event that (3.12) fails to hold. For t ∈ (γk∗+K , γk∗+L), let Aj(t) be the event that
(3.13) fails to hold. For t ≥ γk∗+L, let Aj(t) be the event that Xj(t) > 0. Now consider
j ≥ k∗ + 1. Choose a constant C3 as in Proposition 3.3. For t ≥ t∗, we say that Aj(t)
occurs if t ∈ [τ∗j , τj+1] and (3.18) or (3.19) fails to hold, if t ∈ [ξj , τj+1] and the upper
bound in (3.19) fails to hold, if t ≤ τ∗j and Xj,1(t) > s/2µ, if t ≤ τj+1 and an early type j
individual acquires a type j + 1 mutation at time t, if t ∈ [τj+1, γj+K ] and (3.20) fails to
hold, if t ≥ γj+K and (3.21) fails to hold, or if t ≥ γj+L and Xj(t) > 0. Then let

ζ1,j := inf{t : Ai(t) occurs for some i ≤ j}

and
ζ1 := ζ1,J = inf{ζ1,j : 0 ≤ j ≤ J}.

Next, we will define ζ2 to be the first time when the result of Proposition 3.5 fails.
More precisely, choose C4 and C5 as in Proposition 3.5, and let

ζ2 := inf{t : either t ∈ (t∗, aN ] and M(t) ≥ 3e−s(aN−t),

t ∈ (aN , γk∗+1) and M(t) ≥ kN + C4,

for some j ≥ k∗ + 1 we have t ∈ [γj , γj+1) but (3.22) fails to hold,

or for some j ≥ k∗ + 1 we have t ∈ [τj , τj+1) but M(t) ≥ j − 1}.

Also, let

ζ3 := inf{t : either t = 2aN/kN and τk∗+1 > 2aN/kN ,

|R(t)/kN − q(t/aN )| ≥ δ,
there exists j ≥ k∗ + 1 such that τj+1 ≤ t but (3.24), (3.25), or (3.26) fails,

or there exists j ≥ k∗ + 1 such that τj+1 > t and t = τj + 2aN/kN},

which can be interpreted as the first time when Proposition 3.6 fails. Finally, let

ζ := min{ζ0, ζ1, ζ2, ζ3}. (3.29)
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Note that ζ depends on δ and depends also on ε and T through the choice of b in
(3.14). Also, ζ depends on the constants C1, . . . , C5. The constants C1 and C2 are chosen
independently of the others in Proposition 6.9 below. The constant C3 is specified
below in (9.54). The constants C4 and C5, which depend on C3, are obtained below in
Propositions 7.4 and 7.7 respectively. The constants C1, . . . , C5 do not depend on N .

Proposition 3.8. There exist positive constants C1, . . . , C5 such that for sufficiently
large N , the following hold:

1. On the event {ζ0 =∞}, either ζ2 ≥ ζ1 ∧ ζ3 or ζ1 ∧ ζ2 ∧ ζ3 > aNT .

2. On the event {ζ0 = ∞}, either ζ3 ≥ ζ1 ∧ ζ2, with strict inequality on the event
{ζ2 < ζ1}, or else ζ1 ∧ ζ2 ∧ ζ3 > aNT .

3. We have
J∑
j=0

P ({ζ0 =∞} ∩ {ζ1,j ≤ ζ2 ∧ ζ3 ∧ ζ1,j−1 ∧ aNT}) <
ε

2
,

using the convention that ζ1,−1 =∞.

We prove parts 1, 2, and 3 of Proposition 3.8 in sections 7, 8, and 9 respectively. Here
we show how Proposition 3.8, along with Proposition 3.1, implies Propositions 3.2, 3.3,
3.5, and 3.6. Essentially, parts 1, 2, and 3 of Proposition 3.8 show that ζ2, ζ3, and ζ1
respectively are unlikely to be the first of these three times to occur. This forces ζ to be
pushed beyond time aNT with high probability. Note that a consequence of this result is
that for sufficiently large N , the conclusions of Propositions 3.1, 3.2, 3.3, 3.5, and 3.6
simultaneously hold with probability at least 1− ε.

Proof of Propositions 3.2, 3.3, 3.5, and 3.6. By Proposition 3.1, we have P (ζ0 = ∞) >

1− ε/2 for sufficiently large N . By Proposition 3.8, we have

P

(
{ζ0 =∞} ∩

( J⋃
j=0

{ζ1,j ≤ ζ2 ∧ ζ3 ∧ ζ1,j−1 ∧ aNT}
))

<
ε

2

for sufficiently large N . Combining these results, we get

P

(
{ζ0 =∞} ∩

( J⋂
j=0

{ζ1,j > ζ2 ∧ ζ3 ∧ ζ1,j−1 ∧ aNT}
))

> 1− ε (3.30)

for sufficiently large N .
We claim that for sufficiently large N , we must have ζ > aNT on the event in (3.30).

By part 1 of Proposition 3.8, for sufficiently large N , on {ζ0 =∞} ∩ {ζ ≤ aNT}, we must
have ζ2 ≥ ζ1 ∧ ζ3, which implies either ζ = ζ1 or ζ = ζ3. Likewise, part 2 of Proposition
3.8 implies that for sufficiently large N , on {ζ0 =∞}∩{ζ ≤ aNT}, either ζ = ζ1 or ζ = ζ2.
Since the strict inequality required by part 2 of Proposition 3.8 rules out the possibility
that ζ2 = ζ3 < ζ1, it follows that for sufficiently large N , on {ζ0 =∞} ∩ {ζ ≤ aNT}, we
must have ζ = ζ1, and therefore ζ = ζ1,j for some j. However, on the event in (3.30), we
see by induction on j that we can not have ζ = ζ1,j for any j ≤ J .

Hence, for sufficiently large N , we have ζ > aNT on the event in (3.30). Thus, by
(3.30), for such N we have

P (ζ > aNT ) > 1− ε. (3.31)

Propositions 3.2, 3.3, 3.5, and 3.6 follow from (3.31). Note that Remark 3.7 implies that
on {ζ > aNT}, no individual of type J + 1 or higher appears until after time aNT , which
is why it is only necessary to consider ζ1,j for 0 ≤ j ≤ J .
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4 Proof of Theorems 1.1, 1.2, and 1.4

In this section, we will show how Theorems 1.1, 1.2, and 1.4 follow from Propositions
3.2, 3.3, 3.5, and 3.6, which, as noted in section 3, all follow from Proposition 3.8. We
prove Theorems 1.1 and 1.2 in section 4.1, and Theorem 1.4 in section 4.2.

4.1 The speed of evolution

In this section, we prove Theorems 1.1 and 1.2, which describe the asymptotic
behavior of the processes (Q(t), t ≥ 0), (M(t), t ≥ 0), and (M∗(t), t ≥ 0) as the population
size tends to infinity. We first establish a lemma which collects some properties of the
function q defined in (1.13).

Lemma 4.1. There is a unique bounded function q : [0,∞) → [0,∞) satisfying (1.13).
The function q is right continuous on [0,∞) and continuous on [0, 1) ∪ (1,∞). Also,
1 ≤ q(t) ≤ e for all t ≥ 0 and

lim
t→∞

q(t) = 2. (4.1)

Proof. Note that (1.13) is equivalent to the renewal equation

q(t) = g(t) +

∫ t

0

q(t− u)f(u) du, (4.2)

where f(u) = g(u) = 1{0≤u<1}. That this equation has a unique solution which is
nonnegative and bounded on every finite interval is a consequence of Theorem 2 in
[10]. Another consequence of Theorem 2 in [10] is that the function t 7→ q(t) − g(t)

is continuous, which implies that q is right continuous on [0,∞) and continuous on
[0, 1) ∪ (1,∞).

To obtain the bounds on q, let u = inf{t ≥ 1 : q(u) ≥ e or q(u) ≤ 1}. Suppose u <∞.
Then either q(u) = e or q(u) = 1. However, q(u) =

∫ u
u−1

q(t) dt ∈ (1, e), a contradiction.
Thus u =∞, which means 1 ≤ q(t) ≤ e for all t ≥ 0. Equation (4.1) is a consequence of
Theorem 4 in [10]. See also Remark 1.3.

For t > 0, write
h(t) := max{j : τj ≤ aN t},

and recall from (1.25) that if t > 1, then

j(t) = max{j : γj ≤ aN t} = h(t− 1).

The next proposition shows that with high probability, the number of mutations carried
by the fittest individual in the population at time aN t will be close to h(t).

Lemma 4.2. Fix t ∈ (0, T ). Suppose the conclusions of Proposition 3.3 and part 1 of
Proposition 3.6 hold. For sufficiently large N , we have

h(t)− 1 ≤M∗(aN t) ≤ h(t) + 1.

Proof. By part 1 of Proposition 3.6, for sufficiently large N we have τk∗+1 ≤ aN t. There-
fore, in view of Remark 3.4, for sufficiently large N we have τh(t) ≤ aN t < τh(t)+1 with
h(t) ≥ k∗ + 1. By part 1 of Proposition 3.3, no type h(t) + 2 individual can appear before
time τh(t)+1, which implies that M∗(aN t) ≤ h(t) + 1. By part 3 of Proposition 3.3, we
have Xh(t)−1(aN t) > 0 and thus M∗(aN t) ≥ h(t)− 1.

Lemma 4.3. Suppose 0 < u < v < T . Suppose the conclusion of Proposition 3.6 holds.
Then for sufficiently large N ,

sup
t∈[u,v]

∣∣∣∣h(t)

kN
−m∗(t)

∣∣∣∣ ≤ 2δh(t) + (2e+ 1)

kN
.
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Proof. As noted in the proof of Lemma 4.2, we have τk∗+1 ≤ aNu for sufficiently large N .
Therefore, for all t ∈ [u, v],

m∗(t) = 1 +

∫ t

0

q(u) du

= 1 +

∫ τk∗+1/aN

0

q(u) du+

h(t)−1∑
j=k∗+1

∫ τj+1/aN

τj/aN

q(u) du+

∫ t

τh(t)/aN

q(u) du (4.3)

if N is sufficiently large. To obtain an upper bound, we use (3.24) along with part 1 of
Proposition 3.6 and the fact that q(t) ≤ e for all t by Lemma 4.1 to get

m(t) ≤ 1 +
eτk∗+1

aN
+ (h(t)− k∗) · 1 + 2δ

kN
≤ h(t)(1 + 2δ)

kN
+

(
1− k∗

kN

)
+

2e

kN
. (4.4)

For the lower bound, we use (3.25) and the fact that (γk∗+1/aN )− 1 ≤ 2/kN by part 1 of
Proposition 3.6 to get

m(t) ≥ 1 + (h(t)− k∗ − 1) · 1− 2δ

kN
− 2

kN
≥ h(t)(1− 2δ)

kN
+

(
1− k∗ + 1

kN

)
− 2

kN
. (4.5)

The result follows from (4.4), (4.5), and the fact that |kN − k∗| ≤ 1 for sufficiently large
N by (3.4) and (3.5).

Proof of Theorem 1.2. We first prove (1.20). It suffices to prove this result for S∗ = [u, v],
where 0 < u < v. Fix ε > 0, δ > 0, and T > max{1, v}. When the conclusion of Proposition
3.6 holds, for all t ∈ [u, v] we have

h(t) ≤ (k∗ + 1) +
3kN
aN
· aNv ≤ (k∗ + 1) + 3vkN . (4.6)

Therefore, it follows from Lemmas 4.2 and 4.3 that when the conclusions of Propositions
3.3 and 3.6 hold,

sup
t∈[u,v]

∣∣∣∣M∗(aN t)kN
−m∗(t)

∣∣∣∣ ≤ 2δ(k∗ + 1 + 3vkN ) + (2e+ 1) + 1

kN
.

For sufficiently large N , the right-hand side is bounded above by Cδ, where C is a
positive constant that depends on v but not on N . Because, for sufficiently large N , the
conclusions of Propositions 3.3 and 3.6 hold with probability at least 1 − ε, the result
(1.20) follows.

We next prove (1.19). It suffices to prove (1.19) when S = [u, v], where either
0 ≤ u < v < 1 or 1 < u < v <∞. Suppose first that 0 ≤ u < v < 1. Then m(t) = 0 for all
t ∈ S. By part 1 of Proposition 3.5, for all ε > 0, we have

P

(
sup
t∈[u,v]

M(aN t) ≤ 3

)
> 1− ε

for sufficiently large N . The result (1.19) follows immediately.
Suppose instead 1 < u < v < ∞. We fix ε > 0, δ > 0, and T > max{1, v}. Suppose

for now that the conclusions of Propositions 3.5 and 3.6 hold. Then j(t) ≥ k∗ + 1 and
γj(t) ≤ aN t < γj(t)+1 for all t ∈ [u, v] if N is sufficiently large. Therefore, by part 2 of
Proposition 3.5, for sufficiently large N we have

sup
t∈[u,v]

|M(aN t)− j(t)| ≤ 2C5. (4.7)
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Because j(t) = h(t − 1) and m(t) = m∗(t − 1) for all t ∈ [u, v], it follows from (4.7) and
Lemma 4.3 that

sup
t∈[u,v]

∣∣∣∣M(aN t)

kN
−m(t)

∣∣∣∣ ≤ 2δh(t− 1) + (2e+ 1) + 2C5

kN
.

In view of (4.6), the right-hand side is bounded above by Cδ, where C is a positive
constant that depends on v but not on N . Because, for sufficiently large N , the conclu-
sions of Propositions 3.5 and 3.6 hold with probability at least 1 − ε, the result (1.19)
follows.

Proof of Theorem 1.1. For t ≥ 0, we have Q(t) = M∗(t) −M(t) by (1.12) and q(t) =

m∗(t) −m(t) by (1.18). Therefore, (1.14) is an immediate consequence of (1.19) and
(1.20). The rest of Theorem 1.1 was proved as part of Lemma 4.1.

4.2 The distribution of fitnesses in the population

In this subsection, we prove Theorem 1.4, which describes the distribution of the
fitnesses of individuals in the population at time aN t. We begin by proving two lemmas.
The first one concerns the differences τj+1 − τj . The second gives a useful bound that
follows from (3.18) and (3.19). Recall again the definition of j(t) from (1.25).

Lemma 4.4. For each η > 0 and t ∈ (1, 2) ∪ (2,∞), there exists θ = θ(η, t) > 0 such that

lim
N→∞

P

(
(1− η/3)aN
q(t− 1)kN

≤ τj+1−τj ≤
(1 + η/3)aN
q(t− 1)kN

for all j ∈ [j(t)−θkN , j(t)+θkN ]∩Z
)

= 1

and, for each fixed η > 0 and a > 2,

inf
t∈[a,∞)

θ(η, t) > 0. (4.8)

Proof. Lemma 4.1 states that the function q is continuous on [0, 1) ∪ (1,∞). Also, we can
see from (1.13) and the fact that 1 ≤ q(t) ≤ e for all t ≥ 0 that q is uniformly continuous
on [1,∞). Therefore, we may choose θ = θ(η, t) > 0 such that the following hold:

1) |q(t− 1)− q(u)| < η/7 for all u ∈ [t− 1− 3θ, t− 1 + 3θ],

2) [t− 1− 3θ, t− 1 + 3θ] ⊂ (0, 1) ∪ (1,∞),

3) (4.8) holds for each fixed η > 0, a > 2.

Fix ε > 0, δ ∈ (0, η/14), and T > t. We may assume N is large enough that the
conclusions of Proposition 3.6 hold with probability at least 1 − ε. For now, we will
work on the event that the conclusions of Proposition 3.6 hold. By (1.25), we have
γj(t) ≤ aN t < γj(t)+1, and it follows that τj(t) ≤ aN (t− 1) < τj(t)+1. Therefore, by (3.26),
for all j ∈ [j(t)− θkN , j(t) + θkN ] ∩Z such that j ≥ k∗ + 1, we have

aN (t− 1)− (θkN + 1) · 2aN
kN
≤ τj ≤ τj+1 ≤ aN (t− 1) + θkN ·

2aN
kN

.

It follows that for sufficiently large N ,

aN (t− 1− 3θ) ≤ τj ≤ τj+1 ≤ aN (t− 1 + 3θ). (4.9)

Because [t − 1 − 3θ, t − 1 + 3θ] ⊂ (0, 1) ∪ (1,∞), we can see from part 1 of Proposition
3.6 that for sufficiently large N , we have j(t) − θkN ≥ k∗ + 1. Also, in view of part 1
of Proposition 3.6, for sufficiently large N the interval [t − 1 − 3θ, t − 1 + 3θ] will not
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intersect [1, γk∗+1/aN ]. Therefore, for sufficiently large N , equations (3.24) and (3.25)
imply that for all j ∈ [j(t)− θkN , j(t) + θkN ] ∩Z, we have

1− 2δ

kN
≤
∫ τj+1/aN

τj/aN

q(u) du ≤ 1 + 2δ

kN
.

Combining this result with (4.9) and condition 1) above, we get that for sufficiently large
N ,

(1− 2δ)aN
(q(t− 1) + η/7)kN

≤ τj+1 − τj ≤
(1 + 2δ)aN

(q(t− 1)− η/7)kN

for all j ∈ [j(t)− θkN , j(t) + θkN ] ∩Z. Because q(u) ≥ 1 for all u ≥ 0 by Lemma 4.1 and
δ < η/14, we have

1− η

3
≤ (1− 2δ)q(t− 1)

q(t− 1) + η/7
≤ (1 + 2δ)q(t− 1)

q(t− 1)− η/7
≤ 1 +

η

3

if η is sufficiently small. Because ε > 0 is arbitrary, the result follows.

Lemma 4.5. Let C6 := C3 + 1 + 4δ. Suppose j ≥ k∗ + 1. Suppose τj+1 < ζ1,j and
τj+1 ≤ aNT . Suppose also that either τj+1 < ζ3 or j ≤ J . Then for sufficiently large N ,

s

C6µ
≤ exp

(∫ τj+1

τj

Gj(v) dv

)
≤ 2s

µ
. (4.10)

Also, suppose k∗ + 1 ≤ j ≤ J , τj ≤ t < ζ1,j , and t ≤ aNT . Then for sufficiently large N , if

exp

(∫ t

τj

Gj(v) dv

)
≥ 2s

µ
, (4.11)

we have τj+1 ≤ t.

Proof. Suppose j ≥ k∗ + 1, τj+1 < ζ1,j , and τj+1 ≤ aNT . If τj+1 < ζ3, then (3.26) gives
τj+1 ≥ τj + aN/3kN ≥ τ∗j . Now suppose instead j ≤ J . Then for t < τ∗j ∧ ζ1,j , part 1 of
Proposition 3.3 gives Xj,1(t) ≤ s/2µ. Since Xj,2(t) = 0 for t ≤ ξj , part 2 of Proposition
3.3 gives for t < τ∗j ∧ ζ1,j ,

Xj,2(t) ≤ (1 + 4δ)e
∫ t
τj
Gj(v) dv ≤ (1 + 4δ)esJ(τ∗j −τj) = (1 + 4δ)

(
s

µ

)J/4TkN
,

which by (3.27) is less than s/2µ for sufficiently large N . Thus, Xj(t) < s/µ if N is
sufficiently large and t < τ∗j ∧ ζ1,j , which means τj+1 ≥ τ∗j in this case also.

Recall from (1.23) that Xj(τj+1) = ds/µe. When τj+1 ≥ τ∗j , equations (3.18) and (3.19)
with t = τj+1 give

(1− 4δ)e
∫ τj+1
τj

Gj(v) dv ≤ ds/µe ≤ (1 + 4δ + C3)e
∫ τj+1
τj

Gj(v) dv.

The result (4.10) now follows immediately from rearranging this equation and observing
that ds/µe/((s/µ)(1− 4δ)) ≤ 2 for sufficiently large N .

To prove the last statement of the lemma, suppose k∗ + 1 ≤ j ≤ J , τj ≤ t < ζ1,j ,
t ≤ aNT , and (4.11) holds. For t < τ∗j , if N is sufficiently large, then∫ t

τj

Gj(v) dv ≤ sJ(τ∗j − τj) < log

(
s

µ

)
,

contradicting (4.11). Therefore, we must have t ≥ τ∗j . If τ∗j ≤ t < τj+1, then equation
(3.19) gives Xj(t) ≥ 2(1− 4δ)(s/µ) ≥ s/µ, contradicting the definition of τj+1. Thus, if N
is sufficiently large, then τj+1 ≤ t, as claimed.
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Proof of Theorem 1.4. Let η > 0 and t ∈ (1, 2) ∪ (2,∞). Choose θ = θ(η, t) such that
0 < θ < 1/4 and the three conditions at the beginning of the proof of Lemma 4.4 are
satisfied. As in the proof of Lemma 4.4, choose ε > 0, δ ∈ (0, η/14), and T > t. We may
assume that N is large enough that the conclusions of Propositions 3.3 and 3.6 hold with
probability at least 1− ε. For now we will suppose the conclusions of Propositions 3.3
and 3.6 hold.

Suppose ` is an integer with |`| ≤ θkN . As noted following (4.9) in the proof of Lemma
4.4, the fact that [t − 1 − 3θ, t − 1 + 3θ] ⊂ (0, 1) ∪ (1,∞) implies, if N is large enough,
that j(t) + ` ≥ k∗ + 1. Furthermore, because θ < 1/4, for sufficiently large N we have
γj(t)+`+K ≥ γj(t)+1 ≥ aN t and, by (4.9), τj(t)+`+1 ≤ aN (t− 1 + 3θ) ≤ aN t. Therefore, by
(3.20),

(1− δ)s
µ

e

∫ aNt
τj(t)+`+1

Gj(t)+`(v) dv
≤ Xj(t)+`(aN t) ≤

(1 + δ)s

µ
e

∫ aNt
τj(t)+`+1

Gj(t)+`(v) dv
.

Consider first the upper bound when 1 ≤ ` ≤ θkN . We have

log

(
Xj(t)+`(aN t)

Xj(t)(aN t)

)
≤ log

(
1 + δ

1− δ

)
+

∫ aN t

τj(t)+`+1

Gj(t)+`(v) dv −
∫ aN t

τj(t)+1

Gj(t)(v) dv

= log

(
1 + δ

1− δ

)
−
∫ τj(t)+`+1

τj(t)+1

Gj(t)+`(v) dv + s`(aN t− τj(t)+1)

= log

(
1 + δ

1− δ

)
−
∑̀
i=1

∫ τj(t)+i+1

τj(t)+i

Gj(t)+i(v) dv

−
∑̀
i=1

s(`− i)(τj(t)+i+1 − τj(t)+i) + s`(aN t− τj(t)+1). (4.12)

By Lemma 4.5,

−
∑̀
i=1

∫ τj(t)+i+1

τj(t)+i

Gj(t)+i(v) dv ≤ −` log

(
s

C6µ

)
. (4.13)

By Lemma 4.4, with probability tending to one as N →∞, we have

−
∑̀
i=1

s(`− i)(τj(t)+i+1 − τj(t)+i) ≤ −
(1− η/3)saN
q(t− 1)kN

∑̀
i=1

(`− i)

= − (1− η/3)`(`− 1)

2q(t− 1)kN
log

(
s

µ

)
. (4.14)

Also, by (1.26) and Lemma 4.4, with probability tending to one as N →∞ we have

γj(t)+1 − aN t = (1/2− d(t))(γj(t)+1 − γj(t)) ≥
(1/2− d(t))(1− η/3)aN

q(t− 1)kN
,

which leads to

s`(aN t− τj(t)+1) = s`(γj(t)+1 − τj(t)+1)− s`(γj(t)+1 − aN t)

≤ ` log

(
s

µ

)
− `(1/2− d(t))(1− η/3)

q(t− 1)kN
log

(
s

µ

)
. (4.15)

Combining (4.12), (4.13), (4.14), and (4.15) and using that

`(`− 1)

2
+ `

(
1

2
− d(t)

)
=
`2 − 2d(t)`

2
, (4.16)
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we get

log

(
Xj(t)+`(aN t)

Xj(t)(aN t)

)
≤ log

(
1 + δ

1− δ

)
+` logC6−

(1− η/3)

q(t− 1)kN

(
`2 − 2d(t)`

2

)
log

(
s

µ

)
. (4.17)

The argument for the lower bound follows the same steps. From Lemma 4.5, we get 2 in
place of 1/C6 in (4.13), and the result becomes

log

(
Xj(t)+`(aN t)

Xj(t)(aN t)

)
≥ log

(
1− δ
1 + δ

)
− ` log 2− (1 + η/3)

q(t− 1)kN

(
`2 − 2d(t)`

2

)
log

(
s

µ

)
. (4.18)

Since |d(t)| ≤ 1/2, we have (`2 − 2d(t)`)/2 ≤ (`2 + `)/2 ≤ `2. Since q(t− 1) ≥ 1 by Lemma
4.1 and log(s/µ)/kN →∞ as N →∞ by (1.7), it follows that when (4.17) and (4.18) hold
and N is sufficiently large, we have∣∣∣∣ log

(
Xj(t)+`(aN t)

Xj(t)(aN t)

)
+

`2 − 2d(t)`

2q(t− 1)kN
log

(
s

µ

)∣∣∣∣ ≤ η`2 log(s/µ)

kN
. (4.19)

Suppose now that −θkN ≤ ` ≤ −1. The proof is similar to the case in which ` is
positive. For an upper bound, note that

log

(
Xj(t)+`(aN t)

Xj(t)(aN t)

)
≤ log

(
1 + δ

1− δ

)
+

∫ aN t

τj(t)+`+1

Gj(t)+`(v) dv −
∫ aN t

τj(t)+1

Gj(t)(v) dv

= log

(
1 + δ

1− δ

)
+

∫ τj(t)+1

τj(t)+`+1

Gj(t)+`(v) dv + s`(aN t− τj(t)+1)

= log

(
1 + δ

1− δ

)
+

0∑
i=`+1

∫ τj(t)+i+1

τj(t)+i

Gj(t)+i(v) dv

+

0∑
i=`+1

s(`− i)(τj(t)+i+1 − τj(t)+i) + s`(aN t− τj(t)+1). (4.20)

Using Lemma 4.5 again,

0∑
i=`+1

∫ τj(t)+i+1

τj(t)+i

Gj(t)+i(v) dv ≤ −` log

(
2s

µ

)
. (4.21)

By Lemma 4.4, with probability tending to one as N →∞, we have

0∑
i=`+1

s(`− i)(τj(t)+i+1 − τj(t)+i) ≤
(1− η/3)saN
q(t− 1)kN

0∑
i=`+1

(`− i)

= − (1− η/3)`(`− 1)

2q(t− 1)kN
log

(
s

µ

)
. (4.22)

Repeating the reasoning that leads to (4.15) gives

s`(aN t− τj(t)+1) ≤ ` log

(
s

µ

)
− `(1/2− d(t))(1 + η/3)

q(t− 1)kN
log

(
s

µ

)
. (4.23)

Combining (4.20), (4.21), (4.22), and (4.23), and then using (4.16) again along with the
inequality `(`− 1)/2− `(1/2− d(t)) ≤ `2/2− 3`/2 ≤ 2`2, we get

log

(
Xj(t)+`(aN t)

Xj(t)(aN t)

)
≤ log

(
1 + δ

1− δ

)
− ` log 2− `2 − 2d(t)`

2q(t− 1)kN
log

(
s

µ

)
+

2η`2 log(s/µ)

3q(t− 1)kN
.
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By following the same steps, we obtain the analogous lower bound

log

(
Xj(t)+`(aN t)

Xj(t)(aN t)

)
≥ log

(
1− δ
1 + δ

)
+ ` logC6 −

`2 − 2d(t)`

2q(t− 1)kN
log

(
s

µ

)
− 2η`2 log(s/µ)

3q(t− 1)kN
.

Since q(t − 1) ≥ 1 by Lemma 4.1 and log(s/µ)/kN → ∞ as N → ∞ by (1.7), it follows
from these upper and lower bounds that (4.19) holds for sufficiently large N in this case
as well.

Since (4.19) is trivial when ` = 0, equation (4.19) holds for all ` ∈ [θkN , θkN ] ∩Z with
probability at least 1− ε, if N is large enough. Recalling (1.11), since ε > 0 was arbitrary,
Theorem 1.4 follows.

5 A useful martingale

In this section, we introduce a martingale which will be useful throughout the paper
for controlling the fluctuations of the number of type j individuals in the population.

5.1 Constructing the martingale

We first record the birth and death rates for different types of individuals. Let Fj(t)
be the fitness of a type j individual at time t, which is max{0, 1 + s(j −M(t))}, divided
by the sum of the fitnesses of the N individuals in the population. Note that, if there is a
birth event at time t, then Fj(t−) is the probability that a particular type j individual is
the one chosen to give birth. As long as every individual’s fitness is strictly positive, the
sum of the fitnesses of the N individuals in the population is

∞∑
j=0

Xj(t)(1 + s(j −M(t))) =

∞∑
j=0

Xj(t) + s

∞∑
j=0

jXj(t)− sM(t)

∞∑
j=0

Xj(t)

= N + sM(t)N − sM(t)N

= N,

in which case Fj(t) = (1 + s(j −M(t)))/N .
There are three ways that the number of type j individuals could change at time t:

1. If j ≥ 1, a type j − 1 individual could acquire a jth mutation at time t. This event
happens at rate µXj−1(t−). So that our formulas hold also when j = 0, we adopt
the convention that X−1(t) = 0 for all t ≥ 0.

2. The number of type j individuals could increase by one because of a birth. This
happens if one of the N−Xj(t−) individuals that is not type j dies at time t, and the
new individual born has type j. Because each individual dies at rate 1, and when a
death occurs, the probability that a type j individual is born is Xj(t−)Fj(t−), the
rate at which new type j individuals are born is (N − Xj(t−))Xj(t−)Fj(t−). We
define

Bj(t) := (N −Xj(t))Fj(t), (5.1)

which can be interpreted as the rate at which a particular type j individual gives
birth following the death of an individual with a different type.

3. The number of type j individuals could decrease by one because of a mutation or
death. The rate at which one of the type j individuals acquires a (j + 1)st mutation
is µXj(t−). The rate at which the number of type j individuals decreases due
to a death is given by Xj(t−)(1 − Xj(t−)Fj(t−)) because there are Xj(t−) type
j individuals each dying at rate one, and when a death occurs, the probability
that the new individual born is not a type j individual is 1−Xj(t−)Fj(t−). Thus,
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the total rate of events that reduce the number of type j individuals is µXj(t−) +

Xj(t−)(1−Xj(t−)Fj(t−)). We define

Dj(t) := µ+ 1−Xj(t)Fj(t), (5.2)

which can be interpreted as the rate at which a particular type j individual either
acquires a mutation or dies and gets replaced by an individual with a different
type.

Let Xb
j (t) be the number of times in [0, t] that the number of type j individuals increases

by one. Let Xd
j (t) be the number of times in [0, t] that the number of type j individuals

decreases by one. Then X0(t) = N+Xb
0(t)−Xd

0 (t) for all t ≥ 0, and Xj(t) = Xb
j (t)−Xd

j (t)

for all j ∈ N and t ≥ 0.
From the rates obtained above, we see that if we define

W b
j (t) := Xb

j (t)−
∫ t

0

(µXj−1(u) +Bj(u)Xj(u)) du (5.3)

and

W d
j (t) := Xd

j (t)−
∫ t

0

Dj(u)Xj(u) du, (5.4)

then the processes (W b
j (t), t ≥ 0) and (W d

j (t), t ≥ 0) are martingales for all j ∈ Z+.
Therefore, if we define Wj(t) := W b

j (t)−W d
j (t) for all t ≥ 0, then the process (Wj(t), t ≥ 0)

is a martingale for all j ∈ Z+. Let ∆Wj(t) = Wj(t)−Wj(t−). Because the process Wj is
locally of bounded variation, the quadratic variation is given by

[Wj ](t) =
∑
u∈[0,t]

∆Wj(u)2 = Xb
j (t) +Xd

j (t)

(see (8.19) of [16]). Because W b
j +W d

j , being the sum of two martingales, is a martingale,
we get (see Definition 8.22 of [16])

〈Wj〉(t) =

∫ t

0

(µXj−1(u) +Bj(u)Xj(u) +Dj(u)Xj(u)) du. (5.5)

We will work primarily with a different martingale. For all t ≥ 0 and j ∈ Z+, let

G∗j (t) := Bj(t)−Dj(t) = NFj(t)− 1− µ.

As long as every individual’s fitness is strictly positive, we have

G∗j (t) = N · 1 + s(j −M(t))

N
− 1− µ = s(j −M(t))− µ = Gj(t), (5.6)

where Gj(t) was defined in (3.11). We interpret G∗j (t) as the growth rate of the type j
population a time t. In Proposition 5.1 below, we define a martingale that will be very
useful for studying how the number of type j individuals evolves over time. This is similar
to the martingale studied in section 4 of [8].

Proposition 5.1. For all t ≥ 0 and j ∈ Z+, let

Zj(t) := e−
∫ t
0
G∗j (v) dvXj(t)−

∫ t

0

µXj−1(u)e−
∫ u
0
G∗j (v) dv du−Xj(0). (5.7)

Then (Zj(t), t ≥ 0) is a mean zero martingale with

Var(Zj(t)) = E

[ ∫ t

0

e−2
∫ u
0
G∗j (v) dv(µXj−1(u) +Bj(u)Xj(u) +Dj(u)Xj(u)) du

]
.
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Proof. For t ≥ 0 and j ∈ Z+, define

Ij(t) := e−
∫ t
0
G∗j (v) dv. (5.8)

The processes Xj and Ij are both semimartingales, so the Integration by Parts Formula
(see Corollary 8.7 of [16]) gives

Ij(t)Xj(t) = Ij(0)Xj(0) +

∫ t

0

Xj(u−) dIj(u) +

∫ t

0

Ij(u−) dXj(u) + [Xj , Ij ]t. (5.9)

Because the processes Xj and Ij are locally of bounded variation, and the process Ij has
continuous paths, we have (see (8.19) of [16])

[Xj , Ij ]t = 0 for all t a.s. (5.10)

Also, ∫ t

0

Xj(u−) dIj(u) = −
∫ t

0

Xj(u)G∗j (u)Ij(u) du. (5.11)

Because

Xj(t) = Xj(0) +Xb
j (t)−Xd

j (t) = X0(t) +Wj(t) +

∫ t

0

(µXj−1(u) +G∗j (u)Xj(u)) du

and Ij(t) is a continuous function of t, we get∫ t

0

Ij(u−) dXj(u) =

∫ t

0

Ij(u)(µXj−1(u) +G∗j (u)Xj(u)) du+

∫ t

0

Ij(u) dWj(u). (5.12)

Combining (5.9), (5.10), (5.11), and (5.12) and using that Ij(0) = 1, we get

Ij(t)Xj(t) = Xj(0) +

∫ t

0

Ij(u)µXj−1(u) du+

∫ t

0

Ij(u) dWj(u).

Therefore, in view of (5.7) and (5.8), we have

Zj(t) =

∫ t

0

Ij(u) dWj(u).

Note that Dj(t) ≤ 1 + µ for all t. Also, because 0 ≤ Fj(t) ≤ 1 for all t, we have Bj(t) ≤ N
for all t, and so the process (G∗j (t), t ≥ 0) is bounded. Therefore, using (5.5), for each
fixed t > 0, we have

E

[ ∫ t

0

I2
j (u) d〈Wj〉(u)

]
= E

[ ∫ t

0

e−2
∫ u
0
G∗j (v) dv(µXj−1(u) +Bj(u)Xj(u) +Dj(u)Xj(u)) du

]
<∞.

Therefore (see Theorem 8.32 of [16]), the process (Zj(t), t ≥ 0) is a square integrable
martingale and

〈Zj〉(t) =

∫ t

0

I2
j (u)d〈Wj〉(u) =

∫ t

0

e−2
∫ u
0
G∗j (v) dv(µXj−1(u)+Bj(u)Xj(u)+Dj(u)Xj(u))du.

Because Zj(0) = 0, the process (Zj(t), t ≥ 0) is a mean zero martingale. Finally, because
Var(Zj(t)) = E[Z2

j (t)] = E[〈Zj〉(t)] (see Corollary 8.25 of [16]), the result follows.
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5.2 Generalizations

It will often be useful to consider the martingale of Proposition 5.1 started or stopped
at a stopping time. Let (Ft)t≥0 be the natural filtration of ((X0(t), X1(t), . . . ), t ≥ 0). Let τ
be a stopping time with respect to (Ft)t≥0. LetXτ

j (t) := Xj(t∧τ) and Zτj (t) := Zj(t∧τ) for
all t ≥ 0. Then the process ((Xτ

0 (t), Xτ
1 (t), Xτ

2 (t), . . . ), t ≥ 0) represents the population
modified so that it does not change after time τ . Because stopped martingales are
martingales, the process (Zτj (t), t ≥ 0) is a martingale with 〈Zτj 〉(t) = 〈Zj〉(t ∧ τ), and we
have the following corollary.

Corollary 5.2. Let τ be a stopping time, and let Zτj (t) := Zj(t ∧ τ) for all t ≥ 0 and
j ∈ Z+. Then (Zτj (t), t ≥ 0) is a mean zero martingale with

Var(Zτj (t)) = E

[ ∫ t∧τ

0

e−2
∫ u
0
G∗j (v) dv(µXj−1(u) +Bj(u)Xj(u) +Dj(u)Xj(u)) du

]
.

Also, the process ((X0(t), X1(t), X2(t), . . . ), t ≥ 0) is a Markov chain on the countable
state space S = {(x0, x1, . . . ) : xj ∈ Z+ for all j and

∑∞
j=0 xj = N} and therefore sat-

isfies the Strong Markov Property. Combining Corollary 5.2 with the Strong Markov
Property leads to the following result.

Corollary 5.3. Let κ and τ be stopping times with κ ≤ τ . For all j ∈ Z+, let Zκ,τj (t) := 0

if t < κ, and if t ≥ κ, let

Zκ,τj (t) := e−
∫ t∧τ
κ

G∗j (v) dvXj(t ∧ τ)−
∫ t∧τ

κ

µXj−1(u)e−
∫ u
κ
G∗j (v) dv du−Xj(κ).

Then (Zκ,τj (κ+ t), t ≥ 0) is a mean zero martingale with

Var(Zκ,τj (κ+ t)|Fκ)

= E

[ ∫ (κ+t)∧τ

κ

e−2
∫ u
κ
G∗j (v) dv(µXj−1(u) +Bj(u)Xj(u) +Dj(u)Xj(u)) du

∣∣∣∣Fκ].
Also, we will sometimes need to consider the type j individuals that are descended

from an individual that gets its jth mutation during some time interval. The following
result is established in the same way as Proposition 5.1 and Corollary 5.3 except that
the mutation rate is set to zero outside of the time interval (κ, γ].

Corollary 5.4. Let κ and γ be stopping times with κ ≤ γ. Let j ∈ Z+. For t ≥ 0,
let X [κ,γ]

j (t) be the number of type j individuals in the population at time t that are
descended from individuals that acquired a jth mutation during the time interval (κ, γ],

which will be zero for t < κ. Let Z [κ,γ]
j (t) := 0 if t < κ. If t ≥ κ, let

Z
[κ,γ]
j (t) := e−

∫ t
κ
G∗j (v) dvX

[κ,γ]
j (t)−

∫ t∧γ

κ

µXj−1(u)e−
∫ u
κ
G∗j (v) dv du.

Then (Z
[κ,γ]
j (κ+ t), t ≥ 0) is a mean zero martingale. Denoting by B[κ,γ]

j (t) and D[κ,γ]
j (t)

the expressions on the right-hand sides of (5.1) and (5.2) with X [κ,γ]
j (t) in place of Xj(t),

we have

Var(Z
[κ,γ]
j (κ+ t)|Fκ) = E

[ ∫ κ+t

κ

e−2
∫ u
κ
G∗j (v) dv

(
µXj−1(u)1u∈(κ,γ]

+B
[κ,γ]
j (u)X

[κ,γ]
j (u) +D

[κ,γ]
j (u)X

[κ,γ]
j (u)

)
du

∣∣∣∣Fκ]. (5.13)

Furthermore, if τ is a stopping time with κ ≤ τ , then (Z
[κ,γ]
j ((κ + t) ∧ τ), t ≥ 0) is a

mean zero martingale, and Var(Z
[κ,γ]
j ((κ+ t) ∧ τ)|Fκ) is obtained by replacing κ+ t with

(κ+ t) ∧ τ in (5.13).
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Remark 5.5. By the Strong Markov Property, the result of Corollary 5.4 holds even if j
is random, as long as j is Fκ-measurable.

5.3 A related supermartingale

We will also need to consider a supermartingale that involves not just the individuals
of type j but the individuals of all types less than or equal to j. For j ∈ Z+ and t ≥ 0, let

Sj(t) := X0(t) +X1(t) + · · ·+Xj(t).

There are two ways that the value of the process Sj could change at time t:

1. The number of individuals with j or fewer mutations could increase by one because
of a birth. This happens when one of the N − Sj(t−) individuals with more than j
mutations dies and is replaced by an individual with j or fewer mutations. Because
each individual dies at rate 1, and when a death occurs at time t, the probability
that a type ` individual is born is X`(t−)F`(t−), the rate at which this occurs is

(N − Sj(t−))

j∑
`=0

X`(t−)F`(t−). (5.14)

2. The number of individuals with j or fewer mutations could decrease by one because
of a mutation or death. The rate at which one of the type j individuals acquires a
(j+1)st mutation is µXj(t−). There are Sj(t−) individuals with j or fewer mutations
that could die, and when a death occurs, the probability that the new individual
born has more than j mutations is 1−

∑j
`=0X`(t−)F`(t−). Therefore, the total rate

of events that reduce the number of type j individuals is

Sj(t−)

(
1−

j∑
`=0

X`(t−)F`(t−)

)
+ µXj(t−). (5.15)

Let

Vj(t) := N

j∑
`=0

X`(t)F`(t)− Sj(t)− µXj(t),

and note that the difference between the expressions in (5.14) and (5.15) is Vj(t−). Thus,

reasoning as in the argument after (5.3) and (5.4), the process (Sj(t)−
∫ t

0
Vj(u) du, t ≥ 0)

is a martingale. This leads to the following proposition.

Proposition 5.6. For all j ∈ Z+ and t ≥ 0, let

G̃j(t) := max
`∈{0,1,...,j}

(NF`(t)− 1− µ1{`=j}),

and let Yj(t) := e−
∫ t
0
G̃j(v) dvSj(t). Then (Yj(t), t ≥ 0) is a supermartingale for all j ∈ Z+.

Proof. Lemma 3.2 in Chapter 4 of [9] states that if (X(t), t ≥ 0) is a process which
takes its values in a complete separable metric space E and is adapted to (Ft)t≥0, and if
f : E → R and g : E → R are bounded measurable functions such that infx∈E f(x) > 0

and (f(X(t)) −
∫ t

0
g(X(u)) du, t ≥ 0) is a martingale with respect to (Ft)t≥0, then the

process whose value at time t is

f(X(t)) exp

(
−
∫ t

0

g(X(u))

f(X(u))
du

)
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is a martingale with respect to the filtration (Ft)t≥0. We can apply this result with
X(t) = (X0(t), X1(t), . . . ), f(X(t)) = Sj(t) + η where η > 0, and g(X(t)) = Vj(t)1{Sj(t)>0}
to get that if

Y ηj (t) = (Sj(t) + η) exp

(
−
∫ t

0

Vj(v)

Sj(v) + η
1{Sj(v)>0} dv

)
,

then (Y ηj (t), t ≥ 0) is a martingale. Note that F`(t) ≤ Fj(t) for all ` ≤ j. Therefore,

Vj(t)

Sj(t) + η
=

j∑
`=0

X`(t)

Sj(t) + η
(NF`(t)− 1− µ1{`=j}) ≤

j∑
`=0

X`(t)

Sj(t) + η
G̃j(t) ≤ G̃j(t). (5.16)

If 0 ≤ u < t, then for all η > 0,

E
[
e−

∫ t
0
G̃j(v)1{Sj(v)>0}dv(Sj(t) + η)

∣∣Fu]
= E

[
Y ηj (t)e−

∫ t
0

(G̃j(v)−(Vj(v)/(Sj(v)+η))1{Sj(v)>0}dv
∣∣Fu]

≤ E[Y ηj (t)|Fu]e−
∫ u
0

(G̃j(v)−(Vj(v)/(Sj(v)+η)))1{Sj(v)>0}dv

= Y ηj (u)e−
∫ u
0

(G̃j(v)−(Vj(v)/(Sj(v)+η)))1{Sj(v)>0}dv

= e−
∫ u
0
G̃j(v)1{Sj(v)>0}dv(Sj(u) + η).

Letting η → 0, we get

E
[
e−

∫ t
0
G̃j(v)1{Sj(v)>0}dvSj(t)

∣∣Fu] ≤ e− ∫ u
0
G̃j(v)1{Sj(v)>0}dvSj(u) (5.17)

Because Sj(t) = 0 whenever Sj(v) = 0 for some v < t, the indicators on both sides of
(5.17) can be removed. It follows that E[Yj(t)|Fu] ≤ Yj(u). That is, (Yj(t), t ≥ 0) is a
supermartingale.

Remark 5.7. As long as Gj(t) = G∗j (t), since we are assuming N is large enough that
s ≥ µ, for all ` < j we have

NF`(t)− 1 = G∗` (t) + µ = G`(t) + µ = s(`−M(t)) ≤ s(j −M(t))− µ = Gj(t),

and therefore G̃j(t) = Gj(t).

6 Proof of Proposition 3.1

In this section, we study the behavior of the process before the time t∗ defined in
(3.6). We prove Proposition 3.1. Recall the definitions of kN , k−N , k+

N , and k∗ from (1.11),
(3.2), (3.3), and (3.4). Part 1 of Proposition 3.1 says that for j ≤ k−N , the number of type j
individuals at time t ∈ [0, t∗] is well approximated by xj(t), which is defined in (3.7). Part
2 handles the delicate case in which there is an integer j in the interval (k−N , k

+
N ). Parts

3 and 4 say that for j ≥ k+
N , no type j individuals appear before time t∗, and there are

fewer than s/µ individuals of type k∗ through time t∗.

6.1 Bounding the mean number of mutations

Before time t∗, the mean number of mutations in the population is close to zero.
Accordingly, let η := µk5

N/s, and define the stopping time

τ := inf{t : M(t) ≥ η}.

Recall the definition of the martingale (Zj(t), t ≥ 0) from (5.7). We will consider the
processes (Xτ

j (t), t ≥ 0) and (Zτj (t), t ≥ 0), where Xτ
j (t) = Xj(t∧ τ) and Zτj (t) = Zj(t∧ τ)

for all t ≥ 0. From assumption A3 and (1.8), we see that for all a > 0,

µ

s
kaN =

µ

sa+1
(skN )a → 0 as N →∞, (6.1)
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so in particular η → 0 and sη → 0 as N → ∞. Therefore, we may and will assume
throughout this section that N is large enough that sη < 1. This implies that the fitness
of every individual is strictly positive before time τ , which means, as noted in (5.6), that
G∗j (t) = Gj(t) = s(j −M(t))− µ for all j ∈ Z+ and t < τ . Our first goal is to show that
with high probability, we have τ > t∗, and so stopping the process at time τ does not
change the behavior of the process before time t∗. To do this, we need the upper bound
on E[Xτ

j (t)] provided by the following lemma. This lemma will also be useful for first
moment estimates later in the proof.

Lemma 6.1. For all t ≥ 0 and j ∈ Z+, we have

E[Xτ
j (t)] ≤ Nµj(est − 1)j

sjj!
. (6.2)

Proof. Let t ≥ 0. Let m ∈ N, and for i ∈ {0, 1, . . . ,m}, let ti := (i/m)t. Let X
[ti,ti+1]
j (t)

be the number of type j individuals at time t that are descended from individuals
that acquired their jth mutation during the time interval (ti, ti+1]. Then the process

(Z
[ti,ti+1]
j (ti+ t), t ≥ 0) introduced in Corollary 5.4 is a mean zero martingale. The process

stopped at time τ is also a mean zero martingale, so

E

[
e
−

∫ t∧τ
ti

Gj(v) dv
X

[ti,ti+1]
j (t ∧ τ)

]
= E

[ ∫ ti+1∧τ

ti

µXτ
j−1(u)e

−
∫ u
ti
Gj(v) dv

du

]
.

Now sj − sη − µ ≤ Gj(v) ≤ sj for all v ∈ [0, τ), which implies that

E[X
[ti,ti+1]
j (t ∧ τ)] ≤ esj(t−ti)E

[
e
−

∫ t∧τ
ti

Gj(v) dv
X

[ti,ti+1]
j (t ∧ τ)

]
≤ esj(t−ti)E

[ ∫ ti+1∧τ

ti

µXτ
j−1(u)e−(sj−sη−µ)(u−ti) du

]
≤ e(sη+µ)(ti+1−ti)

∫ ti+1

ti

µesj(t−u)E[Xτ
j−1(u)] du.

Summing over i ∈ {0, 1, . . . ,m− 1} gives

E[Xτ
j (t)] ≤ e(sη+µ)t/m

∫ t

0

µesj(t−u)E[Xτ
j−1(u)] du

and then letting m→∞ gives

E[Xτ
j (t)] ≤

∫ t

0

µesj(t−u)E[Xτ
j−1(u)] du. (6.3)

We now use (6.3) to prove (6.2) by induction. Because Xτ
0 (t) ≤ N for all t ≥ 0, we

have E[Xτ
0 (t)] ≤ N for all t ≥ 0, which establishes the result when j = 0. Suppose j ≥ 1

and (6.2) holds with j − 1 in place of j. Then by (6.3),

E[Xτ
j (t)] ≤

∫ t

0

µesj(t−u) Nµj−1

sj−1(j − 1)!
(esu−1)j−1 du ≤ Nµjesjt

sj−1(j − 1)!

∫ t

0

e−sju(esu−1)j−1 du.

Because ∫ t

0

e−sju(esu − 1)j−1 du =
(1− e−st)j

sj
, (6.4)

the result follows by induction.

Lemma 6.2. We have lim
N→∞

P (τ ≤ t∗) = 0.
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Proof. If τ ≤ t∗, then M(t∗ ∧ τ) = M(τ) ≥ η, so by Markov’s Inequality,

P (τ ≤ t∗) ≤ P (M(t∗ ∧ τ) ≥ η) ≤ E[M(t∗ ∧ τ)]

η
.

By Lemma 6.1,

E[M(t∗ ∧ τ)] =
1

N

∞∑
j=1

jE[Xτ
j (t∗)]

≤ 1

N

∞∑
j=1

j · Nµ
j

sjj!
(est

∗
− 1)j

=
µ

s
(est

∗
− 1)

∞∑
j=1

1

(j − 1)!

(
µ

s
(est

∗
− 1)

)j−1

= yey,

where y = (µ/s)(est
∗ − 1). Recalling (3.6), we have y ≤ (µ/s)est

∗ ≤ (µ/s)k4
N . Therefore,

in view of (6.1), we have y → 0 as N → ∞, and thus yey ≤ 2y for sufficiently large N .
Using (1.6), for sufficiently large N ,

P (τ ≤ t∗) ≤ 2y

η
≤ 2(µ/s)k4

N

(µ/s)k5
N

→ 0 as N →∞,

as claimed.

6.2 Controlling the fluctuations in Xj

Our goal in this subsection is to obtain sharp bounds on the fluctuations of the number
of type j individuals before time t∗. Because the randomness can be expressed in terms
of the martingales Zj , the key result is the next lemma, which will provide control on
the value of |Zj(t)|. Before stating this lemma, we establish a simple bound on the birth
and death rates that will be useful throughout the paper. Note that for all t such that
all individuals at time t have a strictly positive fitness, and in particular for all t < τ , we
have

Bj(t) +Dj(t) = (N − 2Xj(t))Fj(t) + 1 + µ

=
(N − 2Xj(t))(1 + s(j −M(t)))

N
+ 1 + µ

≤ 2 + sj + µ.

Because sk+
N → 0 as N →∞ by (3.5) and assumption A3 and µ→ 0 as N →∞, we have

for j ≤ k+
N ,

Bj(t) +Dj(t) ≤ 3 for sufficiently large N. (6.5)

For future reference, note that (6.5) also holds for all j ≤ J = 3kNT + k∗ + 1.

Lemma 6.3. Let ε > 0. For sufficiently large N , we have

P

(
sup

t∈[0,t∗]

|Zτj (t)| ≤ 16

√
Nµjt∗kN
εsjj!

for all j ≤ k+
N

)
> 1− ε

15
.

Proof. By Corollary 5.2, the process (Zτj (t), t ≥ 0) is a mean zero martingale. Since
G∗j (t) = Gj(t) for t < τ , we have

Var(Zτj (t∗)) = E

[ ∫ t∗∧τ

0

e−2
∫ u
0
Gj(v) dv(µXj−1(u) +Bj(u)Xj(u) +Dj(u)Xj(u)) du

]
.
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Combining this result with (6.5) and Lemma 6.1, we get

Var(Zτj (t∗)) ≤
∫ t∗

0

e−2(sj−sη−µ)u

(
Nµj(esu − 1)j−1

sj−1(j − 1)!
+

3Nµj(esu − 1)j

sjj!

)
du

≤ e2(sη+µ)t∗ · Nµ
j

sjj!

∫ t∗

0

e−2sju
(
(esu − 1)j−1sj + 3(esu − 1)j

)
du

≤ e2(sη+µ)t∗ · Nµ
j

sjj!

∫ t∗

0

(e−s(j+1)usj + 3e−sju) du. (6.6)

For j ≤ k+
N , the result (6.1) implies that

2(sη + µ)t∗ ≤ 2(µk5
N + µ)

(
4

s
log kN

)
→ 0 as N →∞ (6.7)

and therefore e2(sη+µ)t∗ → 1 as N →∞. Also, as a consequence of assumption A3, we
have e−s(j+1)usj+3e−sju ≤ sk+

N +3→ 3 as N →∞ for all u ∈ [0, t∗]. Thus, for sufficiently
large N ,

Var(Zτj (t∗)) ≤ 4Nµjt∗

sjj!
(6.8)

for all j ≤ k+
N . By the L2 Maximum Inequality for martingales,

P

(
sup

t∈[0,t∗]

|Zτj (t)| > 16

√
Nµjt∗kN
εsjj!

)
≤ 4Var(Zτj (t∗)) · εsjj!

256Nµjt∗kN
≤ ε

16kN
(6.9)

for all j ≤ k+
N ifN is sufficiently large. Since kN →∞ asN →∞ by (1.6) and k+

N−kN → 0

as N →∞ by (3.5), we have (k+
N + 1)/kN → 1 as N →∞. The result thus follows from

(6.9) by taking the union over j ∈ {0, 1, . . . , bk+
Nc}.

The next lemma shows that when the processes Zj are bounded as indicated in Lemma
6.3, the processes Xj will stay fairly close to the deterministic functions xj defined in
(3.7). Because the difference between Xj and xj depends in part on the difference
between Xj−1 and xj−1, the proof proceeds by induction. Rather precise bounds are
needed to prevent the errors from accumulating too rapidly during the induction process,
so some technical work is required to obtain sufficiently sharp estimates.

Lemma 6.4. On the event that t∗ < τ and

sup
t∈[0,t∗]

|Zj(t)| ≤ 16

√
Nµjt∗kN
εsjj!

for all j ≤ k+
N , (6.10)

we have, for all t ∈ [0, t∗] and ` ≤ k+
N ,

|X`(t)− x`(t)| ≤ x`(t)
(

(`+ 1)(sη + µ)t+ 16
∑̀
j=0

√
sjt∗kN
εNµjj!

· `!

(`− j)!
(1− e−st)−j

)
. (6.11)

In particular, for all ` ≤ k+
N , we have

sup
t∈[0,t∗]

|X`(t)−x`(t)| ≤ x`(t∗)
(

(`+ 1)(sη+µ)t∗+ 16
∑̀
j=0

√
sjt∗kN
εNµjj!

· `!

(`− j)!
(1− e−st

∗
)−j
)
.

(6.12)
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Proof. Throughout the proof, we will assume that t∗ < τ and that (6.10) holds. This
implies that G∗j (u) = Gj(u) for u ≤ t∗. For j ≤ k+

N and t ∈ [0, t∗], define

Hj(t) := (sη + µ)txj(t) + 16esjt

√
Nµjt∗kN
εsjj!

.

We will first show by induction that for ` ∈ {0, 1, . . . , bk+
Nc} and t ∈ [0, t∗], we have

|X`(t)− x`(t)| ≤ H`(t) +

`−1∑
j=0

µ`−j

(`− j − 1)!s`−j−1

∫ t

0

Hj(u)es`(t−u)(1− e−s(t−u))`−j−1 du.

(6.13)
Consider first ` = 0. Suppose t ∈ [0, t∗]. From (5.7), we get

X0(t) = e
∫ t
0
G0(v) dv(N + Z0(t)).

Because −sη − µ ≤ G0(v) ≤ 0 for all v ∈ [0, t], it follows that

|X0(t)−N | ≤ N(1− e
∫ t
0
G0(v) dv) + |Z0(t)| ≤ N(sη + µ)t+ 16

√
Nt∗kN
ε

.

Therefore, since x0(t) = N for all t ∈ [0, t∗], we have

|X0(t)− x0(t)| ≤ N(sη + µ)t+ 16

√
Nt∗kN
ε

= H0(t),

so (6.13) holds for ` = 0.
Next, suppose (6.13) holds for `− 1, where ` ≥ 1. Let t ∈ [0, t∗]. Equation (5.7) gives

X`(t) = e
∫ t
0
G`(v) dv

(∫ t

0

µX`−1(u)e−
∫ u
0
G`(v) dv du+ Z`(t)

)
=

∫ t

0

µX`−1(u)e
∫ t
u
G`(v) dv du+ e

∫ t
0
G`(v) dvZ`(t)

=

∫ t

0

µ(X`−1(u)− x`−1(u))e
∫ t
u
G`(v) dv du+

∫ t

0

µx`−1(u)(e
∫ t
u
G`(v) dv − es`(t−u)) du

+

∫ t

0

µx`−1(u)es`(t−u) du+ e
∫ t
0
G`(v) dvZ`(t). (6.14)

Equation (6.4) gives∫ t

0

µx`−1(u)es`(t−u) du =
Nµ`es`t

s`−1(`− 1)!

∫ t

0

(esu − 1)`−1e−s`u du = x`(t). (6.15)

Also, |e
∫ t
u
G`(v) dv− es`(t−u)| = es`(t−u)|e−

∫ t
u

(sM(v)+µ) dv−1| ≤ es`(t−u)(sη+µ)(t−u). There-
fore, (6.15) implies that∫ t

0

µx`−1(u)|e
∫ t
u
G`(v) dv − es`(t−u)| du ≤ (sη + µ)t

∫ t

0

µx`−1(u)es`(t−u) du = (sη + µ)tx`(t).

(6.16)
Furthermore, because e

∫ t
0
G`(v) dv ≤ es`t and we are assuming that (6.10) holds,

e
∫ t
0
G`(v) dv|Z`(t)| ≤ 16es`t

√
Nµ`t∗kN
εs``!

. (6.17)

Combining (6.14), (6.15), (6.16), and (6.17) leads to

|X`(t)− x`(t)| ≤ H`(t) +

∫ t

0

µ|X`−1(u)− x`−1(u)|es`(t−u) du.
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Using the induction hypothesis to bound the integral, we get

|X`(t)− x`(t)| ≤ H`(t) +

∫ t

0

µes`(t−u)

(
H`−1(u) +

`−2∑
j=0

µ`−1−j

(`− j − 2)!s`−j−2

×
∫ u

0

Hj(v)es(`−1)(u−v)(1− e−s(u−v))`−j−2 dv

)
du. (6.18)

The first term
∫ t

0
µes`(t−u)H`−1(u) du in the integral on the right-hand side of (6.18)

matches the j = `− 1 term on the right-hand side of (6.13). For j ∈ {0, 1, . . . , `− 2}, the
term corresponding to j in the sum on the right-hand side of (6.18) can be expressed as∫ t

0

µes`(t−u) · µ`−1−j

(`− j − 2)!s`−j−2

(∫ u

0

Hj(v)es(`−1)(u−v)(1− e−s(u−v))`−j−2 dv

)
du

=
µ`−j

(`− j − 2)!s`−j−2

∫ t

0

Hj(v)es`(t−v)

(∫ t

v

e−s(u−v)(1− e−s(u−v))`−j−2 du

)
dv,

which matches the term corresponding to j on the right-hand side of (6.13) because the
substitution x = u− v combined with (6.4) gives∫ t

v

e−s(u−v)(1− e−s(u−v))`−j−2 du =

∫ t−v

0

e−sx(1− e−sx)`−j−2 dx =
(1− e−s(t−v))`−j−1

s(`− j − 1)
.

Thus, by induction, (6.13) holds for all ` ∈ {0, 1, . . . , bk+
Nc} and t ∈ [0, t∗].

Next we will obtain (6.11) from (6.13). For j ∈ {0, 1, . . . , `−1}, the term corresponding
to j in the sum in (6.13) can be written as

µ`−j

(`− j − 1)!s`−j−1

∫ t

0

(
(sη+µ)uxj(u) + 16esju

√
Nµjt∗kN
εsjj!

)
es`(t−u)(1− e−s(t−u))`−j−1 du.

(6.19)
The first of the two terms in this expression is bounded above by

(sη + µ)t · Nµ`

s`−1j!(`− j − 1)!

∫ t

0

(esu − 1)jes`(t−u)(1− e−s(t−u))`−j−1 du.

By making the substitution x = esu and y = est and then applying the result (3.199) of
[12], we see that∫ t

0

(esu − 1)jes`(t−u)(1− e−s(t−u))`−j−1 du = (est − 1)` · j!(`− j − 1)!

s`!
,

so upper bound on the first term in (6.19) becomes

(sη + µ)t · Nµ
`(est − 1)`

s``!
= (sη + µ)t · x`(t). (6.20)

The second term in (6.19) equals

16µ`−j

(`− j − 1)!s`−j−1

√
Nµjt∗kN
εsjj!

· es`t
∫ t

0

e−s(`−j)u(1− e−s(t−u))`−j−1 du.

Making the substitution x = t− u, we get∫ t

0

e−s(`−j)u(1− e−s(t−u))`−j−1 du = e−s(`−j)t
∫ t

0

esx(esx − 1)`−j−1 dx =
(1− e−st)`−j

s(`− j)
.
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Also, es`t(1− e−st)`−j = (est − 1)`(1− e−st)−j so the second term in (6.19) equals

16µ`−j

(`− j)!s`−j

√
Nµjt∗kN
εsjj!

· (est − 1)`(1− e−st)−j = 16

√
sjt∗kN
εNµjj!

· `!

(`− j)!
(1− e−st)−jx`(t),

(6.21)
which matches the term corresponding to j in (6.11). Furthermore, we have

H`(t) = (sη + µ)tx`(t) + 16

√
s`t∗kN
εNµ``!

· `!(1− e−st)−`x`(t), (6.22)

and the second term matches the j = ` term in (6.11). Combining the bound in (6.20)
with the results in (6.21) and (6.22) gives the bound in (6.11).

Finally, note that if t ∈ [0, t∗] and 0 ≤ j ≤ ` ≤ k+
N , then

x`(t)(1− e−st)−j = (est − 1)`(est
∗
− 1)−`(1− e−st)−jx`(t∗)

= (est − 1)`−j(est
∗
− 1)−`estjx`(t

∗)

≤ (est
∗
− 1)−jest

∗jx`(t
∗)

= (1− e−st
∗
)−jx`(t

∗),

so (6.12) follows from (6.11).

6.3 Proof of part 1 of Proposition 3.1

Here we show how the results in the previous section can be used to obtain the
desired control on the difference between Xj and xj up to time t∗ for j ≤ k−N . The result
(6.24) below is essentially a restatement of part 1 of Proposition 3.1.

Proposition 6.5. Let t0 := (1/s) log kN . For sufficiently large N , we have

P
(
|Xj(t)− xj(t)| ≤ δxj(t) for all j ≤ k−N and t ∈ [t0, t

∗]
)
> 1− ε

12
(6.23)

and

P

(
sup

t∈[0,t∗]

|Xj(t)− xj(t)| ≤ δxj(t∗) for all j ≤ k−N
)
> 1− ε

12
. (6.24)

Proof. It follows from Lemmas 6.2 and 6.3 that the probability that t∗ < τ and (6.10)
holds is at least 1− ε/12 for sufficiently large N . Thus, the proposition will follow from
Lemma 6.4 provided that for sufficiently large N , we have

(`+ 1)(sη + µ)t+ 16
∑̀
j=0

√
sjt∗kN
εNµjj!

· `!

(`− j)!
(1− e−st)−j ≤ δ (6.25)

for all t ∈ [t0, t
∗] and ` ≤ k−N . It will suffice to show that the two terms on the left-hand

side of (6.25) each tend to zero as N →∞ uniformly in ` ≤ k−N and t ∈ [t0, t
∗]. The first

term tends to zero by the reasoning in (6.7), so it remains to consider the second term.

For j ≤ ` ≤ k−N and t∗ ≥ (1/s) log kN , we have (1 − e−st)−j ≤ (1 − k−1
N )−kN → e as

N → ∞. Therefore, for sufficiently large N , we have (1 − e−st)−j ≤ 3. It now follows
from the Binomial Theorem that

∑̀
j=0

√
sjt∗kN
εNµjj!

· `!

(`− j)!
(1− e−st)−j ≤ 3

√
t∗kN
εN

√
`!
∑̀
j=0

(
`

j

)√
sj

µj
= 3

√
t∗kN
εN

√
`!

(
1 +

√
s

µ

)`
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for sufficiently large N . To show that this expression tends to zero as N → ∞ for all
` ≤ k−N , it suffices to show that

lim
N→∞

log

(√
t∗kN
εN

√
k−N !

(
1 +

√
s

µ

)k−N)
= −∞. (6.26)

We use o(kN ) to denote a term which, when divided by kN , tends to zero as N →∞ and
O(1) to denote a term that stays bounded as N → ∞. Because n! ∼

√
2πnn+1/2e−n by

Stirling’s Formula, we have

log k−N ! =

(
k−N +

1

2

)
log k−N − k

−
N +O(1) = k−N log k−N − k

−
N + o(kN ). (6.27)

Also, because s/µ→∞ as N →∞ by (1.8),

log

((
1 +

√
s

µ

)k−N)
= k−N log

(
1 +

√
s

µ

)
=
k−N
2

log

(
s

µ

)
+ o(kN ),

and because assumption A1 implies that

lim
N→∞

kN
log(1/s)

=∞, (6.28)

we have
log t∗ = log log kN + log(1/s) +O(1) = o(kN ).

Finally, note that k−N log k−N = kN log kN +o(kN ). Therefore, the logarithm on the left-hand
side of (6.26) is

1

2

(
log t∗ + log kN − log ε− logN

)
+ log

√
k−N + log

((
1 +

√
s

µ

)k−N)
=

1

2

(
− logN + k−N log k−N − k

−
N + k−N log

(
s

µ

))
+ o(kN )

=
1

2

(
− logN + k−N log k−N − k

−
N + logN − logN

log(s/µ)
log

(
logN

log(s/µ)

))
+ o(kN )

= −1

2
kN + o(kN ), (6.29)

which tends to −∞ as N →∞. The result follows.

6.4 Proof of part 2 of Proposition 3.1

In this subsection, we consider the case in which there is an integer j ∈ (k−N , k
+
N ).

As noted before the statement of Proposition 3.1, for sufficiently large N there can
be at most one such integer, so we will assume that N is large enough to ensure this.
Also, such a j may not exist for every N , so in this subsection asymptotic statements
as N →∞ should be understood to mean that we consider a subsequence of integers
(Ni)

∞
i=1 tending to infinity such that there is an integer in (k−Ni , k

+
Ni

) for all i.
Recall that we can write j as in (3.9), with −1 < βj < 2, and dj = max{0, βj}. Recall

also that when such a j exists, we have t∗ = (4/s) log kN . In this case, we can not use the
same argument as in the proof of Part 1 of Proposition 3.1 because the expression in
(6.29) does not tend to −∞ as N → ∞ if k−N is replaced by k+

N . Instead, we will break
the type j individuals into three subpopulations. Define the times

r1 := max

{
0,

(βj + 1) log kN − 2

s

}
, r2 :=

(dj + 1) log kN
s

.
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Note that 0 ≤ r1 < r2 < t∗. For each type j individual in the population, we can consider
the time when this individual or its ancestor acquired its jth mutation. For t ∈ [0, t∗],
using the notation of Corollary 5.4, we can write

Xj(t) = X
[0,r1]
j (t) +X

[r1,r2]
j (t) +X

[r2,t
∗]

j (t). (6.30)

Here we are dividing the type j population into three groups, depending on whether the
jth mutation occurred before time r1, between times r1 and r2, or after time r2. We will
consider these three subpopulations separately in the next three lemmas.

Lemma 6.6. We have

lim
N→∞

P (X
[0,r1]
j (t∗) = 0) = 1.

Proof. Clearly X [0,r1]
j (t) = 0 for all t ∈ [0, t∗] when r1 = 0, so we will assume that r1 > 0.

Each type j − 1 individual is acquiring mutations at rate µ. Therefore, by Lemma 6.1,
the expected number of times, before time r1 ∧ τ , that a type j − 1 individual acquires a
jth mutation is at most∫ r1

0

µE[Xτ
j−1(t)] dt ≤ Nµj

sj−1(j − 1)!

∫ r1

0

(est − 1)j−1 dt. (6.31)

We have ∫ r1

0

(est − 1)j−1 dt ≤
∫ r1

0

esjt dt ≤ esjr1

sj
=
k
j(βj+1)
N e−2j

sj
.

Therefore, for sufficiently large N , the expression in (6.31) is bounded above by

Nµjk
j(βj+1)
N e−2j

sjj!
.

By Markov’s Inequality, this expression also gives an upper bound for the probability
that at least one type j − 1 individual acquires a jth mutation by time r1 ∧ τ . Using (3.9),
the reasoning in (6.27), and the fact that

j log j = j log kN + o(kN ) = kN log kN + o(kN ), (6.32)

we get

log

(
Nµjk

j(βj+1)
N e−2j

sjj!

)
= logN − j log

(
s

µ

)
+ (βj + 1)j log kN − 2j − log j!

= −βjkN log kN + (βj + 1)j log kN − 2j − (j log j − j) + o(kN )

= −j + o(kN ),

which tends to −∞ as N → ∞. Thus, the probability that some individual acquires a
jth mutation by time r1 ∧ τ tends to zero as N →∞. Combining this observation with
Lemma 6.2 gives the result.

For the following lemma, recall that because dj = max{0, βj}, we have dj ≤ 0, and

therefore k
−dj
N is either constant or tending to infinity as N →∞.

Lemma 6.7. For sufficiently large N ,

P

(
X

[r1,r2]
j (t∗) >

195

ε
k
−dj
N xj(t

∗)

)
≤ ε

12
.
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Proof. First, suppose βj > 0. By applying the argument that leads to (6.3) followed by
the result of Lemma 6.1 and then (6.4), we get

E[X
[r1,r2]
j (t∗ ∧ τ)] ≤

∫ r2

r1

µesj(t
∗−u) E[Xτ

j−1(u)] du

≤ Nµjesjt
∗

sj−1(j − 1)!

∫ r2

r1

e−sju(esu − 1)j−1 du

=
Nµjesjt

∗

sjj!

(
(1− e−sr2)j − (1− e−sr1)j

)
. (6.33)

Since d
dx (1− e−sx)j = j(1− e−sx)j−1se−sx ≤ sje−sx and r2 − r1 = 2/s if N is sufficiently

large, we have

(1− e−sr2)j − (1− e−sr1)j ≤ (r2 − r1)sje−sr1 ≤ 2e2jk
−(βj+1)
N . (6.34)

Since j/kN → 1 as N →∞ and

(est
∗ − 1)j

esjt∗
=

(
1− 1

k4
N

)j
→ 1 as N →∞, (6.35)

it follows from (6.33) and (6.34) that for sufficiently large N , we have

E[X
[r1,r2]
j (t∗ ∧ τ)] ≤ 15Nµj(est

∗ − 1)j

sjj!
· k−βjN = 15k

−βj
N xj(t

∗).

When βj ≤ 0, we can use instead Lemma 6.1 to get E[X
[r1,r2]
j (t∗∧τ)] ≤ E[Xτ

j (t∗)] ≤ xj(t∗).
Combining these results gives

E[X
[r1,r2]
j (t∗ ∧ τ)] ≤ 15k

−dj
N xj(t

∗)

for sufficiently large N . By Markov’s Inequality,

P

(
X

[r1,r2]
j (t∗ ∧ τ) >

195

ε
k
−dj
N xj(t

∗)

)
≤
εE[X

[r1,r2]
j (t∗ ∧ τ)]

195k
−dj
N xj(t∗)

≤ ε

13
.

The result now follows from Lemma 6.2.

Lemma 6.8. There exist positive constants c and c′, not depending on ε, such that for
sufficiently large N ,

P
(
ck
−dj
N xj(t

∗) ≤ X [r2,t
∗]

j (t∗) ≤ c′k−djN xj(t
∗)
)
≥ 1− ε

5
. (6.36)

Proof. For t ∈ [r2, t
∗], write

Z
[r2,t

∗]
j (t) = e

−
∫ t
r2
G∗j (v) dv

X
[r2,t

∗]
j (t)−

∫ t

r2

µXj−1(u)e
−

∫ u
r2
G∗j (v) dv

du

as in Corollary 5.4. Then

X
[r2,t

∗]
j (t∗ ∧ τ) =

∫ t∗∧τ

r2

µXj−1(u)e
∫ t∗∧τ
u

G∗j (v) dv du+ e
∫ t∗∧τ
r2

Gj(v) dv
Z

[r2,t
∗]

j (t∗ ∧ τ). (6.37)

Note that r2 ≥ (1/s) log kN . Assume for now that τ > t∗ and that the event in (6.23) holds
so that, in particular,

(1− δ)xj−1(t) ≤ Xj−1(t) ≤ (1 + δ)xj−1(t) for all t ∈ [r2, t
∗]. (6.38)
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Using (6.4),

∫ t∗

r2

µxj−1(u)esj(t
∗−u) du =

Nµjesjt
∗

sj−1(j − 1)!

∫ t∗

r2

e−sju(esu − 1)j−1 du

=
Nµjesjt

∗

sjj!

(
(1− e−st

∗
)j − (1− e−sr2)j

)
=
Nµjesjt

∗

sjj!

((
1− 1

k4
N

)j
−
(

1− 1

k
dj+1
N

)j)
. (6.39)

We need to consider the asymptotic behavior of hN := (1 − k−4
N )j − (1 − k−(dj+1)

N )j as
N →∞. First suppose βj ≤ 0. Note that d

dx (1− x)j = −j(1− x)j−1. Therefore, using ∼
to denote that the ratio of the two sides tends to one as N →∞, we have

hN ≤ j(k
−(dj+1)
N − k−4

N ) ≤ jk−(dj+1)
N ∼ k−djN (6.40)

and

hN ≥ j(1− k−1
N )j−1(k

−(dj+1)
N − k−4

N ) ∼ e−1k
−dj
N . (6.41)

Combining (6.35), (6.38), (6.39), (6.40), and (6.41), we get that there are positive
constants c1 and c2 such that for sufficiently large N ,

c1k
−dj
N xj(t

∗) ≤
∫ t∗

r2

µXj−1(u)esj(t
∗−u) du ≤ c2k

−dj
N xj(t

∗). (6.42)

In view of (3.1), the constants c1 and c2 can be chosen so that the equation holds for all
allowable values of δ. Also, using (6.38) and then reasoning as in (6.16), we get

0 ≤
∫ t∗

r2

µXj−1(u)(e
∫ t∗∧τ
u

G∗j (v) dv − esj(t
∗−u)) du ≤ (1 + δ)(sη + µ)t∗xj(t

∗). (6.43)

Since (1 + δ)(sη + µ)t∗k
dj
N → 0 as N →∞ by the reasoning in (6.7), it follows from (6.42)

and (6.43) that there are positive constants c3 and c4 such that for sufficiently large N ,

c3k
−dj
N xj(t

∗) ≤
∫ t∗

r2

µXj−1(u)e
∫ t∗∧τ
u

G∗j (v) dv du ≤ c4k
−dj
N xj(t

∗). (6.44)

We still need to control the second term on the right-hand side of (6.37), which
requires bounding Z [r2,t

∗]
j (t∗ ∧ τ). By Corollary 5.4,

Var(Z
[r2,t

∗]
j (t∗ ∧ τ)|Fr2) = E

[ ∫ t∗∧τ

r2

e
−2

∫ u
r2
Gj(v) dv

(µXj−1(u)

+B
[r2,t

∗]
j (u)X

[r2,t
∗]

j (u) +D
[r2,t

∗]
j (u)X

[r2,t
∗]

j (u)) du

∣∣∣∣Fr2].
We now take expectations of both sides of this equation. Using that X [r2,t

∗]
j (u) ≤ Xj(u)

for u ≤ τ , that B[r2,t
∗]

j (u) +D
[r2,t

∗]
j (u) ≤ 3 by the reasoning that leads to (6.5), and that
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Lemma 6.1 holds, we get for sufficiently large N ,

E
[
Var(Z

[r2,t
∗]

j (t∗ ∧ τ)|Fr2)
]

≤ E
[ ∫ t∗

r2

e
−2

∫ u
r2
Gj(v) dv

(µXτ
j−1(u) + 3Xτ

j (u)) du

]
≤
∫ t∗

r2

e−2(sj−sη−µ)(u−r2)

(
Nµj(esu − 1)j−1

sj−1(j − 1)!
+

3Nµj(esu − 1)j

sjj!

)
du

≤ e2(sη+µ)t∗e2sjr2 · Nµ
j

sjj!

∫ t∗

r2

e−2sju
(
(esu − 1)j−1sj + 3(esu − 1)j

)
du

≤ e2(sη+µ)t∗e2sjr2 · Nµ
j

sjj!

∫ t∗

r2

(e−s(j+1)usj + 3e−sju) du.

Reasoning as in the derivation of (6.8) from (6.6), we have e−s(j+1)usj + 3e−sju ≤
e−sjr2(e−susj + 3) for u ≥ r2, so for sufficiently large N ,

E
[
Var(Z

[r2,t
∗]

j (t∗ ∧ τ)|Fr2)
]
≤ 4Nµjt∗

sjj!
esjr2 . (6.45)

Note that if Y is a random variable and G is a σ-field such that E[Y |G] = 0, then by the
conditional Chebyshev’s Inequality,

P (|Y | > a) = E[P (|Y | > a|G)] ≤ E
[

Var(Y |G)

a2

]
=
E[Var(Y )|G]

a2
.

Therefore, (6.45) implies

P

(
|Z [r2,t

∗]
j (t∗ ∧ τ)| >

√
48Nµjt∗esjr2

εsjj!

)
≤ ε

12
. (6.46)

In view of (6.35), when the event in (6.46) holds, for sufficiently large N we have

e
∫ t∗∧τ
r2

Gj(v) dv|Z [r2,t
∗]

j (t∗ ∧ τ)| ≤ esj(t
∗−r2)

√
48Nµjt∗esjr2

εsjj!
≤

√
49sjj!t∗e−sjr2

εNµj
xj(t

∗).

Combining this result with (6.37) and (6.44), we get that when equation (6.38) and the
event in (6.46) hold and when τ > t∗, we have

(c3 − yN )k
−dj
N xj(t

∗) ≤ X [r2,t
∗]

j (t∗) ≤ (c4 + yN )k
−dj
N xj(t

∗) (6.47)

for sufficiently large N , where

yN =

√
49sjj!t∗e−sjr2

εNµj
k
dj
N .

In view of Lemma 6.2, Proposition 6.5, and equation (6.46), the result will follow if we
can show that yN → 0 as N → ∞. To show this, we make a calculation similar to the
calculation in the proof of Part 1 of Proposition 3.1. Noting that e−sjr2 = e−(dj+1)j log kN
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and using (6.27), (6.28), and (6.32), we get

log

(√
49sjj!t∗e−sjr2

εNµj
k
dj
N

)
=

1

2

(
log 49 + j log

(
s

µ

)
+ log j! + log t∗ − (dj + 1)j log kN − log ε− logN

)
+ dj log kN

=
1

2

(
j log

(
s

µ

)
+ j log j − j − (dj + 1)j log kN − logN

)
+ o(kN )

=
1

2

(
logN + βjkN log kN + kN log kN − j − (dj + 1)kN log kN − logN

)
+ o(kN )

= − j
2

+
(βj − dj)kN log kN

2
o(kN ),

which tends to −∞ as N →∞. Thus, yN → 0 as N →∞, which completes the proof.

Combining Lemmas 6.6, 6.7, and 6.8 and using (6.30), we arrive immediately at the
following result, which is essentially part 2 of Proposition 3.1.

Proposition 6.9. There exist positive constants C1 and C2, not depending on ε, such
that if j ∈ (k−N , k

+
N ) and N is sufficiently large, then

P
(
C1k

−dj
N xj(t

∗) ≤ Xj(t
∗) ≤ C2k

−dj
N xj(t

∗)
)
> 1− ε

3
.

6.5 Proof of parts 3 and 4 of Proposition 3.1

In this subsection, we complete the proof of Proposition 3.1. We will need the
following lemma. Recall from (3.4) that k∗ is the largest integer less than k+

N .

Lemma 6.10. We have

lim
N→∞

Nµk
∗+1esk

∗t∗

sk∗+1k∗!
= 0.

Proof. We have, using the reasoning in (6.27),

log

(
Nµk

∗+1esk
∗t∗

sk∗+1k∗!

)
= logN − (k∗ + 1) log

(
s

µ

)
+ sk∗t∗ − log k∗!

= −(k∗ + 1− kN ) log

(
s

µ

)
+ sk∗t∗ − k∗ log k∗ + k∗ + o(kN ). (6.48)

We consider two cases. First, suppose k∗ + 1 − kN ≥ 1/2. It follows from assumption
A2 that (kN log kN )/ log(s/µ) → 0 as N → ∞. Therefore, the first term dominates the
expression in (6.48), so the expression tends to −∞ as N → ∞. On the other hand,
suppose k∗ + 1− kN < 1/2. Then k∗ < kN − 1/2, which for sufficiently large N implies
that k∗ < k−N by (3.5). It follows that there are no integers in the interval (k−N , k

+
N ), which

means t∗ = (2/s) log kN . Because k∗ + 1 ≥ k+
N , we have k∗ + 1− kN ≥ k+

N − kN , so in this
case, starting from (6.48),

log

(
Nµk

∗+1esk
∗t∗

sk∗+1k∗!

)
≤ −(k+

N − kN ) log

(
s

µ

)
+ 2k∗ log kN − k∗ log k∗ + k∗ + o(kN )

= −2kN log kN + 2k∗ log kN − k∗ log k∗ + k∗ + o(kN ),

which tends to −∞ as N →∞ because kN ∼ k∗ as N →∞. The result follows.

The results below establish parts 3 and 4 of Proposition 3.1. Proposition 3.1 follows
immediately from Propositions 6.5, 6.9, 6.11, and 6.12.
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Proposition 6.11. For sufficiently large N ,

P (Xk∗(t) < s/µ for all t ∈ [0, t∗]) ≥ 1− ε

24
.

Proof. For t < τ , we have Bk∗(t) − Dk∗(t) = G∗k∗(t) = Gk∗(t) ≥ s(k∗ − η) − µ > 0 for
sufficiently large N . Since the rate of events that increase the number of type k∗

individuals by one is thus always greater than the rate of events that decrease the
number of type k∗ individuals by one, the process (Xτ

k∗(t), t ≥ 0) is a submartingale. By
Doob’s Maximal Inequality and Lemma 6.1, for sufficiently large N ,

P

(
sup

t∈[0,t∗]

Xτ
k∗(t) ≥

s

µ

)
≤ E[Xτ

k∗(t
∗)]

s/µ
≤ Nµk

∗+1(est
∗ − 1)k

∗

sk∗+1k∗!
.

This expression tends to zero as N →∞ by Lemma 6.10 which, in view of Lemma 6.2,
implies the result.

Proposition 6.12. For sufficiently large N ,

P
(
Xj(t

∗) = 0 for all j ≥ k+
N and t ∈ [0, t∗]

)
≥ 1− ε

24
.

Proof. Each individual of type k∗ acquires mutations at rate µ. Therefore, by Lemma 6.1,
the expected number of times, before time t∗ ∧ τ , that a type k∗ individual acquires a
(k∗ + 1)st mutation is at most∫ t∗

0

µE[Xτ
k∗(t)] dt ≤

Nµk
∗+1

sk∗k∗!

∫ t∗

0

(est − 1)k
∗
dt ≤ Nµk

∗+1esk
∗t∗

sk∗+1k∗!k∗
.

This expression tends to zero as N → ∞ by Lemma 6.10 and the fact that k∗ → ∞ as
N →∞. The result now follows from Markov’s Inequality and Lemma 6.2.

7 Proof of part 1 of Proposition 3.8

Recall that Proposition 3.5 states that M(t) is close to zero for t ≤ aN and close to
j during the time interval [γj , γj+1). The time ζ2 can be interpreted as the first time
at which the approximation to M(t) given in Proposition 3.5 fails to hold. Part 1 of
Proposition 3.8 stipulates that, during the time interval [t∗, aNT ], the time ζ2 can not
happen until either ζ1 or ζ3 has occurred. That is, as long as the behavior of the type j
individuals follows the description in Propositions 3.2, 3.3, and 3.6, the mean number of
mutations in the population must satisfy the approximation in Proposition 3.5.

Note that part 1 of Proposition 3.8 is a deterministic statement. To prove it, we will
assume that ζ0 = ∞, meaning that until time t∗ the population behaves according to
Proposition 3.1. We will show that if t ∈ (t∗, aNT ] and ζ1 ∧ ζ3 > t, then the approximation
in Proposition 3.5 is valid up through time t.

Some of the arguments in this section and subsequent sections may appear at first
glance to be circular. For example, in this section, we will need to use results from
Propositions 3.2, 3.3, and 3.6 to establish the approximation in Proposition 3.5, even
though Propositions 3.2, 3.3, and 3.6 have not yet been proved. The reasoning is valid,
however, because we will be working under the assumption that ζ1 ∧ ζ3 > t, in which
case the results of Propositions 3.2, 3.3, and 3.6 must hold at least through time t.

We begin with a lemma which shows that if t < τj+1, then type j individuals contribute
little to the mean number of mutations at time t.

Lemma 7.1. If t ∈ (t∗, aNT ] and ζ1 ∧ ζ3 > t, then

1

N

∞∑
j=k∗+1

jXj(t)1{τj+1>t} ≤
Js

Nµ
.
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Proof. Suppose j ≥ k∗ + 1. If the statement of part 1 of Proposition 3.3 holds, then no
early type j individual can get a type j + 1 mutation until after time τj+1 ∧ aNT . No
other type j individual appears until after time ξj ≥ τj . Thus, we have Xj+1 = 0 for
t ≤ τj+1 ∧ τj ∧ aNT . Also, τj+1 ≥ τj ∧ aNT , as noted in Remark 3.4. Thus, since we are
assuming that ζ1 ∧ ζ3 > t, we have Xj+1(t) = 0 on the event that t ≤ τj . Therefore, when
t ∈ (t∗, aNT ] and ζ1 ∧ ζ3 > t, there can be at most one value of j for which τj+1 > t but
Xj(t) > 0.

Because ζ3 > t, the calculation in (3.28) implies that τJ > t and thus Xj(t) = 0 for all
j > J . Because Xj(t) ≤ s/µ when t < τj+1, the result follows.

The approximation in Proposition 3.5 has four parts. The first part pertains to the
case t ≤ aN , the second part pertains to the case t ∈ [aN , γk∗+1), and the third part
pertains to the case in which t ∈ [γj , γj+1) for some j ≥ k∗ + 1. The fourth part will be a
consequence of the first three. Proposition 7.2 below handles the case of t ≤ aN .

Proposition 7.2. For sufficiently large N , on the event that ζ0 =∞ and ζ1 ∧ ζ3 > t, we
have for all t ∈ (t∗, aN ],

M(t) < 3e−s(aN−t).

Proof. Fix t ∈ (t∗, aN ]. We will assume throughout the proof that ζ0 =∞ and ζ1 ∧ ζ3 > t.
Suppose first that 0 ≤ j ≤ k−N . Let α := (1 + δ)2/(1− δ)2. By equations (3.12) and (3.8)
and the fact that Gj(t)−G0(t) = sj for all t ≥ 0, we have

Xj(t)

N
≤ Xj(t)

X0(t)
≤ αxj(t

∗)e
∫ t
t∗ Gj(v) dv

x0(t∗)e
∫ t
t∗ G0(v) dv

=
αµj(est

∗ − 1)j

sjj!
esj(t−t

∗) ≤ αµjesjt

sjj!
. (7.1)

Therefore,

1

N

bkNc∑
j=1

jXj(t) ≤ α
bkNc∑
j=1

j

j!

(
µest

s

)j
=
αµest

s

bkNc−1∑
j=0

1

j!

(
µest

s

)j
≤ αµest

s
e(µ/s)est .

Now
µ

s
est =

µ

s
esaN e−s(aN−t) = e−s(aN−t). (7.2)

Because e−s(aN−t) ≤ 1 and thus e(µ/s)est ≤ e, it follows that

1

N

bkNc∑
j=1

jXj(t) ≤ αee−s(aN−t). (7.3)

Next, suppose j ∈ (k−N , k
+
N ). Then, using (3.10) instead of (3.8), the same reasoning

used in (7.1) gives that for some positive constant C7,

Xj(t)

N
≤ C7µ

jejst

sjj!
.

For sufficiently large N , there will be at most one integer in the interval (k−N , k
+
N ). In this

case, using (7.2) and then using that (µ/s)est ≤ 1 for the last inequality, we get

1

N

∑
j∈(k−N ,k

+
N )∩Z

jXj(t) ≤
C7µe

st

s

∑
j∈(k−N ,k

+
N )∩Z

1

j!

(
µest

s

)j−1

≤ C7

dk−Ne!
e−s(aN−t). (7.4)

Consider now the case in which j ≥ k∗ + 1 and τj+1 ≤ t. Then by (3.20),

Xj(t) ≤ (1 + δ)(s/µ)e
∫ t
τj+1

Gj(v) dv
. (7.5)
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The assumption that t < ζ1 entails that t∗ < τk∗+1 ≤ τj+1 in view of part 3 of Proposition
3.1 and Remark 3.4, so using (3.12), we get

s/µ ≤ Xk∗(τk∗+1) ≤ (1 + δ)Xk∗(t
∗)e

∫ τk∗+1
t∗ Gk∗ (v) dv.

Therefore, another application of (3.12) leads to

Xk∗(t) ≥ (1− δ)Xk∗(t
∗)e

∫ t
t∗ Gk∗ (v) dv ≥ (1− δ)s

(1 + δ)µ
e
∫ t
τk∗+1

Gk∗ (v) dv
. (7.6)

Thus, since Gj(v)−Gk∗(v) = s(j − k∗) for all v ≥ 0, combining (7.5) and (7.6) leads to

Xj(t)

Xk∗(t)
≤ (1 + δ)2

1− δ
es(j−k

∗)(t−τj+1)e
−

∫ τj+1
τk∗+1

Gk∗ (v) dv
.

Now ∫ τj+1

τk∗+1

Gk∗(v) dv =

j−k∗∑
m=1

(∫ τk∗+m+1

τk∗+m

Gk∗+m(v) dv − sm(τk∗+m+1 − τk∗+m)

)

≥
( j−k∗∑
m=1

∫ τk∗+m+1

τk∗+m

Gk∗+m(v) dv

)
− s(j − k∗)(τj+1 − τk∗+1).

By Lemma 4.5, for sufficiently large N we have

exp

( j−k∗∑
m=1

∫ τk∗+m+1

τk∗+m

Gk∗+m(v) dv

)
≥
(

s

C6µ

)j−k∗
.

Combining these observations gives that for sufficiently large N ,

Xj(t)

Xk∗(t)
≤ α(1− δ)es(j−k

∗)(t−τj+1)

(
C6µ

s

)j−k∗
es(j−k

∗)(τj+1−τk∗+1)

= α(1− δ)
(
C6µ

s

)j−k∗
es(j−k

∗)(t−τk∗+1).

Since τk∗+1 > t∗ and e−s(j−k
∗)t∗ ≤ k−2(j−k∗)

N , it follows that for sufficiently large N ,

Xj(t)

Xk∗(t)
≤ α

(
C6µ

s

)j−k∗
es(j−k

∗)tk
−2(j−k∗)
N = α

(
C6µe

st

sk2
N

)j−k∗
.

Thus, making the substitution ` = j − k∗, for sufficiently large N ,

1

N

∞∑
j=k∗+1

jXj(t)1{τj+1≤t} ≤
∞∑

j=k∗+1

jXj(t)

Xk∗(t)
1{τj+1≤t} ≤ α

∞∑
`=1

(k∗ + `)

(
C6µe

st

sk2
N

)`
. (7.7)

In view of (7.2), we see that C6µe
st/sk2

N → 0 as N → ∞, and therefore the infinite
sum on the right-hand side of (7.7) is dominated by the leading term when N is large.
Therefore, for sufficiently large N , using (7.2) again,

1

N

∞∑
j=k∗+1

jXj(t)1{τj+1≤t} ≤
2αC6k

∗

k2
N

· µe
st

s
=

2αC6k
∗

k2
N

e−s(aN−t). (7.8)

It remains only to consider the case in which j ≥ k∗ + 1 and τj+1 > t, for which the
necessary bound is given in Lemma 7.1. Combining (7.3), (7.4), (7.8), and Lemma 7.1,
we get that for sufficiently large N ,

M(t) ≤
(
αe+

C7

dk−Ne!
+

2αC6k
∗

k2
N

+
Jses(aN−t)

Nµ

)
e−s(aN−t).
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As N →∞, clearly C7/dk−Ne!→ 0 and 2αC6k
∗/k2

N → 0. As for the fourth term, we have
es(aN−t) ≤ esaN = s/µ, which means

Jses(aN−t)

Nµ
≤ Js2

Nµ2
→ 0 (7.9)

as N → ∞ by (1.8) and (1.9). The result M(t) ≤ 3e−s(aN−t) follows because αe < 3 by
(3.1).

We next consider the case in which t ∈ (aN , γk∗+1). During this period of time, the
mean number of mutations in the population increases rapidly from near zero at time aN
to near k∗ at time γk∗+1. The upper bound on the mean number of mutations given by
Proposition 7.4 below will be sufficient for our purposes. Before stating this proposition,
we prove a lemma which will also be useful in studying the population at later times.

Lemma 7.3. Suppose j and ` are positive integers with j ≥ k∗. Let αj = (1 + δ)2/(1− δ)
if j = k∗ and αj = (1 + δ)/(1 + δ) if j ≥ k∗ + 1. Suppose t ∈ [τj+`+1, γj+K ] ∩ [0, aNT ].
Suppose also that ζ0 =∞ and ζ1 ∧ ζ3 > t. Then for sufficiently large N ,

Xj+`(t)

Xj(t)
≤ αj

(
C6µ

s

)`(
µ

s

)`(`−1)/6kN

es`(t−τj+1).

Proof. Assume for now that j ≥ k∗ + 1. Then because ζ1 > t, the bounds in (3.20),
combined with the facts that γj+K < γj+`+K and τj+1 < τj+`+1 by Remark 3.4, give

Xj+`(t)

Xj(t)
≤ αje

∫ t
τj+`+1

Gj+`(v) dv

e
∫ t
τj+1

Gj(v) dv

= αje
−

∫ τj+`+1
τj+1

Gj+`(v) dve
∫ t
τj+1

(Gj+`(v)−Gj(v)) dv

= αje
−

∫ τj+`+1
τj+1

Gj+`(v) dves`(t−τj+1). (7.10)

If instead j = k∗, then we use (3.12), as in (7.6), rather than (3.20) to get the lower
bound on Xj(t), and we again obtain (7.10). In both cases,

∫ τj+`+1

τj+1

Gj+`(v) dv =
∑̀
m=1

∫ τj+m+1

τj+m

Gj+`(v) dv

=
∑̀
m=1

(∫ τj+m+1

τj+m

Gj+m(v) dv + s(`−m)(τj+m+1 − τj+m)

)
.

We now apply Lemma 4.5 and (3.26) to get that for sufficiently large N ,

exp

(∫ τj+`+1

τj+1

Gj+`(v) dv

)
≥
(

s

C6µ

)`
exp

( ∑̀
m=1

s(`−m) · aN
3kN

)

=

(
s

C6µ

)`
exp

(
saN`(`− 1)

6kN

)
.

Because esaN = s/µ, combining this inequality with (7.10) gives the result.

Proposition 7.4. There is a positive constant C4 such that if N is sufficiently large, then
for all t ∈ (aN , γk∗+1), on the event that ζ0 =∞ and ζ1 ∧ ζ3 > t we have

M(t) < kN + C4.
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Proof. Suppose t ∈ (aN , γk∗+1). Suppose also that ζ0 =∞ and ζ1 ∧ ζ3 > t. Note that

M(t) =
1

N

∞∑
j=0

jXj(t) ≤
1

N

∞∑
j=0

k∗Xj(t) +
1

N

∞∑
`=1

`Xk∗+`(t) = k∗+
1

N

∞∑
`=1

`Xk∗+`(t). (7.11)

By Lemma 7.3, for sufficiently large N ,

1

N

∞∑
`=1

`Xk∗+`(t)1{τk∗+`+1≤t} ≤
∞∑
`=1

`Xk∗+`(t)

Xk∗(t)
1{τk∗+`+1≤t}

≤ (1 + δ)2

1− δ

∞∑
`=1

`

(
C6µ

s

)`(
µ

s

)`(`−1)/6kN

es`(t−τk∗+1).

Because t− τk∗+1 ≤ γk∗+1− τk∗+1 = aN and es`aN = (s/µ)`, we have for sufficiently large
N ,

1

N

∞∑
`=1

`Xk∗+`(t)1{τk∗+`+1≤t} ≤
(1 + δ)2

1− δ

∞∑
`=1

`C`6

(
µ

s

)`(`−1)/6kN

. (7.12)

If r` denotes the `th term in the sum on the right-hand side of (7.12), then r1 = C6 and
for ` ≥ 1,

r`+1

r`
=
C6(`+ 1)

`

(
µ

s

)`/3kN
≤ 2C6

(
µ

s

)1/3kN

, (7.13)

which tends to zero as N →∞ because

log

(
µ

s

)1/3kN

= − 1

3kN
log

(
s

µ

)
= − [log(s/µ)]2

3 logN
,

which tends to −∞ as N →∞ by (1.7). Therefore, the first term dominates the sum on
the right-hand side of (7.12) for sufficiently large N , so for sufficiently large N we have

1

N

∞∑
`=1

`Xk∗+`(t)1{τk∗+`+1≤t} ≤
(1 + δ)2

1− δ
· 2C6. (7.14)

Finally, Lemma 7.1 and equations (1.8) and (1.9) give

1

N

∞∑
j=k∗+1

jXj(t)1{τj+1>t} ≤
Js

Nµ
→ 0 as N →∞. (7.15)

Because k∗−kN ≤ k+
N −kN → 0 as N →∞ by (3.5), the result follows from (7.11), (7.14),

and (7.15).

It remains to consider the case in which t ∈ [γj , γj+1) for some j ≥ k∗+ 1. In this case,
we will need to consider carefully the contributions to M(t) not just from individuals
with an unusually large number of mutations, as in the proofs of Propositions 7.2 and
7.4, but also from individuals with an unusually small number of mutations. Therefore,
we will use the following two lemmas, which parallel Lemma 7.3.

Lemma 7.5. Suppose j and ` are positive integers such that j − ` ≥ k∗ + 1. Suppose
that t ∈ [γj , γj+K ] ∩ [0, aNT ]. Let

α`(t) :=

{
(1 + δ)/(1− δ) if t ≤ γj−`+K
k2
N/(1− δ) if t > γj−`+K .

Suppose also that ζ0 =∞ and ζ1 ∧ ζ3 > t. Then for sufficiently large N ,

Xj−`(t)

Xj(t)
≤ α`(t)

(
2s

µ

)`(
µ

s

)`(`−1)/6kN

e−s`(t−τj).
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Proof. Because ζ1 ∧ ζ3 > t and t ∈ [γj , γj+K ], we can use (3.20) to obtain a lower bound
on Xj(t). Also, we can obtain an upper bound on Xj−` from (3.20) when t ≤ γj−`+K , and
from (3.21) when t > γj−`+K . This leads to

Xj−`(t)

Xj(t)
≤ α`(t)e

∫ t
τj−`+1

Gj−`(v) dv

e
∫ t
τj+1

Gj(v) dv
. (7.16)

Therefore,

Xj−`(t)

Xj(t)
≤ α`(t)e

∫ τj
τj−`+1

Gj−`(v) dve
∫ t
τj
Gj−`(v) dv

e−
∫ τj+1
τj

Gj(v) dve
∫ t
τj
Gj(v) dv

=
α`(t)e

∫ τj
τj−`+1

Gj−`(v) dve−s`(t−τj)

e−
∫ τj+1
τj

Gj(v) dv
. (7.17)

Because ζ1 ∧ ζ3 > t, it follows from Lemma 4.5 that for sufficiently large N ,

e
∫ τj+1
τj

Gj(v) dv ≤ 2s

µ
. (7.18)

Also, using (3.26),∫ τj

τj−`+1

Gj−`(v) dv =

`−1∑
m=1

(∫ τj−m+1

τj−m

Gj−m(v) dv − s(`−m)(τj−m+1 − τj−m)

)

≤
( `−1∑
m=1

∫ τj−m+1

τj−m

Gj−m(v) dv

)
− s`(`− 1)aN

6kN
,

so using Lemma 4.5 again, for sufficiently large N ,

e
∫ τj
τj−`+1

Gj−`(v) dv ≤
(

2s

µ

)`−1(
µ

s

)`(`−1)/6kN

. (7.19)

The result now follows from (7.17), (7.18), and (7.19).

Lemma 7.6. Suppose i and j are positive integers such that 0 ≤ i ≤ k∗ and j ≥ k∗ + 1.
Let

κ(t) :=

{
1 + δ if t ≤ γk∗+K
k2
N if t > γk∗+K .

There is a positive constant C8 such that if N is sufficiently large, then for all t ∈
[γj , γj+K ] ∩ [0, aNT ], on the event that ζ0 =∞ and ζ1 ∧ ζ3 > t we have

Xi(t)

Xj(t)
≤ C8κ(t)2j−k

∗
k
−(k∗−i)
N

(
µ

s

)(j−k∗)(j−k∗−1)/6kN

e−s(j−i)(t−γj).

Proof. Because ζ1 > t, equations (3.12) and (3.13) give

Xi(t) ≤ κ(t)Xi(t
∗)e

∫ t
t∗ Gi(v) dv = κ(t) · Xi(t

∗)e−s(k
∗−i)(t−t∗)

Xk∗(t∗)
·Xk∗(t

∗)e
∫ t
t∗ Gk∗ (v) dv. (7.20)

Because we are working on the event that ζ0 =∞, we can use the bounds on Xi(t
∗) and

Xk∗(t
∗) from (3.8) and (3.10). Recall that for sufficiently large N , there is at most one

integer j such that k−N < j < k+
N , which then must be k∗. Let

λi :=


1 if i = k∗

(1 + δ)k
dj
N /C1 if i < k∗ and k−N < k∗ < k+

N

(1 + δ)/(1− δ) if i < k∗ and k∗ ≤ k−N
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Because dj ≥ 0, it follows from Proposition 3.1 that for sufficiently large N ,

Xi(t
∗)

Xk∗(t∗)
≤ λixi(t

∗)

xk∗(t∗)
= λi

(
s

µ

)k∗−i
k∗!

i!
(est

∗
− 1)i−k

∗
.

Now k∗!/i! ≤ (k∗)k
∗−i and(
est
∗ − 1

est∗

)i−k∗
≤
(

1− 1

k2
N

)−k∗
→ 1 as N →∞,

so for sufficiently large N ,

Xi(t
∗)e−s(k

∗−i)(t−t∗)

Xk∗(t∗)
≤ 2λi

(
s

µ

)k∗−i
(k∗)k

∗−iest
∗(i−k∗)e−s(k

∗−i)(t−t∗)

= 2λi

(
s

µ

)k∗−i
(k∗)k

∗−ie−s(k
∗−i)t. (7.21)

Also, equation (3.12) implies that for sufficiently large N ,

1 +
s

µ
≥ Xk∗(τk∗+1) ≥ (1− δ)Xk∗(t

∗)e
∫ τk∗+1

t∗ Gk∗ (v) dv,

and therefore,

Xk∗(t
∗)e

∫ t
t∗ Gk∗ (v) dv ≤ (1 + s/µ)

1− δ
e
∫ t
τk∗+1

Gk∗ (v) dv
. (7.22)

Combining (7.20), (7.21), and (7.22), we get that for sufficiently large N ,

Xi(t) ≤ 2λiκ(t)
1 + s/µ

1− δ

(
s

µ

)k∗−i
(k∗)k

∗−ie−s(k
∗−i)te

∫ t
τk∗+1

Gk∗ (v) dv
. (7.23)

By (3.20), for sufficiently large N ,

Xj(t) ≥
(1− δ)s

µ
e
∫ t
τj+1

Gj(v) dv
.

Combining this result with (7.23) gives that for sufficiently large N ,

Xi(t)

Xj(t)
≤ 2λiκ(t)

1 + µ/s

(1− δ)2

(
s

µ

)k∗−i
(k∗)k

∗−ie−s(k
∗−i)t · e

∫ t
τk∗+1

Gk∗ (v) dv

e
∫ t
τj+1

Gj(v) dv
. (7.24)

Note that the ratio of exponentials on the right-hand side of (7.24) is the same as the ratio
of exponentials on the right-hand side of (7.16) with j − k∗ in place of `. Consequently,
the argument used to prove Lemma 7.5 gives

e
∫ t
τk∗+1

Gk∗ (v) dv

e
∫ t
τj+1

Gj(v) dv
≤
(

2s

µ

)j−k∗(
µ

s

)(j−k∗)(j−k∗−1)/6kN

e−s(j−k
∗)(t−τj).

Putting this result together with (7.24) gives that for sufficiently large N ,

Xi(t)

Xj(t)
≤ 2λiκ(t)2j−k

∗ 1 + µ/s

(1− δ)2

(
s

µ

)j−i(
µ

s

)(j−k∗)(j−k∗−1)/6kN

× (k∗)k
∗−ie−s(k

∗−i)te−s(j−k
∗)(t−τj). (7.25)
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Because ζ0 =∞, we have τj ≥ t∗ = (θ/s) log kN , where θ = 4 if k−N < k∗ < k+
N and θ = 2

otherwise. Therefore, recalling (1.24),

e−s(k
∗−i)te−s(j−k

∗)(t−τj) = e−s(j−i)(t−τj)e−s(k
∗−i)τj

≤ e−s(j−i)(t−τj)k−θ(k
∗−i)

N

=

(
µ

s

)j−i
e−s(j−i)(t−γj)k

−θ(k∗−i)
N . (7.26)

Also, because k∗ − kN ≤ k+
N − kN → 0 as N →∞ by (3.5), we have(

k∗

kN

)k∗−i
≤
(
k+
N

kN

)k∗−i
→ 1 as N →∞.

Recall that λi = 1 when i = k∗. Also, for i < k∗, we have λi = (1 + δ)/(1− δ) when θ = 2

and λi = (1 + δ)k2
N/C1 when θ = 4. It follows that for sufficiently large N ,

λi(k
∗)k
∗−ik

−θ(k∗−i)
N ≤ 2λik

−(θ−1)(k∗−i)
N ≤ 2(1 + δ)

min{1− δ, C1}
k
−(k∗−i)
N . (7.27)

Combining (7.25), (7.26), and (7.27) gives the result.

Proposition 7.7. There exists a positive constant C5 such that for sufficiently large N , if
t ∈ [γj , γj+1)∩ [0, aNT ] for some j ≥ k∗+ 1, then on the event that ζ0 =∞ and ζ1 ∧ ζ3 > t,
we have

|M(t)− j| < C5(e−s(t−γj) + e−s(γj+1−t)).

Proof. Throughout the proof, we work on the event that ζ0 =∞ and ζ1 ∧ ζ3 > t. We also
assume that t ∈ [γj , γj+1). Note that

|M(t)− j| ≤ 1

N

∞∑
`=1

`Xj+`(t) +
1

N

j∑
`=1

`Xj−`(t)

=
1

N

∞∑
`=1

`Xj+`(t) +
1

N

j−k∗−1∑
`=1

`Xj−`(t) +
1

N

k∗∑
i=0

(j − i)Xi(t). (7.28)

The argument for bounding the first term is similar to that in the proof of Proposition
7.4. By Lemma 7.3, for sufficiently large N ,

1

N

∞∑
`=1

`Xj+`(t)1{τj+`+1≤t} ≤
∞∑
`=1

`Xj+`(t)

Xj(t)
1{τj+`+1≤t}

=
1 + δ

1− δ

∞∑
`=1

`

(
C6µ

s

)`(
µ

s

)`(`−1)/6kN

es`(t−τj+1).

Now t − τj+1 = t − γj+1 + γj+1 − τj+1 = t − γj+1 + aN . Since es`aN = (s/µ)`, it follows
that es`(t−τj+1) = (s/µ)`e−s`(γj+1−t) and therefore

1

N

∞∑
`=1

`Xj+`(t)1{τj+`+1≤t} ≤
1 + δ

1− δ

∞∑
`=1

`C`6

(
µ

s

)`(`−1)/6kN

e−s`(γj+1−t). (7.29)

Let r` be the `th term in the sum on the right-hand side of (7.29). Then r1 = C6e
−s(γj+1−t)

and for ` ≥ 1,

r`+1

r`
=
C6(`+ 1)

`
e−s(γj+1−t)

(
µ

s

)`/3kN
≤ 2C6

(
µ

s

)1/3kN

,
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which goes to zero as N →∞ by the argument following (7.13). Therefore, the first term
dominates the sum on the right-hand side of (7.29), so for sufficiently large N we have

1

N

∞∑
`=1

`Xj+`(t)1{τj+`+1≤t} ≤ 2C6e
−s(γj+1−t). (7.30)

Also, by Lemma 7.1,

1

N

∞∑
`=1

`Xj+`(t)1{τj+`+1>t} ≤
1

N

∞∑
j=k∗+1

jXj(t)1{τj+1>t} ≤
Js

Nµ
≤ Jses(γj+1−γj)

Nµ
e−s(γj+1−t).

(7.31)
Because t > ζ3, equation (3.26) gives γj+1 − γj = τj+1 − τj ≤ 2aN/kN . Therefore,

Jses(γj+1−γj)

Nµ
≤ J

N

(
s

µ

)1+2/kN

→ 0

as N →∞ by (7.9). Combining this result with (7.30), we get that for sufficiently large
N ,

1

N

∞∑
`=1

`Xj+`(t) ≤ (2C6 + 1)e−s(γj+1−t). (7.32)

Consider now the second term in (7.28). Suppose ` ≤ j− k∗− 1, so that j− ` ≥ k∗+ 1.
As in Lemma 7.5, write α`(t) = (1 + δ)/(1 − δ) if t ≤ γj−`+K and α`(t) = k2

N/(1 − δ) if
t > γj−`+K . Then Lemma 7.5 implies that for sufficiently large N ,

Xj−`(t)

Xj(t)
≤ α`(t)

(
2s

µ

)`(
µ

s

)`(`−1)/6kN

e−s`(t−τj).

Because γj − τj = aN and esaN = s/µ, we have

e−s`(t−τj) = e−s`(t−γj)e−s`aN =

(
µ

s

)`
e−s`(t−γj). (7.33)

Therefore, for sufficiently large N ,

Xj−`(t)

Xj(t)
≤ α`(t)2`

(
µ

s

)`(`−1)/6kN

e−s`(t−γj),

and so

1

N

j−k∗−1∑
`=1

`Xj−`(t) ≤
∞∑
`=1

α`(t)`2
`

(
µ

s

)`(`−1)/6kN

e−s`(t−γj). (7.34)

Let v` denote the `th term on the right-hand side of (7.34). Note that t < γj+1 ≤ γj−1+K

as long as N is large enough that K ≥ 2. Therefore, v1 = 2((1 + δ)/(1− δ))e−s(t−γj) and
for ` ≥ 1,

v`+1

v`
≤ 2k2

N (`+ 1)

`

(
µ

s

)`/3kN
e−s(t−γj) ≤ 4k2

N

(
µ

s

)1/3kN

.

To see that this expression tends to zero as N →∞, note that

log

(
k2
N

(
µ

s

)1/3kN)
= 2 log kN −

1

3kN
log

(
s

µ

)
= 2 log kN −

[log(s/µ)]2

3 logN
, (7.35)

which tends to −∞ as N →∞ by assumption A2. Therefore, the first term dominates
the sum on the right-hand side of (7.34) when N is large. For sufficiently large N , we
therefore have

1

N

j−k∗+1∑
`=1

`Xj−`(t) ≤ 3e−s(t−γj). (7.36)
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Finally, we consider the third term in (7.28). Suppose 0 ≤ i ≤ k∗. Define κ(t) as in
the statement of Lemma 7.6. By Lemma 7.6, for sufficiently large N ,

1

N

k∗∑
i=0

(j − i)Xi(t) ≤
k∗∑
i=0

(j − i)Xi(t)

Xj(t)

≤ C8κ(t)2j−k
∗
(
µ

s

)(j−k∗)(j−k∗−1)/6kN k∗∑
i=0

(j − i)k−(k∗−i)
N e−s(j−i)(t−γj).

Because j − k∗ ≥ 1, we have e−s(j−i)(t−γj) ≤ e−s(t−γj) for i ∈ {0, 1, . . . , k∗}. Also, if we let

vi = (j − i)k−(k∗−i)
N , then vi−1/vi ≤ 2/kN → 0 as N →∞ for i ∈ {1, 2, . . . , k∗}. Therefore,

for sufficiently large N , the sum
∑k∗

i=0 vi is dominated by the i = k∗ term, and we get

k∗∑
i=0

(j − i)k−(k∗−i)
N ≤ 2(j − k∗).

It follows that

1

N

k∗∑
i=0

(j − i)Xi(t) ≤ 2C8κ(t)2j−k
∗
(j − k∗)

(
µ

s

)(j−k∗)(j−k∗−1)/6kN

e−s(t−γj) (7.37)

for sufficiently large N . If j = k∗ + 1 and N is sufficiently large, then κ(t) = 1 + δ, and so

2C8κ(t)2j−k
∗
(j − k∗)

(
µ

s

)(j−k∗)(j−k∗−1)/6kN

= 4(1 + δ)C8. (7.38)

If j − k∗ ≥ 2, then κ(t) ≤ k2
N . For ` ≥ 2, let

w` := 2C8k
2
N2``

(
µ

s

)`(`−1)/6kN

.

Then, for ` ≥ 2, we have w`+1/w` ≤ 3(µ/s)2/3kN , which tends to zero as N →∞ by the
argument following (7.13). Therefore, for sufficiently large N , the ` = 2 term is largest,
so if j ≥ k∗ + 2, then

2C8κ(t)2j−k
∗
(j − k∗)

(
µ

s

)(j−k∗)(j−k∗−1)/6kN

≤ 16C8k
2
N

(
µ

s

)1/3kN

, (7.39)

which tends to zero as N →∞ by the argument around (7.35). Combining (7.37) with
the bounds in (7.38) and (7.39) gives that for sufficiently large N ,

1

N

k∗∑
i=0

(j − i)Xi(t) ≤ 5C8e
−s(t−γj). (7.40)

The result now follows from (7.28), (7.32), (7.36), and (7.40).

Remark 7.8. If t ∈ [t∗, γj+1] ∩ [0, aNT ], then on the event that ζ0 =∞ and ζ1 ∧ ζ3 > t, it
follows from (7.30) and (7.31) that

1

N

∞∑
i=j+1

Xi(t) ≤ C5e
−s(γj+1−t) +

s

Nµ
,

where we get s/Nµ in place of Js/Nµ for the second term from the argument in the
proof of Lemma 7.1 that there can be at most one value of i for which τi+1 > t but
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Xi(t) > 0. Likewise, if t ∈ [γj , γj+K ] ∩ [0, aNT ], then on the event that ζ0 = ∞ and
ζ1 ∧ ζ3 > t, equations (7.36) and (7.40) imply that

1

N

j−1∑
i=0

Xi(t) ≤ C5e
−s(t−γj).

In particular, for t ∈ [γj , γj+1), unless t is close to γj or γj+1, nearly all individuals in the
population at time t will be of type j.

Proposition 7.9 below establishes the fourth part of Proposition 3.5. Part 1 of
Proposition 3.8 follows immediately from Propositions 7.2, 7.4, 7.7, and 7.9.

Proposition 7.9. For sufficiently large N , if t ∈ [τj , τj+1) for some j ≥ k∗ + 1, then on
the event that ζ0 =∞ and ζ1 ∧ ζ3 > t, we have M(t) < j − 1.

Proof. Suppose ζ0 = ∞ and ζ1 ∧ ζ3 > t. Suppose t ∈ [τj , τj+1), where j ≥ k∗ + 1. We
consider three cases. First, suppose t ≤ aN . Then M(t) < 3 ≤ j − 1 by Proposition 7.2
for sufficiently large N .

Second, suppose t ∈ (aN , γk∗+1). Then M(t) < kN + C4 for sufficiently large N by
Proposition 7.4. Because t > ζ3, the result of part 1 of Proposition 3.6 implies that
τk∗+1 ≤ 2aN/kN . Therefore, (3.26) implies that for sufficiently large N ,

τk∗+1+kN/3 ≤
2aN
kN

+
2aN
kN
· kN

3
= aN

(
2

kN
+

2

3

)
< aN .

Therefore, τj+1 > aN > τk∗+1+kN/3, which means j ≥ k∗ + kN/3. For sufficiently large N ,
we are guaranteed kN + C4 < k∗ + kN/3− 1, and thus M(t) < j − 1.

Finally, suppose t ∈ [γ`, γ`+1) for some ` ≥ k∗+ 1. Then M(t) < `+ 2C5 for sufficiently
large N by Proposition 7.7. Also, since t ≥ γ` = τ` + aN , equation (3.26) gives

τ`+kN/2 ≤ τ` +
2aN
kN
· kN

2
≤ t < τj+1,

which means j ≥ `+ kN/2− 1. Since `+ 2C5 ≤ `+ kN/2− 2 for sufficiently large N , we
again obtain M(t) < j − 1.

8 Proof of part 2 of Proposition 3.8

Recall that Proposition 3.6 consists of three parts. The first part simply bounds τk∗+1.
The second part is concerned with R(t), which can be interpreted as the number of new
types that have emerged between times aN (t − 1) and aN t. The third part pertains to
the spacings between the times τj .

The time ζ3 is the first time at which one of the statements of Proposition 3.6 fails to
hold. Part 2 of Proposition 3.8 stipulates that ζ3 can not happen until either ζ1 or ζ2 has
occurred. That is, as long as the behavior of the type j individuals follows the description
in Propositions 3.1 and 3.2, and the mean number of mutations in the population behaves
as described in Proposition 3.5, the results of Proposition 3.6 must continue to hold. Part
2 of Proposition 3.8, like part 1, is a deterministic statement. To prove it, we will assume
that ζ0 =∞. We will fix a time t ∈ [t∗, aNT ] and show that if ζ1 > t and ζ2 ≥ t, then ζ3 > t,
which means that the conclusions of Proposition 3.6 are valid through time t.

8.1 An upper bound on τk∗+1

We now establish the following result, which gives part 1 of Proposition 3.6.

Proposition 8.1. For sufficiently large N , on the event that ζ0 =∞, ζ1 > 2aN/kN , and
ζ2 ≥ 2aN/kN , we have τk∗+1 ≤ 2aN/kN .
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Proof. Suppose ζ0 = ∞, ζ1 > 2aN/kN , and ζ2 ≥ 2aN/kN . We need to show that
Xk∗(2aN/kN ) ≥ s/µ. By (3.12),

Xk∗(2aN/kN ) ≥ (1− δ)Xk∗(t
∗)e

∫ 2aN/kN
t∗ Gk∗ (v) dv. (8.1)

Because ζ2 ≥ 2aN/kN , we have
∫ 2aN/kN
t∗

M(v) dv ≤ 3/s by part 1 of Proposition 3.5.
Therefore, since 2µaN/kN → 0 as N →∞ by (1.8), for sufficiently large N we have∫ 2aN/kN

t∗
Gk∗(v) dv = sk∗(2aN/kN − t∗)− µ(2aN/kN − t∗)−

∫ 2aN/kN

t∗
sM(v) dv.

≥ sk∗(2aN/kN − t∗)− 4. (8.2)

Also, by Proposition 3.1, if we set d = 0 when k∗ ≤ k−N and d = dk∗ when k∗ > k−N , we get

Xk∗(t
∗) ≥ min{(1− δ), C1}k−dN xk∗(t

∗). (8.3)

Combining (8.1), (8.2), and (8.3), we see that there is a constant c > 0 such that

Xk∗(2aN/kN ) ≥ cNµk
∗

sk∗k∗!

(
est
∗ − 1

est∗

)k∗
k−dN e2sk∗aN/kN .

Because (1− e−st∗)k∗ → 1 as N →∞, to show that Xk∗(2aN/kN ) ≥ s/µ for sufficiently
large N , it suffices to show that

lim
N→∞

Nµk
∗+1

sk∗+1k∗!
k−dN e2sk∗aN/kN =∞. (8.4)

Arguing as in (6.48), we get

log

(
Nµk

∗+1

sk∗+1k∗!
k−dN e2sk∗aN/kN

)
= (kN − k∗ − 1) log

(
s

µ

)
− k∗ log k∗ + k∗ +

2sk∗aN
kN

+ o(kN )

=

(
kN − k∗ − 1 +

2k∗

kN

)
log

(
s

µ

)
− k∗ log k∗ + k∗ + o(kN ). (8.5)

Because k∗/kN → 1 as N → ∞, and kN − k∗ ≥ kN − k+
N → 0 as N → ∞ by (3.5), the

first term on the right-hand side of (8.5) is at least (1/2) log(s/µ) for sufficiently large N .
Because (kN log kN )/ log(s/µ)→ 0 as N →∞ by assumption A2, it follows that the first
term dominates the right-hand side of (8.5), and thus the expression in (8.5) tends to
infinity as N →∞. Hence, (8.4) holds, which completes the proof.

8.2 Approximating R(aN t)/kN by q(t)

In this subsection, we establish the second part of Proposition 3.6, which states that
R(aN t)/kN can be well approximated by q(t), where q is the function defined in (1.13).
The first lemma controls the value of R(t) for t < aN .

Lemma 8.2. Let 0 < η < 1. If N is sufficiently large, then for all t ∈ [0, aN ), on the event
that ζ0 =∞, ζ1 > t, and ζ2 ≥ t, we have

(1− η)kNe
(1−η)t/aN < R(t) < (1 + η)kNe

(1+η)t/aN . (8.6)

Proof. On the event ζ0 = ∞, Proposition 3.1 implies that τj > t∗ for all j ≥ k∗ + 1 and
therefore R(t) = k∗ for t ∈ [0, t∗]. Because k∗/kN → 1 as N → ∞ and t∗/aN → 0 as
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N → ∞ by (1.7), it follows that for sufficiently large N , equation (8.6) holds for all
t ∈ [0, t∗].

Consider next the case in which t∗ < t < aN . Suppose also that ζ0 = ∞, ζ1 > t,
and ζ2 ≥ t. Let θ > 0. If k∗ + 1 ≤ ` ≤ J and τ`+1 ≤ t, then Lemma 4.5 implies that for
sufficiently large N ,

s

C6µ
≤ e

∫ τ`+1
τ`

G`(v) dv ≤ 2s

µ
. (8.7)

Note that ∫ τ`+1

τ`

G`(v) dv = s`(τ`+1 − τ`)− s
∫ τ`+1

τ`

M(v) dv − µ(τ`+1 − τ`). (8.8)

Note that τ` ≥ t∗ by parts 3 and 4 of Proposition 3.1. Therefore, because ζ2 ≥ t, part 1 of
Proposition 3.5 implies that

0 ≤ s
∫ τ`+1

τ`

M(v) dv ≤ s
∫ aN

t∗
M(v) dv ≤ 3s

∫ aN

t∗
e−s(aN−v) dv < 3. (8.9)

Since 2e3 < 41 and µaN → 0 as N → ∞, it follows from (8.7), (8.8), and (8.9) that for
sufficiently large N ,

s

C6µ
≤ es`(τ`+1−τ`) ≤ 41s

µ
.

Therefore, for sufficiently large N ,

(1− θ)aN
`

=
1− θ
s`

log

(
s

µ

)
≤ τ`+1 − τ` ≤

1 + θ

s`
log

(
s

µ

)
=

(1 + θ)aN
`

. (8.10)

Furthermore, by repeating the above argument with t in place of τj+1, we see that for
sufficiently large N , if τ` ≤ t and t− τ` ≥ (1 + θ)aN/`, then∫ t

τ`

G`(v) dv ≥ (1 + θ)aNs− 3− µaN ≥ log

(
2s

µ

)
, (8.11)

in which case the last statement of Lemma 4.5 implies that τ`+1 ≤ t.
Therefore, if k∗ + 1 ≤ j ≤ J and τj ≤ t, then (8.10) implies that for sufficiently large

N ,

t ≥ τj ≥
j−1∑

`=k∗+1

(τ`+1 − τ`) ≥ (1− θ)aN
j−1∑

`=k∗+1

1

`
≥ aN (1− θ) log

(
j

k∗ + 1

)
,

and rearranging this equation gives j ≤ (k∗ + 1)et/[aN (1−θ)]. In view of (3.23), it follows
that for sufficiently large N ,

R(t) ≤ (k∗ + 1) exp

(
t

aN (1− θ)

)
. (8.12)

Likewise, equation (8.10) and Proposition 8.1 imply that if k∗ + 1 ≤ j ≤ J and τj ≤ t,
then for sufficiently large N ,

τj = τk∗+1+

j−1∑
`=k∗+1

(τ`+1−τ`) ≤
2aN
kN

+(1+θ)aN

j−1∑
`=k∗+1

1

`
≤ aN

(
2

kN
+(1+θ) log

(
j − 1

k∗

))
,

and the observation following (8.11) thus implies that if

t ≥ aN
(

2

kN
+ (1 + θ) log

(
j − 1

k∗

))
,
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or equivalently if j ≤ 1 + k∗ exp([t/aN − 2/kN ]/(1 + θ)), then τj ≤ t if N is sufficiently
large. It follows that

R(t) ≥ 1 + k∗ exp

(
t

aN (1 + θ)
− 2

kN (1 + θ)

)
(8.13)

for sufficiently large N . Because kN →∞ and k∗/kN → 0 as N →∞, we can see from
(8.12) and (8.13) that for sufficiently large N , equation (8.6) holds for all t ∈ (t∗, aN ) as
long as θ is chosen to be sufficiently small relative to η.

We next consider the value of R(t) for t ∈ [aN , aNT ]. We will find it useful to introduce
the following notation. For t ∈ [0, ζ1 ∧ aNT ), let

M̄(t) :=


0 if t < aN
k∗ if t ∈ [aN , γk∗+1)

j if t ∈ [γj , γj+1) for j ≥ k∗ + 1.

(8.14)

Note that M(t) is well-defined because, by Remark 3.4, we have τj < τj+1, and therefore
γj < γj+1, whenever τj < ζ1. As long as the conclusions of Proposition 3.5 hold, M̄(t) is
a good approximation to the mean number of mutations in the population at time t.

Lemma 8.3. If ζ2 ≥ aN , then ∫ aN

0

|M(t)− M̄(t)| dt ≤ 3

s
.

For sufficiently large N , if ζ2 ≥ γk∗+1 and ζ1 > 2aN/kN , then∫ γk∗+1

aN

|M(t)− M̄(t)| dt ≤ 2k∗

kN
aN .

Finally, for all j ≥ k∗ + 1, if ζ2 ≥ γj+1 then∫ γj+1

γj

|M(t)− M̄(t)| dt ≤ 2C5

s
. (8.15)

Proof. The first and third statements follow immediately from integrating the result
of Proposition 3.5. For the second statement, note that for sufficiently large N , we
have kN + C4 ≤ 2k∗. Then for t ∈ [aN , γk∗+1), it follows that when ζ2 ≥ γk∗+1, we
have 0 ≤ M(t) ≤ 2k∗ and thus |M(t) − M̄(t)| ≤ k∗. The result follows because when
ζ1 > 2aN/kN and ζ2 ≥ γk∗+1, we have γk∗+1 − aN = τk∗+1 ≤ 2aN/kN by Proposition
8.1.

Lemma 8.4. Suppose j ≥ k∗ + 1. Also, suppose t ∈ [τj , τj+1) and either ζ1 > t or ζ3 > t.
Then R(t) = j − M̄(t).

Proof. First suppose that t ≥ γk∗+1, so that t− aN ≥ τk∗+1. Then M̄(t) = ` implies that
t ∈ [γ`, γ`+1), and thus t − aN ∈ [τ`, τ`+1). Thus, in view of Remark 3.4 when ζ1 > t or
(3.26) when ζ3 > t, the times τ`+1, τ`+2, . . . , τj occur in the interval (t− aN , t]. Because
R(t) is the number of integers i ≥ k∗ + 1 such that t− aN < τi ≤ t, we have R(t) = j − `,
as claimed. The other possibility is that t < γk∗+1. Because t − aN < τk∗+1, the times
τk∗+1, . . . , τj occur in the interval (t−aN , t]. Therefore R(t) = j−k∗ if t ≥ aN and R(t) = j

if t < aN , which again matches the conclusion of the lemma in view of (8.14).

The lemma below is the key to obtaining the integral equation for the limit function q.
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Lemma 8.5. Let 0 < η < 1. If N is sufficiently large, then for all t ∈ [aN , aNT ], on the
event that ζ0 =∞, ζ1 > t, and ζ2 ≥ t, we have

(1− η)

aN

∫ t

t−aN
R(u) du < R(t) <

(1 + η)

aN

∫ t

t−aN
R(u) du

provided that
kN
2
≤ inf
u∈[0,t]

R(u) ≤ sup
u∈[0,t]

R(u) ≤ 3kN . (8.16)

Proof. Fix t ∈ [aN , aNT ], and suppose ζ0 =∞, ζ1 > t, and ζ2 ≥ t. Let L1 := min{j : τj >

t− aN} and L2 := max{j : τj ≤ t}. In view of Remark 3.4, we can write

(t− aN , t] = (t− aN , τL1 ] ∪
( L2−1⋃
j=L1

(τj , τj+1]

)
∪ (τL2 , t].

For u ∈ [0, t], let

S(u) :=

{
0 if u < τk∗+1

Gj(u)/s if t ∈ [τj , τj+1) for j ≥ k∗ + 1.

If L1 ≤ j < L2, then since j ≤ J by Remark 3.7, Lemma 4.5 implies that for sufficiently
large N ,

log

(
s

C6µ

)
≤
∫ τj+1

τj

Gj(u) du ≤ log

(
2s

µ

)
.

Dividing by s, we get that for sufficiently large N ,(
1− η

3

)
aN ≤

∫ τj+1

τj

S(u) du ≤
(

1 +
η

3

)
aN . (8.17)

Because ζ2 ≥ t, we have S(u) ≥ 0 for all u ∈ [0, t) by the result of part 4 of Proposition
3.5. Combining this observation with the last statement of Lemma 4.5, we get

0 ≤
∫ t

τL2

S(u) du =
1

s

∫ t

τL2

Gj(u) du ≤ 1

s
log

(
2s

µ

)
≤
(

1 +
η

3

)
aN (8.18)

for sufficiently large N . Likewise, if L1 = k∗ + 1, then S(u) = 0 for u < τL1
, and if

L1 > k∗ + 1, then ∫ τL1

t−aN
S(u) du ≤

∫ τL1

τL1−1

GL1−1(u)

s
du.

Therefore, Lemma 4.5 implies that for sufficiently large N ,

0 ≤
∫ τL1

t−aN
S(u) du ≤ 1

s
log

(
2s

µ

)
≤
(

1 +
η

3

)
aN . (8.19)

By Remark 3.4, the times τL1
, τL1+1, . . . , τL2

are in (t − aN , t], so R(t) = L2 − L1 + 1.
Therefore, we can sum (8.17) over j from L1 to L2 − 1 and combine this result with
(8.18), and (8.19) to get that for sufficiently large N ,

(R(t)− 1)

(
1− η

3

)
aN ≤

∫ t

t−aN
S(u) du ≤ (R(t) + 1)

(
1 +

η

3

)
aN .

Rearranging this equation, we get, for sufficiently large N ,

− 1 +
1

(1 + η/3)aN

∫ t

t−aN
S(u) du ≤ R(t) ≤ 1 +

1

(1− η/3)aN

∫ t

t−aN
S(u) du. (8.20)
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We now relate S(u) to R(u). By Lemma 8.4, if u ∈ [τj , τj+1) ∩ [0, t] with j ≥ k∗ + 1,
then R(u) = j − M̄(u). Therefore, for u ∈ [τj , τj+1) ∩ [0, t],

S(u) =
Gj(u)

s
= (j − M̄(u)) + (M̄(u)−M(u))− µ

s
= R(u) + (M̄(u)−M(u))− µ

s
.

If 0 < t < τk∗+1, then S(u) = 0 and R(u) = k∗. Therefore,∫ t

t−aN
|S(u)−R(u)| du ≤ k∗τk∗+1 +

∫ t

(t−aN )∨τk∗+1

|M̄(u)−M(u)| du+
µ

s
aN . (8.21)

By Proposition 8.1, for sufficiently large N ,

k∗τk∗+1 ≤
2k∗

kN
aN . (8.22)

The number of values of γ` between t− aN and t is the same as the number of values of
τ` between t− 2aN and t− aN , which is either R(t− aN ) or R(t− aN )− k∗ depending on
the value of t. This means that at most R(t− aN ) + 1 intervals of the form [γ`, γ`+1) can
intersect the interval [t− aN , t]. Therefore, by Lemma 8.3, for sufficiently large N∫ t

(t−aN )∨τk∗+1

|M̄(u)−M(u)| du ≤ 3

s
+

2k∗

kN
aN +

2C5

s
(R(t− aN ) + 1). (8.23)

Therefore, combining (8.21), (8.22), and (8.23), we get that for sufficiently large N ,∫ t

t−aN
|S(u)−R(u)| du ≤ 3

s
+

4k∗

kN
aN +

2C5

s
(R(t− aN ) + 1) +

µ

s
aN .

Therefore, if (8.16) holds, then for sufficiently large N ,

1

aN

∫ t

t−aN
|S(u)−R(u)| du ≤ 3 + 2C5(3kN + 1)

saN
+

(
4k∗

kN
+
µ

s

)
.

Because saN →∞ by (1.8), it follows that for sufficiently large N , when (8.16) holds we
have

1

aN

∫ t

t−aN
|S(u)−R(u)| du ≤ η

6
kN ≤

η

3aN

∫ t

t−aN
R(u) du. (8.24)

From (8.20) and (8.24), we conclude that for sufficiently large N , when (8.16) holds we
have

−1 +
1− η/3

(1 + η/3)aN

∫ t

t−aN
R(u) du ≤ R(t) ≤ 1 +

1 + η/3

(1− η/3)aN

∫ t

t−aN
R(u) du.

The result follows since 1 − η < (1 − η/3)/(1 + η/3) < (1 + η/3)/(1 − η/3) < 1 + η if
0 < η < 1.

The following deterministic result will help us to obtain the second part of Proposition
3.6 from Lemmas 8.2 and 8.5.

Lemma 8.6. Let 0 < η < 1. Suppose r : [0, T ] → R is a right continuous function such
that (1 − η)e(1−η)t < r(t) < (1 + η)e(1+η)t for 0 ≤ t < 1 and (1 − η)

∫ t
t−1

r(u) du < r(t) <

(1 + η)
∫ t
t−1

r(u) du for 1 ≤ t ≤ T . Let q be the function defined in (1.13). Then

sup
t∈[0,T ]

|r(t)− q(t)| ≤ 4ηe(1+η)T .
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Proof. Let r1 : [0, T ] → [0,∞) and r2 : [0, T ] → [0,∞) be the unique bounded functions
satisfying

r1(t) :=

{
(1− η)e(1−η)t if 0 ≤ t < 1

(1− η)
∫ t
t−1

r1(u) du if 1 ≤ t ≤ T,

and

r2(t) :=

{
(1 + η)e(1+η)t if 0 ≤ t < 1

(1 + η)
∫ t
t−1

r2(u) du if 1 ≤ t ≤ T.

The existence and uniqueness of these functions, and their continuity away from 1,
follows from Theorem 2 in [10] as in the proof of Lemma 4.1 because the functions r1 and
r2 satisfy (4.2) if we replace the functions f and g by f1 and g1 or f2 and g2 respectively,
where f1(u) := g1(u) := (1− η)1{0≤u<1} and f2(u) := g2(u) := (1 + η)1{0≤u<1}.

We claim that r1(t) < r(t) < r2(t) and r1(t) < q(t) < r2(t) for all t ∈ [0, T ]. To see this,
let u = inf{t : r(t) ≥ r2(t)}. Seeking a contradiction, suppose u ≤ T . Clearly u ≥ 1, and
so r2(u)− r(u) ≥ (1 + η)

∫ u
u−1

(r2(t)− r(t)) dt > 0, which contradicts the right continuity
of r and r2. Therefore, r(t) ≤ r2(t) for all t ∈ [0, T ]. A parallel argument gives r(t) ≥ r1(t)

for all t ∈ [0, T ]. The result for q is a special case of the result for r, which completes the
proof of the claim.

Let d(t) := r2(t)− r1(t) for all t ∈ [0, T ]. The claim above implies that

sup
t∈[0,T ]

|r(t)− q(t)| ≤ sup
t∈[0,T ]

d(t). (8.25)

We have d(t) = (1 + η)e(1+η)t − (1− η)e(1−η)t for t ∈ [0, 1]. Note that if t ∈ [0, 1], then

d(t) ≤ d(1) ≤ e1+η − e1−η + 2ηe1+η ≤ 4ηe1+η. (8.26)

If 1 ≤ t ≤ T , then

d(t) = (1 + η)

∫ t

t−1

r2(u) du− (1− η)

∫ t

t−1

r1(u) du = (1 + η)

∫ t

t−1

d(u) du+ 2η

∫ t

t−1

r1(u) du.

Therefore, using that 0 ≤ r1(t) ≤ q(t) ≤ e for all t by Lemma 4.1, we see that if 1 < t ≤ T ,
then

d′(t) = (1 + η)(d(t)− d(t− 1)) + 2η(r1(t)− r1(t− 1)) ≤ (1 + η)d(t) + 2eη.

Solutions to the differential equation f ′(t) = (1 + η)f(t) + 2eη can be expressed in
the form f(t) = Ce(1+η)t − 2eη/(1 + η), where C is a constant. If f(1) = d(1), then
C = (d(1) + 2eη/(1 + η))e−(1+η). Therefore, if 1 ≤ t ≤ T , then

d(t) ≤ Ce(1+η)t − 2eη

1 + η
≤ 4ηe(1+η)t. (8.27)

The result follows from (8.25), (8.26), and (8.27).

Proposition 8.7. For sufficiently large N , on the event that ζ0 =∞, we have∣∣∣∣R(aN t)

kN
− q(t)

∣∣∣∣ < δ

for all t ∈ [0, T ] such that ζ1 > aN t and ζ2 ≥ aN t.

Proof. Suppose that ζ0 = ∞, ζ1 > aN t, and ζ2 ≥ aN t. Choose η > 0 small enough that
4ηe(1+η)T < δ. For u ∈ [0, T ], let r(u) := R(aNu)/kN . Lemma 8.2 implies that if u < 1 and
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u ≤ t, then (1 − η)e(1−η)u ≤ r(u) ≤ (1 + η)e(1+η)u. Define κ := inf{u : r(u) ≥ 3 or r(u) ≤
1/2}. By Lemma 8.5, if 1 ≤ u < κ and u ≤ t, then

(1− η)

∫ u

u−1

r(v) dv ≤ r(u) ≤ (1 + η)

∫ u

u−1

r(v) dv.

Note that R is right continuous, and therefore so is r, so we can apply Lemma 8.6 to the
function r to get

sup
u∈[0,t]∩[0,κ)

|r(u)− q(u)| < δ. (8.28)

The result will follow from (8.28) if we can establish that κ > t. In view of Remark
3.4, we have |R(u) − R(u−)| ∈ {−1, 0, 1} for all u ∈ [0, aN t]. In particular, if κ ≤ t,
then |r(κ) − r(κ−)| ≤ 1/kN , which contradicts (8.28) for sufficiently large N because
1 ≤ q(u) ≤ e for all u ≥ 0 by Lemma 4.1. Therefore, κ > t, and the proof is complete.

8.3 The spacings between τj and τj+1

The third part of Proposition 3.6 primarily pertains to the spacings between τj and
τj+1. The proposition below establishes the necessary relationship between the times τj
and the function q, and leads easily to the main result (3.26).

Proposition 8.8. If N is sufficiently large, then for all j ∈ {k∗ + 1, . . . , J − 1} such that
ζ0 =∞, ζ1 > τj+1, ζ2 ≥ τj+1, and τj+1 ≤ aNT , we have∫ τj+1/aN

τj/aN

q(u) du ≤ 1 + 2δ

kN
(8.29)

and ∫ τj+1/aN

τj/aN

(q(u) + 1{u∈[1,γk∗+1/aN )}) du ≥
1− 2δ

kN
. (8.30)

Also, if N is sufficiently large, then for all j ∈ {k∗ + 1, . . . , J − 1} and all t ∈ [0, aNT ], on
the event that ζ0 =∞, ζ1 > t, and ζ2 ≥ t, if∫ t/aN

τj/aN

q(u) du ≥ 1 + 2δ

kN
, (8.31)

then τj+1 ≤ t.

Proof. We prove the result by induction on j. Suppose ζ0 = ∞, ζ1 > τj+1, ζ2 ≥ τj+1,
and τj+1 ≤ aNT . Suppose also that (8.29) and (8.30) hold with ` in place of j for
` ∈ {k∗ + 1, . . . , j − 1}. Let η > 0. From (8.17) we see that if N is sufficiently large, then

(1− η)aN ≤
∫ τj+1

τj

Gj(v)

s
dv ≤ (1 + η)aN . (8.32)

By Lemma 8.4, for v ∈ [τj , τj+1),

Gj(v)

s
= j −M(v)− µ

s
= R(v) + (M̄(v)−M(v))− µ

s
. (8.33)

Let Lj be the number of integers ` ≥ k∗ + 1 such that γ` ∈ [τj , τj+1). Then the interval
[τj , τj+1) intersects at most Lj + 1 intervals of the form [γ`−1, γ`), so by Lemma 8.3, if N
is sufficiently large, then∫ τj+1

τj

|M̄(v)−M(v)|1{v/∈[aN ,γk∗+1)} dv ≤
3

s
+

2(Lj + 1)C5

s
. (8.34)
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By the induction hypothesis, (8.30) holds if j is replaced by ` ∈ {k∗ + 1, . . . , j − 1}. By
Lemma 4.1, we have q(u) ≤ e for all u ≥ 0. Also, γk∗+1/aN = 1 + τk∗+1/aN ≤ 1 + 2/kN
for sufficiently large N by Lemma 8.1. Since q is right continuous and q(1) = e − 1, it
follows that for sufficiently large N , we have

sup
u≥0

(q(u) + 1{u∈[1,γk∗+1/aN )}) < e+ δ. (8.35)

Thus, using (3.1) and (8.30), for sufficiently large N ,

γ`+1 − γ` = τ`+1 − τ` ≥
aN (1− 2δ)

kN (e+ δ)
≥ aN

3kN
.

It follows that Lj ≤ 1 + (3kN/aN )(τj+1 − τj). Combining this observation with (8.34)
gives ∫ τj+1

τj

|M̄(v)−M(v)|1{v/∈[aN ,γk∗+1)} dv ≤
3 + 4C5

s
+

(
6kNC5

aNs

)
(τj+1 − τj).

Write C = 3 + 4C5. Because kN/(aNs)→ 0 as N →∞ by (1.7) and µ/s→ 0 as N →∞, it
follows that for sufficiently large N ,∫ τj+1

τj

(
|M̄(v)−M(v)|1{v/∈[aN ,γk∗+1)} +

µ

s

)
dv ≤ C

s
+ η(τj+1 − τj). (8.36)

Combining (8.36) with (8.32) and (8.33), we get that for sufficiently large N ,∣∣∣∣ ∫ τj+1

τj

(R(v) + (M̄(v)−M(v))1{v∈[aN ,γk∗+1)}) dv − aN
∣∣∣∣ ≤ ηaN +

C

s
+ η(τj+1 − τj).

To simplify notation, write h(v) = (M̄(v)−M(v))1{v∈[aN ,γk∗+1)}. Make the substitution
u = v/aN and divide both sides by aNkN to get∣∣∣∣ ∫ τj+1/aN

τj/aN

(
R(aNu)

kN
+
h(aNu)

kN

)
du− 1

kN

∣∣∣∣ ≤ η

kN
+

C

saNkN
+
η(τj+1 − τj)

aNkN

for sufficiently large N . By Proposition 8.7, we have |R(aNu)/kN − q(u)| < δ for u <
τj+1/aN , so for sufficiently large N ,∣∣∣∣ ∫ τj+1/aN

τj/aN

(
q(u)+

h(aNu)

kN

)
du− 1

kN

∣∣∣∣ ≤ η

kN
+

C

saNkN
+
η(τj+1 − τj)

aNkN
+
δ(τj+1 − τj)

aN
. (8.37)

We now pursue the upper and lower bounds separately. In view of part 2 of Proposition
3.5, because ζ2 ≥ τj+1, we have h(v) ≥ k∗ − kN − C4 for all v ∈ [aN , γk∗+1) ∩ [τj , τj+1).
Therefore, because k∗/kN → 1 as N → ∞ and γk∗+1 − aN = τk∗+1 ≤ 2aN/kN by
Proposition 8.1, for sufficiently large N we have∫ τj+1/aN

τj/aN

h(aNu)

kN
du ≥

(
k∗ − kN − C4

kN

)(
γk∗+1 − aN

aN

)
≥ − η

kN
.

Combining this result with (8.37) yields∫ τj+1/aN

τj/aN

q(u) du ≤ 1 + 2η

kN
+

C

saNkN
+
η(τj+1 − τj)

aNkN
+
δ(τj+1 − τj)

aN
. (8.38)

Since saN →∞, we have C/(saN ) < η for sufficiently large N . Therefore, bringing the
last two terms on the right-hand side of (8.38) to the left-hand side, we get∫ τj+1/aN

τj/aN

(
q(u)− η

kN
− δ
)
du ≤ 1 + 3η

kN
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for sufficiently large N . Also, since q(u) ≥ 1 for all u ≥ 0 by Lemma 4.1, we have
q(u)(1− α) ≤ q(u)− α for all u ≥ 0 and α > 0. Therefore, for sufficiently large N ,∫ τj+1/aN

τj/aN

q(u) du ≤
(

1− η

kN
− δ
)−1(

1 + 3η

kN

)
.

The upper bound (8.29) follows as long as η is chosen to be small enough relative to δ.
To obtain (8.30), note that h(v) ≤ k∗ for all v ∈ [aN , γk∗+1) ∩ [τj , τj+1). Therefore, for

sufficiently large N ,∫ τj+1/aN

τj/aN

h(aNu)

kN
du ≤

∫ τj+1/aN

τj/aN

1{u∈[1,γk∗+1/aN )} du+

(
k∗ − kN
kN

)(
γk∗+1 − aN

aN

)
.

≤
∫ τj+1/aN

τj/aN

1{u∈[1,γk∗+1/aN )} du+
η

kN
.

Combining this result with (8.37) and using that saN → ∞ as N → ∞, we get for
sufficiently large N ,∫ τj+1/aN

τj/aN

(q(u) + 1{u∈[1,γk∗+1/aN )}) du ≥
1− 3η

kN
− η(τj+1 − τj)

aNkN
− δ(τj+1 − τj)

aN

and therefore ∫ τj+1/aN

τj/aN

(
q(u) + 1{u∈[1,γk∗+1/aN )} +

η

kN
+ δ

)
du ≥ 1− 3η

kN
.

If x ≥ 1 and α > 0, then x(1 + α) ≥ x+ α. Therefore, for sufficiently large N ,∫ τj+1/aN

τj/aN

(q(u) + 1{u∈[1,γk∗+1/aN )}) du ≥
(

1 +
η

kN
+ δ

)−1(
1− 3η

kN

)
.

The lower bound (8.30) follows as long as η is chosen to be small enough relative to δ.
It remains to prove the last statement of the proposition. Suppose now that ζ0 =∞,

ζ1 > t, ζ2 ≥ t, t ≤ aNT , and (8.31) holds. We need to show that τj+1 ≤ t. By Lemma 4.5,
if N is large enough, it suffices to show that

e
∫ t
τj
Gj(v) dv ≥ 2s

µ
.

Therefore, it suffices to show that for sufficiently large N ,∫ t

τj

Gj(v)

s
dv ≥ (1 + η)aN . (8.39)

Using (8.33), the bound in part 2 of Proposition 3.5, and the reasoning leading to (8.36)
with t in place of τj+1, we get for sufficiently large N ,∫ t

τj

Gj(v)

s
dv ≥

∫ t

τj

R(v) dv − C

s
− η(t− τj)− (k∗ − kN − C4)(γ∗k+1 − aN ). (8.40)

By Proposition 8.7, for sufficiently large N ,∫ t

τj

R(v) dv = aN

∫ t/aN

τj/aN

R(aNu) du ≥ aNkN
∫ t/aN

τj/aN

(q(u)− δ) du. (8.41)
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Using Proposition 8.1, we have (k∗−kN−C4)(γk∗+1−aN ) ≤ (k∗−kN−C4)(2aN/kN ) ≤ ηaN
for sufficiently large N . Combining this bound with (8.40) and (8.41), and then using
(8.31), we get that for sufficiently large N ,∫ t

τj

Gj(v)

s
dv ≥ aNkN

∫ t/aN

τj/aN

(
q(u)− δ − η

kN

)
du− C

s
− ηaN

≥ aNkN
(

1− δ − η

kN

)∫ t/aN

τj/aN

q(u) du− C

s
− ηaN

≥ aN
(

1− δ − η

kN

)
(1 + 2δ)− C

s
− ηaN ,

which implies (8.39) as long as η is chosen to be small enough relative to δ, in view of
the fact that saN →∞ as N →∞.

Proof of part 2 of Proposition 3.8. Recall that q(u) ≥ 1 for all u ≥ 0 by Lemma 4.1.
Therefore, if (8.29) holds, then

τj+1 − τj
aN

≤ 1 + 2δ

kN
≤ 2

kN
.

Also, in view of (8.35), for sufficiently large N , if (8.30) holds, then

τj+1 − τj
aN

≥ 1− 2δ

(e+ δ)kN
≥ 1

3kN
.

Thus, if (8.29) and (8.30) hold, then so does (3.26). Also, if τj + 2aN/kN ≤ aNT , then
(8.31) holds with t = τj + 2aN/kN . Therefore, part 2 of Proposition 3.8 follows from
Propositions 8.1, 8.7, and 8.8.

9 Proof of part 3 of Proposition 3.8

To prove part 3 of Proposition 3.8, we need to show that with high probability, the
results of Propositions 3.2 and 3.3 hold as long as the results of Propositions 3.5 and 3.6
hold. Propositions 3.2 and 3.3 describe the behavior of the number of type j individuals.
The proof proceeds by induction on j, in the sense that to show that the number of type
j individuals behaves as predicted, we will need to know that the number of type j − 1

individuals does so. Define the stopping time

ρj := ζ0 ∧ ζ2 ∧ ζ3 ∧ ζ1,j−1 ∧ aNT.

We then need to show that

J∑
j=0

P ({ζ0 =∞} ∩ {ζ1,j ≤ ρj}) <
ε

2
. (9.1)

Essentially, this means that the number of type j individuals behaves as expected with
high probability until after time ρj .

Note that if t < ρj , then the reasoning in Remark 3.7 implies that no individual of
type J + 1 or higher can appear until after time t. Because assumption A3 implies that
skN → ∞, we have sJ ≤ 1 for sufficiently large N . It follows that 1 + s(j −M(t)) ≥ 0

for all j ≥ 0, and therefore G∗j (t) = Gj(t) for all j ≥ 0 as noted in (5.6). Throughout this
section, we will assume that N is large enough that sJ ≤ 1, which will make it possible
to ignore the distinction between G∗j (t) and Gj(t).
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9.1 Individuals of type j ≤ k∗

In this subsection, we consider the behavior of type j individuals for j ∈ {0, 1, . . . , k∗}
and show that with high probability the behavior matches what is described in Proposition
3.2. Central to the analysis will be the martingales Zκ,τj from Corollary 5.3, with κ = t∗

and τ = (ρj ∧ γk∗+K) ∨ t∗. To lighten notation, we denote this process by Z ′j . We let
ρ∗j := (ρj ∧ γk∗+K) ∨ t∗ and then, for t ≥ t∗, we let

Z ′j(t) := e−
∫ t∧ρ∗j
t∗ Gj(v) dvXj(t ∧ ρ∗j )−

∫ t∧ρ∗j

t∗
µXj−1(u)e−

∫ u
t∗ Gj(v) dv du−Xj(t

∗). (9.2)

Note that when j = 0, we are using the convention X−1(u) = 0. For t ∈ [t∗, ρ∗j ],

Xj(t) = e
∫ t
t∗ Gj(v) dvXj(t

∗) +

∫ t

t∗
µXj−1(u)e

∫ t
u
Gj(v) dv du+ e

∫ t
t∗ Gj(v) dvZ ′j(t)

= Tj,1(t) + Tj,2(t) + Tj,3(t), (9.3)

where Tj,1(t), Tj,2(t), and Tj,3(t) denote the three terms in the previous line. To establish
the result of part 1 of Proposition 3.2, we need to show that |Tj,2(t) + Tj,3(t)|/Tj,1(t) < δ

with high probability for t ∈ [t∗, ρ∗j ]. We first bound Tj,2(t)/Tj,1(t).

Lemma 9.1. For sufficiently large N , if 1 ≤ j ≤ k∗, then on {ζ0 =∞},

µXj−1(t∗)

sXj(t∗)
<
δ

3
.

Proof. Suppose ζ0 =∞. By (3.8), if j ≤ k−N , then

µXj−1(t∗)

sXj(t∗)
≤ µ(1 + δ)

s(1− δ)
· xj−1(t∗)

xj(t∗)
=

1 + δ

1− δ
· j

est∗ − 1
≤ 1 + δ

1− δ
· k∗

k2
N − 1

. (9.4)

Suppose instead j ∈ (k−N , k
+
N ). Because k+

N − k
−
N → 0 as N →∞ by (3.5), for sufficiently

large N we know that j − 1 ≤ k−N . For such N , because dj ≤ 2, equation (3.10) yields

µXj−1(t∗)

sXj(t∗)
≤ µ(1 + δ)

C1s
· xj−1(t∗)

k
−dj
N xj(t∗)

=
1 + δ

C1(1− δ)
· j

k
−dj
N (est∗ − 1)

≤ 1 + δ

C1(1− δ)
· k

2
Nk
∗

k4
N − 1

.

(9.5)
Because the right-hand sides of (9.4) and (9.5) tend to zero as N → ∞, the result
follows.

Lemma 9.2. For sufficiently large N , if 0 ≤ j ≤ k∗ and t ∈ (t∗, ρ∗j ], then Tj,2(t)/Tj,1(t) ≤
δ/2.

Proof. Since T0,2(t) = 0, we may assume 1 ≤ j ≤ k∗. Because ζ1,j−1 ≤ ρ∗j , the conclusion
of part 1 of Proposition 3.2 holds for j − 1 up to time ρ∗j . Therefore, if u ∈ (t∗, ρ∗j ), then

Xj−1(u) ≤ (1 + δ)Xj−1(t∗)e
∫ u
t∗ Gj−1(v) dv.

It follows that if t ∈ (t∗, ρ∗j ], then

Tj,2(t) ≤ µ(1 + δ)Xj−1(t∗)

∫ t

t∗
e
∫ u
t∗Gj−1(v) dve

∫ t
u
Gj(v) dv du

= µ(1 + δ)Xj−1(t∗)e
∫ t
t∗ Gj(v) dv

∫ t

t∗
e−s(u−t

∗) du

≤ µ(1 + δ)

s
Xj−1(t∗)e

∫ t
t∗ Gj(v) dv.
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Thus, if t ∈ (t∗, ρ∗j ], then
Tj,2(t)

Tj,1(t)
≤ µ(1 + δ)Xj−1(t∗)

sXj(t∗)
.

The result now follows from Lemma 9.1.

To bound Tj,3(t)/Tj,1(t), we will need to control the fluctuations of the process
(Z ′j(t), t ≥ t∗). The following preliminary bound will be useful.

Lemma 9.3. For sufficiently large N , if 0 ≤ j ≤ k∗ and u ∈ (t∗, ρ∗j ], then

exp

(
−
∫ u

t∗
Gj(v) dv

)
≤ w(u)e−sj(u−t

∗),

where

w(u) :=

{
21 if u ∈ (t∗, aN ]

(s/µ)2kN/3 if u > aN .
(9.6)

Proof. Note that
e−

∫ u
t∗ Gj(v) dv = e−sj(u−t

∗)e
∫ u
t∗ sM(v) dv+µ(u−t∗). (9.7)

In view of parts 1 and 3 of Proposition 3.6, we have

µ(u− t∗) ≤ µγk∗+K ≤ µ(aN + 2KaN/kN )→ 0

as N →∞. If u ≤ aN , then
∫ u
t∗
M(v)dv ≤ 3/s by Lemma 8.3 and therefore, for sufficiently

large N ,
e
∫ u
t∗ sM(v) dv+µ(u−t∗) ≤ e3+µ(u−t∗) ≤ 21 = w(u). (9.8)

Suppose instead aN < u ≤ γk∗+K . By the results of Propositions 3.5 and 3.6,∫ u

t∗
M(v) dv ≤

∫ aN

t∗
M(v) dv +

∫ γk∗+1

aN

M(v) dv +

K−1∑
`=1

∫ γk∗+`+1

γk∗+`

M(v) dv

≤ 3

s
+ (kN + C4)(γk∗+1 − aN ) +

K−1∑
`=1

(k∗ + `+ 2C5)(γk∗+`+1 − γk∗+`)

≤ 2aN
kN

(
3kN
2saN

+ (kN + C4) + (K − 1)(k∗ +K + 2C5)

)
.

Because K = bkN/4c, we have K(kN + K) ≤ (5/16)k2
N . Since the other terms are of

a smaller order of magnitude for large N , it follows that there is a positive constant
c < 1/3 such that 3kN/(2saN ) + (kN +C4) + (K − 1)(k∗ +K + 2C5) < ck2

N for sufficiently
large N . Hence, for sufficiently large N ,∫ u

t∗
M(v) dv ≤ 2caNkN

and therefore

e
∫ u
t∗ sM(v) dv+µ(u−t∗) ≤ e2saNkN/3 =

(
s

µ

)2kN/3

= w(u). (9.9)

The result follows from (9.7), (9.8), and (9.9).

Lemma 9.4. For sufficiently large N , if 0 ≤ j ≤ k∗, then

P

(
sup

t∈(t∗, ρ∗j ]

|Z ′j(t)| >
δ

2
Xj(t

∗)

)
<

ε

64kN
.
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Proof. The process (Z ′j(t), t ≥ t∗) is a mean zero martingale. By Corollary 5.3 and (6.5),
for t ≥ t∗,

Var(Z ′j(t)|Ft∗) ≤ E
[ ∫ t∧ρ∗j

t∗
e−2

∫ u
t∗ Gj(v) dv(µXj−1(u) + 3Xj(u)) du

∣∣∣∣Ft∗]
= E

[ ∫ t

t∗
e−

∫ u
t∗ Gj(v) dv

(
µe−

∫ u
t∗ Gj(v) dvXj−1(u) + 3e−

∫ u
t∗ Gj(v) dvXj(u)

)
1{u≤ρ∗j } du

∣∣∣∣Ft∗].
(9.10)

For u < ρ∗j , the conclusion of part 1 of Proposition 3.2 holds for j − 1 through time u, and
so

e−
∫ u
t∗ Gj(v) dvXj−1(u) ≤ (1 + δ)Xj−1(t∗)e

∫ u
t∗ Gj−1(v) dve−

∫ u
t∗ Gj(v) dv

= (1 + δ)Xj−1(t∗)e−s(u−t
∗). (9.11)

Plugging this result and the result of Lemma 9.3 into (9.10), and then bringing the
conditional expectation inside the integral, we get for t > t∗,

Var(Z ′j(t)|Ft∗) ≤ E
[ ∫ t

t∗
e−sj(u−t

∗)w(u)
(
µ(1 + δ)Xj−1(t∗)e−s(u−t

∗)

+ 3e−
∫ u
t∗ Gj(v) dvXj(u)

)
1{u≤ρ∗j } du

∣∣∣∣Ft∗]
≤
∫ t

t∗
e−sj(u−t

∗)w(u)
(
µ(1 + δ)Xj−1(t∗)e−s(u−t

∗)

+ 3E
[
e−

∫ u
t∗ Gj(v) dvXj(u)1{u≤ρ∗j }

∣∣Ft∗]) du.
Because (Z ′j(u), u ≥ t∗) is a martingale with Z ′j(t

∗) = 0, we have E[Z ′j(u)|Ft∗ ] = 0 for
u ≥ t∗. Using this fact along with (9.2) followed by (9.11), we get for u > t∗,

E
[
e−

∫ u
t∗ Gj(v) dvXj(u)1{u≤ρ∗j }

∣∣Ft∗]
≤ E

[
e−

∫ u∧ρ∗j
t∗ Gj(v) dvXj(u ∧ ρj)

∣∣Ft∗]
= E

[ ∫ u∧ρ∗j

t∗
µXj−1(r)e−

∫ r
t∗ Gj(v) dv dr

∣∣∣∣Ft∗]+Xj(t
∗)

≤ E
[
µ(1 + δ)Xj−1(t∗)

∫ u∧ρ∗j

t∗
e−s(r−t

∗) dr

∣∣∣∣Ft∗]+Xj(t
∗)

≤ µ(1 + δ)Xj−1(t∗)

s
+Xj(t

∗).

Thus, for t > t∗,

Var(Z ′j(t)|Ft∗) ≤
∫ t

t∗
e−sj(u−t

∗)w(u)

(
µ(1 + δ)Xj−1(t∗)

(
1 +

3

s

)
+ 3Xj(t

∗)

)
du.

By Lemma 9.1, for sufficiently large N we have µ(1 + δ)Xj−1(t∗)(1 + 3/s) ≤ Xj(t
∗) on

{ζ0 =∞}. Therefore, for t > t∗, if N is sufficiently large, then on {ζ0 =∞} ∈ Ft∗ ,

Var(Z ′j(t)|Ft∗) ≤ 4Xj(t
∗)

∫ t

t∗
e−sj(u−t

∗)w(u) du. (9.12)

When j = 0, we take N large enough that (s/µ)2kN/3 ≥ 21, and then, using the bound
that e−sj(u−t

∗) ≤ 1, equations (9.12) and (9.6) imply that on {ζ0 =∞},

Var(Z ′j(t)|Ft∗) ≤ 4Xj(t
∗)

(
s

µ

)2kN/3

t. (9.13)
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When 1 ≤ j ≤ k∗, we break the integral in (9.12) into two pieces and use (9.6) to get that
on {ζ0 =∞},

Var(Z ′j(t)|Ft∗) ≤ 4Xj(t
∗)

(
21

∫ aN

t∗
e−sj(u−t

∗) du+

(
s

µ

)2kN/3 ∫ ∞
aN

e−sj(u−t
∗) du

)
≤ 4Xj(t

∗)

(
21

sj
+

(
s

µ

)2kN/3 e−sj(aN−t
∗)

sj

)
=

4Xj(t
∗)

sj

(
21 + esjt

∗
(
s

µ

)−j+2kN/3)
. (9.14)

Parts 1 and 3 of Proposition 3.6 imply that if γk∗+K ≤ ζ3, then

γk∗+K = τk∗+K + aN ≤
2KaN
kN

+ aN ≤
3aN

2
. (9.15)

In particular, we must have ρ∗j ≤ 3aN/2. Combining this observation with the L2

Maximum Inequality, we get that on {ζ0 =∞},

P

(
sup

t∈(t∗, ρ∗j ]

|Z ′j(t)| >
δ

2
Xj(t

∗)

∣∣∣∣Ft∗) ≤ P( sup
t∈[t∗,3aN/2]

|Z ′j(t)| >
δ

2
Xj(t

∗)

∣∣∣∣Ft∗)
≤

4Var(Z ′j(3aN/2)|Ft∗)
(δXj(t∗)/2)2

=
ε

64kN
·

1024kNVar(Z ′j(3aN/2)|Ft∗)
εδ2Xj(t∗)2

. (9.16)

If we can show that, on {ζ0 =∞}, the second factor on the right-hand side of (9.16) is
less than one for sufficiently large N , the result will follow by taking expectations of
both sides in (9.16). We will assume that ζ0 =∞ and show that this factor tends to zero
as N →∞, uniformly in j.

We consider separately the cases j = 0 and 1 ≤ j ≤ k∗. Suppose first that j = 0. We
have X0(t∗) ≥ (1− δ)N by Proposition 3.1, so using (9.13),

kNVar(Z ′0(3aN/2)|Ft∗)
X0(t∗)2

≤ 6kNaN
X0(t∗)

(
s

µ

)2kN/3

≤ 6kNaN
(1− δ)N

(
s

µ

)2kN/3

. (9.17)

Note that

log

(
kNaN
N

(
s

µ

)2kN/3)
= log kN + log

(
1

s

)
+ log log

(
s

µ

)
− logN +

2kN
3

log

(
s

µ

)
= log kN + log

(
1

s

)
+ log log

(
s

µ

)
− 1

3
logN,

which tends to −∞ as N →∞ because (log kN )/(logN)→ 0 as N →∞ and because, by
assumption A1, we have log(1/s)/ logN → 0 and (log log(s/µ))/ logN → 0 as N →∞. It
follows that the expression in (9.17) tends to zero as N →∞.

Next, suppose 1 ≤ j ≤ k∗. Then, using (9.14),

kNVar(Z ′j(3aN/2)|Ft∗)
Xj(t∗)2

≤ 4kN
sjXj(t∗)

(
21 + esjt

∗
(
s

µ

)−j+2kN/3)
. (9.18)

We will show that the two terms on the right-hand side of (9.18) each go to zero as
N → ∞. For the first term, we use Proposition 3.1, equation (6.27), and the fact that
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log(1/s)/kN → 0 by assumption A1 to get

log

(
kN

sjXj(t∗)

)
≤ log

(
k3
Ns

jj!

min{C1, 1− δ}sjNµj(est∗ − 1)j

)
= log

(
k3
N

min{C1, 1− δ}sj

)
− logN + j log

(
s

µ

)
+ log j!− j log(est

∗
− 1)

= − logN + j log

(
s

µ

)
+ j log j − j − sjt∗ + o(kN ). (9.19)

If j ≤ k−N , then − logN + j log(s/µ) ≤ 0, and sjt∗ ≥ 2j log kN . Therefore, the expression
in (9.19) tends to −∞ as N →∞. If instead j ∈ (k−N , k

+
N ), then t∗ = (4/s) log kN , and we

can we write j as in (3.9) to get

log

(
kN

sjXj(t∗)

)
≤ − logN + logN + βjkN log kN + j log j − j − 4j log kN + o(kN ),

which tends to −∞ as N →∞ because βj < 2 and (6.32) holds. Thus, the first term on
the right-hand side of (9.18) tends to zero as N →∞. To bound the second term, we use
(9.19) to get

log

(
kN

sjXj(t∗)
· esjt

∗
(
s

µ

)−j+2kN/3)
= − logN +

2kN
3

log

(
s

µ

)
+ j log j − j + o(kN ).

= −1

3
logN + j log j − j + o(kN ),

which tends to −∞ as N →∞ because (kN log kN )/ logN → 0 as N →∞. It follows that
the right-hand side of (9.18) tends to zero as N →∞.

Proposition 9.5. For sufficiently large N , if 0 ≤ j ≤ k∗, then

P
(
(1− δ)Xj(t

∗)e
∫ t
t∗ Gj(v) dv ≤ Xj(t) ≤ (1 + δ)Xj(t

∗)e
∫ t
t∗ Gj(v) dv for all t ∈ (t∗, ρ∗j ]

)
> 1− ε

64kN
.

Proof. By (9.3), we have

(1− δ)Xj(t
∗)e

∫ t
t∗ Gj(v) dv ≤ Xj(t) ≤ (1 + δ)Xj(t

∗)e
∫ t
t∗ Gj(v) dv (9.20)

as long as Tj,2(t)/Tj,1(t) ≤ δ/2 and |Tj,3(t)|/Tj,1(t) = |Z ′j(t)|/Xj(t
∗) ≤ δ/2. Therefore, the

result follows from Lemmas 9.2 and 9.4.

Proposition 9.6. For sufficiently large N , if 0 ≤ j ≤ k∗, then

P
(
Xj(t) > k2

NXj(t
∗)e

∫ t
t∗ Gj(v) dv for some t ∈ (γk∗+K , ρj ]

)
<

ε

48kN
(9.21)

and
P
(
Xj(t) > 0 for some t ∈ [γk∗+L, ρj ]

)
<

ε

48kN
. (9.22)

Proof. Fix j ∈ {0, 1, . . . , k∗} Assume for now that (9.20) holds for all t ∈ (t∗, ρ∗j ]. Then, on
the event {γk∗+K ≤ ρj}, for all ` ∈ {1, . . . , j} we have

X`−1(γk∗+K)

X`(γk∗+K)
≤ (1 + δ)X`−1(t∗)e

∫ γk∗+K
t∗ G`−1(v) dv

(1− δ)X`(t∗)e
∫ γk∗+K
t∗ G`(v) dv

=
(1 + δ)X`−1(t∗)e−s(γk∗+K−t

∗)

(1− δ)X`(t∗)
.

(9.23)
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Note that on {γk∗+K ≤ ρj}, the result (3.26) implies that for sufficiently large N ,

γk∗+K − t∗ ≥ aN + τk∗+K − τk∗+1 ≥ aN +
aN (K − 1)

3kN
≥ 14aN

13
. (9.24)

Combining (9.23) and (9.24) with Lemma 9.1, we get that on {γk∗+K ≤ ρj}, for sufficiently
large N ,

X`−1(γk∗+K)

X`(γk∗+K)
≤ (1 + δ)δs

3(1− δ)µ
e−14saN/13 =

(1 + δ)δ

3(1− δ)

(
s

µ

)−1/13

, (9.25)

which tends to zero as N → ∞. This means that, among individuals with j or fewer
mutations, the fraction with j mutations at time γk∗+K must tend to one as N → ∞.
Recalling that Sj(t) = X0(t) +X1(t) + · · ·+Xj(t), for sufficiently large N we have

Sj(γk∗+K) ≤ 3

2
Xj(γk∗+K) (9.26)

on the event {γk∗+K ≤ ρj}.
By Proposition 5.6 and Remark 5.7, the process

(
e
−

∫ (γk∗+K+t)∧ρj
γk∗+K Gj(v) dv

Sj((γk∗+K + t) ∧ ρj), t ≥ 0
)

is a nonnegative supermartingale. Therefore,

P

(
sup

t∈(γk∗+K , ρj ]

e
−

∫ t
γk∗+K

Gj(v) dv
Sj(t) >

k2
N

2
Sj(γk∗+K)

∣∣∣∣Fγk∗+K) ≤ 2

k2
N

. (9.27)

Combining this result with (9.26), we get

P

(
Sj(t) >

3k2
N

4
Xj(γk∗+K)e

∫ t
γk∗+K

Gj(v) dv
for some t ∈ (γk∗+K , ρj ]

∣∣∣∣Fγk∗+K) ≤ 2

k2
N

.

(9.28)
Taking expectations of both sides of (9.28), and then using Proposition 9.5 along with the
facts that Xj(t) ≤ Sj(t) for all t ≥ 0 and ε/64kN + 2/k2

N < ε/48kN for sufficiently large
N , we obtain (9.21).

To get (9.22), observe that when the complement of the event in (9.27) holds and
ρj ≥ γk∗+L, we have

Sj(γk∗+L) ≤ k2
N

2
Sj(γk∗+K)e

∫ γk∗+L
γk∗+K Gj(v) dv

. (9.29)

For v ∈ [γk∗+K , ρj), the result of Proposition 3.5 implies that for sufficiently large N ,

Gj(v) = s(j −M(v))− µ ≤ s(k∗ − (k∗ +K − 2C5)) ≤ −skN
5
. (9.30)

Also, the result of Proposition 3.6 implies that if ρj ≥ γk∗+L then for sufficiently large N ,

γk∗+L − γk∗+K ≥ (L−K) · aN
3kN

≥ 16aN
3

. (9.31)

Also, Sj(γk∗+K) ≤ N , so combining (9.29), (9.30), and (9.31), we get that when the
complement of the event in (9.27) holds and ρj ≥ γk∗+L, for sufficiently large N ,

Sj(γk∗+L) ≤ Nk2
N

2
e−(16/15)skNaN =

Nk2
N

2

(
s

µ

)−16kN/15

. (9.32)
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The logarithm of the right-hand side of (9.32) is

logN − 16kN
15

log

(
s

µ

)
+ 2 log kN − log 2 = − 1

15
logN + 2 log kN − log 2

which tends to −∞ as N → ∞. Thus, the right-hand side of (9.32) tends to zero as
N → ∞ and thus is guaranteed to be less than one if N is sufficiently large. Since
Sj(γk∗+L) is an integer, it must be zero. Furthermore, if Sj(γk∗+L) = 0, then Sj(t) = 0

for all t ≥ γk∗+L, which implies that Xj(t) = 0 for all t ≥ γk∗+L. We can now conclude
(9.22).

Remark 9.7. It follows immediately from Propositions 9.5 and 9.6 that if 0 ≤ j ≤ k∗,
then for sufficiently large N ,

k∗∑
j=0

P ({ζ0 =∞} ∩ {ζ1,j ≤ ρj}) ≤ (k∗ + 1)

(
ε

64kN
+

ε

48kN
+

ε

48kN

)
<

ε

16
.

9.2 Other type j individuals before time τj+1

For the rest of section 9, we assume that j ∈ {k∗ + 1, . . . , J}. In this subsection, we
focus on type j individuals that are not early, meaning they are descended from type
j mutations that occurred after the time ξj defined in (3.16). We will show that the
claim in part 2 of Proposition 3.3 holds with high probability. We will begin with three
preliminary lemmas.

Define the random set

Θ :=

{
j : aN −

2aN
kN
≤ τj ≤ aN +

2aN
kN

}
. (9.33)

Recall from (3.15) that as long as qj > 1, we have qj = j − kN if j ∈ Θ and qj = j −M(τj)

if j /∈ Θ. When j ∈ Θ, it will be difficult to bound Xj(t) as tightly as when j /∈ Θ, so we
will structure the proof so that we can allow a larger probability of ζ1,j ≤ ρj when j ∈ Θ.
Because the times τi are spaced at least aN/3kN apart until time ζ3 by Proposition 3.6,
there can be at most 12 values of j for which τj < ρj and j ∈ Θ.

Lemma 9.8. There is a positive constant C9 for sufficienty large N , the following hold:

1. If j /∈ Θ and t ∈ [τj , τj+1 ∧ ρj), then s(qj − C9) ≤ Gj(t) ≤ s(qj + C9).

2. If t ∈ [τj , τj+1 ∧ ρj), then (1− 2δ)skN ≤ Gj(t) ≤ Gj(t) + µ ≤ (e+ 2δ)skN .

3. If τj < ρj , then (1− 2δ)kN ≤ qj ≤ (e+ 2δ)kN .

Proof. First suppose t ∈ [τj , τj+1 ∧ ρj) and j /∈ Θ. In view of part 4 of Proposition 3.5, we
have j −M(τj) > 1 and therefore qj = j −M(τj). Therefore,

Gj(t)− sqj = s(M(τj)−M(t))− µ,

which means

|Gj(t)− sqj | ≤ s
(
|M(τj)− M̄(τj)|+ |M̄(τj)− M̄(t)|+ |M̄(t)−M(t)|+ µ

s

)
. (9.34)

It follows from Proposition 3.5 that

|M̄(u)−M(u)| ≤ max{3, 2C5} if u /∈ [aN , γk∗+1). (9.35)

The results of Proposition 3.6 imply that since j /∈ Θ, we have [τj , τj+1∧ρj)∩ [aN , γk∗+1) =

∅. Also, because t− τj ≤ 2aN/kN by the upper bound in (3.26), the lower bound in (3.26)
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implies that at most six of the times τi can occur between times τj − aN and t− aN . It
thus follows from (8.14) that |M̄(τj)− M̄(t)| ≤ 6. Since µ/s ≤ 1 for sufficiently large N
by (1.8), combining these observations with (9.34) gives

|Gj(t)− sqj | ≤ s(7 + 2 max{3, 2C5}),

which implies part 1 of the lemma.
To prove part 2, we assume t ∈ [τj , τj+1 ∧ ρj) but no longer assume that j /∈ Θ. It

follows from Lemma 8.4 that R(t) = j − M̄(t). Therefore,

Gj(t) = sR(t) + s(M̄(t)−M(t))− µ. (9.36)

By part 2 of Proposition 3.6 and Lemma 4.1, we have

kN (1− δ) ≤ R(t) ≤ kN (e+ δ). (9.37)

Also, µ/s → 0 as N → ∞ by (1.8). Therefore, if t /∈ [aN , γk∗+1), then part 2 of the
lemma follows from (9.35), (9.36), and (9.37). Now suppose instead that t ∈ [aN , γk∗+1).
Proposition 3.5 implies that k∗ − kN − C4 ≤ M̄(t)−M(t) ≤ k∗. Therefore, using (9.36)
and part 2 of Proposition 3.6 again, we have

skN (q(t/aN )− δ) + s(k∗ − kN − C4)− µ ≤ Gj(t) ≤ skN (q(t/aN ) + δ) + sk∗ − µ. (9.38)

Since γk∗+1/aN → 1 as N → ∞ by part 1 of Proposition 3.6, and since q is a right
continuous function with q(1) = e− 1 by Lemma 4.1, we have

e− 1− δ/2 ≤ q(t/aN ) ≤ e− 1 + δ/2

for sufficiently large N . Part 2 of the lemma follows because k∗/kN → 1 as N →∞.
Finally, we prove part 3. When j /∈ Θ, we have sqj = Gj(τj) + µ, so part 3 follows

immediately from part 2. Suppose instead τj < ρj and j ∈ Θ, which means that
aN − 2aN/kN ≤ τj ≤ aN + 2aN/kN . Since q(1) = e, it follows from part 2 of Proposition
3.6 that kN (e− 2δ) ≤ R(aN − 2aN/kN ) ≤ kN (e+ δ) if N is sufficiently large. Therefore,
in view of (3.26), we have kN (e− 2δ) ≤ j ≤ kN (e+ δ) + 12 and thus

kN (e− 1− 2δ) ≤ qj ≤ kN (e− 1 + δ) + 12

if N is sufficiently large. Therefore, part 3 of the lemma holds in this case as well.

Define

ξ−j := τj +
1

sqj
log

(
1

sqj

)
− b

sqj
. (9.39)

Lemma 9.9. For sufficiently large N , if τj < ρj , then we have τj < ξ−j < ξj < τ∗j and
τ∗j − ξj ≥ aN/8TkN .

Proof. Because skN → 0 by assumption A3, we have log(1/(3skN )) > b for sufficiently
large N . Whenever τj < ρj , Lemma 9.8 implies that qj < (e + 2δ)kN . Therefore,
for sufficiently large N , we have τj < ξ−j < ξj . Also, because qj ≥ (1 − 2δ)kN for
sufficiently large N if τj < ρj , and because (1.8) implies that log(s/µ)/ log(1/skN ) ≥
log(s/µ)/ log(1/s)→∞ as N →∞, for sufficiently large N we have

ξj = τj +
1

sqj
log

(
1

sqj

)
+

b

sqj
≤ τj +

aN
8TkN

. (9.40)

Therefore, τ∗j − ξj ≥ aN/(8TkN ) if τj < ρj .
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Lemma 9.10. For sufficiently large N , if τj ≤ t ≤ γj−1+K and t < ρj , then

(1− 3δ)s

µ
e
∫ t
τj
Gj−1(v) dv ≤ Xj−1(t) ≤ (1 + 3δ)s

µ
e
∫ t
τj
Gj−1(v) dv

.

Proof. If j ≥ k∗ + 2, the result is immediate from (3.20). If instead j = k∗ + 1, then by
(3.12) when t = τk∗+1 and the fact that s/µ ≤ Xk∗(τk∗+1) ≤ 1 + s/µ, we get

s

µ(1 + δ)
≤ Xk∗(t

∗)e
∫ τk∗+1
t∗ Gk∗ (v) dv ≤ 1 + s/µ

1− δ
. (9.41)

Because 1− 3δ ≤ (1− δ)/(1 + δ) ≤ (1 + δ)(1 + s/µ)/[(1− δ)(s/µ)] ≤ 1 + 3δ for sufficiently
large N , another application of (3.12) gives the result.

Recall that Xj,2(t) denotes the number of type j individuals at time t descended from
an individual that acquired a type j mutation after time ξj . Then, using the notation of
Corollary 5.4, for t ∈ [ξj , τj+1 ∧ ρj ], we have

Z
[ξj ,τj+1]
j (t) = e

−
∫ t
ξj
Gj(v) dv

Xj,2(t)−
∫ t∧τj+1

ξj

µXj−1(u)e
−

∫ u
ξj
Gj(v) dv

du.

Let
ρ̄j := τj+1 ∧ ρj ,

and for t ≥ ξj , let

Z ′j(t) := Z
[ξj ,τj+1]
j (t ∧ ρ̄j),

with the convention that Z ′j(t) = 0 if ρ̄j ≤ ξj . Then for t ≥ ξj , we have

Xj,2(t ∧ ρ̄j) =

∫ t∧ρ̄j

ξj

µXj−1(u)e
∫ t∧ρ̄j
u Gj(v)dv du+ e

∫ t∧ρ̄j
ξj

Gj(v) dv
Z ′j(t). (9.42)

We will separately consider the two terms on the right-hand side of (9.42). Lemma 9.11
below gives the required bounds on the first term.

Lemma 9.11. For sufficiently large N , we have∫ t

ξj

µXj−1(u)e
∫ t
u
Gj(v)dv du ≤ (1 + 3δ)e

∫ t
τj
Gj(v) dv

for all t ∈ [ξj , ρ̄j ] and∫ t

ξj

µXj−1(u)e
∫ t
u
Gj(v)dv du ≥

(
1− 7δ

2

)
e
∫ t
τj
Gj(v) dv

for all t ∈ [τ∗j , ρ̄j ].

Proof. Suppose t ∈ [ξj , ρ̄j ]. By Lemma 9.10, for sufficiently large N ,∫ t

ξj

µXj−1(u)e
∫ t
u
Gj(v)dv du ≤ (1 + 3δ)s

∫ t

ξj

e
∫ u
τj
Gj−1(v) dv

e
∫ t
u
Gj(v)dv du

= (1 + 3δ)se
∫ t
τj
Gj(v) dv

∫ t

ξj

e−s(u−τj) du

= (1 + 3δ)e
∫ t
τj
Gj(v) dv(

e−s(ξj−τj) − e−s(t−τj)
)
. (9.43)

Because ξj ≥ τj , we have e−s(ξj−τj) − e−s(t−τj) ≤ 1, which gives the upper bound in the
lemma.
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Now suppose t ∈ [τ∗j , ρ̄j ]. The same argument that yields (9.43) implies that for
sufficiently large N ,∫ t

ξj

µXj−1(u)e
∫ t
u
Gj(v)dv du ≥ (1− 3δ)e

∫ t
τj
Gj(v) dv(

e−s(ξj−τj) − e−s(t−τj)
)
. (9.44)

Now if τj < ρj , then

s(ξj − τj) =
1

qj
log

(
1

sqj

)
+

b

qj
. (9.45)

For sufficiently large N , part 3 of Lemma 9.8 gives qj ≥ (1− 2δ)kN when τj < ρj , which
by assumption A1 implies that s(ξj − τj)→ 0 and therefore e−s(ξj−τj) → 1 uniformly in j
as N →∞. Furthermore, if t ≥ τ∗j , then e−s(t−τj) ≤ e−saN/4TkN → 0 as N →∞ by (1.7).
Consequently, the lower bound in the lemma follows from (9.44).

It remains to show that the second term on the right-hand side of (9.42) is small. We
know from Corollary 5.4 that the process (Z ′(ξj + t), t ≥ 0) is a mean zero martingale, so
the problem is to control the fluctuations of this process. The next result gives the key
second moment estimate.

Lemma 9.12. For sufficiently large N , we have, for all t ≥ 0,

Var(Z ′j(ξj + t)|Fξj ) ≤ 5e
∫ ξj
τj
Gj(v) dv · 1

sk2
N

.

Proof. By Corollary 5.4, we have

Var(Z ′j(ξj + t)|Fξj ) = E

[ ∫ (ξj+t)∧ρ̄j

ξj

e
−2

∫ u
ξj
Gj(v) dv

(µXj−1(u)

+B
[ξj ,τj+1]
j (u)Xj,2(u) +D

[ξj ,τj+1]
j (u)Xj,2(u)) du

∣∣∣∣Fξj].
We now can use the reasoning leading to (6.5) to get

Var(Z ′j(ξj + t)|Fξj ) ≤ E
[ ∫ ξj+t

ξj

e
−2

∫ u
ξj
Gj(v) dv

(µXj−1(u) + 3Xj,2(u))1{u<ρ̄j} du

∣∣∣∣Fξj].
(9.46)

Using Lemma 9.10, we get that if u < ρ̄j , then

e
−

∫ u
ξj
Gj(v) dv

µXj−1(u) ≤ (1 + 3δ)se
−

∫ u
ξj
Gj(v) dv

e
∫ u
τj
Gj−1(v) dv

= (1 + 3δ)se
∫ ξj
τj
Gj(v) dve−s(u−τj). (9.47)

Also, from (9.42) and (9.47), if u < ρ̄j , then

e
−

∫ u
ξj
Gj(v) dv

Xj,2(u) =

∫ u

ξj

µXj−1(w)e
−

∫w
ξj
Gj(v) dv

dw + Z ′j(u)

≤ (1 + 3δ)se
∫ ξj
τj
Gj(v) dv

∫ u

ξj

e−s(w−τj) dw + Z ′j(u)

= (1 + 3δ)e
∫ ξj
τj
Gj(v) dv(e−s(ξj−τj) − e−s(u−τj)) + Z ′j(u). (9.48)

Combining (9.46), (9.47), and (9.48), and using that 3(1 + 3δ) < 4 by (3.1), we get

Var(Z ′j(ξj + t)|Fξj ) ≤ 4E

[ ∫ ξj+t

ξj

e
−

∫ u
ξj
Gj(v) dv(

e
∫ ξj
τj
Gj(v) dv(se−s(u−τj)

+ e−s(ξj−τj) − e−s(u−τj)) + Z ′j(u)
)
1{u<ρ̄j} du

∣∣∣∣Fξj]. (9.49)
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By part 2 of Lemma 9.8, we have Gj(v) ≥ (1 − 2δ)skN for all v ∈ [τj , ρ̄j), which means
that for u ≥ ξj , we have

e
−

∫ u
ξj
Gj(v) dv

1{u<ρ̄j} ≤ e
−(1−2δ)skN (u−ξj). (9.50)

Also, although Z ′j(u) can be negative, it can be seen from (9.46) that the integrand in
(9.49) must be nonnegative so, in particular,

e
∫ ξj
τj
Gj(v) dv(se−s(u−τj) + e−s(ξj−τj) − e−s(u−τj)) + Z ′j(u) ≥ 0 (9.51)

for u ∈ [ξj , ρ̄j). Because s < 1 for sufficiently large N , we see that se−s(u−τj) − e−s(u−τj)
is an increasing function of u. Also, Z ′j(u) = Z ′j(ρ̄j) for all u ≥ ρj . Therefore, (9.51) holds
for all u ≥ ξj . Thus, combining (9.49) and (9.50) gives

Var(Z ′j(ξj + t)|Fξj ) ≤ 4E

[ ∫ ξj+t

ξj

e−(1−2δ)skN (u−ξj)
(
e
∫ ξj
τj
Gj(v) dv(se−s(u−τj)

+ e−s(ξj−τj) − e−s(u−τj)) + Z ′j(u)
)
du

∣∣∣∣Fξj]. (9.52)

Every expression in the integrand in (9.52) is Fξj -measurable except Z ′j(u). Since
(Z ′(ξj + t), t ≥ 0) is a mean zero martingale by Corollary 5.4, we can apply Fubini’s
Theorem and then evaluate the conditional expectation in (9.52) to get

Var(Z ′j(ξj + t)|Fξj )

≤ 4e
∫ ξj
τj
Gj(v) dv

∫ ξj+t

ξj

e−(1−2δ)skN (u−ξj)(se−s(u−τj) + e−s(ξj−τj) − e−s(u−τj)) du.

Now for all u ≥ ξj ,

se−s(u−τj) + e−s(ξj−τj) − e−s(u−τj) ≤ s+ e−s(ξj−τj)(1− e−s(u−ξj))

≤ s+ e−s(ξj−τj) · s(u− ξj)
≤ s(1 + u− ξj),

so for sufficiently large N ,

Var(Z ′j(ξj + t)|Fξj ) ≤ 4e
∫ ξj
τj
Gj(v) dv

∫ ξj+t

ξj

e−(1−2δ)skN (u−ξj)s(1 + u− ξj) du

≤ 4e
∫ ξj
τj
Gj(v) dv

∫ ∞
0

e−(1−2δ)skNys(1 + y) dy

= 4e
∫ ξj
τj
Gj(v) dv

(
s

(1− 2δ)skN
+

s

((1− 2δ)skN )2

)
≤ 5e

∫ ξj
τj
Gj(v) dv · 1

sk2
N

,

as claimed.

Lemma 9.13. For sufficiently large N , if ξj < ρj , then∫ ξj

τj

Gj(v) dv ≥ sqj(ξj − τj)− δ.
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Proof. Suppose ξj < ρj . Consider first the case in which j /∈ Θ. Then for sufficiently
large N , we have Gj(v) ≥ s(qj − C9) for v ∈ [τj , ξj ] by part 1 of Lemma 9.8. Therefore,∫ ξj

τj

Gj(v) dv ≥ s(qj − C9)(ξj − τj) = sqj(ξj − τj)− C9s(ξj − τj),

and the result follows because s(ξj − τj) → 0 as N → ∞ by the argument following
(9.45).

Next, suppose j ∈ Θ, which means qj = j − kN . Using (9.40), we get

aN −
2aN
kN
≤ τj ≤ ξj ≤ aN +

(
2 +

1

8T

)
aN
kN

.

By Proposition 3.5, if t < aN ∧ ρj then M(t) ≤ 3. If aN ≤ t < γk∗+1 ∧ ρj , then we have
M(t) < kN + C4. In view of (3.26), if γk∗+1 ≤ t ≤ (aN + (2 + 1/8T )aN/kN ) ∧ ρj , then
t ≤ γk∗+8 and therefore M(t) ≤ k∗+ 7 + 2C5. Combining the results for these three cases,
there is a positive constant C such that if t ∈ [τj , ξj ], then M(t) ≤ kN + C. It follows that∫ ξj

τj

Gj(v) dv ≥
∫ ξj

τj

(s(j − kN − C)− µ) dv = (s(qj − C)− µ)(ξj − τj),

and the result follows because (Cs+ µ)(ξj − τj)→ 0 as N →∞.

Lemma 9.14. For sufficiently large N ,

P

(
e
∫ t
ξj
Gj(v) dv|Z ′j(t)| ≤

δ

2
e
∫ t
τj
Gj(v) dv

for all t ∈ [ξj , ρ̄j ]

)
≥ 1− ε

25J
.

Proof. By the L2 Maximum Inequality and Lemma 9.12,

P

(
sup
t≥0
|Z ′j(ξj + t)| > δ

2
e
∫ ξj
τj
Gj(v) dv

∣∣∣∣Fξj) ≤ 16

δ2
e−2

∫ ξj
τj
Gj(v) dv · sup

t≥0
Var(Z ′j(ξj + t)|Fξj

)
≤ 80

δ2sk2
N

e−
∫ ξj
τj
Gj(v) dv. (9.53)

By Lemma 9.13 and part 3 of Lemma 9.8, if ξj < ρj then

e−
∫ ξj
τj
Gj(v) dv ≤ eδe−sqj(ξj−τj) = eδe−bsqj ≤ 3e−bskN .

Plugging this result into (9.53), then taking expectations and using (3.14) and the fact
that J ≤ 4TkN for sufficiently large N , we get that for sufficiently large N ,

P

(
sup
t≥0
|Z ′j(ξj + t)| > δ

2
e
∫ ξj
τj
Gj(v) dv

)
≤ 240e−b

δ2kN
≤ 960e−bT

δ2J
=

ε

25J
.

The lemma follows.

Combining (9.42) with Lemmas 9.11 and 9.14 and then summing over j immediately
yields the following corollary, which shows that the result of part 2 of Proposition 3.3
holds with high probability.

Corollary 9.15. For sufficiently large N ,

J∑
j=k∗+1

P

({
Xj,2(t) < (1− 4δ)e

∫ t
τj
Gj(v) dv

for some t ∈ [τ∗j , ρ̄j ]
}

∪
{
Xj,2(t) > (1 + 4δ)e

∫ t
τj
Gj(v) dv

for some t ∈ [ξj , ρ̄j ]
})
≤ ε

25
.
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9.3 Early type j individuals before time τj+1

In this subsection, we continue to assume j ∈ {k∗ + 1, . . . , J}. We consider early type
j individuals, which are descended from type j mutations that occur at or before the time
ξj . We will show that the claims of part 1 of Proposition 3.3 hold with high probability.
Note that (3.18) involves a constant C3, which we will define to be

C3 :=
204bT

ε
. (9.54)

We will assume throughout this section that N is large enough that the conclusions of
Lemma 9.9 hold.

From part 1 of Proposition 3.3, we know that if j ≥ k∗ + 2, then no early type j − 1

individual acquires a jth mutation until time τj ∧ ρj ∧ aNT . In particular, no type j

individual can appear until time ξj−1 ∧ ρj . This result is also true when j = k∗ + 1 if
we define ξk∗ = t∗ because, according to Proposition 3.1, on {ζ0 = ∞}, no individuals
of type k∗ + 1 appear until after time t∗. Therefore, using the notation from Corollary
5.4 in which X

[u,v]
j (t) denotes the number of type j individuals at time t descended

from individuals that acquired a jth mutation during the time interval (u, v], as long as
ξj−1 < ρj , we have

Xj,1(t) = X
[ξj−1,τj ]
j (t) +X

[τj ,ξ
−
j ]

j (t) +X
[ξ−j ,ξj ]

j (t). (9.55)

We will consider these three processes separately.

Lemma 9.16. Let (Z(t), t ≥ 0) be a continuous-time birth and death process in which
each individual independently dies at rate ν > 0 and gives birth to a new individual at
rate λ > ν. Assume that Z(0) = 1. Then

P (Z(t) > 0) =
λ− ν

λ− νe−(λ−ν)t
. (9.56)

Also, if n ∈ N, then

P
(

sup
t≥0

Z(t) ≥ n
)

=
1− ν/λ

1− (ν/λ)n
. (9.57)

Proof. It is well-known (see section 5 of Chapter III in [1]) that the generating function
for this process is

F (s, t) :=

∞∑
k=0

P (Z(t) = k)sk =
ν(s− 1)− e−(λ−ν)t(λs− ν)

λ(s− 1)− e−(λ−ν)t(λs− ν)
.

Because P (Z(t) > 0) = 1− F (0, t), the result (9.56) follows after some algebra.
Also, at any given time, the probability that the next event is a birth is λ/(λ + ν),

while the probability that the next event is a death is ν/(λ+ ν). Therefore, (9.57) follows
from well-known results for asymmetric random walks (see, for example, section 3 of
chapter 3 in [13]).

Lemma 9.17. Suppose κ is an (Ft)t≥0 stopping time such that ξj−1 ≤ κ ≤ ξj and, with
positive probability, a type j mutation occurs at time κ. For sufficiently large N , the
following hold:

1. Given that a type j mutation occurs at time κ, the probability that the number
of type j descendants of this mutation exceeds (s/µ)1−δ before time ρj is at most
3skN .
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2. Given that a type j mutation occurs at time κ, the probability that κ+aN/8TkN < ρj
and at least one type j individual descended from this mutation is alive at time
κ+ aN/8TkN is at most 3skN .

Proof. Suppose a type j mutation occurs at time κ. By the reasoning leading to (5.1),
each type j descendant of the individual that gets this mutation gives birth at rate less
than or equal to 1 + s(j −M(t)). Since s(j −M(t)) = Gj(t) + µ, it follows from Lemma
9.8 that until time ρj , the birth rate is at most λ := 1 + (e + 2δ)skN . As long as the
number of type j individuals descended from this mutation is less than (s/µ)1−δ, the
reasoning leading to (5.2) implies that the rate at which each such individual either
acquires a mutation or dies and gets replaced by an individual that is not a type j

individual descended from this mutation is at least µ+ 1− (s/µ)1−δ(1 + s(j −M(t)))/N .
Using Lemma 9.8 and (1.9), we see that for sufficiently large N , this quantity is at
least ν := µ + 1 − δskN until time ρj . Therefore, until time ρj occurs or the number
of type j individuals descended from this mutation reaches (s/µ)1−δ, the number of
such individuals is dominated by a continuous-time branching process in which each
individual gives birth at rate λ and dies at rate ν.

By Lemma 9.16, the probability that the number of type j individuals descended from
this mutation exceeds (s/µ)1−δ before time ρj is at most

1− ν/λ
1− (ν/λ)(s/µ)1−δ . (9.58)

Likewise, the probability that κ + aN/8TkN < ρj and at least one type j individual
descended from this mutation is alive at time κ+ aN/8TkN is less than or equal to

λ− ν
λ− νe−(λ−ν)(aN/8TkN )

. (9.59)

We must show that the expressions in (9.58) and (9.59) are bounded above by 3skN for
sufficiently large N . We have

1− ν/λ ≤ λ− ν ≤ (e+ 3δ)skN .

Because e + 3δ < 3 by (3.1), it remains only to show that the denominators of the
expressions in (9.58) and (9.59) tend to one as N → ∞. If N is large enough that
ν < 1, then we have (ν/λ)(s/µ)1−δ ≤ (1 + (e + 2δ)skN )−(s/µ)1−δ

, which tends to zero as
N →∞ because (skN )(s/µ)1−δ →∞ as N →∞ by (1.8). Likewise, νe−(λ−ν)aN/8TkN → 0

as N → ∞ because (λ − ν)aN/8TkN ≥ (e + 3δ)saN/8T → ∞ as N → ∞. The result
follows.

Lemmas 9.18, 9.19, and 9.20 below give us the bounds that we will need to establish
that the result of part 1 of Proposition 3.3 holds with high probability. We will use the
notation o(k−1

N ) for a collection of probabilities pj,N such that

lim
N→∞

kN sup
j∈{k∗+1,...,J}

pj,N = 0.

Lemma 9.18 shows that it is highly unlikely that any type j mutations appearing before
time τj will have descendants alive in the population after time τ∗j . As a result, it will be
possible essentially to ignore such mutations.

Lemma 9.18. We have

P

(
X

[ξj−1,τj ]
j (t) >

(
s

µ

)1−δ

for some t ∈ [ξj−1, τ
∗
j ∧ ρj ]

)
= o(k−1

N ) (9.60)

and
P
(
X

[ξj−1,τj ]
j (t) > 0 for some t ∈ [τ∗j , ρj ]

)
= o(k−1

N ). (9.61)
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Proof. Write ρ̃j := τj ∧ ρj . Suppose first that j ≥ k∗ + 2. Because ρ̃j ≤ ζ1,j−1, the result
of part 2 of Proposition 3.3 holds for type j − 1 individuals up to time ρ̃j , which means∫ ρ̃j

ξj−1

µXj−1,2(t) dt ≤ µ(1 + 4δ)

∫ ρ̃j

ξj−1

e
∫ t
τj−1

Gj−1(v) dv
dt.

Also, since ρ̃j ≤ ζ1,j−1, Lemma 4.5 implies that

e
∫ ρ̃j
τj−1

Gj−1(v) dv ≤ 2s

µ

for sufficiently large N , which leads to∫ ρ̃j

ξj−1

µXj−1,2(t) dt ≤ 2s(1 + 4δ)

∫ ρ̃j

ξj−1

e−
∫ ρ̃j
t Gj−1(v) dv dt. (9.62)

Now suppose instead that j = k∗+ 1, and recall that ξk∗ = t∗ by definition. Then because
ρ̃j ≤ ζ1,j−1, the result of part 1 of Proposition 3.2 gives∫ ρ̃j

ξj−1

µXj−1,2(t) dt ≤ µ(1 + δ)

∫ ρ̃j

ξj−1

Xj−1(t∗)e
∫ t
t∗ Gj−1(v) dv dt.

Reasoning as in the proof of Lemma 4.5 but using (3.12), we get that for sufficiently
large N ,

Xj−1(t∗)e
∫ ρ̃j
t∗ Gj−1(v) dv ≤ 2s

µ
,

so (9.62) holds in this case as well. Therefore, combining (9.62) with part 2 of Lemma
9.8 and writing C10 = 2(1 + 4δ)/(1− 2δ), we get∫ ρ̃j

ξj−1

µXj−1,2(t) dt ≤ 2s(1 + 4δ)

∫ ρ̃j

ξj−1

e−(1−2δ)skN (ρ̃j−t) dt ≤ C10

kN
.

Because ρ̃j ≤ ζ1,j−1, the last statement of part 1 of Proposition 3.3 implies that no
early type j−1 individual acquires a jth mutation before time ρ̃j . Because each type j−1

individual acquires mutations at rate µ, the number of times that type j − 1 individuals
that are not early acquire a jth mutation between the times ξj−1 and

inf

{
u :

∫ u

ξj−1

µXj−1,2(t) dt ≥ C10

kN

}
is Poisson with mean C10/kN . In particular, the probability that at least one such mutation
occurs during this time period is at most C10/kN , and the probability that two or more
such mutations occur during this time period is at most C2

10/k
2
N . If such a mutation

occurs before time ρ̃j , then by Lemma 9.17, the probability that the number of type j
descendants of this mutation exceeds (s/µ)1−δ before time ρj is at most 3skN . Likewise,
the probability that some type j descendant of this individual is still alive at time τ∗j ∧ρj is
at most 3skN . Thus, the probabilities of the events in (9.60) and (9.61) are both bounded
above by

C2
10

k2
N

+
C10

kN
· 3skN .

This expression is o(k−1
N ) because skN → 0 as N →∞ by assumption A3.
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Lemma 9.19 bounds the probability that, when j /∈ Θ, we have an early type j

mutation with descendants alive after time τ∗j . This bound is given in (9.64) below. A
sharper bound is given in (9.63) for the probability that such a mutation occurs before
time ξ−j .

Lemma 9.19. For sufficiently large N , we have

P
({
X

[τj ,ξ
−
j ]

j (t) > 0 for some t ∈ [τ∗j , ρj ]
}
∩ {j /∈ Θ}

)
<

ε

16J
. (9.63)

and

P
({
X

[τj ,ξj ]
j (t) > 0 for some t ∈ [τ∗j , ρj ]

}
∩ {j /∈ Θ}

)
≤ 13eb

kN
. (9.64)

Proof. By Lemma 9.10 and part 1 of Lemma 9.8, on the event {j /∈ Θ}, we have

∫ ξ−j ∧ρj

τj

µXj−1(t) dt ≤ (1 + 3δ)s

∫ ξ−j ∧ρj

τj

e
∫ t
τj
Gj−1(v) dv

dt

≤ (1 + 3δ)s

∫ ξ−j ∧ρj

τj

es(qj+C9)(t−τj) dt

≤ (1 + 3δ)s · e
s(qj+C9)(ξ−j −τj)

s(qj + C9)
. (9.65)

By part 3 of Lemma 9.8, we have (1 + 3δ)/(qj + C9) ≤ 2/kN for sufficiently large N .
Also, recalling (9.39) and observing that log(1/sqj)/qj → 0 as N → ∞ on {τj < ρj}
by assumption A1 and part 3 of Lemma 9.8, we get that for sufficiently large N , on
{τj < ρj},

es(qj+C9)(ξ−j −τj) =
e−b

sqj
exp

(
C9

qj
log

(
1

sqj

)
− C9b

qj

)
≤ 2e−b

sqj
. (9.66)

Therefore, on the event {j /∈ Θ}, we have

∫ ξ−j ∧ρj

τj

µXj−1(t) dt ≤ 4e−b

skNqj
. (9.67)

Likewise, if we replace ξ−j by ξj in (9.65), (9.66), and (9.67), we get that on the event
{j /∈ Θ}, ∫ ξj∧ρj

τj

µXj−1(t) dt ≤ 4eb

skNqj
. (9.68)

Let Γ1 be the number of type j mutations between times τj and ξ−j ∧ ρj , and let Γ2

be the number of type j mutations between times τj and ξj ∧ ρj . Because each type
j − 1 individual acquires mutations at rate µ, equations (9.67) and (9.68) imply that
E[Γ11{j /∈Θ}|Fτj ] ≤ 4e−b/(skNqj) and E[Γ21{j /∈Θ}|Fτj ] ≤ 4eb/(skNqj). Let Ai be the event
that τ∗j ≤ ρj and the individual that gets the ith type j mutation between times τj and ξj
has type j descendants alive at time τ∗j . By Lemma 9.9, this individual must have type j
descendants alive for at least a time aN/8TkN after the time of the mutation. Therefore,
by Lemma 9.17, we have P (Ai|Γ ≥ i) ≤ 3skN . Using part 3 of Lemma 9.8, equation (3.1),
and the fact that J/kN ≤ 4T for sufficiently large N , we get

P

(
{j /∈ Θ} ∪

Γ1⋃
i=1

Ai

∣∣∣∣Fτj) ≤ 3skNE[Γ11{j /∈Θ}|Fτj ] ≤
12e−b

qj
≤ 13e−b

kN
≤ ε

16J
· 832Te−b

ε
.
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Equation (9.63) follows because e−b < ε/832T by (3.14). Likewise,

P

(
{j /∈ Θ} ∪

Γ2⋃
i=1

Ai

∣∣∣∣Fτj) ≤ 3skNE[Γ21{j /∈Θ}|Fτj ] ≤
12eb

qj
≤ 13eb

kN
,

which implies (9.64).

Lemma 9.20. For sufficiently large N , on the event {ρj > τj}, we have

P
(
X

[τj ,ξj ]
j (t) > C3e

∫ t
τj
Gj(v) dv

for some t ∈ [τj , τj+1 ∧ ρj ]
∣∣Fτj) ≤ ε

97
(9.69)

and

P
(
X

[ξ−j ,ξj ]

j (t) > C3e
∫ t
τj
Gj(v) dv

for some t ∈ [τj , τj+1 ∧ ρj ]
∣∣Fτj) ≤ ε

17J
. (9.70)

Also,

P

(
X

[τj ,ξj ]
j (t) >

(
s

µ

)1−δ

for some t ∈ [τj , τ
∗
j ∧ ρj ]

)
= o(k−1

N ). (9.71)

Furthermore, (9.69) holds even if j is random, as long as τj is a stopping time.

Proof. Let ρ̄j := τj+1 ∧ ρj . Using the notation of Corollary 5.4, if t ≥ τj , then

e−
∫ t∧ρ̄j
τj

Gj(v) dvX
[τj ,ξj ]
j (t∧ρ̄j) =

∫ t∧ξj∧ρ̄j

τj

µXj−1(u)e
−

∫ u
τj
Gj(v) dv

du+Z
[τj ,ξj ]
j (t∧ρ̄j). (9.72)

By Corollary 5.4, the process (Z
[τj ,ξj ]
j (τj + t), t ≥ 0) is a martingale. Therefore, if we

define

Y (t) := e−
∫ t∧ρ̄j
τj

Gj(v) dvX
[τj ,ξj ]
j (t ∧ ρ̄j)

for all t ≥ τj , then the process (Y (t), t ≥ τj), having been expressed in (9.72) as the
sum of an increasing process and a martingale, is a submartingale. By Doob’s Maximal
Inequality,

P (Y (t) ≥ C3 for some t ∈ [τj , ρ̄j ]|Fτj ) ≤
1

C3
E[Y (ρ̄j)|Fτj ]. (9.73)

By (9.72) and Lemma 9.10,

E[Y (ρ̄j)|Fτj ] = E

[ ∫ ρ̄j∧ξj

τj

µXj−1(u)e
−

∫ u
τj
Gj(v) dv

du

∣∣∣∣Fτj]
≤ (1 + 3δ)sE

[ ∫ ρ̄j∧ξj

τj

e−s(u−τj) du

∣∣∣∣Fτj]
≤ 1 + 3δ. (9.74)

Now (9.69) follows immediately from (9.73) and (9.74), as long as C3 ≥ 97(1 + 3δ)/ε,
which is true by (9.54). Note that Remark 5.5 implies that (9.69) holds when j is random,
provided that τj is a stopping time.

To obtain (9.71), note that if t ≤ τ∗j ∧ ρj , then by part 2 of Lemma 9.8, we have

e
−

∫ t
τj
Gj(v) dv ≥ e−(aN/4TkN )((e+2δ)skN ) =

(
s

µ

)−(e+2δ)/4T

.
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Therefore,

P

(
X

[τj ,ξj ]
j (t) >

(
s

µ

)1−δ

for some t ∈ [τj , τ
∗
j ∧ ρj ]

)
= P

(
Y (t) > e

−
∫ t
τj
Gj(v) dv ·

(
s

µ

)1−δ

for some t ∈ [τj , τ
∗
j ∧ ρj ]

)
≤ P

(
Y (t) >

(
s

µ

)1−δ−(e+2δ)/4T

for some t ∈ [τj , τ
∗
j ∧ ρj ]

)
.

Write θ := 1− δ − (e+ 2δ)/4T , which is positive by (3.1). Arguing as in the derivations of
(9.73) and (9.74) but using (s/µ)θ in place of C3 and τ∗j ∧ ρj in place of ρ̄j , we get

P

(
X

[τj ,ξj ]
j (t) >

(
s

µ

)1−δ

for some t ∈ t ∈ [τj , τ
∗
j ∧ ρj ]

)
≤ (1 + 3δ)

(
s

µ

)−θ
.

The result (9.71) follows because (s/µ)−θkN → 0 as N → ∞, as can be seen by taking
the logarithm and using (1.7).

The argument for (9.70) is similar to the argument for (9.69). Using Corollary 5.4,
we have

e
−

∫ t∧ρ̄j
ξ
−
j

Gj(v) dv

X
[ξ−j ,ξj ]

j (t ∧ ρ̄j) =

∫ t∧ξj∧ρ̄j

ξ−j

µXj−1(u)e
−

∫ u
ξ
−
j

Gj(v) dv
du+ Z

[ξ−j ,ξj ]

j (t ∧ ρ̄j),

(9.75)

where (Z
[ξ−j ,ξj ]

j (ξ−j + t), t ≥ 0) is a martingale. For t ≥ ξ−j , let

W (t) = e
−

∫ t∧ρ̄j
ξ
−
j

Gj(v) dv

X
[ξ−j ,ξj ]

j (t ∧ ρ̄j).

By (9.75), the process (W (ξ−j +t), t ≥ 0) is a submartingale. By Doob’s Maximal Inequality,

P (e−
∫ ξ−j
τj

Gj(v) dvW (t) > C3 for some t ∈ [ξ−j , ρ̄j ]|Fξ−j ) ≤ e−
∫ ξ−j
τj

Gj(v) dv

C3
E[W (ρ̄j)|Fξ−j ].

(9.76)
By (9.75) and Lemma 9.10,

E[W (ρ̄j)|Fξ−j ] = E

[ ∫ ρ̄j∧ξj

ξ−j

µXj−1(u)e
−

∫ u
ξ
−
j

Gj(v) dv
du

∣∣∣∣Fξ−j
]

≤ (1 + 3δ)sE

[ ∫ ρ̄j∧ξj

ξ−j

e
∫ u
τj
Gj−1(v) dv

e
−

∫ u
ξ
−
j

Gj(v) dv
du

∣∣∣∣Fξ−j
]

= (1 + 3δ)se
∫ ξ−j
τj

Gj(v) dvE

[ ∫ ρ̄j∧ξj

ξ−j

e−s(u−τj) du

∣∣∣∣Fξ−j
]

≤ (1 + 3δ)s(ξj − ξ−j )e
∫ ξ−j
τj

Gj(v) dv.

=
2(1 + 3δ)b

qj
e
∫ ξ−j
τj

Gj(v) dv.

Since qj ≥ (1− 2δ)/kN on {τj < ρj} for sufficiently large N by part 3 of Lemma 9.8, it
follows that for sufficiently large N , we have, on {τj < ρj},

E[W (ρ̄j)|Fξ−j ] ≤ 3b

kN
· e

∫ ξ−j
τj

Gj(v) dv.
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Therefore, recalling (9.54) and noting that J ≤ 4TkN for sufficiently large N , we get

P (e−
∫ ξ−j
τj

Gj(v) dvW (t) > C3 for some t ∈ [τj , ρ̄j ]|Fξ−j ) ≤ 3b

C3kN
≤ 12bT

C3J
=

ε

17J
.

Taking conditional expectations of both sides with respect to Fτj yields (9.70).

We now combine Lemmas 9.18, 9.19, and 9.20 to establish that the result of part 1 of
Proposition 3.3 holds with high probability. In view of the fact that 2(s/µ)1−δ ≤ s/2µ for
sufficiently large N , Proposition 9.21 establishes the first two statements of this result.
Proposition 9.22 establishes the last statement.

Proposition 9.21. For sufficiently large N ,

J∑
j=k∗+1

P

({
Xj,1(t) > C3e

∫ t
τj
Gj(v) dv

for some t ∈ [τ∗j , τj+1 ∧ ρj ]
}

∪
{
Xj,1(t) > 2

(
s

µ

)1−δ

for some t ≤ τ∗j ∧ ρj
})
≤ ε

4
.

Proof. Recall from the discussion before (9.55) that if a type j individual appears before
time ξj−1, then ρj occurs at that time, so we only need to consider type j mutations after
time ξj−1. Combining (9.60) and (9.71), we see that for sufficiently large N ,

P (Xj,1(t) > 2(s/µ)1−δ for some t ≤ τ∗j ∧ ρj) = o(k−1
N ). (9.77)

By (9.55), (9.61), (9.63), and (9.70),

J∑
j=k∗+1

P
({
Xj,1(t) > C3e

∫ t
τj
Gj(v) dv

for some t ∈ [τ∗j , τj+1 ∧ ρj ]
}
∩ {j /∈ Θ}

)
≤ ε

8
(9.78)

for sufficiently large N . Because we observed that there can be at most 12 values of j for
which τj < ρj and j ∈ Θ, it follows from (9.61) and (9.69) that for sufficiently large N ,

J∑
j=k∗+1

P
({
Xj,1(t) > C3e

∫ t
τj
Gj(v) dv

for some t ∈ [τ∗j , τj+1 ∧ ρj ]
}
∩ {j ∈ Θ}

)
≤ ε

8
. (9.79)

Note that the values of j that are in Θ are random, so we are using the statement in
Lemma 9.20 that (9.69) holds when j is random, as long as τj is a stopping time.

Proposition 9.22. Let ρ̄j := τj+1∧ρj . Let Aj be the event that an early type j individual
acquires a (j + 1)st mutation at or before time ρ̄j . Let

E1 :=
{
Xj,1(t) ≤ 2(s/µ)1−δ for all t ≤ τ∗j ∧ ρj and j ∈ {k∗ + 1, . . . , J}

}
E2 :=

{
Xj,1(t) ≤ C3e

∫ t
τj
Gj(v) dv

for all t ∈ [τ∗j , ρ̄j ] and j ∈ {k∗ + 1, . . . , J}
}

E3 :=
{

(1− 4δ)e
∫ t
τj
Gj(v) dv ≤ Xj,2(t) ≤ (1 + 4δ)e

∫ t
τj
Gj(v) dv

for all t ∈ [τ∗j , ρ̄j ] and j ∈ {k∗ + 1, . . . , J}
}
.

Then, for sufficiently large N ,

P

(( J⋃
j=k∗+1

Aj

)
∩ E1 ∩ E2 ∩ E3

)
≤ ε

48
.
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Proof. We first bound the probability that an early type j individual gets a (j + 1)st
mutation between times ξj−1 and τ∗j . When E1 occurs, we have, using (3.26),

J∑
j=k∗+1

∫ τ∗j ∧ρj

ξj−1

µXj,1(t) dt ≤ 2µ

(
s

µ

)1−δ J∑
j=k∗+1

(τ∗j ∧ ρj − ξj−1)

≤ 2µ(J − k∗)
(
s

µ

)1−δ

· aN
kN

(
2 +

1

4T

)
=

(
4 +

1

2T

)
(J − k∗)
kN

(
µ

s

)δ
log

(
s

µ

)
→ 0 (9.80)

as N →∞. Because each type j individual acquires mutations at rate µ, the expression
on the right-hand side of (9.80) bounds the probability that E1 occurs and, for some
j ∈ {k∗ + 1, . . . , J}, an early type j individual gets another mutation between times ξj−1

and τ∗j .

Consider next the possibility that such a mutation occurs between times τ∗j and
τj+1 ∧ ρj . In view of (9.64) and the fact that there are at most 12 values of j for which

τj < ρj and j ∈ Θ, the probability that there are fewer than k
1/2
N values of j for which

Xj,1(t) > 0 for some t ∈ [τ∗j , ρj ] tends to one as N →∞. Suppose there are indeed fewer

than k1/2
N such values of j, and suppose E2 and E3 occur. Then, for sufficiently large N ,

e
∫ ρ̄j
τj

Gj(v) dv ≤ Xj,2(ρ̄j)

1− 4δ
≤ 1 + s/µ

1− 4δ
≤ 2s

µ
.

Therefore, using part 2 of Lemma 9.8,

J∑
j=k∗+1

∫ ρ̄j

τ∗j

µXj,1(t) dt ≤ C3k
1/2
N µ

∫ ρ̄j

τj∗

e
∫ t
τj
Gj(v) dv

dt

= C3k
1/2
N µe

∫ ρ̄j
τj

Gj(v) dv

∫ ρ̄j

τ∗j

e−
∫ ρ̄j
t Gj(v) dv dt

≤ C3k
1/2
N µ · 2s

µ

∫ ρ̄j

τ∗j

e−(1−2δ)skN (ρ̄j−t) dt

≤ 2C3

(1− 2δ)k
1/2
N

→ 0 (9.81)

as N →∞. The expression on the right-hand side of (9.81) bounds the probability that
for some j ∈ {k∗ + 1, . . . , J}, an early type j individual gets another mutation between
times τ∗j and ρ̄j . Equations (9.80) and (9.81) thus imply that the probability that E1, E2,
and E3 occur but Aj also occurs for some j ∈ {k∗ + 1, . . . , J} tends to zero as N → ∞.
The result follows.

9.4 Type j individuals between times τj+1 and γj+K

In this subsection, we show that the number of type j individuals behaves quite
predictably between times τj+1 and γj+K . In particular, we show that the result of part 3
of Proposition 3.3 holds with high probability. The key to the argument will be showing
that the fluctuations in Xj(t) are small. We assume throughout the subsection that
j ∈ {k∗ + 1, . . . , J}. Let

ρ′j = ρj ∧ γj+K .
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We apply Corollary 5.3 with τj+1 in place of κ and ρ′j in place of τ to get that for t ≥ τj+1,

Xj(t ∧ ρ′j) = e
∫ t∧ρ′j
τj+1

Gj(v) dv

(
Xj(τj+1) +

∫ t∧ρ′j

τj+1

µXj−1(u)e
−

∫ u
τj+1

Gj(v) dv
du+ Z

τj+1,ρ
′
j

j (t)

)
.

(9.82)
To lighten notation, we will set

Z ′′j (t) := Z
τj+1,ρ

′
j

j (t),

and then the process (Z ′′j (τj+1 + t), t ≥ 0) is a mean zero martingale. By definition, we
have s/µ ≤ Xj(τj+1) ≤ 1 + s/µ, so the first term in (9.82) is very close to the expression
in (3.20). Therefore, to show that (3.20) holds with high probability, we need to show
that the second and third terms in (9.82) are small relative to the first term with high
probability. We begin with a result similar to Lemma 9.10 that holds between times
γj−1+K and γj+K .

Lemma 9.23. For sufficiently large N , if γj−1+K ≤ t < ρ′j , then

Xj−1(t) ≤ (1 + 2δ)k2
Ns

µ
e
∫ t
τj
Gj−1(v) dv

.

Proof. If j ≥ k∗ + 2, the result is immediate from (3.21). Suppose instead j = k∗ + 1.
Then (9.41) holds. Because (1 + s/µ)/[(1− δ)(s/µ)] ≤ 1 + 2δ for sufficiently large N , an
application of (3.13) then gives the result.

The next lemma controls the second term in (9.82). We will consider the event

Fj :=
{
Xj,2(τj+1) ≥ (1− 4δ)e

∫ τj+1
τj

Gj(v) dv}. (9.83)

By Corollary 9.15, with probability at least 1− ε/25, for all j ∈ {k∗ + 1, . . . , J} either Fj
occurs or τj+1 > ρj .

Lemma 9.24. For sufficiently large N , if t ∈ [τj+1, ρ
′
j ] and Fj occurs, then∫ t

τj+1

µXj−1(u)e
−

∫ u
τj+1

Gj(v) dv
du ≤ δs

3µ
.

Proof. First suppose τj+1 ≤ u < ρ′j ∧ γj−1+K . Then by Lemma 9.10,

µXj−1(u)e
−

∫ u
τj+1

Gj(v) dv ≤ (1 + 3δ)se
∫ u
τj
Gj−1(v) dv

e
−

∫ u
τj+1

Gj(v) dv

= (1 + 3δ)se
∫ τj+1
τj

Gj(v) dve−s(u−τj).

On the event Fj , we have

e
∫ τj+1
τj

Gj(v) dv ≤ 1 + s/µ

1− 4δ
, (9.84)

so for sufficiently large N , on Fj ,

µXj−1(u)e
−

∫ u
τj+1

Gj(v) dv ≤ 2s2

µ
e−s(u−τj). (9.85)

Next, suppose γj−1+K ≤ u < ρ′j . Then by Lemma 9.23 and (9.84), for sufficiently large
N , on Fj we have

µXj−1(u)e
−

∫ u
τj+1

Gj(v) dv ≤ (1 + 2δ)k2
Nse

∫ u
τj
Gj−1(v) dv

e
−

∫ u
τj+1

Gj(v) dv

= (1 + 2δ)k2
Nse

∫ τj+1
τj

Gj(v) dve−s(u−τj)

≤ 2k2
Ns

2

µ
e−s(u−τj). (9.86)
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By (9.85) and (9.86), if t ∈ [τj+1, ρ
′
j) then on Fj ,∫ t

τj+1

µXj−1(u)e
−

∫ u
τj+1

Gj(v) dv
du

≤ 2s2

µ

∫ t∧γj−1+K

τj+1

e−s(u−τj) du+
2k2
Ns

2

µ

∫ t

γj−1+K

e−s(u−τj) du.

≤ 2s

µ

(
e−s(τj+1−τj) + k2

Ne
−s(γj−1+K−τj)

)
. (9.87)

If t ∈ [τj+1, ρ
′
j), then τj+1 < ρj , which means τj+1 − τj ≥ aN/3kN by (3.26) and also

γj−1+K − τj ≥ γj − τj = aN . Therefore, by (1.7), we have

s(τj+1 − τj) ≥
aNs

3kN
=

log(s/µ)2

3 logN
→∞ as N →∞ (9.88)

and

k2
Ne
−s(γj−1+K−τj) ≤ k2

Ne
−saN =

k2
Nµ

s
→ 0 as N →∞. (9.89)

The lemma follows from (9.87), (9.88), and (9.89).

It remains to bound the third term on the right-hand side of (9.82). To bound this
term, we will need to control the fluctuations of the martingale (Z ′′j (τj+1 + t), t ≥ 0).
Lemma 9.27 below gives the required second moment bound. Before stating this lemma,
we provide some estimates on Gj(v) in the following two lemmas.

Lemma 9.25. For sufficiently large N , if j ≥ k∗ + 1 +K and u ∈ [τj+1, γj−K ∧ ρ′j), or if
k∗ + 1 ≤ j ≤ k∗ +K and u ∈ [τj+1, aN ∧ ρ′j), then

e
−

∫ u
τj+1

Gj(v) dv ≤ e−skN (u−τj+1)/5. (9.90)

Proof. We will use the results of Proposition 3.5, which by definition hold up to time ρ′j .
Also, recall that K = bkN/4c. First, suppose j ≥ k∗ + 1 +K and t < ρ′j . If t ≤ aN , then by
part 1 of Proposition 3.5, for sufficiently large N ,

Gj(t) = s(j −M(t))− µ ≥ s(j − 3)− µ ≥ skN
5
. (9.91)

If t ∈ (aN , γk∗+1), then by part 2 of Proposition 3.5, for sufficiently large N ,

Gj(t) = s(j −M(t))− µ ≥ s(j − kN − C4)− µ ≥ skN
5
. (9.92)

If t ∈ [γk∗+1, γj−K), then by part 3 of Proposition 3.5, for sufficiently large N ,

Gj(t) = s(j −M(t))− µ ≥ s(j − (j −K − 1)− 2C5)− µ ≥ skN
5
. (9.93)

Combining (9.91), (9.92), and (9.93), we get for u ∈ [τj+1, γj−K ∧ ρ′j)∫ u

τj+1

Gj(v) dv ≥ skN
5

(u− τj+1),

which leads to (9.90). Next, suppose k∗ + 1 ≤ j ≤ k∗ + K. If t < aN ∧ ρ′j , then (9.91)
holds as before, which again yields (9.90).
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Lemma 9.26. For sufficiently large N , if j ≥ k∗ + 1 + K and u ∈ [γj−K , ρ
′
j), or if

k∗ + 1 ≤ j ≤ k∗ +K and u ∈ [aN , ρ
′
j), then

e
−

∫ u
τj+1

Gj(v) dv ≤
(
s

µ

)−kN/241

.

Proof. Recall the definition of M̄(t) from (8.14). Write γ∗ = γk∗+1 if k∗ + 1 ≤ j ≤ k∗ +K

and γ∗ = γj−K if j ≥ k∗+1+K. Also, write i = k∗+1 if k∗+1 ≤ j ≤ k∗+K and i = j−K
if j ≥ k∗ + 1 +K. Suppose u ∈ [γ∗, ρ′j), and note from the definition of ρ′j that this means
u < γj+K . Now∫ u

γ∗
Gj(v) dv =

∫ u

γ∗

(
s(j − M̄(v)) + s(M̄(v)−M(v))− µ

)
dv

=

j+K−1∑
`=i

∫ γ`+1∧u

γ`∧u

(
s(j − `) + s(M̄(v)−M(v))− µ

)
dv. (9.94)

Because positive terms can be bounded below by zero, we have, using (3.26),

j+K−1∑
`=i

∫ γ`+1∧u

γ`∧u
s(j − `) dv ≥

j+K−1∑
`=j+1

s(j − `)(γ`+1 ∧ u− γ` ∧ u)

≥ 2aN
kN

j+K−1∑
`=j+1

s(j − `)

= −K(K − 1)saN
kN

. (9.95)

Using (3.26) and (8.15) and the fact that there are at most 2K terms in the sum, we get

j+K−1∑
`=i

∫ γ`+1∧u

γ`∧u

(
s(M̄(v)−M(v))− µ

)
dv ≥ −2K

(
2C5 +

2aNµ

kN

)
. (9.96)

Now since s/µ→∞ as N →∞ by (1.8) and saN/kN →∞ as N →∞ by (1.7), we have
4C5 + 4aNµ/kN ≤ saN/kN for sufficiently large N . Combining this observation with
(9.94), (9.95), and (9.96) yields∫ u

γ∗
Gj(v) dv ≥ −K

2saN
kN

≥ −kNsaN
16

= −kN
16

log

(
s

µ

)
. (9.97)

It remains to consider the integral between times τj+1 and γ∗. Suppose first that
j ≥ k∗ + 1 +K. In view of part 3 of Proposition 3.6, for sufficiently large N , as long as
γ∗ < ρ′j , we have

γ∗ − τj+1 = γj−K − τj−K + τj−K − τj+1 = aN − (τj+1 − τj−K) ≥ aN −
2(K − 1)aN

kN
≥ aN

3
.

Thus, assuming that γ∗ < ρ′j , Lemma 9.25 implies that for sufficiently large N ,∫ γ∗

τj+1

Gj(v) dv ≥ skN
5

(γ∗ − τj+1) ≥ skNaN
15

=
kN
15

log

(
s

µ

)
. (9.98)

Suppose next that k∗ + 1 ≤ j ≤ k∗ + K. Then, as long as aN < ρ′j , parts 1 and 3 of
Proposition 3.6 imply that for sufficiently large N ,

aN − τj+1 ≥ aN − τk∗+1 + τk∗+1 − τj+1 ≥ aN −
2aN
kN
− 2KaN

kN
≥ aN

3
,
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and the same reasoning that yields (9.98) gives∫ aN

τj+1

Gj(v) dv ≥ kN
15

log

(
s

µ

)
. (9.99)

Now suppose u ∈ [aN , γk∗+1 ∧ ρ′j). Then for v ∈ (aN , u), since k∗ + 1 ≥ k+
N ≥ kN and

M(v) < kN + C4 by the result of part 2 of Proposition 3.5, we have

Gj(v) = s(j −M(v))− µ ≥ s(k∗ + 1− kN − C4)− µ ≥ −sC4 − µ.

Therefore, since (γk∗+1 ∧ ρ′j)− aN ≤ 2aN/kN by part 1 of Proposition 3.6, for sufficiently
large N we have ∫ u

aN

Gj(v) dv ≥ −(sC4 + µ)(u− aN )

≥ −2(sC4 + µ)aN
kN

= −2(C4 + µ/s)

kN
log

(
s

µ

)
≥ − log

(
s

µ

)
. (9.100)

By combining (9.97) and (9.98) when j ≥ k∗+1+K and u ∈ [γj−K , ρ
′
j), and by combining

(9.97), (9.99), and (9.100) when k∗ + 1 ≤ j ≤ k∗ + K and u ∈ [aN , ρ
′
j), we obtain for

sufficiently large N in both cases,∫ u

τj+1

Gj(v) dv ≥
(
kN
15
− kN

16

)
log

(
s

µ

)
− log

(
s

µ

)
≥ kN

241
log

(
s

µ

)
.

The result of the lemma follows.

Lemma 9.27. For sufficiently large N , we have, for all t ≥ 0,

Var(Z ′′j (τj+1 + t)|Fτj+1
) ≤ 21

µkN

on the event Fj .

Proof. By Corollary 5.3 and (6.5), for all t ≥ 0,

Var(Z ′′j (τj+1 + t)|Fτj+1
)

≤ E
[ ∫ τj+1+t

τj+1

e
−2

∫ u
τj+1

Gj(v) dv
(µXj−1(u) + 3Xj(u))1{u<ρ′j} du

∣∣∣∣Fτj+1

]
. (9.101)

Using (9.85) when u < γj−1+K and using (9.86) combined with (9.89) when u ≥ γj−1+K ,
we obtain that if u ∈ [τj+1, ρ

′
j), then for sufficiently large N ,

e
−

∫ u
τj+1

Gj(v) dv
µXj−1(u) ≤ 2s2

µ
. (9.102)

Also, by (9.82) and Lemma 9.24, if u ∈ [τj+1, ρ
′
j), then on the event Fj , for sufficiently

large N ,

e
−

∫ u
τj+1

Gj(v) dv
Xj(u) = Xj(τj+1) +

∫ u

τj+1

µXj−1(w)e
−

∫w
τj+1

Gj(v) dv
dw + Z ′′j (u)

≤ 1 +
s

µ
+
δs

3µ
+ Z ′′j (u). (9.103)
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Combining (9.101), (9.102), and (9.103), and noting that 2s2/µ+3(1+s/µ+δs/3µ) ≤ 4s/µ

for sufficiently large N , we get

Var(Z ′′j (τj+1 + t)|Fτj+1) ≤ E
[ ∫ τj+1+t

τj+1

e
−

∫ u
τj+1

Gj(v) dv
(

4s

µ
+ 3Z ′′j (u)

)
1{u<ρ′j} du

∣∣∣∣Fτj+1

]
(9.104)

on Fj for sufficiently large N .
To bound the right-hand side of (9.104), we split the integral into two pieces. Let

γ′ = γj−K if j ≥ k∗ + 1 + K, and let γ′ = aN if k∗ + 1 ≤ j ≤ k∗ + K. Consider first the
contribution to the integral from u < γ′. Because the integrand in (9.101) is nonnegative
and Z ′′j (u) = Z ′′j (ρ′j) for all u ≥ ρ′j , we have 4s/µ+ 3Z ′′j (u) ≥ 0 for all u ≥ τj+1. Then by
Lemma 9.25, for all u ≥ 0,

e
−

∫ u
τj+1

Gj(v) dv
(

4s

µ
+ 3Z ′′j (u)

)
1{u<γ′∧ρ′j} ≤ e

−skN (u−τj+1)/5

(
4s

µ
+ 3Z ′′j (u)

)
.

Combining this observation with Fubini’s Theorem and the fact that (Z ′′j (τj+1 + t), t ≥ 0)

is a mean zero martingale, we get for all t ≥ 0,

E

[ ∫ τj+1+t

τj+1

e
−

∫ u
τj+1

Gj(v) dv
(

4s

µ
+ 3Z ′′j (u)

)
1{u<γ′∧ρ′j} du

∣∣∣∣Fτj+1

]
≤ E

[ ∫ ∞
τj+1

e−skN (u−τj+1)/5

(
4s

µ
+ 3Z ′′j (u)

)
du

∣∣∣∣Fτj+1

]
=

4s

µ

∫ ∞
τj+1

e−skN (u−τj+1)/5 du

=
20

µkN
. (9.105)

Likewise, by Lemma 9.26,

e
−

∫ u
τj+1

Gj(v) dv
(

4s

µ
+ 3Z ′′j (u)

)
1{γ′≤u<ρ′j} ≤

(
s

µ

)−kN/241(
4s

µ
+ 3Z ′′(u)

)
. (9.106)

Also, using (3.26), which is valid up to time ρ′j ,

ρ′j − τj+1 = aN + ρ′j − γj+1 ≤ aN +
2KaN
kN

≤ 3aN
2
. (9.107)

Combining (9.106) and (9.107) with with Fubini’s Theorem and the fact that the process
(Z ′′j (τj+1 + t), t ≥ 0) is a mean zero martingale, we get for all t ≥ 0,

E

[ ∫ τj+1+t

τj+1

e
−

∫ u
τj+1

Gj(v) dv
(

4s

µ
+ 3Z ′′j (u)

)
1{γ′≤u<ρ′j} du

∣∣∣∣Fτj+1

]
≤ E

[ ∫ τj+1+3aN/2

τj+1

(
s

µ

)−kN/241(
4s

µ
+ 3Z ′′(u)

)
du

∣∣∣∣Fτj+1

]
≤ 6saN

µ

(
s

µ

)−kN/241

=
6

µ

(
s

µ

)−kN/241

log

(
s

µ

)
. (9.108)

Because kN (s/µ)−kN/241 log(s/µ) → 0 as N → ∞, as can be easily seen by taking
logarithms, the lemma follows from (9.104), (9.105), and (9.108).
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Lemma 9.28. For sufficiently large N ,

P

({
|Z ′′j (t)| > δs

3µ
for some t ∈ [τj+1, ρ

′
j ]

}
∩ Fj

)
≤ 756µ

δ2s2kN
.

Proof. By the L2 Maximum Inequality for martingales and Lemma 9.27, on the event Fj ,

P

(
sup
t≥0
|Z ′′j (τj+1 + t)| > δs

3µ

∣∣∣∣Fτj+1

)
≤ 36µ2

δ2s2
· sup
t≥0

Var(Z ′′j (τj+1 + t)|Fτj+1
) ≤ 756µ

δ2s2kN
.

Taking expectations of both sides yields the result.

Corollary 9.29. For sufficiently large N ,

J∑
j=k∗+1

P

(
Xj(t) /∈

[
(1− δ)s

µ
e
∫ t
τj+1

Gj(v) dv
,

(1 + δ)s

µ
e
∫ t
τj+1

Gj(v) dv
]

for some t ∈ [τj+1, ρ
′
j ]

)
≤ ε

24
.

Proof. By (9.82), Lemmas 9.24 and 9.28, and the fact that s/µ ≤ Xj(τj+1) ≤ (s/µ)(1+δ/3)

for sufficiently large N by (1.8), we have

J∑
j=k∗+1

P

(
Xj(t) /∈

[
(1− δ)s

µ
e
∫ t
τj+1

Gj(v) dv
,

(1 + δ)s

µ
e
∫ t
τj+1

Gj(v) dv
]

for some t ∈ [τj+1, ρ
′
j ]

)

≤
J∑

j=k∗+1

(
756µ

δ2s2kN
+ P (F cj ∩ {ρj ≥ τj+1})

)
.

Because
∑J
j=k∗+1 P (F cj ∩ {ρj ≥ τj+1}) ≤ ε/25 by Corollary 9.15 and Jµ/(δ2s2kN )→ 0 as

N →∞ by (1.8), the result follows.

9.5 Type j individuals after time γj+K

In this subsection, we show that the number of type j individuals decreases rapidly
after time γj+K . More specifically, we show that the results of parts 4 and 5 of Proposition
3.3 hold with high probability. We will consider the event

Hj :=

{
(1− δ)s

µ
e
∫ γj+K
τj+1

Gj(v) dv ≤ Xj(γj+K) ≤ (1 + δ)s

µ
e
∫ γj+K
τj+1

Gj(v) dv

}
.

Corollary 9.29 implies that when t = γj+K , with probability at least 1 − ε/24, for all
j ∈ {k∗ + 1, . . . , J} either Hj occurs or γj+K > ρj . Recall also the definition of the event
Fj from (9.83).

Lemma 9.30. Suppose j ∈ {k∗ + 1, . . . , J}. For sufficiently large N , if ` ≤ j − 1, then

X`(γj+K)

Xj(γj+K)
≤ 3k2

N

(
s

µ

)−1/13

(9.109)

on the event Fj ∩Hj ∩ {γj+K < ρj}.

Proof. We will assume throughout the proof that γj+K < ρj . It follows from Lemma 9.23
that if k∗ ≤ ` ≤ j − 1 and γj+K < ρj , then

X`(γj+K) ≤ (1 + 2δ)k2
Ns

µ
e
∫ γj+K
τ`+1

G`(v) dv. (9.110)
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Therefore, on the event Hj ,

X`(γj+K)

Xj(γj+K)
≤ (1 + 2δ)k2

N

1− δ
e
∫ τj+1
τ`+1

G`(v) dve
∫ γj+K
τj+1

(G`(v)−Gj(v)) dv. (9.111)

Recall that on the event Fj , equation (9.84) holds, and therefore e
∫ τj+1
τj

Gj(v) dv ≤ 2s/µ for
sufficiently large N . Also, by Lemma 4.5, in view of the assumption that γj+K < ρj , the
same result holds when j is replaced by h ∈ {k∗+ 1, . . . , j− 1}. Therefore, for sufficiently
large N , we have

e
∫ τj+1
τ`+1

G`(v) dv ≤
j∏

h=`+1

e
∫ τh+1
τh

Gh(v) dv ≤
(

2s

µ

)j−`
. (9.112)

By (3.26), we have γj+K − τj+1 = aN + τj+K − τj+1 ≥ aN + aN (K − 1)/3kN ≥ 14aN/13

for sufficiently large N . Therefore,∫ γj+K

τj+1

(G`(v)−Gj(v)) dv = −s(j − `)(γj+K − τj+1)

≤ −14(j − `)saN
13

= −14(j − `)
13

log

(
s

µ

)
. (9.113)

By (9.111), (9.112), and (9.113), on the event Fj ∩ Hj ∩ {γj+K < ρj}, we have for
sufficiently large N ,

X`(γj+K)

Xj(γj+K)
≤ (1 + 2δ)k2

N

1− δ

(
2

(
s

µ

)−1/13)j−`
.

Because 2(s/µ)−1/13 → 0 as N → ∞, for sufficiently large N this expression is largest
when ` = j − 1, and thus (9.109) holds whenever k∗ ≤ ` ≤ j − 1.

Next, suppose 0 ≤ ` ≤ k∗ − 1. Then by (3.12), we have

X`(γk∗+K) ≥ (1− δ)X`(t
∗)e

∫ γk∗+K
t∗ G`(v) dv,

and by (9.26), we have X`(γk∗+K) ≤ Xk∗(γk∗+K). Therefore, by (3.13),

X`(γj+K) ≤ k2
NX`(t

∗)e
∫ γk∗+K
t∗ G`(v) dve

∫ γj+K
γk∗+K G`(v) dv

≤ k2
N

1− δ
X`(γk∗+K)e

∫ γj+K
γk∗+K G`(v) dv

≤ k2
N

1− δ
Xk∗(γk∗+K)e

∫ γj+K
γk∗+K Gk∗ (v) dv

.

Now using Lemma 9.10,

X`(γj+K) ≤ (1 + 3δ)k2
Ns

(1− δ)µ
e
∫ γj+K
τk∗+1

Gk∗ (v) dv
,

which is the same as (9.110) when ` = k∗ except for the constant in front involving δ.
Therefore, (9.109) holds on Fj ∩Hj ∩ {γj+K < ρj} in this case as well.

Proposition 9.31. For sufficiently large N ,

J∑
j=k∗+1

P

({
Xj(t) >

k2
Ns

µ
e
∫ t
τj+1

Gj(v) dv
for some t ∈ (γj+K , ρj ]

}

∪
{
Xj(t) > 0 for some t ∈ [γj+L, ρj ]

})
<

ε

12
. (9.114)
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Proof. Suppose j ∈ {k∗ + 1, . . . , J}. Recall that Sj(t) = X0(t) +X1(t) + · · ·+Xj(t) for all
t ≥ 0. By Proposition 5.6 and Remark 5.7, the process

(
e−

∫ (γj+K+t)∧ρj
γj+K

Gj(v) dvSj((γj+K + t) ∧ ρj), t ≥ 0
)

is a nonnegative supermartingale. Therefore,

P

(
sup

t∈[γj+K ,ρj ]

e
−

∫ t
γj+K

Gj(v) dv
Sj(t) >

k2
N

2
Sj(γj+K)

∣∣∣∣Fγj+K) ≤ 2

k2
N

. (9.115)

Since j ≤ J ≤ 4TkN for sufficiently large N , on the event Fj ∩Hj ∩{γj+K < ρj} ∈ Fγj+K ,
Lemma 9.30 implies that for sufficiently large N ,

Sj(γj+K) ≤
(

1 + 3(j − 1)k2
N

(
s

µ

)1/13)
Xj(γj+K) ≤

(
1 + 12Tk3

N

(
s

µ

)1/13)
Xj(γj+K).

Since k3
N (s/µ)−1/13 → 0 as N →∞, as can be seen by taking the logarithm and applying

(1.7), for sufficiently largeN we have Sj(γj+K) ≤ (3/2)Xj(γj+K) on Fj∩Hj∩{γj+K < ρj}.
Combining this observation with (9.115) gives that for sufficiently large N ,

P

(
Sj(t) >

3k2
N

4
e
∫ t
γj+K

Gj(v) dv
Xj(γj+K) for some t ∈ (γj+K , ρj ]

∣∣∣∣Fγj+K) ≤ 2

k2
N

on Fj ∩Hj . Since Xj(t) ≤ Sj(t) for all t ≥ 0 and (3/4)Xj(γj+K) ≤ (s/µ)e
∫ γj+K
τj+1

Gj(v) dv on
Hj , it follows that on Fj ∩Hj ,

P

(
Xj(t) >

k2
Ns

µ
e
∫ t
τj+1

Gj(v) dv
for some t ∈ (γj+K , ρj ]

∣∣∣∣Fγj+K) ≤ 2

k2
N

. (9.116)

Also, on the complement of the event in (9.115), if ρj ≥ γj+L then

Sj(γj+L) ≤ k2
N

2
e
∫ γj+L
γj+K

Gj(v) dvSj(γj+K).

Reasoning exactly as in (9.29), (9.30), (9.31), and (9.32) but with j in place of k∗, we get
that on the complement of the event in (9.115), if ρj ≥ γj+L then for sufficiently large N ,

Sj(γj+L) ≤ Nk2
N

2

(
s

µ

)−16kN/15

.

As in the discussion following (9.32), we see that the right-hand side tends to zero as
N → ∞ and thus must be less than one if N is large enough. Because Sj(γj+L) is an
integer, it follows that Sj(γj+L) = 0, and therefore that Xj(t) = Sj(t) = 0 for all t ≥ γj+L.
Combining this observation with (9.116), we get that the sum of the probabilities in
(9.114) is bounded above by

J∑
j=k∗+1

(
2

k2
N

+ P (Fj ∪Hj)

)
.

By Corollaries 9.15 and 9.29, this expression is at most 2J/k2
N + ε/25 + ε/24, which is

less than ε/12 for sufficiently large N .

We now combine the results of this section to complete the proof of Proposition 3.8.
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Proof of part 3 of Proposition 3.8. From Corollary 9.15, Proposition 9.21, Proposition
9.22, Corollary 9.29, and Proposition 9.31, we get

J∑
j=k∗+1

P ({ζ0 =∞} ∩ {ζ1,j ≤ ρj}) ≤
ε

25
+
ε

4
+

ε

48
+

ε

24
+

ε

12

for sufficiently large N . Also, Remark 9.7 gives that for sufficiently large N ,

J∑
j=0

P ({ζ0 =∞} ∩ {ζ1,j ≤ ρj}) <
ε

16
.

Since ε/25+ε/4+ε/48+ε/24+ε/12+ε/16 < ε/2, it follows that (9.1) holds for sufficiently
large N . As noted at the beginning of section 9, this completes the proof of part 3 of
Proposition 3.8.
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