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Extreme statistics of non-intersecting Brownian paths®
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Abstract

We consider finite collections of N non-intersecting Brownian paths on the line and on
the half-line with both absorbing and reflecting boundary conditions (corresponding to
Brownian excursions and reflected Brownian motions) and compute in each case the
joint distribution of the maximal height of the top path and the location at which this
maximum is attained. The resulting formulas are analogous to the ones obtained in [28]
for the joint distribution of M = max,ecr{A2(z)—2*} and T = argmax, . { A2(z)—2},
where A; is the Airy, process, and we use them to show that in the three cases the
joint distribution converges, as N — oo, to the joint distribution of M and 7. In
the case of non-intersecting Brownian bridges on the line, we also establish small
deviation inequalities for the argmax which match the tail behavior of 7. Our proofs
are based on the method introduced in [9, 6] for obtaining formulas for the probability
that the top line of these line ensembles stays below a given curve, which are given in
terms of the Fredholm determinant of certain “path-integral” kernels.
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1 Introduction and main results

Consider a collection of N Brownian bridges (Bi(t),..., Bn(t)):c[o,1), starting and
ending at the origin, and condition them (in the sense of Doob) to not intersect in the
region ¢t € (0,1). We will refer to this model as non-intersecting Brownian bridges,
and we will always assume that the paths are ordered so that B;(t) < --- < By(t) for
t € (0,1). This model together with its many variants have been studied intensively in
the last decade or so, both in the probability and statistical physics literatures (see for
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Extreme statistics of non-intersecting Brownian paths

instance [45, 1, 46, 21, 40, 10, 14, 16, 24, 39, 20, 15, 25] among many others). Most of
the recent interest in the study of systems of non-intersecting paths stems from their
relation with random matrix theory (RMT) and the Kardar-Parisi-Zhang (KPZ) universality
class. For an overview of this relation in the context of this paper we refer the reader
to the introduction of [29]; for a more general overview of the other aspects of the KPZ
universality class which are relevant to our discussion we mention [36, 7, 38].

This paper is a continuation of [29], where we studied the distribution of the random
variable

bb
— B 1.1
MY Jnax, N (1), (1.1)

the maximal height attained by the top path in our collection of non-intersecting Brownian
bridges. The main result of [29] is that, for fixed N, (M&P)? is distributed as the
largest eigenvalue of a certain random matrix model, known as the Laguerre Orthogonal
Ensemble. Our goal now is twofold: first, to study the location at which the maximum
in (1.1) is attained, and, second, to extend our results to the case of non-intersecting
Brownian motions on the half-line. Before stating our results we will briefly explain the
motivation behind the result obtained in [29] and discuss the context in which the study
of the location of the maximum is natural.

1.1 Last passage percolation and the Airy process

In (geometric) last passage percolation (LPP) one considers a family {w(z’, J)}ijez+ of
independent geometric random variables with parameter ¢ (i.e. P(w(i,j) = k) = q(1—q)*
for £ > 0) and lets Il be the collection of up-right paths of length N, that is, paths
7w = (7o, ..., ) such that m; — m;—1 € {(1,0),(0,1)}. The point-to-point last passage time
is defined, for M, N € Z™, by

M+N
point (M,N) = max Z w(m;),
w€llnya:(0,0)—(M,N) ‘=0

where the maximum is taken over all up-right paths connecting the origin to (M, N).
[18] proved that there are explicit constants c¢; and ¢, depending only on ¢, such that

P(LP™(N,N) < 1N + esNY/3r) — Foug(r)

as N — oo, with Fgyg the Tracy-Widom GUE distribution from random matrix theory,
that is, the distribution of the asymptotic fluctuations of the largest eigenvalue of a
random matrix drawn from the Gaussian Unitary Ensemble [43] (an Hermitian matrix
with complex Gaussian entries). The above convergence still holds if one considers
LPOmY(N + kN — k) for any fixed k instead of LP°™ (N, N). [33] turned next to the
study of the asymptotic fluctuations of the process k — LP°"(N + k, N — k). Consider
the process ¢t — Hy(t) defined by linearly interpolating the values given by scaling
LPomt( N M) through the relation

LPO"Y(N 4 kN — k) = ;N + o N3 Hy (esN~2/3k),

where c3 is another explicit constant which depends only on ¢. Then
Hy(t) — Ag(t) — 12 (1.2)

in distribution, in the topology of uniform convergence on compact sets, where A is
the Airy, process [33, 19]. The Airy,; process is a stationary, non-Markovian process,
with marginals given by the Tracy-Widom GUE distribution and with finite-dimensional
distributions given by an explicit Fredholm determinant formula, and is believed to
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describe the asymptotic spatial fluctuations for all models in the KPZ universality class
with curved initial data. On the other hand one can define the point-to-line last passage
time by
L'e(N) =  max LPO"Y(N +k N —k).
k=—N,...,N

From the definition of Hy, [19] showed based on (1.2) that

ey 'NTYB[LIe(N) — ¢; N| — sup{As(t) — t*} (1.3)
teR
in distribution. But it was known separately [5] that the distribution of the quantity
on the left converges to Fgog, the Tracy-Widom GOE distribution [44], which is the
analog of Fgug in the case of real symmetric Gaussian random matrices. From this, [19]
deduced the remarkable fact that

P (221{( (Az(t) —t2) < m) = Faop(4'/3m). (1.4)

Since it will play an important role in the sequel, let us stop for a moment to define
Foor more precisely. We say that an N x N random matrix A is drawn from the
Gaussian Orthogonal Ensemble (GOE) if A;; = N(0,1) for i > j and A;; = N(0,2), where
N (a,b) denotes a Gaussian random variable with mean a and variance b and all the
Gaussian variables are independent (subject to the symmetry condition). By the Wigner
semicircle law [49] the largest eigenvalue A\qor(N) of A is expected to lie near 2v/N.
The Tracy-Widom GOE distribution describes the fluctuations of Agor (V) around 2v/N:

Fgor(m) = lim P(Acor(N) < 2VN +N~/m).

It is given explicitly by
FGOE(m) = det(l — POBmPO)L2(]R)7 (15)

where P, denotes the projection onto the interval (m, c0) (i.e. P, f(2) = f(x)1z>m for
f € L*(R)), B,, is the integral operator acting on L?(R) with kernel

B (z,y) = Ai(x +y +m),

and Ai denotes the Airy function. The determinant in (1.5) means the Fredholm determi-
nant on the Hilbert space L?(R). For the definition, properties and some background
on Fredholm determinants, which can be thought of as the natural generalization of
the usual determinant to infinite dimensional Hilbert spaces, we refer the reader to [36,
Section 2].

A direct proof of (1.4) was provided in [9]. The proof is based in first obtaining a
Fredholm determinant formula for probabilities of the form P (Ax(t) < g(t), V ¢ € [{,7]),
and then choosing g(t) = t? + m and computing the limit as / — —oo and r — oco. This
method has been applied to obtain several other results about the Airy, and related
processes (see [6] and the review [36]), and is the basis of our arguments in [29]
and in this paper. Arguably the most important of those applications has been the
computation of the distribution of the location at which the maximum in (1.4) is obtained.
To understand the interest in this distribution, consider the random variable

TAPP = argmax LX™(N +k, N — k)
k=—N,...,N

(the location k£ which solves the maximization problem need not be unique, so for
simplicity we take the argmax to mean the leftmost point at which the maximum is

EJP 22 (2017), paper 102. http://www.imstat.org/ejp/
Page 3/40


http://dx.doi.org/10.1214/17-EJP119
http://www.imstat.org/ejp/

Extreme statistics of non-intersecting Brownian paths

attained). The random variable T]i,pp corresponds to the location of the endpoint of the
maximizing path in point-to-line LPP. [27] derived non-rigorously the scaling relation
|TAPP| ~ N2/3. In view of this we define the rescaled endpoint T,** = ¢s N~2/3TPP, so
that
TP = argmax Hy(t).
|t <eg ' N2/3

Since Hy (t) converges to Aj(t) — 2, one expects that 7, converges in distribution to

T := argmax {As(t) — t°}, (1.6)
teR

provided of course that this last argmax is unique. Johansson proved in [19] that, under
the assumption of uniqueness of this argmax, which was proved several years later
independently in [8] and [28] (and slightly later, in much greater generality, in [32]), one

indeed has _
( —— (1.7)

N—oo

in distribution. By KPZ universality, it is expected that 7 should appear through similar
considerations for many other models in the KPZ class. In particular, 7 should describe
the asymptotic distribution of the endpoint for a very broad class of point-to-line directed
random polymers (of which LPP should be thought of as a zero-temperature limit). While
the computation of the polymer endpoint distribution has interested statistical physicists
since at least the mid 90’s [17], its identification with 7 dates back only to [19]. After
several (non-rigorous) attempts in the physics literature at computing the distribution of
T which yielded only partial progress, the answer came in [28], who used the method
introduced in [9] to derive a formula for the joint density of M and 7, with

_ 42
M= max {Ax(t) — 7} (1.8)
(see (3.18) below for the explicit formula for this density).

1.2 Non-intersecting Brownian bridges and LOE

As we mentioned above, the Airy, process is expected to arise in the description
of the asymptotic spatial fluctuations of a wide class of models in the KPZ universality
class. While this conjecture, in its full generality, remains one of the central open
problems in the field, it is known to hold for a wide class of models, among them non-
intersecting Brownian bridges. More precisely, it holds that the top curve in a system of
N non-intersecting Brownian bridges converges to the Airy, process minus a parabola:

2NV (B (3(1+ N72) = V) — Ag(t) - ¢ (1.9)

in the sense of convergence in distribution in the topology of uniform convergence on
compact sets. This result has long been well-known in the sense of convergence of
finite-dimensional distributions; the stronger convergence stated here was proved in [8].
In view of (1.9), a similar argument as the one leading to (1.4) shows that

lim ]P(2N1/6 (MR — VN) < m) = Foor(4Y/3m)
N—o00
(where, we recall, M was defined in (1.1)).

The question we wanted to answer in our previous article [29] was whether there
is a finite N version of this result. Suprisingly, the answer turned out to be positive,
connecting MRP with another random matrix ensemble. Let X be an n x N matrix whose
entries are i.i.d. N(0,1), where we assume n > N. Then the random N x N matrix
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M = XTX is said to be drawn from the Laguerre Orthogonal Ensemble (and is often
referred to also as a Wishart matrix, as it can be thought of essentially as the sample
covariance matrix of n independent samples of an N-variate Gaussian population). By
the Marcenko-Pastur law [26] the largest eigenvalue Ao (V) of M lies at (4 + o(1))N.
Assuming that n = N + p for some fixed p, the fluctuations of A\ o (V) around 4N are of
order N'/3, and the limiting law is again Tracy-Widom GOE:

lim IP(/\LOE(N) S 4N + 24/3N1/3m) = FGOE(T)’L).

N —oc0

In all that follows we will assume that n = N + 1. For this choice we let
Froe,n(m) =P(ALor(N) <m).

We introduce also the Hermite kernel®

N—-1
KRP(@,9) = Y en(@)en(y), (1.10)
n=0

where the ¢,,’s are the harmonic oscillator functions (which we will refer to as Her-
2

mite functions), defined as ¢, (z) = e~* /?p,,(z) with p,, the n-th normalized Hermite

polynomial. We introduce also the reflection operator o,,, given by

omf(x) = f(2m —x). (1.11)

Theorem 1.1 ([29]). For every fixed N we have
]P(\/éM‘;’Vb < m) = det (1 - K 0mKR?) 1. ) = Fiom,v(2m?).

In particular 4 M3, is distributed as the largest eigenvalue of the LOE matrix M intro-
duced above.

The proof of the first equality is similar to that of (1.4) in [9] and will be described in
Section 2 in the context of Brownian motions on a half-line. The second equality was
also proved in [29] (through an independent argument). Theorem 1.1 can be recast in
terms of the probability that (GUE) Dyson Brownian motion hits an hyperbolic cosine
barrier (see [29, Prop. 1.4]), but we will not adopt that perspective in this paper.

1.3 Location of the maximum

Our first result provides a formula for the distribution of

TaP := argmax By (t),
te[0,1]
the location at which the maximum height of the top line in the system of N non-
intersecting Brownian bridges is attained (note that, since the top path is obviously
absolutely continuous with respect to a Brownian bridge, the argmax in this case is
easily seen to be almost surely unique). Analogously to the result of [28], we will provide
in fact an explicit formula for the joint density of the max and the argmax.

Form >0and ¢ € (0,1) let
1
t) = —— (1.12)
90 = man

1This is just the standard Hermite kernel which appears elsewhere in the literature (and, in particular, in
[29]); the superscript bb in our notation stands for Brownian bridges, and is included to distinguish the kernel
from similar ones which will be introduced below in the case of Brownian bridges on the half-line.
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and define the function

t \—%
h(n) = Vag()*2 (1) [enlm(®) + 2t = Umg(Dgn(mg(h)]  (1.13)
and the rank one kernel
N-1 N-1
W) = (z ule) m)) (z oult) zmn)) C aw
n=0 n=0
We note also that, by the second equality in Theorem 1.1 and the fact that Fr.or(m) > 0
for all m > 0, | — KXo, KRP is invertible for all such m.

Theorem 1.2. Let fX"(m,t) denote the joint density of MRP and TP. Then for all m > 0
and allt € (0,1),
N (m,t) = tr[(1 = KR o5, KR) TR, 4] Froe.n (4m?)

(1.15)
= det(l — Kkj)\})gﬁmKlj)\}) + \II}])\}),m,t) — FLOE,N(4m2).

04 r y

00b v v e e e e e e e S
1.6 1.8 2.0 22 24 2.6 2.8

m

Figure 1: Contour plot of the joint density of MY and T with N = 6.

The second equality in (1.15) follows directly from the fact that \I/R}’)m’t is rank one.
Note, moreover, that all the operators appearing above are finite-rank, and thus the
formulas can be easily expressed in terms of the determinant and trace of finite matrices
(see e.g. [29, eqn. (3.6)]). In particular, the numerical computation of f}i,b is completely
straightforward (see Figure 1 for a contour plot). We remark that this formula is entirely
analogous to the one derived in [28] for the joint density of M and 7 (see (3.18) below).
Furthermore, we obtain as a consequence a direct proof of the convergence of the
rescaled argmax of By (t) to that of Ay (t) — t%:

Corollary 1.3. Let
MBP = 2NVOS(MBY —V/N)  and  TE° =2NY3(TRY - 1).
Then we have the convergence in distribution

— 00
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This result can also be derived from (1.9), similarly to how the analogous result for
last passage percolation (which is (1.3) together with (1.4)) was derived (under the
assumption of uniqueness) in [19]; here (1.9) shows that if one restricts the maximizer
to lie in an interval of the form [1(1 — N='/3K), 2(1 + N~!/3K)] for any fixed K > 0 then
the scaled restricted maximizer converges in distribution to argmax;c[_ g x{A2(t) — 21,
and from this the result can be obtained by using arguments in [8] to show that the
probability that the maximizer lies outside such an interval can be made arbitrarily small
as N — oo provided that one chooses a large enough K.

Recall that, as we mentioned in Section 1.1, the random variable 7, which is the limit
of 7~'Ii,pp, is expected to appear similarly in a wide class of models in the KPZ class. As far
as we are aware, Corollary 1.3, together with Corollary 1.7 below, constitute the first
rigorous proofs in this direction after the LPP case (1.7).

We turn now to studying the rate at which of 72> concentrates around its expected
location % For the case of the polymer endpoint distribution (which is centered around
the origin), it was conjectured in [17] that P(|7| > ¢) ~ e=<* for some ¢ > 0. The upper
bound was first proved in [8] with an unknown c. Later on, [37] gave a different proof
of the upper bound with ¢ = % together with a lower bound with a different constant.
The same paper conjectured that the right constant is in fact %, which was then proved
through a combination of the arguments of [39] and [4].

In our case note that, by Corollary 1.3, as NV gets large the location of the argmax
74P concentrates around 3 at a scale of N ~1/3, In view of the tail behavior of 7" and the
scaling in Corollary 1.3, one expects then that, optimally, the probability P(|75" — %| > ¢)
should decay like e~ #Ne* for small . This can be thought of as the small deviation
regime for the concentration of TEP and is the content of our next result, where we get
the predicted upper bound as well as a lower bound with a different constant.

1e2/3-1

1e%/3-1 1e%-1
2 e2/341

~ 0.16 and 5 > 55— =~ 0.38. There are ¢y, cy,c3,n9 >0

Theorem 1.4. Lete; = 2 11

such that
—c 3 __ 32 3 2/3
cre caNe < IP(‘T]‘\bfb %| > 8) < cge Ne’+O(N ),

with the upper bound holding uniformly in N € IN and ¢ € (0,¢2) satisfying Ne3 > ng and
the lower bound holding uniformly in N € N and ¢ € (0, ;) satisfying Ne® > nq.

The proof is based on the arguments of [37] together with the small deviation
estimates for F1og n(m) established in [22] (these estimates can be used to obtain
similar tail bounds for MRP, see also (4.4) and (4.6) below).

1.4 Non-intersecting Brownian motions on the half-line

We consider now systems of non-intersecting Brownian motions which are restricted
to stay in the positive half-line. There are two standard ways to enforce this condition.
The first one is to put an absorbing boundary at the origin, which corresponds to
conditioning the Brownian bridges to stay positive and leads to the process known as
a Brownian excursion. In this case we will denote the N paths by BY¢(t) < --- < BXe(t)
(that is, we consider N independent Brownian excursions starting from and ending at the
origin and condition them, in the sense of Doob, to not intersect). The second possibility
is to put a reflecting wall at the origin, which corresponds to considering reflected
Brownian bridges. In this second case we will use the notation BiPP(¢) < --- < BiP(¢).

In [47] Fredholm determinant formulas for the finite-dimensional distribution of both
systems were derived. The resulting formulas are analogous to those for non-intersecting
Brownian bridges, and using the general result of [6] this will allow us to derive formulas
for the hitting probabilities of the top path of these systems. Based on these we will
derive an explicit Fredholm determinant formula for the maximal height of these systems.
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As we will see, the resulting formulas have the same structure as the Fredholm
determinant formula given for the Brownian bridge case in Theorem 1.1. In fact, all that
changes is that the Hermite kernel KE’\}Z’ gets replaced by

KR (,9) Z Pont1(2)P2n41(Y) (1.16)

in the absorbing case and by

N—-1

K" (2,9) = Y @an(@)@an(y) (1.17)

n=0

in the reflecting case, while the reflection operator g,, gets replaced by more complicated
operators composed of a infinite sum of reflections,

v)=2> f(2km—=z) and o f(z) —22 DF f(2km — 2).

We note that the Hermite functions with odd and even indices appearing in (1.16) and
(1.17) are, respectively, odd and even. This will be important in the proof of our formulas.

Theorem 1.5. Let

_ B rbb _ Brbb )
MR = mox BY(t)  and MY = max By"(t)

Then for any m > 0, and with x standing for either be or rbb, we have
P(ﬂwv < m) = det(1 — Ki 0, Ki) 2 ) -

It is natural to wonder whether these two probability distributions have an interpre-
tation in terms of RMT, as in the case of MR}), but we are not aware of any.

We turn now to the distribution of the argmax for the top path of non-intersecting
Brownian excursions and reflected Brownian bridges. To that end we introduce, for
m > 0andt € (0,1), the functions

t 7% s . 1Yy 2 2
be(n) = 2000 (n) + 2V2g() (=) T Y et nto

k=1
x [l ((2k + 1)mg(t)) + (2k + 1)(2t — 1)mg(t)en ((2k + 1)mg(t))], (1.18)

and

oo

wrbb( )= 2wbb (n) + 2\/§g(t)3/2 (1 l t)’% Z(_1)k62k(k+1)(2t—1)m2g(t)2
k=1

x [l ((2k + 1)mg(t)) + (2k + 1)(2t — 1)mg(t)en ((2k + 1)mg(t))],

where z/J 't and g( ) were defined in (1.12) and (1.13), and the rank one kernels
N—1
z,y) = (Z Pon+1(2)¥py (20 + 1 ) (Z Pont1(2)Ypey (20 + 1))»
\I,rbb (Z 0o ()P (20) )(Z pon (@ rbH t(2n)).
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Theorem 1.6. Let

To° := argmax BX*(t) and  TEPP := argmax BYP ()
t€[0,1] t€[0,1]
and let f{¢(m,t) and fi®(m,t) be the joint densities of (MXE, T®) and (MRP, TEPP),
respectively. Then for any t € (0,1) and any m > 0, and with  standing for either be or
rbb, we have

Fiv(m, ) = tr[(1 = Kivolg, Ki) 05, | det (1= Ky o, K
- det(l — Ko, K + \p:n,t) - det(l - Kyvgj@mm) .

Note that, in principle, Theorem 1.5 can be obtained as a corollary of this result by
integrating the joint densities with respect to ¢ (see [28, Sec. 3], where this is done in
the case of the Airy, process).

By KPZ universality, it is expected that both B and B, suitably rescaled, converge
to the Airys process (in fact, in the sense of finite-dimensional distributions, this can be
proved just as for the case of Brownian bridges, based on the formulas appearing in [47],
see (2.1)-(2.3) below). Hence one should expect the analog of Corollary 1.3 to hold. This
is the content of our last result, which we prove based on our formulas for f{° and fiPP.

Corollary 1.7. Let

M = 2T/S NS (M — V2N, The = 24/3N1/3(The _ 1,
J\\/l/g\l[)b _ 27/6N1/6(M1§\l[9b B \/ﬁ% ﬁbb — 94/31/3 (7—11‘Vbb _ %)

Then we have, in distribution,

(MR TR) ——— (M, T)  and (MR, TR") —— (M, T).
N—o0 N—oo
We remark that the convergence of M‘f\? and of /(/lv%’b to M has in fact already
been proved by [24], who used discrete orthogonal polynomials and Riemann-Hilbert
techniques.

In view of the corollary, and analogously to Theorem 1.4, we conjecture that the tails
of Th¢ and TxP" should satisfy

_ 64 3 _ 64 3
Tee ~ee 3N TP L cema NE (1.19)

The proof of Theorem 1.4 should in principle also be applicable to these cases. However,
the estimates needed to get the analogous result become much more involved due to
the more complicated expressions for ¢ and f™". In addition, in order to obtain (1.19)
from these arguments one would need a replacement for the tail estimate obtained in
[22] for the small deviations of the Laguerre Orthogonal Ensemble (see (4.5) below),
which was obtained using random matrix arguments which most likely would not apply
to this case. For these reasons, we opted not to pursue this any further in this paper.

Outline

The rest of the paper is devoted to proofs. Section 2 contains some preliminaries and
the continuum statistics formulas which we will use, as well as the proof of Theorem
1.5. Section 3 is devoted to the derivation of the joint densities for the three models
(Theorems 1.2 and 1.6). The proof of the tail estimate, Theorem 1.4, is contained in
Section 4. Appendix A is devoted to the proof a precise small deviation estimate for the
largest eigenvalue in an N x N GUE matrix.
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2 Path-integral kernels and continuum statistics formulas for
non-intersecting Brownian paths

The basic tool we will use in the proof of all of our results is a “continuum statistics”
formula for the probability that the top line of a system of non-intersecting Brownian
paths (in each of the three cases which we consider) stays below a given function on an
interval [a, b] with 0 < a < b < 1. Such a formula was derived in [6] for non-intersecting
Brownian bridges, and was the basis of our arguments in [29]. In this section we will
recall this formula, and derive the analogous formula for the case of non-intersecting
Brownian excursions and non-intersecting reflected Brownian motions.

In everything that follows we will use the abbreviations BB, BE and RBB in the text
to refer to the models of non-intersecting Brownian bridges, Brownian excursions and
reflected Brownian bridges. Similarly, to each notation we will use a superscript % in
objects like M7}, when we write formulas which are valid for either of the three models.
So, for instance, MY refers to M, MX¢, or M®*", and correspondingly B (t) refers
to By(t), BR(t), or BiPP(t). We will sometimes also use the superscript be/rbb when
dealing with formulas which are relevant only in those two cases.

The finite-dimensional distributions of a system of N non-intersecting BB/BE/RBB
can be written [47] in terms of a Fredholm determinant as follows:

P(V2By (155) < rysech(ty), j=1,...,n) = det(1 = K ) oy oy D)

with (¢, 7) = 1,¢(,,,00) @nd where the extended kernels K}, \ are defined as

Kbb (8 Tt y) — Zn 0 en(s t)go ( ) (y) if s 2 ta (2 2)
ext, N \2s %y by . ZSLO: n(s t)cpn(gr)(pn(y) if s < t7 .
2) 27L+1)( t) n ifs>t
i) = | 2 pani(Dgmialy) A6 5
’ -2 Z oy €FDE D oo (@) pansa(y) if s <t
N—1 on(s— .
Krbb (S Tt y) _ 22 1 2 t)SOQn( )QOQn(y) if s Z t, (2‘4)
o O P g () panly) 5 <

and where, we recall, the Hermite functions ¢,, were defined after (1.10). We note
that the value of the determinants in (2.1) in the BE and RBB cases do not change
if we replace the corresponding kernels Kg)ft/’rjl\'}b by i K};ft/ r}\),b and the projection { by
f(tj, x) = 1ie(—co,—r;)u(r;,00)- This can be seen at the level of the series expansion of
the Fredholm determinant, by using the fact that ¢,, is even and 2,41 is odd to show

k
that the value of det Kgft/r}\;b(ti, Tt x5) does not change if some of the z;’s are
: ij=1

replaced by —x;. This fact will be important below.

In order to obtain the continuum statistics formulas which we are interested in
we need to let t,...,t, be a fine mesh of the our interval [a,b] and then take n — oo.
However, note that the Fredholm determinants in (2.1) are being computed in the Hilbert
space L?({t1,...,t,} x R), which makes it very hard to make sense of the n — oo limit.
To get around this, the idea is to use [6, Thm. 3.3] to turn this Fredholm determinant
into the Fredholm determinant of a certain “path-integral” kernel computed on L?(R).
As we mentioned, this was done in the BB case in [6]. We describe the result next.

2.1 Non-intersecting Brownian bridges

Let D denote the differential operator

D:—%(A—xg—i—l)

EJP 22 (2017), paper 102. http://www.imstat.org/ejp/
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(A is the Laplacian on R). Using the recursion satisfied by the Hermite polynomials one
can check that Dy,, = np,. In particular, the Hermite kernel KR}) defined in (1.10) is
nothing but the projection operator onto the space span{yy,...,pny—_1} associated to the
first N eigenvalues of D. In particular, even though et® is well-defined in general only
for t < 0, e!PKRP is well defined for all ¢, and its integral kernel is given by

e!DKEP (2 Ze on (@) on(y)-

Furthermore, the extended kernel K%,  defined in (2.2) satisfies, for each s, ¢,

KPP n (s, 5t, ) = —e 9P+ el HPKRP. (2.5)

This means that the extended kernel has the structure of the kernels considered in [6,
Sec. 3]. One can check, moreover, that the hypotheses of [6, Thm. 3.3] are satisfied,
and ultimately lead to the continuum statistics formula for the top line of BB which
follows. For fixed ¢; < {3, consider a function g € H!([(1,/3]) (i.e. both g and its
derivative are in L?([¢1, {2])) and introduce an operator @féﬁl] acting on L%(R) as follows:

@57[’1032] f(z) = u(l2,z), where u(fs,-) is the solution at time /> of the boundary value
problem

Oiu+Du=0 forx< g(t), te (41762)

u(él,x) = f($)1m<g(€1)
u(t,z) =0 fora > g(t), t € [¢1,42].

Proposition 2.1 ([6, Cor. 4.51). For any {; < {3 and g € Hl([él,ﬂg}) we have

P (\/ﬁBN(%) < g(s)sech(s) Vs € [zl,ez]) = det(l R Lo e fz*fﬂDK';'vb) .
(2.6)
This formula was derived in [6, Sec. 4.1] for the top line Ay (¢) of the stationary GUE
Dyson Brownian motion. It reads

P (An(s) < g(s) Vs € [01,6]) = det(l — KR oyt e <f2*f1>DK';'Vb) .

Since A\ satisfies

%/\N(s) sech(s) @ BN(%),

this formula leads directly to (2.6). See [29, Sec. 2] for more details.

It is shown in [29, Prop. 2.2] that the integral kernel of @q bb 1, €an be expressed
explicitly in terms of certain hitting probabilities for a Brownlan brldge (which is also
consistent with our use of the superscript bb). Remarkably (see also (2.15) and (2.16)
below in the case of BE/RBB), the case we are interested in, which is g(t) = rcosh(t),
leads to hitting probabilities of a Brownian bridges to a straight line, which can be
computed explicitly by the reflection principle, and lead to the following explicit formula

for @g’ 2] (see [29, (2.6)]):

(2.7)

(r),bb . ~g(t)=rcosh(t),bb 5 —(£2—€1)D (r),bb
@[Zl 62] &1,[2] “ - Prcosh(él) [6 (2=t R[gl £] rcosh(ég)y (2.8)
with B
Pnf(r) =(1-Pun)f(z) = f(z)le<m

and where the reflection operator REZ:Z? is given by

RIED (3 4) = ez —o") L2 1L r(e2y—e1a)tr? (B—a)— (e T ate2y—2r(atB)—r)? /(4(B—a))
[€1, 2]\ A (B—a) ’
(2.9)
EJP 22 (2017), paper 102. http://www.imstat.org/ejp/
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with
a=12"  and B =i (2.10)

It is worth mentioning that (2.6)-(2.10) has recently been used in [15] to study non-
intersecting Brownian bridges conditioned to stay below a given threshold (very shortly
after [25] provided an alternative treatment based on a Riemann-Hilbert analysis).

2.2 Non-intersecting Brownian excursions and reflected Brownian bridges

We turn now to the case of BE/RBB. To proceed as in the case of Brownian bridges,
we need to express the extended kernels Ks)ft/’?\l,) similarly to (2.5). A crucial fact which is
implicit in (2.5) is that, as N — o0, K'f\}) becomes the identity (this is because (‘1977.)77,20 isa
complete orthonormal basis of LQ(R)). However, this is not the case for Kkj’\,e/ rbb (defined
in (1.16)/(1.17)), because due to the parity property of the Hermite functions mentioned
above, KX¢ converges to the projection onto the subspace L2 ,(R) of L?(R) consisting of
odd functions, and similarly K}?" converges to the projection onto the subspace L? ., (R)
of L?(R) consisting of even functions. The solution is to replace the Hilbert space
L?({t1,...,t,} x R), which is isomorphic to @;_; L*(R), with @;_; L2, oyen(R). Note
that, after performing the replacement explained after (2.3), this does not change the
value of the determinant because f maps odd/even functions to odd/even functions and

be/rbb 7 7

Kext/,N maps @’LLII LQ(R) to @’7 1 gdd/even(R)'
We end up then with det( 1ikbe/ r}\}bf) , ® replacing the right hand side
Lodd/wm R
of (2.1). From the fact that Dy,, = ny,, one can check directly that for each s,t we have
1 K:::t/rj\eb(& ot ) _ _e(s_t)D]-s<t + e(s—t)DKR;S/rbb
(with Kbe/rbb defined in (1.16)/(1.17)) as an operator acting on Lodd/even(R), and more-
over that Kbe/ b satisfy
N-—
tD Kbe Z (2n+1)t 902n+1(517)902n+1(y) and 6tD Krbb Z 2nt<ﬂ2n an( )

(2.11)
for all t € R (note, in particular, that %szt/rﬁb(t, st,) = KR,e/rbb for all t). An additional

difficulty in applying [6, Thm. 3.3] in these cases is that in that result it is assumed that
the Fredholm determinant acts on a space of the form L?({ty,...,t,} x X) with (X, X, 1)
some measure space?. But that hypothesis was made in [6] only for convenience, in
order to handle the general setting addressed there, and it is not hard to check that the
result carries through to our case without difficulties. One can check easily, once again,
that the hypotheses of that result are satisfied in our present case, which allows us to
deduce that the right hand side of (2.1) equals (in the case of BE/RBB)

det(l — KR/ 4 Q, etimtIPQ,, .Qme“n—tl)DK'ﬁ/rbb) , (2.12)

L?)dd/even (R)

where Q,.f(z) = f(7)1};<,. Note that at this point we may change the Hilbert space on
which the Fredholm determinant is being computed to L?(R), because K}; be/tb are, re-
spectively, the projections onto span{y1, ¢s,...,pan—1} (Which is a subspace of L2,4(R)),
and onto span{yg, ¢2, ..., 2y} (Which is a subspace of L2 . (R)).

The same argument as in the case of Dyson Brownian motion (see [6, Sec. 4.1.1])

now allows us to take a limit of the last formula as the size of a mesh in ¢ goes to 0.

2The case of reflected Brownian bridges is slightly simpler, because the space L2, ., (R) can be identified with
L2(]0,00)), and thus we may regard our extended kernel in that case as acting on L2({t1,...,tn} x [0,00)).

EJP 22 (2017), paper 102. http://www.imstat.org/ejp/
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The result is analogous to Proposition 2.1. Given a function g € H!([¢, (5]), define an

operator @gebe/]rbb acting on L?(R) as follows: @fgbi/rbbf(x) = u(lz, ), where u(l,-) is

the solution at time /, of the boundary value problem?

Owu+Du=0 for|z| <g(t), t € ({1,42)

u(glvx) = f(x)l\z|<g(l1) (2.13)
u(t,x) =0 for |z| > g(t).

Proposition 2.2. Given g € H'([(1,¢5]), we have

P (ﬁB}ife/rbb(lji;t) < g(t) sech(t) Vt e [51,62])

_ be/rbb g,be/rbb _(¢5—¢1)D be/rbb
_det<I—K + O/l = DK ) (2.14)

The PDE appearing in (2.13) can be turned into a standard heat equation (with a
modified boundary condition) by a suitable change of variables (see the proof of [29,
Prop. 2.2], the computation in this case is exactly the same), and this leads to the

following formula for the integral kernel of @geb(z/ ]rbb

f1gp_et2 —
g,be/rbb 67(6 2y)%/(4(B-a))

— .x 2_z?) 4Ly
@[4112] (z,y) = N a 4r(B — )
x]Pl}(a):eelL(’ (t)| < Vit g(Llog(4t)) Vi € [a,ﬁ]), (2.15)
b(B)=e2y

where the probability is computed with respect to a Brownian bridge* E(t) from e’z at
time a to e’y at time 3 and with diffusion coefficient 2, and where « and 3 are as in
(2.10).

2.3 Proof of Theorem 1.5

Our interest is the case g(t) = rcosh(¢). With this choice, the probability in the last
formula reduces to the probability that a reflected Brownian bridge stays below the
linear barrier 2rt + %r. Taking —¢; = {5 = L, we get

P (Mkli;e/rbb < r) _ Lhm det(l _ Kbe/rbb 4 e(r) be/rbb 2LDKbe/rbb>
—00

[-L,L]
with
(r),be/rbb L (t)=rcosh(t),be/rbb
[£1,£2] ( ) - fol,fz] ( 7y)
(e La—e'2y)?/(4(F—)) )
_ APt € . Pjo)—ctia, (}b(t)\ <2t+irvte [a,ﬁ]) . (2.16)
(5 - a) b(B)=e2y

Note that taking » — oo in this formula corresponds to the solution of (2.13) with g = oo,
which is just e~2=#P_ and on the other hand it corresponds to simply replacing the

3There is a minor detail missing in the derivation in [6]. In view of the order in which the points r; appear in
(2.12), the boundary value PDE appearing in the continuum limit (given in the present case by (2.13)) should
be defined using §(¢t) = g(¢1 + ¢2 — t) instead of g itself. However, by the symmetry of Kbe/rbb one may
then take the adjoint of the resulting operator inside the kernel and use the cyclic property of the Fredholm
determinant and the identity (@[ge’ii/z ?bb) G[QZTQ/? ?bb to obtain (2.14).

4Note that the definition (2.15) is the same for the two cases BE/RBB; the probability on the right hand
is always computed using the reflected Brownian bridge |b(¢)|. Our choice of superscript here, be/rbb, is

intended to be consistent with the fact that this is the operator appearing in both cases in (2.14).

EJP 22 (2017), paper 102. http://www.imstat.org/ejp/
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probability by 1. (In particular, this implies that for any ¢; < {5 the kernel of the operator
e~(2=01)D can be written as

o— (e La—et2y)2/(4(6—a))
dr (B — a)

which we will use in Section 4). As a consequence, we may rewrite our operator as
follows:

e—(z2—zl)D( — 3@ —a)+l

z,y) , (2.17)

be/rbb A —(lg— be/rbb
@Eél) lj/ = Qrcosh(h) (6 et REZ,Z;]/ ) Q7 cosh(£2)> (2.18)

where RE;) ;e]/ ™b s the reflection term

(r),be/rbb
R[ghgz] (z,y)

_ e%(yz—ﬂfz)-i-fz

o (e Lo—c’24)? /(4(B—a)) (

P
in(f - a) doy=eie

max ‘b ‘ > 2rt + %r) . (2.19)
b(B)=e"2y

tela,p]

The last probability can be computed explicitly using the reflection principle, and equals
(see [12])

oo
Z{ —2((2k—1)%ac+bd)+2(2k— 1)(ad+bc)_|_672((2k71)2ac+bd)72(2k—1)(ad+bc)
k=1
e—8k2a0+4k(bc—ad) _ e—8k2a0—4k(bc—ad):|

3 _ r(4a41) _ e‘ x r(4a+1) _
with a = VR b= L c=+2r+ zf(g and d= f(ﬁ . Through this formula
Rf;?:;’jﬁbb gets written as Zk:l [Rl,k +Rok— R37k — R47k] in the obvious way. Focusing on
R1,%, accounting for the prefactors on the right hand side of (2.19), and then comparing
with the formula of the reflection operator RE;) };? in (2.9), we have
Rip(z,y) =es@ =2+ 1

Lk(T,y) e

o (2k—1)r(e”y—e" @)+ ((2k—1)r)? (B—a) (" a+e 2y —2(2k—1)r(a+8) — (2k—1)r)*/(4(6—a))

_ p((2k=1)r),bb
= R[gl,gz] (73; y)

One can obtain formulas for Rs i, R3 ; and Ry, and putting everything together leads to

(r),bc/rbb > ((2k 1)r),bb ((1—2k)r),bb
R[fl,fz] Z [ [€1,¢2] (x’ y) + R[Z1,f2] (x’ y)
k=1
kr),bb —2kr),bb
EZ,@Z] (z,—y) — ngl?@]) (z,—y)|. (2.20)

The orthonormality of the ¢,,’s together with (2.11) imply the identities eQLDKk]’\;’/ rbb
(ePORE/™)2 and ¢~ EDKY/MELDKES/ P (DRI LRI/ _ P/ Using this
and the cyclic property of the Fredholm determinant, (2.14) and (2.18) yield

IP(Ml]a\;s/rbb < T) _ Lhm det(l B Kkji;e/rbb LDKbe/rbb@fT)Lbz{rbb LDKbe/rbb). (2.21)
—00

We claim now that, in trace norm,

. LD be/rbb ~ (1), be/rbb LDbe/rbb . LDsbe/rtbb, 21D (r),be/rbby D sbe/rbb
ngroloe Ky 000 Ky _Lh—>nioe Ky (e —R[ LI Je mKY T,
(2.22)
EJP 22 (2017), paper 102. http://www.imstat.org/ejp/
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which just corresponds to removing the operators Q, cosh(z) 10 (2.18). The proof of this is
very similar to that of [29, Lem. 2.3]. There is an additional complication here related
with the fact that R(LT) involves an infinite sum (see (2.20)), but it is not hard to address
this because the summands decay very rapidly in k. Since we will deal with this issue
later on in (see the discussion after (3.17)), we will skip the proof of (2.22).

From (2.21) and (2.22) we deduce that

be/rbb T __LDbe/rbb ()be/rbb LD sbe/rbb
IP(MN Sr) —Lh_>n;odet(l e Ky R[ LL) Ky )

The key point is then to compute the kernel ¢/P Kbe/ rbbRET)Lbe{ rbb LDKbe/ ™ But, as we
will see next, the result of this computation does not depend on L (analogously to what
happens for Dyson Brownian motion in [29] and for the Airy process in [9]).

Define S, ?rbb eLDKRf/rbbRLk eLDKlj)\,e/rbb fori e {1,...,4} (see (2.20)), so that
LDKbe/rbbREV)LbE{Ibb LDKbe/Ibb Z [Sbe/rbb + Sbe/rbb Sgek/rbb . Sbe/rbb].
k=1

In order to compute these products we will use the following formula:

LD be/rbb(r),bb LD be/rbb _ | /be/rbb be/rbb
e Ky R[ 1.1)€ Ky =Ky orKy , VreR, LeN.
Note that the operator on the right hand side does not depend on L. This formula was
proved in [29, Lem. 2.4] in the BB case (that is, with Kbe/rbb replaced by K&P), but it is
straightforward to check that the result still holds in the present case. Using this for the
first two operators, Sbe/ ™b and Sgek/ ™P eads directly to

Stl):ek/rbb _ Kbe/rbbg(Qk_l)TKk])\;e/rbb and SIQ):ak/rbb _ Kl])\;e/rbbg(l 2k)ere/rbb
For the last two terms we can write Sbe/rbb = eLDKlf\}g‘/rbbREi]Z)L’TbQoeLDKl]f/rbb and
ka/rbb = LDKbe/rbbe ikz]) b 0o eLDKlj\f/rbb, where we recall (see (1.11)) that oo f(z) =

f(=z). Using the parity properties of the Hermite functions, we have goel!PKR¢ =

—ePKRe and gpelPKiPP = eEPKIPP which implies
b b b b
Sgk**KNeszer\F, S4k**K1\FQ—2erJ\}37
bb _ crbb bb. bb bb bb
Sg k — I}V QQk"r‘Kr SZ k= K§V Q riKr .

To finish the proof observe that Sbe/ Tbb Sbe/ ™ and Sbe/ Tbb Sbe/ ™ which follows

from the fact that [, dz ¢, (z )<pm(2r fR dx on(x )gom( 2r — x) for all r € R and all
n,m € IN which are both either odd or even.

3 Joint distribution of the max and the argmax
3.1 Proof of Theorems 1.2 and 1.6

We will write a single proof for the two results. We will keep using the superscripts
* and be/rbb (as in the previous section) when we write formulas which are valid,
respectively, for the three models and for BE/RBB.

Throughout this and the next sections we will denote by || - ||; and || - |2 the trace class
and Hilbert-Schmidt norms of operators on L?(R) (|| - ||2 will also be used to denote the
L?(R) norm). We recall that

IABx < [[All2l1Bll2;  [[ABl2 < [|All2]|B]2  and I\AIIEZ/ dzdy A(z,y)* (3.1)

EJP 22 (2017), paper 102. http://www.imstat.org/ejp/
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if A has integral kernel A(z,y). We will also use the bound
det( + A) — det(I + B)| < ||A — Bl| el Al+IBIi+1 < || 4 — B||,elA-Blhi+2Blli+1 (3 2y

for any two trace class operators A and B; for more details see [36, Sec. 2] or [41].
The argument is based on the continuum statistics formulas in Propositions 2.1 and
2.2. It will be more convenient for us to work instead with

- 2t
My, = max V2By (152) and T = argmax \fBN(HPQt)
te

To that end we introduce, for »r > 0 and ¢t € R, the functions

@?(n) = /2cosh(t)e™™ [90;1(7“ cosh(t)) + rsinh(t)p, (r cosh(t))] ,

wr,i(n) +2\/m Z E(k+1)r2 sinh(2t)

k=1
x [l ((2k + 1)rcosh(t)) + (2k + 1)rsinh(t)p, ((2k + 1)rcosh(t))], (3.3)

T (n) = 20 (n) + 2/ Zeoah(E) ™1 (1)l )
k=1

x [l ((2k + 1)rcosh(t)§ + (2k + 1)rsinh(t)¢n ((2k + 1)rcosh(t))],

and the rank one kernels

P = (X o 00) (X o2 ).
‘I’Ei (z,y) (Z Pant1(T r, $(2n+1 ) (Z Pam+1(Y)0,, ¥Pe (2m + 1)) (3.4)

\Ijrbb (Z 0on ()PP (20) )(Z Gom(y ;blat 2m)).

Theorem 3.1. Let f;,(r, t) be the joint density ofJT/l\j\, and 7A'1\*[. Then for all r > 0 and all
t € R, and with = standing for either bb, be or rbb, we have

Fielrt) = [0 = KicorKiy) 707, ] det(1 = Kiy oK)
:det(lf O O T >fdet(lf % K%

To recover Theorems 1.2 and 1.6 from this result it is enough to use a change of
variables

fa(rt) = fN<\[r log(%D forr >0, t € (0,1),

v -

Proof of Theorem 3.1. We will proceed as in [28]. Let ( Aj\,, I AA*,’ ;) denote the maximum
and the location of the maximum of v/2B}, (%) restricted to t € [~L, L], that is,

eZt
My, = A V2BY (15) and T, = = argmex V2B (15=),

and let f}{, (1, t) be their joint density. Note that

Folrit)= Jim f3 1 (r.0). (3.5)

EJP 22 (2017), paper 102. http://www.imstat.org/ejp/
Page 16/40


http://dx.doi.org/10.1214/17-EJP119
http://www.imstat.org/ejp/

Extreme statistics of non-intersecting Brownian paths

By definition

fNL(r t)fhmhm IP(MNLé[r r+el, TR, € [t,t+6]),

§—0e—0 0¢

provided that the limit exists. If we denote by D ; and 5:, s the sets

D% = {\[BN(H =) <1 s €t t+ 05 V2B (15m) <7 te, s € [t +3);
ﬂB}V(%) € [r,r +¢] for some s € [t,t + 6]},
and
{fBN(1+ ) <rte, s € [~L, L] V2BY (1) € [r, r+¢] for some s € [t,t+5]},
then
Ls CAMN L Elrr+el, TR elt,t+0]} CD.,

Letting Ev L(r, t) = limg_yo lime_q é]P(Q’;(;) and defining f?V7L(r, t) analogously we de-
duce that ijV?L(T, t) < fX,’L(T, t) < f?\,’L(r, t). We will only compute i;V’L(T, t). Asin [28],
—*

it will be clear from the argument that for f ; (r,t) we get the same limit, and thus

~

1
Iap(rt) = %1_{%;% &P(f;,a)-

We rewrite the last equation as

fNL(r t) = lim lim —[ (\fBN(He%) < he,5(s)sech(s), s € [-L, L))

5—=0e—0 de

_ P(\@va(liz;s) < hg,5(s)sech(s), s € [fL,L])],
where
he,5(s) = cosh(s)(r + elsepr,i44])-

These two probabilities have explicit Fredholm determinant formulas by Propositions 2.1
and 2.2. We get, using the cyclic property of the determinants,

1
fN o(r,t) = lim lim — {det (I N+ eLDK}”\,@?jf:z]eLDK}*V)

§—0e—=0 ¢

— det (1 = Ki + KO} "R ) |,

where 6[ 27 means @ ° 5’ ] in the case of BB and © EL“’ET/rbb in the case of BE/RBB.
The limit in 5 becomes a derlvatlve

n T 1 * LD hg.s,x LD *
P o(r.t) = lim <0 det(l — Ky + etPK3, 0] e PK ) ‘ﬁzo,
which in turn gives a trace (see e.g. [28, Lem. A.2]),
Tx * * h R *
Fien(r,t) = det (1= Ky + €223, 0[5 7 2P )

: 1 * LD ho,s, LD * \—

X;L}I%(St]{(l N+€ K GOEL] KN) 1
LD hpg,s,% LD ¢x

& KN [85@[_557”}5:06 KN:|

EJP 22 (2017), paper 102. http://www.imstat.org/ejp/
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Note that hg s(s) = r cosh(s), so in particular the determinant and the first factor inside
the trace do not depend on §. We know moreover, from [29, Sec. 2.2] in the BB case and
from Section 2 above in the BE/RBB case, that
. LD ho,s, LD
Jim. (l — Ki +ePPRRO[ T e K;v) — - KoKy
in trace norm (which implies that the same holds for the inverse of these operators).
Since the trace is linear and continuous under the trace norm topology, we deduce that

lim f%, . (rt) = det(l — K o} K¥)
L—o ’
1
_K* * \—1 4. s = LDpex hpg,s,% LD+
X tr[(l NerKy) ™! lim lim —eFPKy, {aﬂe[_LyLJﬂ:O e KN} . (3.6)

provided that the limit inside the trace exists in operator norm (here we are using the
fact that ||AB||1 < || A||l1]|B|lop, where || - |lop is the operator norm).

The next step is to compute the limit limz o, e?PK%, [limg_m %836?_‘*372]} - elPKy, .
To this end we need some additional notation. Let

S _ (=)D _ p(r),
Oy = ¢ TP —RT (3.7)

Comparing with (2.8) and (2.18), éf;l) ";2] is simply 6%2 ’22] with the projections on the two
sides removed. Next we introduce the kernels

Qllab(xv Zl) Z1/2@(T) bb(x Zl)lzgrcosh(L)v
@bb( y) = 622/2@(r) bb(zz, y)lygrcosh(L), (3.8)
be/rbb (.I', Zl) =e /2@%7’ the}/rbb (.I', zl)1|x|§rcosh(L)7
be rbb 22 r),be/rbb
/ ( ay) =e 2/26%7)[/] / (ZQay)1|y|§rcosh(L)'
and define further, for a € R,
512(:0) — /sh(®) 5 (oLDK* O5(z,w))| _ |
L, 2 ( N™¥1 ) |w7a (39)
7" (y) = \/ 2 0, (03 PKY (w, 1)) |, _-
Lemma 3.2. The following limits hold in the operator norm topology:
h(t)
I [a oy = 0 (9,6 (z, w)d, O 3.10
51_{% 5 B8 L] 5=0 (.Z‘, Z/) 9 ( w1 (JZ, w) w2 (’LU, y)) wr cosh(2) ( )
and
h/j)[;,be/rbbj| _ cosh(t) ( be/rbb be/rbb )
%11}(1) [869[*[/»11] B=0 (:E’y) 2 8 6 ( )a 9 ( ’y) w=r cosh(t)
‘h t e/r e/r
4 cosh(®) (0267 (@, )0, 05 (w,y) ) (3.11)
2 w=—rcosh(t)
It follows based on the lemma that
. ]‘LD* hﬁé*:| LD+ _ T+
lim <e"PKy, 050075 €K =T (3.12)
where \T!z has kernel
= bb 22 bb
\Ilbb(x y) @2 ,rcosh(t )(x)gpi,rcosh(t) (y>’ (3.13)
=be/rbb 1,be/rbb 22 be/rbb >1,be/rbb =2 be/rbb ’
\I/Le/ ( ) QSL rec/osh( )(I) L,rec/osh(t) (y) +or —e7{cosh(t)( )QjL,—eZcosh(t) Y)-

We thus need to compute the L — oo limit of \Ilz This is the content of the next result.

EJP 22 (2017), paper 102. http://www.imstat.org/ejp/
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Lemma 3.3. Let \lef be the kernel given by (3.4). Then the following limit holds in the
Hilbert-Schmidt norm:

o~

W (2,y) ——— U7, (2,9).

In view of (3.5), (3.6) and (3.12), this lemma completes the proof of Theorem 3.1. O
We provide now the proof of Lemma 3.3, the proof of Lemma 3.2 comes afterwards.

Proof of Lemma 3.3. Let us focus for a moment now on the BB case. We begin by using

the formula for @E”Lbz (see (3.7), (2.9) and (2.17)) to compute

w2 /25 (), bb
9(%‘) = aw (6 /QGE—)L,t] (33, UJ)) |w:rcosh(t)
=L, (e /2 et (M e

T /w(e2t—e—2L)
_ e—atz/2+t—r(etw—efl‘x)+r2(ezt—672L)/4—(37Lr+etw—r(ezt+672L)/2—r)2/(ezt—szL)) |
w=r cosh(t)

_222(e?t 420y _arae L (142t 402 (2 41)2
4(1 rcosh(L)) ( )4(e2f'—e*(2L) ) ( iy Y

From (3.9) we then have

+1,bb / cosh D
gp}:,rcosh(t)(x) = T(t) eLDKR})PTCOSh(L)H(‘r)
= \/ COS;(t) (eLDKl])\})e(l‘) - eLDKIJD\})Prcosh(L)G(x)) .

0(x) is essentially a Gaussian, and thus we have the same estimate as in [29, App. B]: for
some constants ¢y, co > 0,

_._.2L
NL—cse 0.

||eLDKIID\PPTCOSh(L)9”L2(]R) <ce oo

This implies that, in computing the limit of e“PKRPP,.cosn(1)0, we may erase the projection
in the middle and work instead with e?PKRPg. As we will see next, this last kernel does
not depend on L. We start by writing it

N-1 oo

PORROE) = Y Pipn(a) [ dzga2)002)

n=0 o0

and then use the contour representation of the Hermite polynomials

2

N B e TL' e2uz u
on(z) = (2"nly/m) "2 /2%7{duw, (3.14)

(where the contour of integration encircles the origin) to compute the z integral, which
is just a Gaussian integral:

oo
/ dz pn(2)0(2)
— 00
n! 1
2™n! V2" ¢ du
= (2"nlvm)” 2 unt /(e — e—2L)3/2
o 2202t 4 e—2Ly _grze—L (1402t 2 02t 4 1)2
x/ dzélc(z—7“cosh(L))67Z2/2+2"27u272 ey e L
— 00
12 n e uZe 2L=2t Loye~L~trcosh(t)—r? cosh(t)? —L—t I
o, : —
= (2"n!\/m)~ medu pES, (du — 2re™).
EJP 22 (2017), paper 102. http://www.imstat.org/ejp/
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Now we perform the change of variable u — uel ™t to deduce from (3.14) that

—u?42ur cosh(t)—r? cosh(t)?

e !
_ (om —1/2 v € L+t L
/ dz pn(2)0(2) = (2"nly/T) o %du T LI DD (due 2re™)

— 00

72 cosh(t)?

=2¢" 2z "]y (rcosh(t)) + rsinh(t)p, (rcosh(t))].

Therefore
T cosh(t)2
eEPKRPO(x Z 2" 2 My, (x) [, (rcosh(t)) + rsinh(t)en (rcosh(t))].
We have proved that
2 2 N—-1
~1 bb _ r”cosh(t) ~
QL 7cosh(t)( ) L—s00 € 2 Sﬂn(x)%lz(”)

n=0

in L(R), where
@?(n) = \/2cosh(t) e [¢], (1 cosh(t)) + rsinh(t)e, (rcosh(t))].
The exact same computations leads also to

N-1
52,bb ( r? cosh )2
L,rcosh(t) y) Z SO” r,ft )

L—oo

in L?(R). Putting two limits together and recalling the definition of \I/b in (3.4), we
complete the proof for the case of BB.

In the case of BE/RBB, the same arguments lead to the following formula (note that
the two terms in the definition of \Ilbe/ b in (3.13) become just one in this formula; this
is because, thanks to the parity properties of the Hermite functions, the evaluation at

w = rcosh(t) and w = —r cosh(t) give the same answer):
J/be
U7 (2, y) m (2:0 Pan+1()Y, 5 (2n + 1) ) (Z Pom+1(Y)Yr L (2m + 1))
Uit (z,y) m ‘I’rbb (Z Pon (T mb 2n) )(Z Pam (Y) 1y, —t 2m))
where

Y5 (n) = 24/2cosh(t) e~ [gp%(r cosh(t)) 4 rsinh(t)p, (r cosh(t))
i i F(k+1)r? sinh(2t) [l ((2k + 1)rcosh(t)) + (2k + 1)rsinh(t)p, ((2k + 1)rcosh(t))]] ,

k=1

and
z/ﬁ%b(n) 24/2cosh(t) e [Lp;(r cosh(t)) 4 rsinh(t), (r cosh(t))

+Z k(b Dr® sinb(20) [7 ((9k 4 1)7 cosh(¢ ))+(2k+1)rsinh(t)<pn((2k+1)rcosh(t))]],

and this leads to the desired formula. O
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Proof of Lemma 3.2. We will focus on the BB case, and then explain the main differences
for BE/RBB. Recalling that h. 5(s) = cosh(s)(r + e1s¢[t,++5)) We have, by the semigroup
property,

.1 [ hesbb ho.s,bb] _ A(r)bb |1s L [ (r+e),bb (r),bb
ll_{%g {9[—L,L] - 6[—L,L]] = 9[—L,t] 611_1% c [@[t t+6] ®[t t+6]} ®[t+§,L]'

Using the kernel @(T) 2] (see its definition in (3.7)) we can write

hp 5,bb rcosh(t) rcosh(t+95) ~ ()b
[866[_)[,:L] ($7y):| 5=0 = / dz / dzo @ it] (1"7 Zl)lxgrcosh(L)

— 00 —0oQ

r bb r),bb
X ([8 @Et j—_i();] (21, 2'2)] ) @Etj_(; L] (227y)1y§rcosh(L)'

For convenience, we let o = 1e? and 8 = 1e2(*+%) and introduce the kernel
2222 r+¢),bb
T (21, 25) = D2 [0, P (21, )], (3.15)

We perform the change of variables z; — e~ /3 — a 21 + rcosh(t)
and zy +— e~ 7%\/B — a2, + rcosh(t + &) above and use the kernels ©b® and O5 defined
in (3.8) to write

0 0
51950 h“’b]b(a: y)} = [mdzl [deQ %Q?b(x,e*t\/ﬁ— oz + reosh(t))

B=0

X %ng (e*t*‘s\/ﬂfiazg + rcosh(t + 6),y)
x e 279(3 — a)YPP (e7'\/B — a2 + rcosh(t), e '/ — a zy + rcosh(t + 8)).

Now we need to take § — 0. Note that 3 — « in this limit and O (z, r cosh(t)) = 0 for
1 = 1,2, so from the first two lines we get the product of two derivatives. The limit of the
last line above can also be computed explicitly, by using (see (3.15))

TP (e7'\/B — az1 +rcosh(t),e " °\/B — a2 + rcosh(t + 5))
Batamt (a1t 2)/4 s /Ba—z) -1 (B-a)—(1+22)*/4

V(B —a)

and yields —%\/‘;Sh(t)e‘(““?)z/“. Therefore

%lr%a [85 Fﬁfﬁﬂg (z,y) / dzl/ dzg 222 N z2 COSh() e~ (Ft=2)"/4
— ’ =0

X Dy OPP (2, w DwOS° (w,y

) ’w:rcosh(t) ’ ) ‘w:r cosh(t)”

In order to obtain (3.10), we evaluate the integral in z; and z; which gives 2,/7. This
completes the proof for the case of BB.
In the case of BE/RBB we have

hs ,be/tbb rcosh(t) rcosh(t+9) (r),be/rbb
[86@[_i’L] ($7 y)} B=0 - /—rcosh(t)dzl /—rcosh(t+5)dZ2 © o <x’ Zl)l"r‘STCOSh(L)

T be/rbb be/rbb
([a ®(t ;T()s °/ (Zl’ 22)} ) GE:J)ré ‘z/ (22>y)1\y\§rcosh(L)~

We may use the formulas in (2.18) and (2.20) to write the derivative in ¢ as

> (DR aREE e (0 )|
kezZ\{0}

EJP 22 (2017), paper 102. http://www.imstat.org/ejp/
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and then proceed as above. We introduce the kernel

be/rbb 22,2 r k),bb
T, 2) = D2 [ ()RR (1 () )|

and then perform the change of variables z; — e 'v/B —az + k:rcosh(t) and 29 —
e ' 7°/B—az + (—1)*krcosh(t + §) (here we still use the notations a = 1e?, g =
1¢2(t+9) and the kernels @]fe/rbb, 956/’“ defined in (3.8)) to get

hg,s,be/rbb
[8[3@[_L,L] (:va):| 5=0

(=k+1)rcosh(t)et /v/B—a ((=1)*k+1)r cosh(t+5)et+5/\/ﬁfa
/ le /
( (

dz e 2798 — a)
keZ\{0} —k—1)rcosh(t)et /v/B—a (=1)*k—1)r cosh(t+8)et+é //B—a
X @]fe/rbb (z,e7"\/B—az+kr cosh(t))@?e/rbb (e*t*‘S VB — azy+(—1)* 1 kr cosh(t +6), y)

X Tze/rbb (e7'/B —az + kreosh(t),e " °\/B — azy + (=1)"krcosh(t +6)), (3.16)

where the kernel Tbe/ rbb

writingy = — «

can be computed explicitly and satisfies the following limit:

;H% e 2= ‘S'yTbe/rbb (e=*\/7 21 + krcosh(t), et 70 /7 20 + (—1)* kr cosh(t + 5))
5

_keosh()((“D)F 2 4 2) (s,

23/ '
We split the k sum in (3.16) into two regions, Z\ {—1,0,1} and {—1,1}. For each k in the
first region, since the kernels have a Gaussian form and since note that 1//8 — a — oo
as § — 0, it is not hard to see that the double integral can be bounded by c; e~ <2 k?/(B—a)
for some contants ci,cs > 0 independent of k£ and §, hence the whole sum can be
bounded by 23, ., e~¢2k"/ (A=) < ¢# ¢=4e2/(B=2) _, () as § — 0. On the second region, it
is straightforward to see that when 6 — 0 the double integral becomes f_ooodzl f_ooodzg
and [ dz [;"dz, respectively, when k = 1 and k = —1. The same Gaussian bounds
which we just used allow us now to replace the original limits in the integrals by the
ones we just indicated and take the § — 0 limit inside. These facts, together with (3.17)
and the fact that @be/rbb (z,£rcosh(t)) = @ge/rbb (£rcosh(t + 6),y) = 0, imply that

(3.17)

hﬁyg,bc/rbb:|
tim 5[990 po &Y
° ’ (—21—22) cosh(t) ,—(s1+22)° /4
:[dzlﬁd2212 sl cosh) (1t
/ dzl/ dzo z1Z2(z1+22)cosh(t) —(Z1+22) /4

% [8w@ll)e/rbb(x, w)aw@;)e/rbb(w, y)}

w=r cosh(t)

w=—rcosh(t)"

Again the integral in z; and 2, evaluates to 2,/7. This gives (3.11) and completes the
proof for the case of BE/RBB. O

3.2 Proof of Corollaries 1.3 and 1.7

An explicit expression for the joint density of M and 7 (see (1.6) and (1.8)), which
we will denote as f(r,t), was obtained in [28]. To state the formula we need to introduce
the function

V() = 26" [tAl(z +r + %) + Al'(z + 7 + £7)],

EJP 22 (2017), paper 102. http://www.imstat.org/ejp/
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the Airy kernel
oo
Kai(z,y) = / dX Ai(x + X) Ai(y + N),
0

and the rank one kernel ¥, ;(x,y) = &, +(x)P, _+(y), where

(oo}
B, (x) = / AN Ai( 4+ Ay (V).
0
Then the joint density f(r,t) obtained in [28] can be rewritten as

f({ra t) = tr[(l - KAiQrKAi)ilqu,t] det(l - KAiQrKAi)
= det(l — KaijorKai + ¥, ) — det(l — KaiorKai) - (3.18)

We are going to show that, under suitable scaling, the joint densities of M}, and 7} for
the three models converge to f(r,t), i.e.

1 4 T 1 t
W (VN g5+ ) o S0

and

1 be/rbb r 1 t
42N (VN + sy 3 * 3yis) 7o 100

which will prove the two corollaries.
We start with the BB case. Forr > 0 and ¢ € R let

~ ./ r T o1 t
TN =VN + ON1/6> tn = 3 + oN1/3

and recall that g(¢) =
(1.15) leads to

ﬁ. A simple scaling argument on the right hand side of

1 o o - IO
TN () = det (11— KR, KRP + WRE, ) = det (1= KR o, KR

with KiP(z,y) = kKR (Zn,7n) and TR (@,y) = 2_5/2N_2/3\P$B,ZN<§;N,?}N>, where
ky =27 12N"16, &y = V2N + kyz, and §y = V2N + kxy. On the other hand, it is a

basic fact in random matrix theory that RR}D converges (in trace norm) to Ka; as N — oo
(see e.g. [2]). In view of (3.18) and (3.2), it remains to show that

[ pp— (3.19)
7 N—oo

in trace norm. Recall that \T/'f\}’,r’t is a rank one kernel which can be written as (see (1.14))
\If'f\}fm = @'f\}fht ® Qi?\}ir’_t with

N—-1
DR, (@) = 27NN " 0, (V2N + kv )yl? o (n), (3.20)

n=0

where w}e}g was defined in (1.13). We then estimate (see (3.1))

TR e = Trtlls S DR PRy — Pra @R il + [Pyt @Ry — Pri Py i1

= PR = P2l PRy ill2 + [ Pr 2l PRy 1 — Pr—tl2-

We want to show
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Lemma 3.4. Fort € R, the following limit holds in L?(R).

Fbb
@N,r,t Neooo (I)r,t :

As a consequence we also get that ||§51f\}fr7_t||2 is uniformly bounded in N. The lemma
thus yields (3.19), which completes the proof of Corollary 1.3.

Proof of Lemma 3.4. Setting v(t) = —log ((1+tN~/3)/(1 —tN~%/3)) /2 and using the
definition (1.13) and Lemma 4.1, we can write the sum on the right hand side of (3.20)
as

~ tg(tn)7
273N g ()3 [% 1 tolin)iy N]ew)DK‘?vk’(x,y)

1/3
N / r=V2N+KnxT

y=rng(tn)

— 2—7/4g(t~N)3/2€’Y(t)(N—%) /OO dz e—s(“/(t))((\/W-*-HNUU)HNZ-"-FNQ(?N)HNZ+C(’Y(t))(HNZ)Q)
0

x [soN (1 (@ 2)) 1 (T (1,1, 2)) + oo (T3 (2, 2)) Py (75 (1, 1, 2))

+ (—=s(vO)rwz + @iy = Ving(in) [on (75 (@ 2)on 1 (77 (1, 1,2))

+ pNn_1 (T](Vl)(x, z))en (T](Vz) (r,t, z))H,

where we have used T](Vl)(:v,z) = V2N + knz + c(y(t))Enz, T](Vz)(r,t,z) = "ng(tn) +
c(v(t))knz with s(t) = sinh(¢/2) and ¢(t) = cosh(t/2). Now we can check that this expres-
sion converges to &, ;(r) in L?(R) by using the known asymptotics ¢y (V2N + kyz) =
2V/ANTVIZ (Ai(z) + O(N~2/3)) and ¢\ (V2N + kyz) = 28/4N1/12 (AY (z) + O(N~2/3)),
together with the fact that 7\ (2,2) = V2N + kn(z + 2) + O(N=5/6), 7P (r,t,2)
V2N 4+ kn(t2 +7+2) + O(N1/2) and g(ty) = V2 + 12N2/3/\/2 + O(N—4/3),

We will prove next the convergence in the case of BE, the proof for RBB is very similar.
Proceeding analogously to the proof in the BB case, we write UR¢, , = &%, @ &%,
with

Ol

N-1
O, 4 (x) =27 T/EN T Z Pan+1 (VAN + /€2N$)1/);]32]3N52N(2n +1)
n=0

N—-1 0o
+ 2—1/12N—1/39(Z2N)3/2 Z efy(t)(2n+l)<p2n+1( /AN + IiQNIC) Zwlje

Fantan,
n=0 k=1

k(2n +1),
(3.21)

where ¢¢ , (n) is the k' summand in the infinite sum in (1.18), that is

be ; k(2n +1) = 62’“(’6“"1)(2?21\1—1)F§N9(?2N)2
Tan,tan,

X |:‘10,2n+1 ((2k + 1)Fan g(tan)) + 2k + 1) (2t2n — 1)Ton g(tan ) p2n+1 ((2k + 1)?21\79(?21\/))]-

We have to show that the function 5‘}\ﬁr7t converges to @, ; in L?(R). Note that the first
sum in (3.21) actually converges to &, ; as in the case of BB. On the other hand, one can
check that the second term goes to 0 by using the asymptotics of the Hermite functions
in (4.11) and the fact that 7ang(fan) = VAN + kan(t2 + 7) + O(N~%/) to estimate
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that %"H((% + I)FQNQ(%N)) < crem MK and <P2n+1((2k + 1)F2N9(Z2N)) < cremeNK
when k£ > 0,n € {0,...,N — 1} for some ¢;,co > 0. This together with the uniform
bound of Hermite functions sup,cy ¢n(z) < ¢ for any n > 1 (see e.g. [11]), imply that

ZnNz_ol YO+ g 1 (VAN + HQNCC)dJ%eN on L2n+1) < d e~k for N large enough
and hence completes the proof of Corollaries 1.7.

4 Small deviations for the argmax for non-intersecting Brownian
bridges
The proofs in this section follow [37], where the tails of 7 were studied. Throughout
the section we will use ¢y, cs, . .. to denote positive constants whose value may change

from line to line.
The Hermite kernel has an integral representation given as follows [3, Sec. 4]:

T;_O@n(zf)ﬁpn(y):ﬁAde(¢N($+Z)¢N1(y+2)+@N1($+Z)@N(y+Z)). (4.1)

In the following lemma we will use this formula to derive an integral representation for
the kernel etDKRP, which will be used repeatedly throughout this section:

Lemma 4.1. For allt € R we have

PR () = /N et(V-D) / oy [es<t><<w+y>z+c<t>z2>
0

X (@N (z+c(t)2)on—1(y+c(t)z) + on—1(z + c(t)z)en (y + C(t)2)>] )

where s(t) = sinh(t/2) and c¢(t) = cosh(t/2).
The proof depends on the following result:

Lemma 4.2. Given t, z € R, define the shifted Hermite function ¢,, () = ¢, (x + z) and
the function 0, ; .(x) = et"_Si“h(t)(IZ+COSh(t)22/2)gpmcosh(t)z(x). Then forall s < 0,t € R we
have

eSDGn,t’Z(x) = O s41,(). (4.2)

In particular, Py, .(¥) = 0,,.(r) and 0, _;.(¥) = ¢n.(x) for allt < 0. As a
consequence, etD<me is well defined for all t € R via the formula

tn—sinh(t)(zz+cosh(t)z

2
etD@ﬂ,Z(m) =€ /2)90n,cosh(t)z(x)a (4.3)

and it satisfies the semigroup property in the sense that e*TPyp, _(z) = e*PePy,, _(2)
for all s,t € R.

Proof of Lemma 4.2. The operator e*® for s < 0 is well defined and its integral kernel is
given in (2.17) (where we take —¢; = {5 = s/2):

! W) s /2 (e Pe e ) (e )

ez, y) = —m——
() m(e™s — e%)

This formula together with the contour integral representation of the shifted Hermite
function @n,cosh(t)z(x) (see (3.14)),

B e " 5 n! eQ'w(w+Cos}1(t)z)—UJ2
(pn,cosh(t)z(x) — (27Ln'ﬁ) 1/26 (x+cosh(t)z) /Q%fdw i
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(where the contour of integration encircles the origin), gives us

etn— sinh(2t)22% /4

_ |
¢0,1.2(x) = (2'ntym) 2 / dy 74 duw
wn+1 6 s_es)

X ez(y —x2)—s/2—(e*/?a— efs/zy) /(e”%—e®)—sinh(t)yz—(y+cosh(t)z)? /242w (y+cosh(t)z) —w?
We can compute the y integral first, which is just a Gaussian integral, to obtain

(2nn|\/>) 1/2 ' n! tTL*SiHh(Sth)(:EZ+COSh(S+t)Z2/2)7(I+COSh(S+t)Z)2/2

2mi
25 w(xz+cosh(s+t)z)—e?*w?
j{dw s .

By changing w — we ™%, we see that the last integral is nothing but gpn,cosh(sﬂ)z(aj), which
prove (4.2). The remaining statements in the lemma follow directly from this identity. O

Proof of Lemma 4.1. Since ¢'® and K}’ commute, we have e/PK}P = ¢31PKbEPeztD . The
formula now follows directly from the integral representation of KkP given in (4.1) and

(4.3). O

In order to estimate the tails 75" it will be more convenient for us to work instead

with
7dbm N(t) 1 fdbm /\N (t)
= d =
TN artgglRaX cosh(t) an My ~ R cosh(t)’

where we recall that Ay (¢) is the top line of the stationary GUE Dyson Brownian motion
(see (2.7)). More precisely, we will prove the following:

Theorem 4.3. There are constants ¢y, ¢a, c3,no > 0 and ty > 1/3 such that
Cle—CQNtS < ]P(rf-]{[lbm > t) < CSe—gNt3+o(N2/3),

with the upper bound holding uniformly in N € N and t € (0, 1) satisfying Nt3 > ny and
the lower bound holding uniformly in N € N and t € (0,to) satisfying Nt* > ny.

To recover Theorem 1.4 from this result, observe first that, by symmetry and (2.7),

P(TE" = 3 >e) = 2P(TA" > } +¢) = 2P(T3"™ > Llog (1)),
Hence we may apply the above theorem to get

Clefcth(e)S < ]P(|7-]\1?b . %| > 5) < Cgengt(e)3+O(N2/3)

with ¢(¢) = $log(11%) for N large enough so that N log(12%)? > 8n, and provided that
¢ is small enough so that ¢ is in the right regime for each bound. Since ¢(¢) > 2¢ for
€ 10,1) and t(e) € (0,1) for € € [0,£2), the upper bound in Theorem 1.4 follows for
all € € [0,e2). Similarly, € € [0,¢1) ensures that () < 1/3 < ¢y, and we also have that
t(e) < ce for some ¢ > 0 and ¢ in this range, so the lower bound follows in the same way.
The rest of this section is devoted to the proof of Theorem 4.3. We will assume
throughout that ¢t € (0,1) and that N € N is large enough so that Nt* > n, where
ng > 0 is a large parameter which will be chosen in order to make all estimates work.
Throughout the proof we will make extensive use of Laplace’s method for estimating

integrals, see for instance [13, Sec. 2.4].
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4.1 Upper bound
We start by writing, for any ¢ € (0,1) and N € NN,
(T > 1) < P(T > ¢, MEP™ > V2N(1 = N~at))
+ P(ﬂ}ivbm <V2N(1 - N—1/3at)) , (4.4)

where a > 0 is a parameter which will be chosen shortly. By Theorem 1.1, the second
probability on the right hand side equals Fiop,v (4N (1 — N~'/3at)?). By [22, Thm. 2],
there are constants ¢y, ¢z > 0 such that for any 6 € (0, 1] we have

FrLogn(4N(1—46)) < eV, (4.5)

Choosing « large enough so that cya® > %, and then N large enough so that at < N'/3,
we get

Froe,Nn <4N(1 - N_l/gat)2> < FLoE,N <4N(1 - N_l/Sat)) < e N <o SNE
(4.6)
as desired. We are thus left with obtaining the same bound for the first probability on

the right hand side of (4.4).
We express this last probability as

(Tdbm > ¢, MP™ > V2N (1 — N*I/Sat)) :/ ds/ dm fR(m, s).
V2N(1-N-1/3at)

Using the second identity in Theorem 3.1 together with (3.2) we see that the last integral
is bounded by

) o0
~ bb bb Gbb
/ ds / dm T2 | KR e I+, .7
1-N-1/3at

Thus we need to estimate the two trace norms appearing above. We will estimate first
[WhP ||1. Since WpP, is rank one, this norm can be written as

TP |, = H a( H H o } , 4.8
1Ol = Zs@ oo Zso U o) (4.8)
where we have used (3.4). We have, for all s € R,
N-1 N-1
| enri| = [ a0 Y @B = 3 0
n=0 n,k=0 n=0
N-1
= 2 cosh(s) Z {e_%sgoil(m cosh(s))? + 2m sinh(s)e 2"’ (m cosh(s))p, (m cosh(s))
n=0

+ m?sinh(s)%e "%, (mcosh(s))ﬂ

= 2 cosh(s) [Gsz + msinh(s)(0; + 0y) + m? Sinh(s)ﬂ e PR (2, 9)

xz=y=m cosh(s)
— 99N COSh(S)6_5(2N_1)_Sinh(25)m2/2 / dz esinh(Zs)(m+z)2/2HN (S, (m + Z) COSh(S))
0
with
Hy (s, 2) := 2 tanh(s)?pn (z)on_1(z)

+ tanh(s) (@ (@) o1 (&) + on (@)1 (@) + Py (@) Pl (@) (4.9)
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where we have used the orthogonality of the family (¢, )nen, the definition of @n‘fs in
(3.3) and Lemma 4.1. Using this identity for both norms on the right hand side of (4.8)
(note that the exponential factors in front of each integral cancel) we obtain

- o) ) 1/2
||\IJETES||1 = 2\/ﬁcosh(s) [/ dz eSIHh(Qs)(m+z)2/2HN (8, (m+ 2) cosh(s))]
0
1/2

X [/ dze” Sinh(Zs)(7"’+z)2/2HN (—8, (m+ z) Cosh(s))]
0

We now focus on the integral f\CZTv(k dm H\TIBQSHL By using Cauchy-Schwarz

inequality, we first have

o0
/ dm ||‘I]:)7?5H1 < 2\/ﬁcosh(s)
V2N (1=N-1/3at) ’

x{/ooodm
x[/ooodm

then performing the change of variables m — v2Nm with m := 1 — N~ /3at + m and
z — V2N z to write the right hand side above as
} 1/2

oo
/ dz e~ N sinh(2s)(m+2)* fr (—s, V2N (m + z) cosh(s))
0

N-1/3at)

/ dz @) (m+2)* /2 pr (s,(m+ z) cosh(s))
0

2(2N)3/2 cosh(s) [/OOO dm

X [/ dm
0 (4.10)

At this stage we need the following asymptotic approximations of the Hermite functions
on(V2Nz) and their derivatives ¢y (V2Nz) when = € (1,00) (see [42, Sec. 4]):

SN 1 — Nh(z)+1/2log(z-+v/z7=T) 1
en(Vale) = V2R (2N) VA (22 — 1)1/A° [1 + O<W)} ’

e RN)YA@E - D)V 2 to(e s vaTTT) 1
¢on(V2Nz) = — NG € [1 + O(N(z—1)3/2)} )
(4.11)

where h(z) = 2vz? — 1 — log(z + Va2 — 1) > 0 for > 1 and the error terms are uniform
in z € (1,00) as N?/3(z — 1) — co. The same asymptotics hold for ¢y _;(v2Nz) and
¢'v_1(V2Nx). Now observe that, since cosh(s) > 1+ s2/2 and m = 1 — N~ /3at +m, we
have, for m,z >0, s > t with ¢t € (0,1),

/ dz eN sinh(2s)(m+2)* fr (s, V2N (m + z) cosh(s))
0

1/2

~ 2/3
(m + z) cosh(s) > 1+t2(%—151\f+/3—21\%/3_) > 1—1—%(%—%),

where the last bound follows from N > Nt* > ny. Choosing ng large enough the right
hand side is larger than 1, and thus (in view of (4.9)) we may use the Hermite function
asymptotics in (4.10) to get

Hy (s, V2N (m + z) cosh(s)) < VN fo(i + z)
" 6—2N<Cosh(s)(ﬁ%+z)\/cosh(s)z(ﬁL-l-z)Q—l—log (cosh(s)(m+z)+,/cosh(s)2(ﬁz+z)2—1))

for some ¢; > 0, where
sinh(s)?z?

i 2,.2 1/2
(cosh(s)222 — 1)1/2 + sinh(s)x + (cosh(s)“z* — 1) /2.

fs(x) =
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Applying now the general identity fooo dx fooo dyg(z+vy) = fooo dx zg(x) (observing that
m + z is a function of m + z) together with the above upper bound we obtain

o oo
/ dm / dz N simh(2s)(m+2) f (s, V2N (m + z) cosh(s))
0 0

< clx/ﬁ/ dz zfs(1 — N-Y3qt + z)e_N-']S(1_1\’71/%”2)7 4.12)
0

where
gs(z) = —sinh(2s)z* + 2 cosh(s)z\/cosh(s)222 — 1 — 2log(cosh(s)z + /cosh(s)222 — 1).

Since ¢’ (z) = —4 cosh(s)(sinh(s)z — y/cosh(s)222 — 1), g4(1) = 0 and g”(1) = 4 tanh(s)~* >
0, gs(#) attains its minimum for z > 0 at z = 1 with g;(1) = —2s, and thus it follows from
a simple application of Laplace’s method that the major contribution to the z integral
comes from the neighborhood of the point z = N~!/3at and hence the right hand side of
(4.12) is bounded by
atsinh(s)3/?
N1/3 cosh(s)1/2

where the error term is uniform in s € (¢, 00). Hence when Nt* > ng, we have

e (e1 + Onor])

[eS) 9] 3 3/2
N sinh(2s)(m+z)? ~ at blnh(S) INs
/0 dm/0 dze Hy (s, V2N(m+ z) cosh(s)) <c N1/3 cosh(s11/2 cosh(3)172 e Vs,

This yields a bound for the first integral in (4.10). The second integral can be estimated
in the same way, leading to

/ dm/ dz e~ N sinh(2s)(m+2)* fr (—s, V2N (m + z) cosh(s))
0 0

onfsinh(S)?’/2 2N (s—sinh(2s))
<m0
N1/3 cosh(s)1/2

We deduce that

/ ds/ dm||\flgfs||1 < 01N7/6t/ ds sinh(s)%/? cosh(s)'/2e(2s—sinh(2s))N
t V2ZN(1-N-1/3at) ’ t

< ¢ N1/62t N (2t=sinh(20)

where the last estimate can be obtained using Laplace’s method and the Taylor series
expansion of the hyperbolic sine and cosine. This also implies that H\T!E,ﬁs l1 is bounded
above by a constant uniformly for s > t and m > \/ﬁ(l — N‘1/3at). Since 2t —sinh(2t) <
—%t?’ for t > 0, we deduce then from (4.7) and Lemma 4.4 below that, for Nt3 large
enough, that

IP(?A'A‘}bm > ¢, MIPm S VaN(1 — N‘1/3at)) < e SNEHOWN),

This estimate together (4.6) yield the desired upper bound.

Lemma 4.4. There are constants c¢,ny > 0 such that for all N > ng, t € (0,1) and
m > V2N(1—t/N'/3),
KR 0B < eN2

Proof of Lemma 4.4. For any a > 0 define the multiplication operator (e f)(x) = e® f(z)
and write
KR 0m KR [l < [IKRP e |2 ]le ™ 0m KR -
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We have

2 N-1
IIK?\%E“II%:/ dwdy(Z on () on(y 6’”) /}Rdye on(y)?,
0

n=

and

le 50, KRP||2 = Z/dxe o, (2m — x)? 74am2/dxe “on(x)?,

(in both cases we have used the orthogonality of the family (¢, )nen), which yields the
bound

N—-1
HKN Qmebnl < e—2am Z / dme%agon(x)2
— R

We split the = integral into two regions, (—oc, v2N] and (v/2N, o0). On the first one we

use the upper bound Zfl\:ol ©on(x)? < /N/2 for x € R (see [23]) to estimate the integral
by

N-1

e

~ 2v/2a

On the second one we use (4.1) (with the change of variable z — V2N (1 + z)) and the
bound

VAN
/ dz €2, (z)2 < VN 2vawa, (4.13)

n=0

nl/lzgon(\/Qn + x/(\/inl/ﬁ)) <a e’y > 0,neNN
for the Hermite function (see [3]) to write
N-1 00 00 o]
/ dx e** o, (z)? = / dx/ dz (2N)3/262‘/ﬁa(1+x) (4.14)
V2N 0
X on(V2N(1+z+ 2))en—1(V2N(1 + 2 + 2))

< 01N4/362‘/ﬁ“ /OO dx /OO dz e2\/ﬁa:}c702(w+z)3/2N

3/2 _ 3/2
< 01N4/3 22 a/ dl‘€2v Nax—cax N/ dz e~ 2% N.
0

n=0

The = integral can be computed explicitly, and equals ¢ N~2/3 for some ¢ > 0, while we
can bound the x integral by c¢; ecza’/VN using Laplace’s method and hence the right hand
side of (4.14) can be bounded by ¢; N2/3¢2V2Natc2a®/VN for Jarge enough N. Putting this
bound together with (4.13) gives

HKN Qmebnl < e~ 2am <2\/\/§e2‘/27a N2/3 2v2Na+caa® /\/>>
a

Since m > v2N(1 —t/N'/3) and t € (0,1) deduce that

KR om KR (1 < VN T (2\/2 1]\/’2/<‘3662a3/\/ﬁ>7
a

which finishes the proof by choosing a = N~1/6, O

EJP 22 (2017), paper 102. http://www.imstat.org/ejp/
Page 30/40


http://dx.doi.org/10.1214/17-EJP119
http://www.imstat.org/ejp/

Extreme statistics of non-intersecting Brownian paths

4.2 Lower bound

Proceeding analogously to the proof of the upper bound in [37], we start by writing,
for N e N, t € (0,1), and two parameters 8 > 0 and s € (0, 1) to be chosen later on,

(Tdbm > t) > P(C)gfhf)) < V2Ncosh(Bt) Vo < t; 2l 5 (/5 Cosh(ﬂt)) (4.15)

x » cosh(t+s)

The basic idea of the proof in [37] is the following. Suppose for a moment that the two
events in the probability on the right hand side were independent. The first event has
a probability which can be bounded away from zero (see below), so the lower bound
is controlled by ]P(C’;’gll((t:jfs > v/2Ncosh(f3t)). This last probability has the desired tail
decay if we choose s = at for some « € (0,1). The proof thus boil down to estimating the
correction coming from the correlation between the two events. To do this, we rewrite
(4.15) as
]P(7A'1\‘}bm > t) > ]P( An(z) \/ﬁcosh(ﬂt) YV < t)

cosh(z)

- IP(C)(;]:}I((J;) < V2Ncosh(Bt) Vo < t; 280 < (/9 cosh(ﬂt)) . (4.16)

 cosh(t+s)
The correlation between the two events in the last probability is controled by the
following estimate:

Lemma 4.5. Let 8 > 3. There are ag,ny > 0 such that if « € (0, ) and s = «t, then for
all N € N, t € (0,1) satisfying Nt* > ng, we have

IP(*N(‘” < V2Ncosh(Bt) Vo < t; 2504 < /o, cosh(ﬂt))

cosh(x) ’ cosh(t+s)

< (2 < Vom0 v 1) P28 < VBVen)

cosh(x cosh t+s)

x [1 4 pe V(P00 (g17)

where a, is defined implicitly in (4.18).

To see how the lower bound follows from the lemma, we let 8 > 3, choose « as in the
lemma, let s = at and then use the estimate and (4.16) to get

P(%ﬁbm > t) > IP( An(z) \/ﬁcosh(ﬂt) YV < t)

cosh(z)

x [1 ~P (s < FCOSh(ﬂt))( soze N ((B7+(4e)? )3/2t3+o(t5))>} .

For the first probability on the right hand side we have that there is a py > 0 such that

P( 2555 < VaNcosh(8) va < t) = P( 222 < VAN ¥a € R) = Fionn (4N) = po

uniformly in N. On the other hand, since cosh(j3t) cosh(t + s) = 1 + Mtg + Ot
for ¢ € (0,1) and since Ay (t) has the distribution Fgug n of the largest eigenvalue of a
N x N GUE random matrix (with scaling chosen as in [29]), Lemma A.1 implies that

cosh(t+s)

IP( An(ths) o Fcosh(ﬂt)) - FGUE,N(\/ﬁcosh(ﬁt) cosh(t + s))

<1 e NN PL06) (418

We deduce that
P(Tm > 1) > po [ g e IV A0 s SSN((E (4?0 00)

2N2t6

> o e s N((B+(1+0)*)* 210 ("))
— t

i
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which yields the lower bound.

Our goal then is prove Lemma 4.5. For this we need an expression for the probability
of the form P (Ay(z) < acosh(z) Vz < t). To state the extension of that formula, define,
for a,t € R, the operator (acting on L?(R))

Q = Pucosh(t) (I + Ma,t0a,t), (4.19)
where
0atf(x) = f(2acosh(t) —x) and Mg, f(z) = e shEmacon®) f(g).
Proposition 4.6. With the above definitions, and for any a,b € R and s > 0,

P(An(z) < acosh(z) Vo < t; An(t+s) < beosh(t + s))

=det(I — KR + KR (1 = Q)e™*P (I = Pycosh(r+s)) eSDKR}’)Lz(R) (4.20)
bb —sD(Kbb _
— det(l -T |: QKN E)ézcc]))sgl(t) Qe (KN bL)Pbcosll(t+s):| r—l) (4.21)
Pbcosh(t+s)e KN Pacosh(t) Pbcosh(t+s)KN Pbcosh(t+s) L2(R)?2
where
G 0 72asmh(t T
M= 0 G with Gf(z) = f(x). (4.22)

Proof of Proposition 4.6. We will only prove (4.20). The proof of (4.21) follows from the
same argument as that in the proof of [37, Prop. 3.3], and is basically a version of the
argument in [6] (see also [34, 35]).

Given L > 0, it is straightforward to adapt the proof given in [6, Cor. 4.5] of the
continuum statistics formula (2.6) to deduce that

P(An(z) < acosh(z) Vo € [-L,t]; An(t+ s) < beosh(t + s))

- det(l — KR+ @f“f’ge* ﬁbcosh(t+s)e<L+t+S>DK?vb) . (4.23)

where G(G)Lb:]) is defined as ®9b Ly (see (2.8)) for g = acosh(t). Since e(!Ts)PKRP =
e!PKRPesPKRY for all t, s € R, we can use the cyclic property of the determinant to turn

the last determinant into
det(l — KRP 4 e EHOPKREO( P =Py e K*;Vb) : (4.24)
We will show below that

(L+t)DKbb®Eang Kbb(l - Ma,t@a,t)lsacosh(t) (4.25)
in trace norm. This together with (4.23) and (4.24) yields that the probability in the
Proposition equals

det(l - K]]3\/!D + Klja\/b(l - Ma,tga,t)lsacosh(t)e Pbcosh(t+s)e Kbb)

Now formula (4.20) readily follows by observing that M, ; and P, ¢osn(;) cOmmute and
Qa,t Pa cosh(t) = P. cosh(t)Qa,t-

All that remains is to prove (4.25). The proof follows from the same arguments as
that in the proofs of [29, Lem. 2.3 and Lem. 2.4] (in which case we were taking ¢ = 0).

We decompose G[G)ng as

(a),bb —(t+L)D (a),bb] 5 (a)
O = [ (t+L) — RiZ%4 | Pacosn(y — £
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fl) e—(t+L)D _ R(a);bb

where QE 7 = Pacosh(r) { [_L7t]} Pacosn(t)- The first term leads to

e(LHODKRD [o=(t+L)D _ Rfi)il?tt])] = KR (I = My 104,t)

(see [29, Lem. 2.4]) while the remaining term e(:+)PKRPQ") converges to 0 in trace
norm (see [29, Appx. B]). O

Proof of Lemma 4.5. We start by using (4.21) with a = b = v/2N cosh(ft). To simplify
notation, write P1 = P, cosh(t); P2 = Pacosh(¢+s)- The idea of the proof (which comes from
[48]) is to factor out the two diagonal terms in the determinant and then estimate the
remainder. More precisely, we write

T QKR})Pl QeiSD(K}JD\}) — |)P2 r71 —(1-r QKR})Pl 0 r,1
PQBSDKIJ)\})Pl PQKIJ)\})PQ o 0 PQKR})PQ

ir 0 (1 - QKPP Qe P (KR — )P] L,
(l — P2Kl]§)P2)—1P2esDKl])\}OP1 0 ’

The determinant of the first factor on the right hand side equals
det(I — GQKRPP1G 1) det (I — GPoKRPP2G 1) .

The second determinant equals Foug,n(acosh(t + s)) = P(An(t + s) < acosh(t + s)). For
the first one we have, by the cyclic property of determinants and the facts that P1Q = Q
and KR = (KRP)2,

det(1 — GQKRPP1G™!) = det (I — KRPQKRY) = P(An(z) < acosh(z) Yz < t)

by (4.20) where we take s = 0 and b = a. This yields the first two factors on the right
hand side of (4.17).
We are left with estimating

det<| or [ 0 (1 — QKRPP,) ~1Qe—*D(KRY - I)Pz} rl)
(I = PoKRPP2) ~1PoePKRPPy 0 .
= det(l — K),
with R = Rl,l R1,2R2’2R2’1 and
Rii = G(I— QKRPP1)™1G™, Ry = GQe P (KR — )Py, w2

Ro2 = (I — PaKRPP2) 7, Ra,1 = P2e*PKRPP1G 1.
Since |det(l — K) — det(l)| < ||R||1el+”R”1, the proof will be complete once we show that,

for Nt3 large enough,

K] < Qfﬁe—%N((52+(“+1)2>3/2t3+0<t5>). (4.27)
&

To get this estimate write (see (3.1)) ||RH1 < |IR1,1l2]IR1,2]l2]|R2,2]l2||R2,1
Lemma 4.7, which gives

2, and then use

1K, < ClN_5/4t_15/4e*N(%(52+(a+1)2)3/2t3+hﬁ(a)t3+@(ts))7

where hg(e) = a+2a%+ 2a® + af? + 2(14 8%)%/2 — (82 + (1 + «)?)%/?). Since, for fixed
B > 3, we have hg(0) = 0 and hj(0) =1 + B% —24/1+ 32 > 0, we deduce that hg(a) > 0
for small enough o and therefore that (4.27) holds for small enough « and large enough
Nt3 as desired. O
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Lemma 4.7. Let Ry 1, Ri2, Ry2 and Ry, be defined as in (4.26). There are constants
c1,no > 0 and a constant ty > 1/3 such that if 0 < t < tg, Nt3 > ng and B > 3,

Ri1l2 <2, (4.28a)
IRy 2|2 < ClN71/4t73/467N((4+a)t+((4+a)ﬁ2+2a3/3+2a2+a+8/3)t3+0(t5)), (4.28D)
[R2,2][2 <2, (4.28¢)

HR2,1||2 < 01N71t73efN((7a74)t+(2(52+(1+a)2)3/2/3+2(1+ﬂ2)3/2/374B278/3)t3+(’)(t5))(4.28d)

Proof of Lemma 4.7. Recall the notation introduced in (4.19) and (4.22). In the present
case we have a = b = 2N cosh(ft). For notational simplicity we will write

P = Pa cosh(t)s Py = Pa cosh(t+s)» M= Ma,t and 0 = Qa,t-

We will use repeatedly the asymptotics for Hermite functions in (4.11) and the decompo-
sition, for s € R, (see Lemma 4.1)

ePKRY = /N/2e* N1/ cosh(s/2) 7 [Bi,sFsPoFsBn_1,s + Bn_1,sFsPoFsBn.s], (4.29)
where
Brs(z,y) = e @h/2@ o (2 49y and  Ff(z) = eftanh(s/Z)m2/2f(l,)'
Note that for the case s = 0, (4.29) simply becomes (4.1):
KX = V/N/2 (BnPoBn-1 + By-1PoBN),

with By (z,y) :==Bwno(z,y) = en(z +y).
We start now with the first estimate. Since

IRialla < ) I(GQKRP1GT ¥l < > [GRKRPPLG§ < 2
k>0 k>0

if || GQKRPP; G|z < 1/2, it is enough to show that
GQKRPPL G|y < e 2NE, (4.30)
N

for large enough Nt3. Let N be the multiplication operator defined by
Nf(z) = ln(z)~ ! f(x) where Iy (x) = (1 +t2+2xN"1/6)2 —1)3/4 for N € N, t € (0,1). We
have, recalling that Q = P; + P; My,

IGRKRP1G![|2 < \/N/2<||GP1BNP0H2||POBN—1P1G71||2
+HGP18N_1P0||2||PoBNplG_lHQ + ||GP1MQBNP0N||2||N_1P()BN_1P1G_1||2

+ ||GP1MQBN_1PON||2||N‘1POBNP1G‘1||2>.
(4.31)
We will focus on the first and the third terms in the sum on the right hand side. The
bounds for the two remaining terms are very similar. We write first

o0

|GP1 B P2 = /

dl‘/ dy e—4\/ﬁcosh(ﬁt) sinh(t)mLpN(I + y)Q’ (4.32)
V2N cosh(jt) cosh(t) 0

and

IPoBy—1P1G 1|2 = / du / dy VN s (B (4 )2,
0 V2N cosh(ft) cosh(t)

(4.33)
In order to deal with both integrals we are going to use the following estimate:
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Lemma 4.8. Let a > 1. There are constants c¢1,n9 > 0 such that for all a € (1,«), all

b<2y/2(a—1), and all N € N satisfying min{N(a — 1)*/?, N(2y/2a — 2 — b)*} > nq,

/OO dr /OO dy VNV (z + y)? < a =N (2 (a-1)*/*-2ab)
0 N7/6y/a2 —1(2/2(a — 1) — b)

Proof of Lemma 4.8. Changing variables z — 2Nz and y — v2N(y + a) and then
using the asymptotics (4.11) we see that, for N(a — 1)3/ 2 > ng with ng large enough, the
double integral is bounded by

> * (r+y+a)+ ((x+y+a)-

cle2NabN/ dx/ dy( y+a) (( y+a) —

NY2 ((z +y +a)? — 1)

where h(z) = zv/z2 — 1 —log(z +v/x2 — 1). Since the function z — £+¥22=1 j5 decreasing

Va2-1
n (1,00) and h(z) > %(z —1)3/2 for = > 1, the above integral is bounded by

a—l—ﬁ 2NabN1/2/ dm/ dye—zN 4\f(9c+y+a 1)3/2 by)
CVar—1

>1/2

e 2N (h(z+y+a)—by)
)

o0 V3
§§71162NabN—1/6/ dye—N(ST(a—1+y)3/2_2by)7 (4.34)
a’ — 0

where we used the inequality (z + y)*/? > 23/2 + 3/2 for z,y > 0 and then computed
—52N2*? _ . N—2/3 for some constant ¢ > 0. For y > 0 the

exponent in the y integral is maximized at y = 0 as long as b < 24/2(a — 1) so it follows
from Laplace’s method that

the explicit = integral [, dze

/°° dy e—N(STﬁ(a—1+y)3/2—2by) _ c1 o~ NEE(a-1)%2
0 N(2\/ 2a — 2 — b)
1
X [1 +O<N(a1)1/2(2\/2(a1)b)2>} , as N — oco. (4.35)

Since a is bounded and min{N(a —1)*2 N22(a—1) — b)3} > ng, we observe that the
estimate holds by taking ng large enough and moreover the error term is bounded by
an arbitrarily small constant cong L Putting (4.35) and (4.34) together to complete the
proof. O

We will apply this result setting a; = cosh(8t) cosh(¢) in both (4.32) and (4.33), and
by = —4 cosh(ﬂt) sinh(¢) < 0 for (4.32), by = 4cosh(5t) sinh(t) for (4.33) (note that b; >
2y/2a; — 2 for 6 > 3 and t € (0,1/3) in this case). In both cases, we have a; — 1 > ¢1t?

and 2v/2a; — 2 —b; > cqt w1th some exphclt constant ¢; > 0 for ¢ € (0, 1), so the condition
min{ N (a; —1 3/2 N(2y/2a; — 2 — b;)®} > no appearing in the lemma holds if we let

Nt3 > ng. Thus for Nt3 large enough with ¢t € (0,1/3), we get
IGP1B Py ”g < ClN77/6t72674N cosh(Bt)? sinh(2t)— 82 N (cosh(Bt) cosh(t)fl)?’/z,
IPoBy_1P1G 1|2 < e N~T/642AN cosh(Bt)? sinh(2t)— &2 N (cosh(8t) cosh(t)—1)*/?
This yields a bound of ¢, N~7/6¢=2¢~ 5> N(cosh(8t) cosh(1)~1)*'* for the first term in the sum
in (4.31). Turning now to the third term in the same sum, we have

|GP1MoByPoN||3

= / da:/ dy e20"smh(20) o (2 cosh(t) — z + )2 (1 + 12 + yN—1/6)2 — 1)=3/2
a cosh(t) 0

< 674N cosh(Bt)? sinh(2t) ||S0N H2 ” Pof

- 2 L2 < ¢ N1/64=1g=4N cosh(81)* sinh(2t)
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and we can see that, by proceeding analogously to the proof of Lemma 4.8, the following
estimate holds

HNilPOBN—lpl H2 <c¢ N~ 7/6te4Ncosh(ﬁt) sinh(2t)— %N(cosh(ﬁt) cosh(t)71)3/2.

Putting this together with the last estimate and the analog bounds for the other two
terms in the sum in (4.31) gives

||GQKR})P1G_1 ||2 < Cle—%N(cosh(ﬂt) cosh(t)—l)s/z,

for large enough Nt* which, since (cosh(St) cosh(t) — 1)3/2 > ¢,t3 for t € (0,1), gives
(4.30).
We turn now to R; », for which we have

[Ri2ll2 < [|GP1e™*P(KR? — I)Pyl|2 + [|GP1Moe P (KRP — 1)Py .. (4.36)

The first term on the right hand side can be estimated as

o0 o) e 2
IGPie (KR ~DPaf3 = [ do [ ayertesmne (X e men@entn)

a cosh(t) a cosh(t+s) n—

] [e§] > 2
S/ d(E/ dy —2a? 51nh(2t)<z e~ (y)>

a cosh(t) a cosh(t+s) n=N

o0 2 ginh .
< / dy e—2a sinh(2t) Z e—2ksn()0n(y)27 (4.37)

a cosh(t+s) n=0

where in the last inequality we have extended the x integral to the whole real line
then used the orthogonality of the family (¢, )nen. Note that the sum is nothing but
e 20 (g, y)\z:y (see (2.17)), hence the last term becomes

6—2112 sinh(2t) / d 1 e(s sinh(2s)—2sinh(s)?y?)/ sinh(2s) )
a cosh(t+s)

Y 4/ 2m sinh(2s)

We then use the estimate [, d e=*" < e~'" /(2t) for t > 0 to bound the expression above
by

01N71/2t73/2€_2N(2 cosh(fBt)? sinh(2t)+tanh(s) cosh(Gt)? cosh(t+s)2)

_ ClN—1/2t—3/26—2N((4+a)t+((4+a),6’2+2a3/3+2a2+a+8/3)t3+0(t5)).

For the remaining term on the right hand side of (4.36), by writing

IGP1Moe™*P(KRP — 1)Pa||3

oS] o] > 2
_ / d(E/ dye —2a? sinh(2t) ( Z —5n 2@ COSh( ) _ x)@n(y))
a cosh(t) a cosh(t+s) n=N
a cosh(t) o h(2t) 2
— dl’/ d —2a sinh(2t ( e s’n n(?/)) ;
/—oo a cosh(t+s) Z

then estimating as in (4.37), we can obtain the same bound as in the first term, which
yields (4.28b).
For Ry 2 we observe that

[P2KRPP 2 < v/ N/2([[P2BnPo|l2]|PoBn—1P2]l2 + [[P2Bn—1Po|[2[|PoBNP2]l2)
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which can be easily seen to be bounded by 1/2 for large enough Nt3 by bounds similar
to those used to prove (4.28a), and thus we get (4.28c) in exactly the same way.

Finally, for Ry ; we use a similar decomposition as for R; ; (see (4.29) and (4.31)): we
may write

[Rzll2 < N/QeS(N’l/Q)cosh(s/2)’1(HPQBN,SFSPOHQ||P0FSBN_1,SP1G’1||2

+ [IP2By-1,4FsPollal|PoFsBr,sP1G 1 ). (4.38)

We have
HPQBN,stPOH% = / " : dI[) dy 672tanh(s/z)(zeryQ/z)gpN(x —+ y)2
a cosh(t+s
< / dx/ dy pn( +y)?
a cosh(t+s) 0
< clN—7/6t—26—¥N(cosh(,8t) cosh(t+s)—1)3/2
and

||POFsBN—1,sP1G_1||§ :/ dl‘/ dy6—2tanh(s/2)(my+zz/2)+4asinh(t)y(pN_l(x+y)2
0 a cosh(t)

< / dac/ dy e4aSinh(t)ySDN71(.T + y)2
0 a cosh(t)

< C1]\/77/6157264N cosh(8t)? sinh(2t)78—\g/§N(cosh(,8t) COSh(t)71)3/2’
where in the two last inequalities we have used Lemma 4.8. Putting these bounds
together with the analogous ones for the other term on the right hand side of (4.38)
shows that ||R21]|2 is bounded by

ClN_Q/gt_ge—N(—s—Q cosh(Bt)? sinh(2t)+4—\3/§(cosh(6t) cosll(t)—1)3/2+4—§/§(cosh(,Bt) cosll(t+s)—1)3/2)

_ 01N72/3t72e—N((—a—4)t+(2(ﬁ2+(1+a)2)3/2/3+2(1+,62)3/2/3—4ﬁ2—8/3)t3+0(t5))

7

which gives (4.28d). O

A A small deviation estimate for a finite GUE matrix

Let Aqug,~ be the largest eigenvalue of an IV x N GUE matrix A, defined as follows:
A is a (complex-valued) Hermitian matrix A such that A;; = N(0,1/4) +iN(0,1/4) for
i > j and A;; = N(0,1/2), where all the Gaussian variables are independent (subject to
the Hermitian condition).

Lemma A.1l. There are constants ¢y, ce,ng > 0 such that for allt € (0,1) and N € N
satisfying Nt3/2 > n,

xame” FNEHOED) <P (hgupn 2 VAN(L+1)) < —EENES,

C2
Nt3/2
This estimate extends to large ¢ the one appearing in [31, Lem. 7.3] (we remark also
that in that paper the dependence on t in the prefactor in the lower bound is missing).

Proof of Lemma A.1. We begin by recalling that, under the scaling which we are using
for the GUE (see [29, Sec. 2)),

e bbp \n
P(Acuey < t) = det (I — P,KRP,) = exp <_ 3 W) .

n=1
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As in [31], the second equality comes from the fact that, since KR}” is a positive self-adjoint
operator, then all its eigenvalues are non-negative, and so are all the eigenvalues of
P,KRPP;. We also have that all traces are non-negative and tr((P;KRPP;)") < tr(P;KRPP;)™.
Thus we get the simple bounds

1 —tr(PKRP,) < P(Aquey < t) < e T(PKRP,

which implies
bb
1 — e  "PKIP) < P(A\que .y > t) < tr(PKRPPY).

Therefore it only remains to give upper and lower bounds for the trace, which is given by

tr(P KPP ) :/ dz K (z, ).
V2N (14+t) "N T V2N (14+¢) VIR (L4 N

Using the integral representation for the kernel KX in (4.1) and changing variables
z = V2N (1+t+ ) and z — V2N z gives

(2N)3/2/Ooodx/ooodz<pN(x/ﬁ(1+t+m+z))<pN1(@(1+t+x+z))
— (2N)3/? /OO dzzon (V2N(1+t +2))on -1 (V2N(1 + t + ).
0

We use now the asymptotics for the Hermite functions in (4.11) to deduce that, for ¢ > 0
as Nt3/2 — o, the above is bounded by

> £ —2Nh(1+t+z) 1
o [t e M O
where h(t) = tvt? — 1 —log(t + vt?> — 1). The exponent in the x integral is maximized at
x = 0 so it follows from Laplace’s method that, as N — oo,

o—2Nh(1+1)
—2Nh(14t+z) _

- NQ(t2+2t)3/2 [

e+ O(L)], Ve (0,1).
(A.2)
Since N > Nt3/2 for t € (0,1), both error bounds in (A.1) and (A.2) are arbitrarily small
if we let Nt3/2 > ng for ng large enough. Putting these estimates together to obtain
the asymptotics for the trace and then using the expansions h(1 +t) = %t?’/ 24 0(t°/?)
(with A(1 + ) > 2Y243/2) and (2 + 2t)*/2 = 2v/2t3/2 + O(t5/?) for ¢ € (0,1) completes the
claimed bounds. O

/ dx z e
o AT tr -1
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