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Variable Selection via Penalized Credible
Regions with Dirichlet–Laplace Global-Local

Shrinkage Priors

Yan Zhang∗ and Howard D. Bondell†

Abstract. The method of Bayesian variable selection via penalized credible re-
gions separates model fitting and variable selection. The idea is to search for the
sparsest solution within the joint posterior credible regions. Although the approach
was successful, it depended on the use of conjugate normal priors. More recently,
improvements in the use of global-local shrinkage priors have been made for high-
dimensional Bayesian variable selection. In this paper, we incorporate global-local
priors into the credible region selection framework. The Dirichlet–Laplace (DL)
prior is adapted to linear regression. Posterior consistency for the normal and DL
priors are shown, along with variable selection consistency. We further introduce a
new method to tune hyperparameters in prior distributions for linear regression.
We propose to choose the hyperparameters to minimize a discrepancy between
the induced distribution on R-square and a prespecified target distribution. Prior
elicitation on R-square is more natural, particularly when there are a large num-
ber of predictor variables in which elicitation on that scale is not feasible. For a
normal prior, these hyperparameters are available in closed form to minimize the
Kullback–Leibler divergence between the distributions.

Keywords: variable selection, posterior credible region, global-local shrinkage
prior, Dirichlet–Laplace, posterior consistency, hyperparameter tuning.

1 Introduction

High dimensional data has become increasingly common in all fields. Linear regression
is a standard and intuitive way to model dependency in high dimensional data. Consider
the linear regression model:

Y = Xβ + ε, (1)

where X is the n × p high-dimensional set of covariates, Y is the n scalar responses,
β = (β1, · · · , βp) is the p-dimensional coefficient vector, and ε is the error term assumed
to have E(ε) = 0 and Var(ε) = σ2In. Ordinary least squares is not feasible when the
number of predictors p is larger than the sample size n. Variable selection is necessary to
reduce the large number of candidate predictors. The classical variable selection methods
include subset selection, criteria such as Akaike Information Criterion (AIC; Akaike,
1973) and Bayesian Information Criterion (BIC; Schwarz et al., 1978), and penalized
methods such as the least absolute shrinkage and selection operator (Lasso; Tibshirani,
1996), smoothly clipped absolute deviation (SCAD; Fan and Li, 2001), the elastic net
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(Zou and Hastie, 2005), adaptive Lasso (Zou, 2006), the Dantzig selector (Candes and
Tao, 2007), and octagonal shrinkage and clustering algorithm for regression (OSCAR;
Bondell and Reich, 2008).

In the Bayesian framework, approaches for variable selection include: stochastic
search variable selection (SSVS) (George and McCulloch, 1993), Bayesian regulariza-
tion (Park and Casella, 2008; Li et al., 2010; Polson et al., 2013; Leng et al., 2014),
empirical Bayes variable selection (George and Foster, 2000), spike and slab variable
selection (Ishwaran and Rao, 2005), and global-local (GL) shrinkage priors. Those tra-
ditional Bayesian methods conduct variable selection either relying on the calculation
of posterior inclusion probabilities for each predictor or each possible model, or a choice
of posterior threshold.

Typical global-local shrinkage priors are represented as the class of global-local scale
mixtures of normals (Polson and Scott, 2010),

βj ∼ N(0, wξj), ξj ∼ π(ξj), (w, σ2) ∼ π(w, σ2), (2)

where w controls the global shrinkage towards the origin, while ξj allows local deviations
of shrinkage. Various options of shrinkage priors for β, include normal-gamma (Griffin
et al., 2010), Horseshoe prior (Carvalho et al., 2009, 2010), generalized double Pareto
prior (Armagan et al., 2013a), Dirichlet–Laplace (DL) prior (Bhattacharya et al., 2015),
Horseshoe+ prior (Bhadra et al., 2016), and others that can be represented as (2). The
GL shrinkage priors usually shrink small coefficients greatly due to a tight peak at
zero, and rarely shrink large coefficients due to the heavy tails. It has been shown
that GL shrinkage priors have improved posterior concentrations (Bhattacharya et al.,
2015). However, the shrinkage prior itself would not lead to variable selection, and to
go further, some rules need to be set on the posteriors.

Bondell and Reich (2012) proposed a Bayesian variable selection method only based
on posterior credible regions. However, the implementation and results of that paper
depended on the use of conjugate normal priors. Due to the improved concentration,
incorporating the global-local shrinkage priors into this framework can perform better,
both in theory and practice. We show that the DL prior yields consistent posteriors in
this regression setting, along with selection consistency.

Another difficulty in high dimensional data is the choice of hyperparameters, which
can highly affect the results. In this paper, we also propose an intuitive default method
to tune the hyperparameters in the prior distributions. By minimizing a discrepancy
between the induced distribution of R2 from the prior and the desired distribution
(Beta distribution by default), one gets a default choice of hyperparameter value. For
the choice of normal priors, the hyperparameter that minimizes the Kullback–Leibler
(KL) divergence between the distributions is shown to have a closed form solution.

Overall, compared to other Bayesian methods, on the one hand, our method makes
use of the advantage of global-local shrinkage priors, which can effectively shrink small
coefficients and reliably estimate the coefficients of important variables simultaneously.
On the other hand, by using the credible region variable selection approach, we can
easily transform the non-sparse posterior estimators to sparse solutions. Compared to
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the common frequentist method, our approach provides flexibility to estimate the tuning
parameter jointly with the regression coefficients, allows easy incorporation of external
information or hierarchical modeling into Bayesian regularization framework, and leads
to straightforward computing through Gibbs sampling.

The remainder of the paper is organized as follows. Section 2 reviews the penalized
credible region variable selection method. Section 3 details the proposed method which
combines shrinkage priors and penalized credible region variable selection. Section 4
presents the posterior consistency under the choice of shrinkage priors, as well as the
asymptotic behavior of the selection consistency for diverging p. Section 5 discusses a
default method to tune the hyperparameters in the prior distributions based on the
induced prior distribution on R2. Section 6 reports the simulation results, and Section
7 gives the analysis of a real-time polymerase chain reaction (real-time PCR) dataset.
All proofs are given in the supplementary material (Zhang and Bondell, 2017).

2 Background

Bondell and Reich (2012) proposed a penalized regression method based on Bayesian
credible regions. First, the full model is fit using all predictors with a continuous prior.
Then based on the posterior distribution, a sequence of joint credible regions are con-
structed, within which, one searches for the sparsest solution. The choice of a conjugate
normal prior of

β|σ2, γ ∼ N(0, σ2/γIp) (3)

is used, where σ2 is the error variance term as in (1), and γ is the ratio of prior precision
to error precision. The variance, σ2, is often given a diffuse inverse Gamma prior, while
γ is the hyperparameter which is either chosen to be fixed or given a Gamma hyperprior.

The credible region is to find β̃, such that

β̃ = argmin
β

||β||0 subject to β ∈ Cα, (4)

where ||β||0 is the L0 norm of β, i.e., the number of nonzero elements, and Cα is the (1−
α)×100% posterior credible regions based on the particular prior distributions. The use

of elliptical posterior credible regions yields the form Cα = {β : (β− β̂)TΣ−1(β− β̂) ≤
cα}, for some nonnegative cα, where β̂ and Σ are the posterior mean and covariance
respectively. Then by replacing the L0 penalization in (4) with a smooth homotopy
between L0 and L1 proposed by Lv and Fan (2009) and linear approximation, the
optimization problem in (4) becomes

β̃ = argmin
β

(β − β̂)TΣ−1(β − β̂) + λα

p∑
j=1

|β̂j |−2|βj |, (5)

where there exists a one-to-one correspondence between cα and λα. The sequence of
solutions to (5) can be directly accomplished by plugging in the posterior mean and co-
variance and using the LARS algorithm (Efron et al., 2004). Note that a fixed α is not
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used here, and the actual value of α is not needed to examine the sequence. To under-
stand this method better, although Bondell and Reich (2012) start from constructing a
posterior credible region, now to find the sparsest estimator within the credible region
problem has become a penalized variable selection problem as shown in (5). By changing
the value of λα, the variables will be selected in sequence into the model.

3 Penalized Credible Regions with Global-Local
Shrinkage Priors

3.1 Motivation

Global-local shrinkage priors produce a posterior distribution with good empirical and
theoretical properties. Compared to the usual normal prior, GL priors concentrate more
along the regions with zero parameters. This leads to a better estimate of the uncer-
tainty about parameters in the full model based on the posterior distribution. The
penalized credible region variable selection approach separates model fitting and vari-
able selection. So it seems natural to fit the model under a GL shrinkage prior, and
then conduct variable selection through the penalized credible region method. The mo-
tivation is that within the same credible region level, GL shrinkage priors would lead
to more concentrated posteriors, thus having better performance for variable selection,
by finding sparse solutions more easily. Bondell and Reich (2012) demonstrated via
simulations and real data examples that the credible region approach using the normal
prior distribution improved on the performance of both Bayesian Stochastic Search and
Frequentist approaches, such as Lasso, Dantzig Selector, and SCAD. The use of the
GL shrinkage priors instead of the normal is a natural approach. In addition, although
we do not have uncertainty about the model, the full posterior is obtained first, so
that uncertainty about the parameters can be used based on the full model posterior
distribution. Using the global-local shrinkage prior gives a more concentrated posterior
even if we did not add the penalized credible region model selection step to choose an
estimate of the model.

Although GL shrinkage priors would not lead to elliptical posterior distributions,
valid credible regions can still be constructed using elliptical contours. These would no
longer be the high density regions, but would remain valid regions. Elliptical contours
would also be reasonable approximations to the high density regions, at least around
the largest mode. Thus, the penalized credible region selection method can be feasibly
performed by plugging the posterior mean and covariance matrix into the optimization
algorithm (5). So given any GL prior, once Markov-Chain Monte-Carlo (MCMC) steps

produce the posterior samples, the sample mean, β̂, and sample covariance, Σ, would
hence be obtained, then variable selection can be performed through the penalized
credible region method. In this paper, we modify the Dirichlet–Laplace (DL) prior to
implement in the regression setting. We also consider the Laplace prior, also referred as
Bayesian Lasso, described in Park and Casella (2008) and Hans (2010), as

βj ∼ DE(σ/λ) (j = 1 · · · , p), (6)

where λ is the Lasso parameter, controlling the global shrinkage.
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3.2 Dirichlet–Laplace Priors

For the normal mean model, Bhattacharya et al. (2015) proposed a new class of Dirichlet–
Laplace (DL) shrinkage priors, possessing the optimal posterior concentration property.
We construct the generalization of the DL priors for the linear regression model. The
proposed hierarchical DL prior is as follows: for j = 1, · · · , p,

βj |σ, φj , τ ∼ DE(σφjτ),

(φ1, · · · , φp) ∼ Dir(a, · · · , a), (7)

τ ∼ Ga(pa, 1/2),

where DE(b) denotes a zero mean Laplace kernel with density f(y) = (2b)−1 exp(−|y|/b)
for y ∈ R, Dir(a, · · · , a) is the Dirichlet distribution with concentration vector (a, · · · , a),
and Ga(pa, 1/2) denotes a Gamma distribution with shape pa and rate 1/2. Here, small
values of a would lead most of (φ1, · · · , φp) to be close to zero and only few of them
nonzero; while large values allow less singularity at zero, thus controlling the sparsity
of regression coefficients. The φj ’s are the local scales, allowing deviations in the degree
of shrinkage. As pointed out in Bhattacharya et al. (2015), τ controls global shrinkage
towards the origin and to some extent determines the tail behaviors of the marginal
distribution of βj ’s. We also assume a common prior on the variance term σ2, IG(a1, b1),
the inverse Gamma distribution with shape a1 and scale b1.

3.3 Computation of Posteriors

For posterior computation, the Gibbs sampling steps proposed in Bhattacharya et al.
(2015) can be modified to accommodate the linear regression model. The DL prior (7)
can be equivalently denoted as

βj |σ2, φj , ψj , τ ∼ N(0, σ2ψjφ
2
jτ

2),

ψj ∼ Exp(1/2), (8)

(φ1, · · · , φp) ∼ Dir(a, · · · , a),
τ ∼ Ga(pa, 1/2),

where Exp(·) is the usual exponential distribution. Note that DL prior is also a global-
local shrinkage prior as it is a particular form of (2). Gibbs sampling steps would
be obtained based on (8). The derivation is similar as in Bhattacharya et al. (2015),
hence omitted here. The parameterization of the three-parameter generalized inverse
Gaussian (giG) distribution, Y ∼ giG(χ, ρ, λ0), means the density of Y is f(y) ∝
yλ0−1 exp{−0.5(ρy + χ/y)} for y > 0. Then the summary of the Gibbs sampling steps
are as below:

(i) Sample σ2|β, ψ, φ, τ, y. Draw σ2 from an inverse Gamma distribution, IG(a1+(n+
p)/2, b1 + {βTS−1β + (Y −Xβ)T (Y −Xβ)}/2), where S = diag(ψ1φ

2
1τ

2, · · · ,
ψpφ

2
pτ

2).

(ii) Sample β|ψ, φ, τ, σ2, y. Draw β from a N(μ, σ2V ), where V = (XTX + S−1)−1

with the same S as above, and μ = V XTY = (XTX + S−1)−1(XTY ).
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(iii) Sample ψj |φj , τ, β, σ
2. First draw ψ−1

j |φj , τ, β, σ
2, j = 1, · · · , p, independently

from the distribution InvGaussian(μj = σφjτ/|βj |, λ0 = 1), where
InvGaussian(μ, λ0) denotes the inverse Gaussian with density f(y) =√

λ0/(2πy3) exp{−λ0(y − μ)2/(2μ2y)} for y > 0. Then take the reciprocal to
get the draws of ψj (j = 1, · · · , p).

(iv) Sample τ |φ, β, σ2. Draw τ from a giG(χ = 2
∑p

j=1 |βj |/(φjσ), ρ = 1, λ0 = pa− p).

(v) Sample φj |β, σ2. Draw T1, · · · , Tp independently with Tj ∼ giG(χ = 2|βj |/σ, ρ =
1, λ0 = a− 1), then set φj = Tj/T where T =

∑p
j=1 Tj .

4 Asymptotic Theory

In this section, we first study the posterior properties of the normal and DL prior, when
both n and pn go to infinity, and further investigate the selection consistency of the
penalized variable selection method. Assume the true regression parameter is β0

n, and
the estimated regression parameter is βn. Denote the true set of non-zero coefficients
is A0

n = {jn : β0
njn

�= 0, jn = 1, · · · , pn}, and the estimated set of non-zero coefficients

is An = {jn : βnjn �= 0, jn = 1, · · · , pn}. Also let qn = |A0
n| denote the number of

predictors with nonzero true coefficients. As n → ∞, consider the sequence of credible
sets of the form {βn : (βn−β̂n)

TΣ−1
n (βn−β̂n) ≤ cn}, where β̂n andΣn are the posterior

mean and covariance matrix respectively, and cn is a sequence of non-negative constants.
Let Γn denote the pn × pn matrix whose columns are eigenvectors of XT

n Xn/n ordered
by decreasing eigenvalues, i.e., d1 ≥ d2 ≥ · · · ≥ dpn ≥ 0. Then XT

n Xn/n = ΓnDnΓ
T
n

where Dn = diag{d1, · · · , dpn}.
Assume the following regularity conditions throughout.

(A1) The error terms εi, i = 1, · · · , n, are independent and identically distributed (i.i.d.)
with mean zero and finite variance σ2;

(A2) 0 < dmin < lim infn→∞ dpn ≤ lim supn→∞ d1 < dmax < ∞, where dmin and dmax

are fixed;

(A3) lim sup
n→∞

max
jn=1,··· ,pn

|β0
njn

| < ∞;

(A4) pn = o(n);

(A5) (n/pn)
1/2 minjn∈A0

n
|β0

njn
| → ∞ as n → ∞.

Assumption (A2) regarding the eigenvalues bounded away from 0 and ∞ is a sufficient
condition for estimation consistency in the Bayesian methods, and also for the consis-
tency of Ordinary Least Squares in the case of growing dimension but with pn = o(n).
This is akin to the condition in the fixed dimension of XTX/n converging to a positive
definite matrix (Assumption (A2) in Bondell and Reich (2012)). The basic intuition is
that without a lower bound on the eigenvalue, there is an asymptotic singularity, which
then leaves a linear combination of the regression parameters that is not identifiable,
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i.e, it would have a variance that was infinite, hence could not be consistent. The upper
bound, on the other hand, ensures that there is a proper covariance matrix for every pn.
If we assume that each row of Xn was a random draw from a pn-dimensional probability
distribution, the bounded eigenvalue condition is an assumption on the true sequence
of covariance matrices, as for large n and pn = o(n), the sample covariance, XT

n Xn/n,
(assuming centered variables) will converge to the true covariance. As an example of a
common covariance structure that would have the bounded eigenvalue property, con-
sider an AR(1) covariance structure with parameter ρ among the pn variables. Then,
the results of Stroeker (1983), show that (for ρ ≥ 0), as pn → ∞, the largest eigenvalue
will converge to (1+ρ)2 and the smallest will converge to (1−ρ)2. For ρ < 0, the largest
becomes (1 − ρ)2 and smallest becomes (1 + ρ)2. Hence, both the smallest and largest
eigenvalues have bounded limits.

Also note that Assumption (A5) restricts the minimum signal size for the non-zero
coefficients. This sufficient condition comes from the fact that the radius of the credible
region is O((pn/n)

1/2). Hence, in order for the region not to contain βnjn = 0 for those
having β0

njn
�= 0, the true β0

njn
must be further away than O((pn/n)

1/2).

4.1 Posterior Consistency: Normal and DL Priors

Armagan et al. (2013b) investigate the asymptotic behavior of posterior distributions
of regression coefficients in the linear regression model (1) as pn grows with n. They
prove the posterior consistency under the assumption of a variety of priors, including the
Laplace prior, Student’s t prior, generalized double Pareto prior, and the Horseshoe-like
priors. By definition, posterior consistency implies that the posterior distribution of βn

converges in probability to β0
n, i.e., for any ε > 0, P (βn : ||βn − β0

n|| > ε|Yn) → 0 as
pn, n → ∞. In this section, we show that the normal and Dirichlet–Laplace prior also
yield consistent posteriors. However, the DL prior can yield consistent posteriors under
weaker conditions on the signal.

Theorem 1. Under Assumptions (A1)–(A4), if qn = o(n1−ρ/(pn log
2 n)) for ρ ∈ (0, 1),

and (σ2/γn)
1/2 = C/(pn

1/2nρ/2 log n) for finite C > 0, the normal prior (3) yields a
consistent posterior.

Theorem 2. Under Assumptions (A1)–(A4), if qn = o(n/ log n), and an = C/
(pnn

ρ log n) for any finite ρ > 0 and finite C > 0, the Dirichlet–Laplace prior (7)
yields a consistent posterior.

Note that the difference in the above two theorems is the number of nonzero com-
ponents, i.e., qn. As n/ logn > n1−ρ/(pn log

2 n), the Dirichlet–Laplace prior leads to
posterior consistency in a much broader domain, compared to the normal prior as well
as compared to the Laplace prior who also yields consistent posteriors as shown in The-
orem 2 in Armagan et al. (2013b). This strengthens the justification for replacing the
normal prior with the DL prior theoretically. However, note that the theorems only give
a sufficient condition for posterior consistency under each of the priors. The sufficient
condition does have a broader domain for qn in Theorem 2, for the Dirichlet–Laplace
prior, than in Theorem 1 for the normal prior. However, it is not clear that these con-
ditions are also necessary, so although we are able to prove the consistency for the DL
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prior under a more general condition than the normal prior, there may be room to
improve this condition in either or both of these cases.

4.2 Selection Consistency of Penalized Credible Regions

Bondell and Reich (2012) have shown that when p is fixed and β is given the normal prior
in (3), the penalized credible region method is consistent in variable selection. In this
paper, we show that the consistency of the posterior distribution under a global-local
shrinkage prior also yields consistency in variable selection under the case of pn = o(n).

Theorem 3. Under Assumptions (A1)–(A5), given the normal prior in (3), if
limn→∞ cn/pn → c with 1 ≤ c < ∞, and the prior precision, γn = o(n), then the
penalized credible region method with optimization problem (4) is consistent in variable
selection, i.e. P (An = A0

n) → 1.

The proof is given in the Appendix. The selection consistency allows us to expect
that the true model is contained in the credible regions with high probability, when the
number of predictors increases together with the sample size. Such selection consistency
is obtained under the normal prior. However, as reviewed in Section 1, since the GL
shrinkage priors can be expressed as a scale mixture of normals, as long as the posterior
distribution of the precision is o(n) with probability 1 (analogous to γn = o(n) in the
normal prior), then the result can be directly applied to the GL shrinkage prior.

Theorem 4. Under Assumptions (A1)–(A5), given any global-local shrinkage prior
represented as (2), if the conditions of posterior consistency are satisfied, then the pos-
terior distribution of the precision is o(n) with probability 1 as n → ∞. Furthermore,
if limn→∞ cn/pn → c with 1 ≤ c < ∞, then the penalized credible region method with
optimization problem (4) with the particular shrinkage prior is consistent in variable
selection, i.e. P (An = A0

n) → 1.

So given the conditions of posterior consistency under the global-local shrinkage
prior, we automatically get the selection consistency of the credible region method. For
example, for the DL prior in (7), we have the following result.

Corollary 1. Under Assumptions (A1)–(A5), given the DL prior in (7), qn =
o(n/ log n), an =C/(pnn

ρ logn) for any finite ρ> 0 and finite C > 0, if limn→∞ cn/pn →
c with 1 ≤ c < ∞, then the penalized credible region method with optimization problem
(4) is consistent in variable selection, i.e. P (An = A0

n) → 1.

Note that the variable selection consistency is derived based on the posterior con-
sistency. However, Assumption (A3) is not necessary to ensure the variable selection
consistency. If (A3) is not satisfied, i.e., β0

n is truly unbounded, although it would not
be possible to obtain a consistent estimator, or posterior, the credible region would be-
come bounded away from zero in that direction, and hence will pick out that direction
consistently as well.
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5 Tuning Hyperparameters

The value of hyperparameters in the prior distribution plays an important role in the
posteriors. For example, in the normal prior (3), γ is the hyperparameter, whose value
controls the degree of shrinkage. This is often chosen to be fixed at a “large” value or
given a hyperprior. However, the choice of the “large” value affects the results, as does
the choice of hyperprior such as a gamma prior, particularly in the high dimensional case.
Also, in the DL prior (7), the choice of a is critical. If a is too small, then the DL prior
would shrink each dimension of β towards zero; while, if a is too large, there would
be no strong concentration around the origin. Instead of fixing a, a discrete uniform
prior can be given on a supported on some interval (for example, [1/max(n, p), 1/2]),
with several support points on the interval. However, introducing the hyperprior for the
hyperparameters will not only arise new values to tune, but also increase the complexity
of the MCMC sampling. In practice, although the specification of a p-dimensional prior
on β may be difficult, some prior information on a univariate function may be easier.
The motivation is to incorporate such prior information of the one-dimensional function
into the priors on the p-dimensional β.

In this paper, we propose an intuitive way to tune the values of hyperparameters,
by incorporating a prior on R2 (the coefficient of determination). Practically, a scientist
may have information on R2 from previous experiments, and this can be coerced into say
a Beta(a, b) distribution. In this way, tuning hyperparameters is equivalent to searching
for the hyperparameter which leads to the induced distribution of R2 closest to the
desired distribution. Intuitively, if we fix any value for b, as we increase a, then R2 will
approach 1, hence this controls the total size of the signal that is anticipated in the
data. As we will see shortly, it is a prior on the value of the quadratic form βTXTXβ.
Combining this with the choice of prior, gives also the degree of sparsity. For example,
with a Dirichlet–Laplace Prior, the parameter in the DL distribution then controls how
this total signal is distributed to the coefficients, either to a few coefficients, giving a
sparse model, or to many coefficients, giving a dense model. In many cases, a scientist
may have done many similar experiments before and can look back and see the values
of the sample coefficient of determination from all of these studies. Then treating this
as a sample from a Beta distribution, the hyperparameters, a and b, can be obtained
from this fit. Without any prior information for R2, a uniform prior, Beta(1, 1), may be
used as default.

For the linear regression model (1), the population form can be represented as y =
xTβ + ε, with x independent of ε. Let σ2

y be the marginal variance of y and σ2 be the
variance of the random error term. The definition of the POPULATION R2 is given by:

pop R2 = 1− σ2

σ2
y

,

which is the proportion of the variation of y in the population explained by the indepen-
dent variables. Furthermore, for fixed β, it follows that σ2

y = βTCov(x)β+σ2. Assume

E(x) = 0, then we can estimate Cov(x) by XTX/n. So R2 as a function of β and σ2

is given by R2 = 1−σ2/(βTXTXβ/n+σ2). Given that the form of prior distributions
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considered includes σ in the scale, it follows that β = ση for η having the distribution
of the prior fixed with σ2 = 1. Hence

R2 = 1− 1

1 + ηTXTXη/n
. (9)

For a specified prior on η, the induced distribution of R2 can be derived based on (9).
Then the hyperparameters which yield the induced distribution of R2 closest to the
desired distribution is the tuned value.

For a better understanding of the intuition here, we give a simple example. Suppose
σ2 = 1 and we have an intercept only model, i.e., model (1) is simplified as Y = 1nβ+ε
with 1n the n-dimensional vector with all elements of 1. Then (9) can be written as
R2 = 1 − (1 + β2)−1. Suppose the desired distribution for R2 is Beta(a, b), then the
corresponding induced distribution for β is

fβ(t) =
2Γ(a+ b)

Γ(a)Γ(b)
(

t2

1 + t2
)a−1(

1

1 + t2
)b+1|t|,

where Γ(.) denotes the gamma function. The left panel of Figure 1 shows the distribution
on R2 for 4 choices of hyperparameters in the Beta distribution, while the right panel
shows the corresponding induced prior distribution on β. We see that for a uniform
distribution on R2, we obtain a distribution on β that puts its mass slightly skewed
away from zero on each side. For a bathtub distribution (a = b = 0.5), we see it reduces
to the Cauchy distribution, giving heavy tails to obtain the R2 near one, and the peak
around zero to obtain the R2 near zero. We also see two other extremes, as a → 0
for fixed b = 1, we obtain a distribution that decays very quickly and puts most of its
mass around zero, as expected; while as b → 0 and a fixed at 1, we obtain a density
proportional to |t|/(1 + t2), allowing for larger values of β with high probability.

In practice, one can consider a grid of possible values of the hyperparameters. For
each value, draw a vector η. This is converted to a draw of R2. Given this hyperparam-
eter, a comparison between the sample of R2 and the desired distribution is performed,
for example, a Kolmogorov–Smirnov (KS) test. The best fit is then chosen. The whole
tuning process only involves the prior distributions, no MCMC sampling, thus avoiding
comprehensive computing.

However, given a specific prior for β, based on (9), the exact induced distribution
of R2 can be derived, which relies on the value of hyperparameters. By minimizing
the Kullback–Liebler directed divergence between such distribution and the desired
distribution (Beta distribution by default), a default hyperparameter value can be found.
For continuous random variables with density function f1 and f2, the KL divergence is
defined as

D(f1|f2) =
∫ ∞

−∞
f1(x) log(f1(x)/f2(x)) dx.

For the choice of normal priors, the following theorem shows that there is a closed form
solution for the hyperparameter to minimize the KL divergence for large p.
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Figure 1: Beta(a, b) density for R2 and the corresponding induced distribution density
for β.

Theorem 5. For the normal prior in (3), to minimize the KL directed divergence
between the induced distribution of R2 and the Beta(a, b) distribution, as p → ∞, the
hyperparameter, γ, is chosen to be (A+

√
B)1/3+(A−

√
B)1/3−P/3, where P = (2a−

b)
∑p

j=1 dj/a, Q = 2(a + b)
∑p

j=1 d
2
j/a + (a − 2b)(

∑p
j=1 dj)

2/a, R = −b(
∑p

j=1 dj)
3/a,

C = P 2/9−Q/3, A = PQ/6− P 3/27−R/2, B = A2 −C3 ≥ 0, and d1, · · · , dp denote
the eigenvalues of XTX/n.

In theory, for other continuous priors, one can derive the optimal hyperparameters
similarly. However, sometimes the calculation can be quite complex. In this case, the
simulation-based approach discussed earlier can be implemented. However, since GL
priors can be represented as mixture normal priors (see Section 1), by matching its prior
precision with that of the normal prior, the derived default solution as shown in Theorem
5 can offer an intuitive idea for the hyperparameter values in the GL shrinkage priors.
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6 Simulation Results

6.1 Comparisons of Different Priors

To compare the performance of the penalized credible region variable selection method
using different shrinkage priors, including the normal prior (3), Laplace prior (6), and
DL prior (7), a simulation study is conducted. Bondell and Reich (2012) demonstrated
the improvement in performance of the credible region approach using the normal prior
over both Bayesian and Frequentist approaches, such as SSVS, Lasso, adaptive Lasso,
Dantzig Selector, and SCAD. Given the previous comparisons, the focus here is to see
if replacing the normal prior with the global-local prior can even further improve the
performance of the credible region variable selection approach.

We use a similar simulation setup as in Bondell and Reich (2012). In each set-
ting, 200 datasets are simulated from the linear model (1) with σ2 = 1, sample size
n = 60, and the number of predictors p varying in {50, 500, 1000}. To represent dif-
ferent correlation settings, Xij are generated from standard normal distribution, and
the correlation between xij1 and xij2 is ρ|j1−j2|, with ρ = 0.5 and 0.9. The true coef-

ficient β is (0T
10,B1

T ,0T
20,B2

T ,0T
p−40)

T for p ∈ {50, 500, 1000} in which 0k represents
the k-dimensional zero vector, B1 and B2 are both 5-dimensional vector generated
component-wise and uniform from (0, 1). For each case of shrinkage prior, the posterior
mean and covariance can be obtained from the Gibbs samplers, and then plugged into
the optimization algorithm (5) of the penalized credible region method to implement
the variable selection.

For each method, the induced ordering of the predictors are created. We consider
the resulting model at each ordering step to measure the performance. For each step
on the ordering, true positives (TP) are defined as those selected variables which also
appear in the true model. False positives (FP) are those selected variables which also
do not appear in the true model. True negatives (TN) correspond to those not selected
variables which are not in the true model. False negatives (FN) refer to variables which
are not selected in the model, but indeed are in the true model. The Receiver-Operating
Characteristic (ROC) curve plots the false positive rate (FPR or 1-Specificity) on the
x-axis and the true positive rate (TPR or Sensitivity) on the y-axis, where FPR is the
fraction of FP’s of the fitted model in the total number of irrelevant variables in the
true model, and TPR is the fraction of TP’s of the fitted model in the total number
of important variables in the true model. The Precision-Recall (PRC) curve plots the
precision on the y-axis, and the Recall (or TPR or Sensitivity) on x-axis, where precision
is the ratio of true positives to the total declared positive number.

The compared credible set methods are listed as below:

• Method “Normal hyper”, refers to the normal prior, with “non-informative” hy-
perparameters, i.e., N(0, σ2

b ) is the prior for β, and IG(0.001, 0.001) prior is given
for σ2

b .

• Method “Normal tune”, refers to the normal prior (3), where γ is tuned through
the R2 method introduced in Section 5, with a target of uniform distribution.
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• Method “Laplace hyper”, means Laplace prior (6), with λ given a Ga(1, 1) prior.

• Method “Laplace tune”, means Laplace prior (6), and λ is tuned through the R2

method introduced in Section 5, with a target of uniform distribution.

• Method “DL hyper” is the DL prior (7), in which a is given a discrete uniform
prior supported on the interval [1/max(n, p), 1/2] with 1000 support points in this
interval.

• Method “DL tune” is the DL prior (7), in which a is tuned through the R2 method
introduced in Section 5, with a target of uniform distribution.

In all above cases, the variance term σ2 is given an IG(0.001, 0.001) prior. In addition,
we show the results from using the Lasso (Tibshirani, 1996) fit via the LARS algorithm
(Efron et al., 2004).

ROC Area PRC Area
ρ = 0.5 ρ = 0.9 ρ = 0.5 ρ = 0.9

Lasso 0.900 (0.0047) 0.815 (0.0052) 0.694 (0.0053) 0.628 (0.0068)
Normal hyper 0.909 (0.0048) 0.899 (0.0041) 0.782 (0.0054) 0.749 (0.0058)
Normal tune 0.949 (0.0037) 0.978 (0.0020) 0.830 (0.0043) 0.845 (0.0039)
Laplace hyper 0.890 (0.0049) 0.859 (0.0052) 0.756 (0.0058) 0.691 (0.0069)
Laplace tune 0.942 (0.0040) 0.976 (0.0020) 0.820 (0.0046) 0.844 (0.0039)
DL hyper 0.917 (0.0044) 0.908 (0.0044) 0.786 (0.0052) 0.749 (0.0062)
DL tune 0.939 (0.0039) 0.945 (0.0032) 0.811 (0.0048) 0.802 (0.0050)

Table 1: Mean area under the ROC Curve and the PRC curve for p = 50, n = 60, based
on 200 datasets with standard errors in parentheses.

For the above priors (normal, Laplace and DL), we ran the MCMC chain (Gibbs
sampling) for 15, 000 iterations, with the first 5, 000 for burn-in. Posterior mean and
covariance were calculated based on the 10, 000 samples, which were then plugged into
the penalized credible interval optimization algorithm (5), to conduct variable selection.
Table 1 gives the mean and standard error for the area under the ROC and PRC curve
for p = 50 with ρ ∈ {0.5, 0.9}. In addition, Figure 2 plots the mean ROC and PRC
curves of the 200 datasets for the selected above methods to compare. Table 2 and
Figure 3 give the results for the p = 500 case. Table 3 and Figure 4 show the results for
the p = 1000 case. Since the Lasso estimator can select at most min{n, p} predictors,
when p = 500 or 1000, the ROC and PRC curves cannot be fully constructed. So the
area under the curves cannot be compared directly for Lasso with other methods, which
are omitted in Tables 2 and 3, but partial ROC and PRC curves can still be plotted,
which are shown in Figures 3 and 4.

On the one hand, in terms of whether given a hyperprior for the hyperparameter or
tuning hyperparameters through the R2 method proposed in Section 5 would lead to
better posterior performance, one might compare each “∗ hyper” and “∗ tune” pair in
Tables 1, 2 and 3. In general, for all three priors, the tuning method leads to significantly
better posterior performance than the hyperprior method in all simulation setups.
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Figure 2: Plot of mean ROC and PRC curves when ρ = 0.5 and ρ = 0.9, over the 200
datasets for p = 50 predictors, n = 60 observations. The left column is the ROC curve,
the right column is the PRC curve.

On the other hand, in terms of comparing performance of different priors applied on
the penalized credible region variable selection, combining both the tables and figures,
we have the following findings. When considering the Precision-Recall in particular, the
DL and Laplace priors outperform the normal prior and Lasso. This is particularly true
if the hyperparameters in them are tuned via a uniform distribution on R2. We note
that when there are only a few true and many unimportant variables, the Precision-
Recall curve is a more appropriate measure than the ROC curve. For example, when
p = 1000, in both ρ = 0.5 and 0.9 cases, in Figure 4, the PRC curve shows that the DL
prior is significantly better than the normal prior; the ROC curve of the normal prior
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ROC Area PRC Area
ρ = 0.5 ρ = 0.9 ρ = 0.5 ρ = 0.9

Lasso - - 0.550 (0.0087) 0.550 (0.0089)
Normal hyper 0.948 (0.0031) 0.990 (0.0013) 0.615 (0.0093) 0.784 (0.0062)
Normal tune 0.950 (0.0029) 0.992 (0.0007) 0.610 (0.0091) 0.721 (0.0077)
Laplace hyper 0.937 (0.0030) 0.969 (0.0020) 0.621 (0.0087) 0.680 (0.0087)
Laplace tune 0.959 (0.0027) 0.995 (0.0004) 0.701 (0.0077) 0.822 (0.0055)
DL hyper 0.927 (0.0038) 0.908 (0.0047) 0.651 (0.0092) 0.570 (0.0102)
DL tune 0.949 (0.0027) 0.970 (0.0025) 0.717 (0.0085) 0.797 (0.0073)

Table 2: Mean area under the ROC Curve and the PRC curve for p = 500, n = 60,
based on 200 datasets with standard errors in parentheses.

ROC Area PRC Area
ρ = 0.5 ρ = 0.9 ρ = 0.5 ρ = 0.9

Lasso - - 0.507 (0.0093) 0.536 (0.0091)
Normal hyper 0.942 (0.0039) 0.992 (0.0018) 0.515 (0.0101) 0.727 (0.0076)
Normal tune 0.943 (0.0039) 0.991 (0.0018) 0.539 (0.0099) 0.680 (0.0083)
Laplace hyper 0.914 (0.0041) 0.968 (0.0021) 0.444 (0.0093) 0.554 (0.0102)
Laplace tune 0.951 (0.0038) 0.994 (0.0012) 0.638 (0.0092) 0.764 (0.0071)
DL hyper 0.931 (0.0040) 0.943 (0.0034) 0.635 (0.0096) 0.623 (0.0094)
DL tune 0.925 (0.0045) 0.967 (0.0025) 0.633 (0.0116) 0.768 (0.0092)

Table 3: Mean area under the ROC Curve and the PRC curve for p = 1000, n = 60,
based on 200 datasets with standard errors in parentheses.

goes higher when FPR (or 1-Specificity) is large, however, when FPR is small (which is
of more interest), DL prior still leads to significantly larger sensitivity than the normal
prior. Overall, the DL prior outperforms the normal prior, as does the Laplace prior.

6.2 Additional Simulations on Hyperparameter Tuning

To examine the role of a in the DL prior, additional simulations were conducted. Table 4
gives the average squared error for the posterior mean based on the 200 same datasets
as Section 6.1, for the DL priors with a fixed at 1/2, 1/n, and 1/p. The results show
that when p is large or there is strong correlation in the dataset, a = 1/n is better
than a = 1/2. When p is small and there is only moderate correlation for the data,
a = 1/2 is recommended. Since the performance of different values of a varies relying
on the dimension of predictors and the correlation structure of the predictors, fixing a
is difficult. Thus either giving a hyperprior for a or using the R2 method proposed in
Section 5 to tune a is suggested.

Furthermore, to verify Theorem 5 described in Section 5, additional calculations
were performed. For each of the above 200 datasets, ‘Normal tune” returns a “best”
tuned γ through conducting the practical procedures as introduced in Section 5, and we
name it as “Tuned”. Also, by Theorem 5, the theoretic “best” γ can be derived based on
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Figure 3: Plot of mean ROC and PRC curves when ρ = 0.5 and ρ = 0.9, over the 200
datasets for p = 500 predictors, n = 60 observations. The left column is the ROC curve,
the right column is the PRC curve.

the eigenvalues of XTX/n for each dataset, and we name it as “Derived”. In addition,
for each of the above 200 datasets, the design matrix X is generated from a multivariate
normal distribution with specific and fixed covariance structure. So the eigenvalues of
such true covariance matrix, instead of XTX/n, can be used to derive the theoretic
“best” γ, and we name it as “Theoretic” value. Table 5 gives the “Theoretic” value, and
the mean of “Derived” and “Tuned” value together with the standard error among the
200 datasets, for simulation setups ρ = 0.5 and 0.9. In general, the three values are simi-
lar and all of them are close to the value of p. So in practice, γ can be set as the “Derived”
value based on the eigenvalues of XTX/n, or for simplicity, γ = p can also be used.
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Figure 4: Plot of mean ROC and PRC curves when ρ = 0.5 and ρ = 0.9, over the 200
datasets for p = 1000 predictors, n = 60 observations. The left column is the ROC
curve, the right column is the PRC curve.

7 Real Data Analysis

We now analyze data on mouse gene expression from the experiment conducted by
Lan et al. (2006). There were 60 arrays to monitor the expression levels of 22, 575
genes consisting of 31 female and 29 male mice. Quantitative real-time PCR were used
to measure some physiological phenotypes, including numbers of phosphoenopyruvate
carboxykinase (PEPCK), glycerol-3-phosphate acyltransferase (GPAT), and stearoyl-
CoA desaturase 1 (SCD1). The gene expression data and the phenotypic data can be
found at GEO (http://www.ncbi.nlm.nih.gov/geo; accession number GSE3330).

http://www.ncbi.nlm.nih.gov/geo
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p = 50 p = 500 p = 1000
a 1

2
1
n

1
p

1
2

1
n

1
p

1
2

1
n

1
p

ρ = 0.5 0.772 0.877 0.874 1.292 1.400 1.953 1.470 1.434 2.196
(0.0234) (0.0325) (0.0329) (0.0421) (0.0519) (0.0576) (0.0451) (0.1070) (0.1196)

ρ = 0.9 1.989 1.751 1.715 2.193 2.142 2.546 2.299 2.247 2.426
(0.0559) (0.0737) (0.0739) (0.0767) (0.0981) (0.1180) (0.1101) (0.1178) (0.1186)

Table 4: Average squared error for the posterior mean, given Dirichlet–Laplace prior
with a fixed at 1/2, 1/n and 1/p, based on 200 datasets with standard errors in paren-
theses.

ρ = 0.5 ρ = 0.9
Theoretic Derived Tuned Theoretic Derived Tuned

p=50 47.6 46.6 (0.11) 48.6 (0.24) 40.8 39.9 (0.18) 41.3 (0.25)
p=500 490.0 481.8 (0.35) 474.3 (0.83) 482.4 474.1 (0.81) 471.9 (1.23)
p=1000 981.7 965.1 (0.51) 947.1 (1.50) 974.0 956.9 (1.18) 944.3 (1.82)

Table 5: Theoretic γ in the normal prior (3) based on Theorem 5, together with mean of
the derived and tuned γ through methods proposed in Section 5, based on 200 datasets
with standard errors in parentheses.

First, by ordering the magnitude of marginal correlation between the genes with
the three responses from the largest to the smallest, 22, 575 genes were screened down
to the 999 genes, thus reducing the number of candidate predictors of the three linear
regressions. Note that the top 999 genes were not the same for the 3 responses. Then for
each of the 3 regressions, the dataset is composed of n = 60 observations and p = 1, 000
predictors (gender along with the 999 genes). After the screening, the Lasso estimator
and the penalized credible region method applied on the normal, Laplace and DL priors
were used. The hyperparameters in those prior distributions are tuned through the R2

method introduced in Section 5, with a target of uniform distribution.

To evaluate the performance of the proposed approach, the first step was to randomly
split the sample size 60 into a training set of size 55 and a testing set of size 5. The
stopping rule was BIC. To be more specific, the selected model was the one with smallest
BIC among all models in which the number of predictors is less than 30. Then the
selected model was used to predict the remaining 5 observations, and the prediction
error was then obtained. We repeated this for 100 replicates in order to compare the
prediction errors. Table 6 shows the mean squared prediction error (with its standard
error) based on the 100 random splits of the data. The mean selected model size (with
its standard error) is also included.

Overall, the results show that the proposed penalized credible region selection method
using global-local shrinkage priors such as DL prior performs well. For all 3 responses,
the penalized credible region approach with DL prior performs better than the Lasso
estimator and has a smaller number of predictors. For PEPCK and SCD1, the DL prior
has significant better performance than the normal prior and Laplace prior. For GPAT,
there is no significant difference between normal and DL prior. In all, for this dataset,
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PEPCK GPAT SCD1
MSPE Model Size MSPE Model Size MSPE Model Size

Lasso 0.54 (0.026) 25.8 (0.34) 1.43 (0.082) 24.4 (0.56) 0.55 (0.052) 26.1 (0.33)
Normal 0.66 (0.033) 16.8 (0.67) 1.30 (0.099) 16.3 (0.66) 0.71 (0.059) 10.8 (0.60)
Laplace 0.70 (0.037) 17.0 (0.78) 1.19 (0.086) 21.4 (0.56) 0.69 (0.054) 14.8 (0.82)
DL 0.49 (0.032) 18.4 (0.73) 1.37 (0.102) 13.1 (0.68) 0.54 (0.037) 14.0 (0.59)

Table 6: Mean squared prediction error and model size, with standard errors in paren-
thesis, based on 100 random splits of the real data.

the proposed approach generally improves the performance by replacing the normal

prior with the DL prior.

8 Discussion

In this paper, we extend the penalized credible variable selection approach by using

global-local shrinkage priors. Simulation studies show that the GL shrinkage priors out-

perform the original normal prior. Our main result also includes modifying the Dirichlet–

Laplace prior to accommodate the linear regression model instead of the simple normal

mean problem as in Bhattacharya et al. (2015).

In theory, we obtain the selection consistency for the penalized credible region

method using the global-local shrinkage priors when pn = o(n). Posterior consistency

for the normal and DL priors are also shown. However, since the proposed method con-

siders the posterior credible region for the full pn-dimensional parameter, the proposed

approach is sub-optimal compared to the results in (Arias-Castro et al., 2014; Castillo

et al., 2015; Martin et al., 2017). This comes from the fact that the full design matrix

XT
nXn/n is used instead of submatrices as in the above references. Since exact sparsity

is not exploited, some of the conditions for selection consistency are stronger than these

approaches.

Furthermore, this paper introduces a new default method to tune the hyperparam-

eters in prior distributions based on the induced prior distribution of R2. The hyperpa-

rameter is chosen to minimize a discrepancy between the induced distribution of R2 and

a default Beta distribution. For the normal prior, a closed form of the hyperparameters

is derived. This method is straightforward and efficient as it only involves the prior

distributions. A simulation study illustrates that our proposed tuning method improves

upon the usual hyperprior method.

Supplementary Material

Supplementary material of “Variable selection via penalized credible regions with

Dirichlet–Laplace global-local shrinkage priors” (DOI: 10.1214/17-BA1076SUPP; .pdf).

https://doi.org/10.1214/17-BA1076SUPP
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