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Abstract

Consider the stochastic heat equation u̇ = 1
2
u′′ + σ(u)ξ on (0 ,∞) × R subject to

u(0) ≡ 1, where σ : R → R is a Lipschitz (local) function that does not vanish at 1,
and ξ denotes space-time white noise. It is well known that u has continuous sample
functions [22]; as a result, limt↓0 u(t , x) = 1 almost surely for every x ∈ R.

The corresponding fluctuations are also known [14, 16, 20]: For every fixed x ∈ R,
t 7→ u(t , x) looks locally like a fixed multiple of fractional Brownian motion (fBm) with
index 1/4. In particular, an application of Fubini’s theorem implies that, on an x-set of
full Lebesgue measure, the short-time behavior of the peaks of the random function
t 7→ u(t , x) are governed by the law of the iterated logarithm for fBm, up to possibly a
suitable normalization constant. By contrast, the main result of this paper claims that,
on an x-set of full Hausdorff dimension, the short-time peaks of t 7→ u(t , x) follow a
non-iterated logarithm law, and that those peaks contain a rich multifractal structure
a.s.

Large-time variations of these results were predicted in the physics literature a
number of years ago and proved very recently in [10, 11]. To the best of our knowledge,
the short-time results of the present paper are observed here for the first time.
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1 Introduction

Let σ : R → R be a non-random, Lipschitz continuous function, ξ := space-time
white noise, and consider the unique, continuous solution u = u(t , x) to the semi-linear
stochastic heat equation, [

u̇ = 1
2u
′′ + σ(u)ξ on (0 ,∞)×R,

subject to u(0) ≡ 1.
(1.1)

It is not hard to see that if σ(1) = 0, then u ≡ 1 a.s. Therefore, we assume that

σ(1) 6= 0,
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Multifractal local behavior parabolic SPDE

to avoid trivialities. In this case, it has been shown recently by Khoshnevisan, Swanson,
Xiao, and Zhang [14] that, for every fixed x ∈ R and t0 > 0, there exists a fractional
Brownian motion B = {Bt}t>0 of index 1/4 such that

u(t+ t0 , x)− u(t0 , x) ≈ (2/π)
1/4

σ(u(t0 , x))Bt a.s. when t ≈ 0. (1.2)

For closely-related works, see also Lei and Nualart [16] and Pospíšil and Tribe [20].
The quality of the approximation (1.2) is good enough that one can deduce from it a
good deal of local information about the sample functions of t 7→ u(t , x) near t = 0. For
example, it is possible to prove that the following law of the iterated logarithm holds for
all x ∈ R and t0 > 0:

lim sup
ε↓0

u(t0 + ε , x)− u(t0 , x)

ε1/4
√

log log(1/ε)
= (8/π)1/4σ(u(t0 , x)) a.s. (1.3)

And when t0 = 0, the same result can be shown to hold, using hands-on methods, but
with (8/π)1/4 replaced by (4/π)1/4. To be concrete, we study solely the case t0 = 0 here.
In that case, we of course have u(t0 , x) = 1, which simplifies the exposition somewhat.

For every c > 0 consider the random set

U (c) :=

{
x ∈ [0 , 1] : lim sup

ε↓0

u(ε , x)− 1

ε1/4
√

log(1/ε)
> c

}
.

Our earlier remarks about (1.3) imply that U (c) has zero Lebesgue measure a.s. for all
c > 0, and hence so does

U :=
⋃
c>0

U (c).

Among other things, the following theorem shows that the Lebesgue-null set U has full
Hausdorff dimension a.s.

Throughout, dimH and dimP respectively denote the Hausdorff and the packing
dimension; see Matilla [18, Ch.s 4 and 5]. We will also let dimM denote the upper
Minkowski—or box—dimension; see the book by Matilla (ibid.).

Theorem 1.1. If 0 < c 6 σ(1)/π1/4, then with probability one,

dim
P
(U (c)) = 1 and dim

H
(U (c)) = 1− c2

√
π

|σ(1)|2
.

If c > σ(1)/π1/4, then U (c) = ∅ a.s.

It has recently been shown by Kunwoo Kim, Yimin Xiao, and the second author
[10, 11] that the largest global oscillations of the random map (t , x) 7→ u(t , x) form an
asymptotic multifractal; this property had been predicted earlier in a voluminous physics
literature on the present “intermittent” stochastic systems [as well as for more complex
systems]. It is not hard to deduce from Theorem 1.1 that the high local oscillations of
(t , x) 7→ u(t , x) are also multifractal in a precise sense that we now explain next. Indeed,
let us observe that, by Theorem 1.1,

U =

{
x ∈ [0 , 1] : 0 < lim sup

ε↓0

u(ε , x)− 1

ε1/4
√

log(1/ε)
<∞

}
a.s. (1.4)

Moreover, the right-hand side of (1.4) is equal to ∪c∈IU (c)—where I := (0 , σ(1)/π1/4]—
and c 7→ dim

H
U (c) is strictly decreasing on I. Thus, Theorem 1.1 implies that the
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Multifractal local behavior parabolic SPDE

right-hand side of (1.4) is a “multifractal.”
Finally, let us recall that by a “solution” u = u(t , x) to equation (1.1) we mean that u

is a “mild” solution to (1.1). That is, u satisfies the following for each t > 0 and x ∈ R:

u(t , x) = 1 +

∫
(0,t)×R

pt−s(x− y)σ(u(s , y)) ξ(dsdy) a.s., (1.5)

where pr(w) := (2πr)−1/2e−w
2/(2r) [r > 0, w ∈ R] denotes the heat kernel on R, and the

stochastic integral is defined by Walsh [22].

2 The constant-coefficient case

Consider first the constant-coefficient stochastic heat equation,[
Ż = 1

2Z
′′ + ξ on (0 ,∞)×R,

subject to Z(0) ≡ 0.
(2.1)

It is easy to see that Z(t , x) = u(t , x)− 1, where u solves (1.1) in the special case that
σ ≡ 1.

According to the theory of Walsh [22, Ch. 3], the solution to (2.1) can be written, in
mild form, as the following Wiener integral process:

Z(t , x) =

∫
(0,t)×R

pt−s(y − x) ξ(dsdy) . (2.2)

Evidently, Z is a centered, Gaussian random field. The following simple computation
contains all of the requisite information about the process Z.

Lemma 2.1. For all ε > 0 and x, x′ ∈ R,

Cov [Z(ε , x) , Z(ε , x′)] =

√
ε

2
g2

(
x− x′√

ε

)
,

where g denotes the incomplete Green’s function of the heat kernel; that is, gt(a) :=∫ t
0
pr(a) dr for all t > 0 and a ∈ R.

Proof. Let δ := x− x′. By the Wiener isometry and (2.2),

Cov [Z(ε , x) , Z(ε , x′)] =

∫ ε

0

ds

∫ ∞
−∞

dy pε−s(y − x)pε−s(y − x′) =

∫ ε

0

p2s(δ) ds.

We have used the semigroup property of the heat kernel in the second identity. We can
change variables [r := 2s/ε] and observe that prε(δ) = ε−1/2pr(δ/

√
ε) to finish.

By l’Hôpital’s rule, g2(a) ∼ 4π−1/2a−2 exp(−a2/4) as a → ∞. Therefore, Lemma
2.1, and the strict positivity and the continuity of g2 together imply the following: The
Gaussian random field Z(ε) is stationary for every fixed ε > 0. Furthermore, for every
real number α,

Cov
[
Z(ε , 0) , Z

(
ε , ε(1/2)+α

)]
�

ε
1/2 if α > 0,

ε(1/2)+2|α| exp

(
− 1

4ε2|α|

)
if α < 0,

uniformly for all ε ∈ (0 , 1). This implies roughly that if |x − y| �
√
ε then Z(ε , x) and

Z(ε , y) are very close to being uncorrelated, whereas Z(ε) locally behaves as a random
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Multifractal local behavior parabolic SPDE

constant on a spatial scale of O(
√
ε). In other words, the “correlation length” of the

random field Z(ε) is
√
ε when ε ≈ 0.

The rest of this section is devoted to developing some hitting estimates for Z. The
latter is a far simpler object than the solution u to (1.1) when σ is a non-linear function.
Therefore, one can hope for better information about Z than u.

2.1 Upper bounds

Because Z is a Gaussian random field, we can appeal to concentration of measure
ideas in order to bound the local supremum of Z. The following entropy estimate contains
the key step in that direction.

Lemma 2.2. Choose and fix a real number R > 0, and define

BR(ε) := (0 , ε]×
[
0 , R
√
ε
]

for all ε > 0. (2.3)

Then, E[supBR(ε) Z] . ε1/4, uniformly for all ε ∈ (0 , 1).

Proof. It is well known that
√

E(|Z(t , x)− Z(s , y)|2) . d((t , x) ; (s , y)), uniformly for all
s, t > 0 and x, y ∈ R, where d denotes the spatio-temporal distance function,

d ((t , x) ; (s , y)) := |t− s|1/4 + |x− y|1/2. (2.4)

This is a well-known part of the folklore of the subject, and appears upon close inspection
within the proof of Corollary 3.4 of Walsh [22, p. 318], for example. The details are
worked out pedagogically in [2, (135), p. 31].

Next we note that by Dudley’s theorem [3],

E sup
BR(ε)

Z .
∫ D(ε)

0

√
logNε(r) dr, (2.5)

uniformly for all ε ∈ (0 , 1), where:
(a) D(ε) denotes the d-diameter of BR(ε);
(b) Nε is the metric entropy of BR(ε); that is, Nε(r) denotes the minimum number of

d-balls of radius r > 0 that are needed to cover BR(ε); and
(c) The implied constant in the inequality (2.5) does not depend on ε (consult, for

example, Marcus and Rosen [17, Theorem 6.2, p. 245]).
We may consider covering BR(ε) by d-balls of the form {(s , y) : |s− t|1/4 + |y − x|1/2 6 r}
for every fixed t, r > 0 and x ∈ R. Clearly, the number of such d-balls of radius r > 0 that
are needed to cover BR(ε) is of sharp order(

1 +
ε

r4

)(
1 +

√
ε

r2

)
�
(

1 +
ε

r4

)3/2

:= Mε(r),

uniformly for all ε > 0 and r ∈ (0 , D(ε)). It is not hard to see that D(ε) � ε1/4, uniformly
for all ε ∈ (0 , 1). Because Nε .Mε uniformly on (0 , D(ε)), it follows from (2.5) that there
exists a real number C > 0 such that

E sup
BR(ε)

Z .
∫ Cε1/4

0

√
1 + log

(
1 +

ε

r4

)
dr ∝ ε1/4,

uniformly for all ε ∈ (0 , 1). This completes the proof.

Next we use Lemma 2.2 and concentration of measure in order to deduce an
asymptotically-sharp maximal inequality for Z.
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Lemma 2.3. Choose and fix a real number R > 0, and recall (2.3). Then,

lim
λ→∞

1

λ2
log P

{
sup
BR(ε)

Z >

(
4ε

π

)1/4

λ

}
= −1,

uniformly for all ε ∈ (0 , 1).

Proof. In accord with Lemma 2.1, the Gaussian random field Z(ε) is stationary and
centered, with Var[Z(ε , 0)] =

√
ε/π. Therefore, the inequality of Borell [1] and Sudakov

and T’sirelson [21] implies that supBR(ε) Z − E supBR(ε) Z has sub-Gaussian tails; see
Ledoux [15, Ch. 7]. After a few lines of computations, this fact and Lemma 2.2 together
imply that

sup
ε∈(0,1)

log P

{
sup
BR(ε)

Z >

(
4ε

π

)1/4

λ

}
6 −λ2 + o(λ),

as λ→∞. At the same time,

P

{
sup
BR(ε)

Z >

(
4ε

π

)1/4

λ

}
> P

{
Z(ε , 0) >

(
4ε

π

)1/4

λ

}
= P{X > 21/2λ},

where X has a standard normal distribution; see Lemma 2.1. Since log P{X > 21/2λ} >
−λ2 + o(λ), as λ→∞, the result follows.

Define, for all c > 0, the random set

G (c) :=

{
y ∈ [0 , 1] : lim sup

ε↓0

Z(ε , y)

ε1/4
√

log(1/ε)
> c

}
. (2.6)

Lemma 2.4. Let E be a measurable subset of [0 , 1]. Then, P{G (c) ∩ E = ∅} = 1 for
every c > (1/π)1/4

√
dimM(E).

Proof. Define, for every c > 0,

L (c) :=

{
t ∈ [0 , 1] : sup

y∈E

Z(t , y)

t1/4
√

log(1/t)
> c

}
.

Every L (c) is a random subset of the time interval [0 , 1]. For all integers n > 1 define

tn := e−
√
n, T (n) := [tn+1 , tn] , and S (j;n) :=

[
j
√
tn , (j + 1)

√
tn
]
,

for all integers j > 0. Then, by monotonicity and a simple union bound,

P {L (c) ∩T (n) 6= ∅} 6
∑

06j<1/tn:
S (j;n)∩E 6=∅

P

{
sup

t∈T (n)

sup
y∈S (j;n)

Z(t , y) > c(ntn+1)1/4

}
.

Recall the space-time sets BR(ε) from (2.3). Since y 7→ Z(t , y) is stationary, the
natural logarithm of the jth term of the preceding sum is equal to

log P

{
sup

t∈T (n)

sup
y∈S (0;n)

Z(t , y) > c(ntn+1)1/4

}
6 log P

{
sup
B1(tn)

Z > c(ntn+1)1/4

}
∼ −c

2
√
πn

2
,
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as n→∞, thanks to Lemma 2.3 and the fact that tn+1/tn = 1− ( 1
2 +o(1))n−1/2 as n→∞.

Therefore, by the definition of the Minkowski dimension,

lim sup
n→∞

log P {L (c) ∩T (n) 6= ∅}√
n

6 −c
2
√
π

2
+

dim
M

(E)

2
.

In particular, if the right-hand side is < 0, then n 7→ P{L (c)∩T (n) 6= ∅} sums to a finite
number. Therefore, the Borel–Cantelli lemma implies that

lim sup
n→∞

(L (c) ∩T (n)) = ∅ a.s. ∀c > (1/π)1/4
√

dim
M

(E).

It is easy to see that G (c) ∩ E = ∅ a.s. on the event that lim supn→∞(L (c) ∩T (n)) = ∅,
whence follows the lemma.

It is easy to apply Lemma 2.4 in order to improve itself slightly. Note that the
difference between the following and Lemma 2.4 is one about the Minkowski versus the
packing dimension of E.

Lemma 2.5. Let E be a measurable subset of [0 , 1]. Then, P{G (c) ∩ E = ∅} = 1 for
every c > (1/π)1/4

√
dim

P
(E).

Proof. Choose and fix η > 0 small enough to ensure that c > (1/π)1/4
√

dim
P
(E) + η. By

the definition of packing dimension [18, p. 81] there exists a closed cover F1, . . . , Fm of E
such that dim

P
(E) > max16j6m dim

M
(Fj)− η. Thus, G (c) ∩ Fj = ∅ a.s. for all 1 6 j 6 m

by Lemma 2.4. This completes the proof.

2.2 Lower bounds

As was mentioned earlier, the “correlation length” of the spatial process Z(ε) is
of sharp order

√
ε when ε is small. It is possible to state and prove a much stronger,

quantitative version of this assertion. In order to describe that, let us define for all x ∈ R
and ε, δ ∈ (0 , 1),

Γ(x ; ε, δ) :=
[
x−

√
2ε log(1/δ) , x+

√
2ε log(1/δ)

]
, (2.7)

and

Zδ(ε , x) :=

∫
(0,ε)×Γ(x;ε,δ)

pε−s(y − x) ξ(dsdy). (2.8)

Lemma 2.6. E(|Z(ε , x)− Zδ(ε , x)|2) < δ2
√
ε for all ε, δ ∈ (0 , 1) and x ∈ R.

Remark 2.7. Recall that if φ, ψ ∈ L2(R+ × R) are orthogonal in L2(R+ × R) then the
Wiener integrals

∫
φdξ and

∫
ψ dξ are independent. This observation has the following

by-product: If x1, . . . , xk ∈ R satisfy

min
i 6=j
|xi − xj | >

√
8ε log(1/δ), (2.9)

then {Zδ(ε , xi)}ki=1 are independent and identically distributed. It follows that the gap
condition (2.9) ensures that {Z(ε , xi)}ki=1 is uniformly to within O(δε1/4) of an i.i.d.
sequence.

Proof of Lemma 2.6. By stationarity, we may—and will—consider only the case that
x = 0. According to the Wiener isometry, E(|Z(ε , 0)− Zδ(ε , 0)|2) is equal to∫ ε

0

ds

∫
y∈R: |y|>

√
2ε| log δ|

dy |ps(y)|2 6
∫ ε

0

P

{
|X| >

√
4ε| log δ|

s

}
ds√
2πs

,
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where X has the standard normal distribution. Elementary manipulations and the
well-known tail bound P{|X| > λ} 6 exp(−λ2/2) together yield the lemma.

Lemma 2.8. Let F1, F2, . . . be finite subsets of R that satisfy log |Fn| 6 κ(1 + o(1))n as
n→∞, for some 0 6 κ <∞. Then, uniformly for all 0 < δ < 1 and 0 < ν < exp(−2κ),

lim sup
n→∞

max
x∈Fn

|Z(νn, x)− Zδ(νn, x)|
νn/4

√
log(1/νn)

6 δ a.s.

Proof. Lemma 2.6 ensures that

Var [Z(νn, 0)− Zδ(νn, 0)] 6 νn/2δ2 for all n > 1.

Thanks to this and stationarity, a standard Gaussian tail bound yields

1

n
log P

{
max
x∈Fn

|Z(νn, x)− Zδ(νn, x)| > δνn/4
√

log(1/νn)

}
6 −1

2
log(1/ν) + κ+ o(1),

as n → ∞. The right-hand side of the preceding display is strictly negative for all n
sufficiently large. Therefore, the Borel–Cantelli implies the result.

Finally, we derive a matching “converse” to Lemma 2.5. The proof of the following
result borrows heavily ideas from the theory of limsup random fractals [12], see also
[13].

Lemma 2.9. Recall (2.6), and let E denote an arbitrary measurable subset of [0 , 1].
Then, P{G (c) ∩ E 6= ∅} = 1 for every strictly positive constant c < π−1/4

√
dim

P
(E).

Proof. Choose and fix a number γ ∈ (0 ,dimP(E)). A theorem of Joyce and Preiss [8]
implies that there exists a compact set F ⊂ E such that dimP(F ) > γ. Define E? :=

∩∞n=1 ∪ (F ∩ I), where the union is over all dyadic subintervals of [0 , 1] that have length
2−n and satisfy dim

M
(F ∩ I) > γ. Clearly, E? ⊂ E is compact. And the definition of

packing dimension implies that

dim
M

(E? ∩ I) > γ for all open intervals I that intersect E?. (2.10)

Let δ ∈ (0, 1/(2π1/4)) and ν ∈ (0 , 1) be fixed. Also, fix an arbitrary open interval I
that intersects E? and let K denote the Kolmogorov capacity—or packing numbers—of
the compact set E? ∩ I. That is, for every ε > 0, K(ε) denote the maximum integer k
such that we can find a1, . . . , ak ∈ E? ∩ I with the property that min16i 6=j6k |ai − aj | > ε.
Recall [18, p. 78] that dimM(E?∩ I) = lim supε↓0 logK(ε)/ log(1/ε). Because of (2.10), the
preceding fact has the following consequence: There exists an infinite collection N of
positive integers, and a sequence x1,n, . . . , xN(n),n ∈ E? ∩ I—for every n > 1—with the
following properties:

(a) min16i 6=j6N(n) |xi,n − xj,n| >
√

8νn log(1/δ) for all n > 1;
(b) There exists M > 0 such that N(n) 6M [νn log(1/δ)]−γ/2 for all n > 1; and
(c) N(n) > [8νn log(1/δ)]−γ/2 for all n ∈ N.

By Remark 2.7, and because of the stationarity of x 7→ Zδ(t , x), the random variables

{Zδ(νn, xi,n)}N(n)
i=1 are i.i.d..

For every c > 0 and n ∈ N, let

Sn(c) :=

N(n)∑
i=1

I
{
Zδ(ν

n, xi,n) > cνn/4
√

log(1/νn)
}
,
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where IA denotes the indicator function of the event A. Then, Sn(c) has a Binomial
distribution, and hence

P {Sn(c) = 0} 6 e−E[Sn(c)], (2.11)

thanks to an elementary calculation. Because of Lemma 2.6, we know that for all n > 1,

Var[Zδ(ν
n, 0)] >

(
‖Z(νn, 0)‖2 −

δπ1/4νn/4

π1/4

)2

=
νn/2(1− δπ1/4)2

√
π

.

Therefore a Gaussian tail bound yields that, uniformly for all n ∈ N,

E[Sn(c)] > exp

{
(1 + o(1))

n log(1/ν)

2

[
γ − c2π1/2(

1− δπ1/4
)2
]}

,

as n→∞ in N. The preceding expression goes to infinity as n→∞ provided that

c < π−1/4
(

1− δπ1/4
)√

γ. (2.12)

Because of (2.11), it follows that P{Sn(c) = 0} → 0 as n → ∞ in N whenever c > 0

satisfies (2.12).
Consider the open random sets,

Un,ν(c) :=

{
x ∈ R :

Zδ(ν
n, x)

νn/4
√

log(1/νn)
> c

}
[n = 1, 2, . . .].

We have shown that if c satisfies (2.12), then ∩∞k=1

⋃∞
n=k[Un,ν(c) ∩ E? ∩ I] 6= ∅ a.s. for

every open interval I that intersects E?. By the Baire category theorem, the random set
U (c) intersects E?—hence also E—almost surely. In particular, we may apply Lemma

2.8 with Fn := ∪N(n)
i=1 {xi,n} to see that:

(a) κ = 1
2γ log(1/ν); and

(b) P{G (c− δ) ∩ E? 6= ∅} = 1 provided that c satisfies (2.12) and ν < exp(−2κ) = νγ .
The latter condition on ν holds automatically because γ < dim

P
(E) 6 1. Because δ can

be otherwise as small as we wish, and since γ < dim
P
(E) can be as large as we want,

this proves the lemma.

Finally, let us describe the critical case that is left open in Lemma 2.9.

Lemma 2.10. The conclusion of Lemma 2.9 continues to hold when c = π−1/4
√

dimP(E).

Proof. Choose and fix a countable sequence of real numbers 0 < c1 < c2 < · · · that
converge upward to c = π−1/4

√
dimP(E). The proof of Lemma 2.9 showed—for the same

compact set E? ⊂ E as before—that P{G (cn) ∩E? ∩ I 6= ∅} = 1 for all n > 1 and all open
intervals I that intersect E?. An application of the Baire category theorem reveals that
G (c) = ∩∞n=1G (cn) a.s. intersects E? and hence E.

3 Proof of Theorem 1.1

The proof of Theorem 1.1 hinges on a localization result which relates the small-time
behavior of u to that of Z. First, let us recall a moment estimate of Khoshnevisan,
Swanson, Xiao, and Zhang. When (1.1) is replaced by the stochastic heat equation on a
torus, an almost-sure version of the following was derived in the seminal work of Hairer
[4], and played an important role in the ensuing deep theory of regularity structures of
Hairer [5]. An almost-sure version of the following [for (1.1), as is, on the real line] can
likely be deduced also from the work of Hairer and Labbé [6].
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Proposition 3.1 ([14]). For every k ∈ [2 ,∞) and ϑ ∈ (0 , 2/5),

sup
t∈(0,ε)

sup
x∈R

E
(
|u(t , x)− 1− σ(1)Z(t , x)|k

)
= o

(
εkϑ
)

as ε ↓ 0.

We now apply Proposition 3.1—with k = 2—in order to establish the following.

Proposition 3.2. For every ϑ ∈ (0 , 2/5) and N,M > 0,

sup
t∈(0,ε)

sup
x∈[−M,N ]

|u(t , x)− 1− σ(1)Z(t , x)| = o
(
εϑ
)

a.s.

Remark 3.3. If, instead of an SPDE on R+ × R, we studied an analogous SPDE on
R+ × [0 , 1], then the work of Hairer and Pardoux [7] improves further the error rate of
the analogue of Proposition 3.2 to O(

√
ε| log ε|). We are not sure if the latter rate is the

right one in the present setting, but will not need these improvements and so will prove
only what we need.

Proof of Proposition 3.2. Without loss of great generality, we study only the case that
M = 0 and N = 1; the general case is proved similarly.

Let ∆(t , x) := u(t , x)− 1− σ(1)Z(t , x) for all t > 0 and x ∈ R, and for every ε ∈ (0 , 1)

define

X(ε) :=
{
jε2ϑ : 0 6 j < ε−2ϑ, j ∈ Z

}
and T(ε) :=

{
jε4ϑ : 0 6 j < ε1−4ϑ, j ∈ Z

}
.

We may apply Proposition 3.1 [with an arbitrary k > 2] in order to see that, for all real
numbers b ∈ (0 , ϑ),

P

{
max
t∈T(ε)

max
x∈X(ε)

|∆(t , x)| > εb
}

6 ε−kb
∑
t∈T(ε)

∑
x∈X(ε)

‖∆(t , x)‖kk . ε(k−6)ϑ−kb+1,

uniformly for all ε ∈ (0 , 1). Therefore,

P

{
sup
t∈(0,ε)

sup
x∈[0,1]

|∆(t , x)| > 3εb

}
. ε(k−6)ϑ−kb+1 + P(u ; ε) + P(Z ; ε),

where

P(Φ ; ε) := P

 sup
t∈(0,ε)

s∈T(ε) ,|s−t|6ε4ϑ

sup
x∈[0,1]

y∈X(ε) ,|y−x|6ε2ϑ

|Φ(t , x)− Φ(s , y)| > K(Φ)εb


and the symbol Φ is in {u ,Z}, K(u) = 1, and K(Z) = 1/σ(1). Because σ(1) 6= 0

throughout, K(Φ) is well defined and finite. Therefore, by the work of Walsh [22, Ch. 3],∥∥∥∥∥∥∥∥ sup
t∈(0,ε)

s∈T(ε) ,|s−t|6ε4ϑ

sup
x∈[0,1]

y∈X(ε) ,|y−x|6ε2ϑ

|Φ(t , x)− Φ(s , y)|

∥∥∥∥∥∥∥∥
k

6 εϑ+o(1) as ε ↓ 0,

for both possible choices of Φ ∈ {u ,Z}. As a result, it can be deduced from Chebyshev’s
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inequality that P(Φ ; ε) 6 εk(ϑ−b)+o(1) = O(εk(ϑ−b)). Thus, we find that

P

{
sup
t∈(0,ε)

sup
x∈[0,1]

|∆(t , x)| > 3εb

}
. ε(k−6)ϑ−kb as ε ↓ 0.

Replace ε by 2−n to see from a monotonicity argument and the Borel–Cantelli lemma
that, almost surely, supt∈(0,ε) supx∈[0,1] |∆(t , x)| = O(εb) as ε ↓ 0. The result follows from
this because k > 2, ϑ ∈ (0 , 2/5), b ∈ (0 , (k − 6)ϑ/k) are all otherwise arbitrary.

We conclude the paper with the following.

Proof of Theorem 1.1. We will assume throughout that E is a subset of [0 , 1]. A routine
change of scale [in the arguments] will yield the general case.

Proposition 3.2 implies that, for every real number c > 0, U (c) = G (c/σ(1)) a.s.,
where the random sets G (•) were defined in (2.6). It follows from this and Lemmas 2.5,
2.9, and 2.10 that for all measurable sets E ⊂ [0 , 1]:
A1. If c 6 π−1/4σ(1)

√
dim

P
(E), then P{U (c) ∩ E 6= ∅} = 1; and

A2. If c > (1/π)1/4σ(1)
√

dim
P
(E), then P{U (c) ∩ E 6= ∅} = 0; and

According to the theory of limsup random fractals [12], for every ρ ∈ (0 , 1) there
exists a random set Σρ ⊂ [0 , 1], that is independent of the process u, and satisfies the
following for all measurable sets F ⊂ [0 , 1]:
B1. P{Σρ ∩ F 6= ∅} = 1 if ρ < dim

P
(F ). In this case, dim

P
(Σρ ∩ F ) = dim

P
(F ); and

B2. P{Σρ ∩ F 6= ∅} = 0 if ρ > dim
P
(F ).

Both B1 and B2 follow from Theorems 3.1 and 3.2 of [12].
By the independence of Σρ and U (c), we may combine A1 and B1–B2 with F = U (c)

and E = Σρ in order to see that dim
P
(Σρ) = 1 and:

c 6 σ(1)/π1/4 ⇒ P{U (c) ∩ Σρ 6= ∅} = 1 ⇒ ρ 6 dimP(U (c)).

Since ρ ∈ (0 , 1) was arbitrary, it follows that dimP(U (c)) = 1 a.s. for all c 6 σ(1)/π1/4.
On the other hand, A2 shows that if c > σ(1)/π1/4, then U (c) = ∅ a.s.

Finally, the computation of the Hausdorff dimension of U (c) follows from A1 and A2,
using a codimension argument which we skip; see Peres [19] and Khoshnevisan [9, §4.7,
p. 435] for details.
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