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FRÉCHET REGRESSION FOR RANDOM OBJECTS WITH
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University of California, Santa Barbara and University of California, Davis

Increasingly, statisticians are faced with the task of analyzing complex
data that are non-Euclidean and specifically do not lie in a vector space. To
address the need for statistical methods for such data, we introduce the con-
cept of Fréchet regression. This is a general approach to regression when
responses are complex random objects in a metric space and predictors are in
Rp , achieved by extending the classical concept of a Fréchet mean to the no-
tion of a conditional Fréchet mean. We develop generalized versions of both
global least squares regression and local weighted least squares smoothing.
The target quantities are appropriately defined population versions of global
and local regression for response objects in a metric space. We derive asymp-
totic rates of convergence for the corresponding fitted regressions using ob-
served data to the population targets under suitable regularity conditions by
applying empirical process methods. For the special case of random objects
that reside in a Hilbert space, such as regression models with vector pre-
dictors and functional data as responses, we obtain a limit distribution. The
proposed methods have broad applicability. Illustrative examples include re-
sponses that consist of probability distributions and correlation matrices, and
we demonstrate both global and local Fréchet regression for demographic and
brain imaging data. Local Fréchet regression is also illustrated via a simula-
tion with response data which lie on the sphere.

1. Introduction. The regression relationship between a response variable and
one or more predictor variables constitutes the target of many statistical method-
ologies. The most basic form is linear regression, where all variables are real-
valued, and the conditional mean of the response variable is linear in the predic-
tors. The linear regression model is quite flexible, includes polynomial fits and
categorical predictor variables, among others, and remains one of the most popu-
lar tools for data analysis. In addition to the superb interpretability of linear models
and simple model fitting via least squares, powerful inferential methods, with well-
established theory, are available for estimation and testing. Linear regression ideas
also motivate local polynomial smoothing, further adding to their vast applicabil-
ity.
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In recent years, as data types are becoming more complex, attention has turned
to regression in more abstract settings. The importance of the analysis of such
object data has recently been highlighted [Marron and Alonso (2014), Wang and
Marron (2007)]. A setting that is increasingly encountered is that of a response
variable taking values in a metric space, which may or may not have algebraic
structure. The presence of a metric provides a natural connection to the work of
Fréchet (1948), where the Fréchet mean is defined for random elements of a metric
space as a direct generalization of the standard mean, which is defined by integra-
tion over a probability space. This generalization has been increasingly exploited
in statistical analyses due to its inherent flexibility. Specifically, no ambient vector
space needs to be assumed and only a distance between data objects is required.
As regression can be viewed as the modeling of conditional means, a key feature
of our approach is that we introduce the concept of a conditional Fréchet mean,
generalizing the classical Fréchet mean.

One important class of random objects, which has been extensively studied,
consists of observations on a finite-dimensional differentiable Riemannian mani-
fold. Due to local Euclidean properties of the space, one can mimic both parametric
(global) and nonparametric (local) regression techniques for standard Euclidean
data quite effectively by local Euclidean approximations. Regression models for
this special case have been well studied [Chang (1989), Fisher (1995), Fisher,
Lewis and Embleton (1987), Prentice (1989)], including intrinsic models for
geodesic regression [Cornea et al. (2016), Fletcher (2013), Niethammer, Huang
and Vialard (2011)], semiparametric regression [Shi et al. (2009)] and local kernel
regression as a generalization of the classical Nadaraya–Watson smoother [Davis
et al. (2007), Hinkle et al. (2012), Pelletier (2006), Yuan et al. (2012)]. Recently,
the extrinsic regression model in Lin et al. (2015) extends the notion of extrin-
sic means [see, e.g., Chapters 11 and 18 of Patrangenaru and Ellingson (2015)],
where extrinsic approaches have been reported to have computational advantages
[Bhattacharya et al. (2012)].

In this paper, however, we go beyond manifolds and our focus is on a more
general case of random objects in metric spaces with little structure, where only
distances between response objects are computable. To our knowledge, in general
metric spaces, the only global or parametric model which has been proposed is
that of Faraway (2014), where data are represented as scores in a Euclidean space
based on their pairwise distances, followed by the use of classical regression tech-
niques. This method requires a complicated “backscoring” step, where vectors in
Euclidean space are then represented in the original metric space, and its theoreti-
cal properties have not been studied. Local regression methods on generic metric
spaces are limited to Nadaraya–Watson-type estimators [Davis et al. (2007), Hein
(2009), Steinke and Hein (2009), Steinke, Hein and Schölkopf (2010)] and lack a
comprehensive asymptotic analysis. Thus, there is a need for additional statistical
models to tackle this type of data that is increasingly common. Accordingly, we
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present here methodology and theory for both global and local regression analysis
of complex random objects.

Specifically, we consider regression relationships between responses which are
complex random objects and vectors of real-valued predictors. To this end, we
develop a global regression relation as a generalization of multiple linear regres-
sion, as well as a class of more flexible local regression methods that generalizes
local linear or polynomial regression. As the proposed regression approach for ran-
dom objects incorporates the geometry implied by the metric and can be viewed
as an extension of the Fréchet mean, we refer to our methods as Fréchet regres-
sion. Global Fréchet regression provides an improvement on the global method of
Faraway (2014), as the proposed model defines the regression directly on the ob-
ject space and does not require backscoring. The global Fréchet regression model
constitutes a class of regression functions on arbitrary metric spaces which can be
fitted without a tuning parameter or the need for any local smoothing technique.
We also propose local Fréchet regression, which generalizes local linear estima-
tion to a framework where responses are random objects, extending the available
nonparametric regression methodology for object data. A challenge for the devel-
opment of local Fréchet regression is to define an appropriate population model,
which serves as the target to which the fitted local Fréchet regression converges.
We establish consistency and rates of convergence for both global and local Fréchet
regression.

The proposed global Fréchet regression model is introduced in Section 2, and
theory quantifying the convergence rates of these estimators is given in Section 3,
along with some concrete examples which are shown to satisfy the necessary reg-
ularity conditions. Local Fréchet regression is introduced in Section 4, along with
asymptotic convergence theory. All proofs can be found in the Supplementary Ma-
terial [Petersen and Müller (2019)]. For the special case where the random objects
take values in a Hilbert space, a limiting distribution can be obtained, as demon-
strated in Section 5.

Our primary application examples deal with samples of probability distribu-
tions and correlation matrices, which are illustrated with data from demography
and neuroimaging, with details in Sections 6 and 7, respectively. Here, we also
include a discussion of practical issues, such as a suitable notion of the coeffi-
cient of determination R2 when the responses are random objects. For the space
of probability distributions, we utilize the Wasserstein metric to conduct a sim-
ulation experiment as well as analyze the evolution of mortality profiles for two
countries. For the case where responses are correlation matrices, we examine the
relationship between functional connectivity in the brain, as quantified by pairwise
correlations of fMRI signals, with age as predictor. Lastly, although the proposed
methodology does not require any particular metric structure, it is nevertheless
applicable to structured spaces such as manifolds. To demonstrate this, the local
Fréchet regression technique is also illustrated with simulated manifold data on the
sphere S2 ⊂ R3 in Section 8.
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2. Global Fréchet regression.

2.1. Preliminaries. Let (�,d) be a metric space. We consider a random pro-
cess (X,Y ) ∼ F , where X and Y take values in Rp and �, respectively, and F is
the joint distribution of (X,Y ) on Rp ×�. We denote the marginal distributions of
X and Y as FX and FY , respectively, and assume that μ = E(X) and � = Var(X)

exist, with � positive definite. The conditional distributions FX|Y and FY |X are
also assumed to exist. In this general setting, we refer to Y as a random object.
The usual notions of mean and variance were generalized to random objects in
metric spaces in Fréchet (1948), where

(2.1) ω⊕ = argmin
ω∈�

E
(
d2(Y,ω)

)
, V⊕ = E

(
d2(Y,ω⊕)

)
,

were defined, now commonly referred to as the Fréchet mean and Fréchet variance,
respectively.

Building on these concepts, we introduce the Fréchet regression function of Y

given X = x,

(2.2) m⊕(x) = argmin
ω∈�

M⊕(ω, x), M⊕(·, x) = E
(
d2(Y, ·)|X = x

)
,

where we refer to M⊕(·, x) as the (conditional) Fréchet function. For the spe-
cial case � = R, various nonparametric regression methods have been devel-
oped which are based on kernel or local linear polynomial fitting [Fan and Gij-
bels (1996)], splines [Craven and Wahba (1979), Eilers and Marx (1996)] or other
smoothers.

A basic statistical task is to fit a global regression model for response Y and pre-
dictor X, in order to provide ease of implementation and interpretation and allow
for good options for overall inference and testing. Fitting of such a global model
also does not require the choice of a tuning parameter, as all local fitting methods
do, since global models are usually fitted under the assumption that there is no bias.
Given that no algebraic structure is assumed, it is not feasible to directly generalize
parametric models to a parametric function on �, as has been done in the special
case when � is a Riemannian manifold. However, an alternative solution that we
will develop is to recharacterize the standard multiple linear regression model as
a function of weighted Fréchet means, where the weights have a known form and
vary with x.

2.2. Generalizing linear regression. We begin by considering the standard
setup for linear regression, for which � = R, and then write m = m⊕ in (2.2).
The model for linear regression is

(2.3) m(x) := E(Y |X = x) = β∗
0 + (

β1
∗)T

(x − μ),
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where the scalar intercept β∗
0 and slope vector β1

∗ are the solutions

(2.4)
(
β∗

0 , β∗
1
) = argmin

β0∈R,β1∈Rp

∫ [∫
y dFY |X(x, y)− (

β0 +βT
1 (x −μ)

)]2
dFX(x).

Similar to the Fréchet mean, the goal is to characterize the regression values in
(2.3) as minimizers of weighted least squares problems, where the weights depend
on predictor values and the squared distances depend on response values. Setting
σYX = E[Y(X − μ)], the normal equations for the right-hand side of (2.4) lead to

E(Y ) − β0 = 0, σYX − �β1 = 0,

with solutions β1
∗ = �−1σYX and β∗

0 = E(Y ). Plugging these into (2.3),

m(x) = E(Y ) + σT
YX�−1(x − μ)

=
∫

y
{
1 + (z − μ)T �−1(x − μ)

}
dF(z, y)

=
∫

ys(z, x)dF(z, y),

(2.5)

where the weight function s is

(2.6) s(z, x) = 1 + (z − μ)T �−1(x − μ).

Because
∫

s(z, x)dF(z, y) = 1, the last line of (2.5) reveals that the standard linear
regression function value m(x) is the solution

(2.7) m(x) = argmin
y∈R

E
[
s(X,x)d2

E(Y, y)
]
,

where dE is the standard Euclidean metric. This alternative formulation of the
linear regression function provides the key to defining the proposed global Fréchet
regression function m⊕ on an arbitrary metric space (�,d), by simply replacing
the Euclidean metric dE , which is the default metric for real valued responses, by
a more general metric d that is suitable for responses in �. The global Fréchet
regression model then becomes

(2.8) m⊕(x) := argmin
ω∈�

M(ω,x), M(·, x) = E
[
s(X,x)d2(Y, ·)].

Hence, generalizing multiple linear regression to the case of a metric-valued re-
sponse is achieved by viewing the regression function as a sequence of weighted
Fréchet means, with weights that are derived from those of the corresponding stan-
dard linear regression. Although � is not a linear space, the weight function s is a
sensible choice for a number of reasons. First, any coherent generalization of mul-
tiple linear regression to a global model for random object regression should result
in a regression function passing through the point (μ,ω⊕), which holds for the
proposed model since s(·,μ) ≡ 1 implies that m⊕(μ) = ω⊕. Second, in contrast
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to local regression in metric spaces, where the weights are given by a nonnega-
tive kernel function, the weights given by s can be negative and do not go to zero
away from x, both of which are natural properties of a global regression relation-
ship. Lastly, despite being defined as a minimizer of a weighted Fréchet function,
the proposed global Fréchet regression function can be computed analytically in
some cases, in addition to the obvious case � = R. As an illustrative example,
when � is the space of probability distributions on the real line equipped with the
Wasserstein metric (see Example 1 and Section 6.2 below) and the random objects
Y are distributions from a location-scale family with random location ν and scale
σ , the global Fréchet regression model is equivalent to modeling the conditional
means of ν and σ as linear functions of the predictor x. In fact, when the location-
scale family is the Gaussian family, this space has a curved manifold structure,
with properties studied extensively in the literature [e.g., Takatsu (2011)]. This
provides an example of a curved manifold for which the global Fréchet regression
relationship is sensible.

2.3. Estimation. Assume that (Xi, Yi) ∼ F , i = 1, . . . , n, are independent. We
take the standard approach to estimate the minimizer in (2.8) by substituting the
empirical distribution dFn for dF in the integral in (2.8). Additionally, the un-
known parameters μ and � in (2.6) are replaced by their empirical estimates
X̄ = n−1 ∑n

i=1 Xi and �̂ = n−1 ∑n
i=1(Xi − X̄)(Xi − X̄)T , respectively.

The empirical weights

(2.9) sin(x) := 1 + (Xi − X̄)T �̂−1(x − X̄)

then lead to the estimator

(2.10) m̂⊕(x) = argmin
ω∈�

Mn(ω,x)

of m⊕(x) for x ∈ Rp , where Mn(·, x) = n−1 ∑n
i=1 sin(x)d2(Yi,ω).

3. Theory. We first consider the estimation of the regression relation in (2.8)
by the corresponding estimator in (2.10) in the case of a totally bounded metric
space (�,d). Recall the functions

M(ω,x) := E
[
s(X,x)d2(Y,ω)

]
, Mn(ω,x) := n−1

n∑
i=1

sin(x)d2(Yi,ω).

With regard to the objects in (2.8) and (2.10), we require the following assumptions
for a fixed x ∈ Rp:

(P0) The objects m⊕(x) and m̂⊕(x) exist and are unique, the latter almost
surely, and, for any ε > 0, infd(ω,m⊕(x))>ε M(ω,x) > M(m⊕(x), x).
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(P1) Let Bδ(m⊕(x)) ⊂ � be the ball of radius δ centered at m⊕(x) and
N(ε,Bδ(m⊕(x)), d) be its covering number using balls of size ε. Then∫ 1

0

√
1 + logN

(
δε,Bδ

(
m⊕(x)

)
, d

)
dε = O(1) as δ → 0.

(P2) There exist η > 0, C > 0 and β > 1, possibly depending on x, such that,
whenever d(m⊕(x),ω) < η, we have M(ω,x)−M(m⊕(x), x) ≥ Cd(ω,m⊕(x))β .

Assumption (P0) is common to establish the consistency of an M-estimator such
as m̂⊕(x); see Chapter 3.2 in Van der Vaart and Wellner (1996). In particular,
it ensures that weak convergence of the empirical process Mn to the population
process M in turn implies convergence of their minimizers. Furthermore, existence
follows immediately if � is compact. The conditions on the covering number in
(P1) and curvature in (P2) arise from empirical process theory and control the
behavior of Mn − M near the minimum in order to obtain rates of convergence.

We also consider uniform convergence results for predictor values x, requiring
stronger versions of the above assumptions. Let ‖·‖E be the Euclidean norm on
Rp and B > 0.

(U0) Almost surely, for all ‖x‖E ≤ B , the objects m⊕(x) and m̂⊕(x) exist and
are unique. Additionally, for any ε > 0,

inf‖x‖E≤B
inf

d(ω,m⊕(x))>ε
M(ω,x) − M

(
m⊕(x), x

)
> 0

and there exists ζ = ζ(ε) > 0 such that

P
(

inf‖x‖E≤B
inf

d(ω,m̂⊕(x))>ε
Mn(ω,x) − Mn

(
m̂⊕(x), x

) ≥ ζ
)

→ 1.

(U1) With Bδ(m⊕(x)) and N(ε,Bδ(m⊕(x)), d) as in (P1),∫ 1

0
sup

‖x‖E≤B

√
1 + logN

(
δε,Bδ

(
m⊕(x)

)
, d

)
dε = O(1) as δ → 0.

(U2) There exist τ > 0, D > 0, and α > 1, possibly depending on B , such that

inf‖x‖E≤B
inf

d(ω,m⊕(x))<τ

{
M(ω,x) − M

(
m⊕(x), x

) − Dd
(
ω,m⊕(x)

)α} ≥ 0.

The following examples of classes of random objects correspond to the appli-
cations and simulations that will be discussed in Sections 6, 7 and 8.

EXAMPLE 1. Take � to be the set of probability distributions G on R such
that

∫
R x2 dG(x) < ∞, equipped with the Wasserstein metric dW . For two such

distributions G1 and G2, the Wasserstein distance is given by

dW(G1,G2)
2 =

∫ 1

0

(
G−1

1 (t) − G−1
2 (t)

)2 dt,

where G−1
1 and G−1

2 are the quantile functions corresponding to G1 and G2, re-
spectively.
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EXAMPLE 2. Take � as the set of correlation matrices of a fixed dimension
r , that is, symmetric, positive semidefinite r × r matrices with unit diagonal, and
equip � with the Frobenius metric, dF .

EXAMPLE 3. Let � be a (bounded) Riemannian manifold of dimension r and
let d be the geodesic distance implied by the Riemannian metric.

Propositions 1 and 2 in the Supplementary Material [Petersen and Müller
(2019)] demonstrate that all of the above assumptions are satisfied for the ran-
dom objects in Examples 1 and 2, with β = α = 2 in (P2) and (U2). We note that
Example 1 refers to objects in the Wasserstein space, a complex smooth mani-
fold that is characterized by the Wasserstein geodesics [Takatsu (2011)], and thus
provides an example of random objects on a manifold, for which we obtain con-
sistent estimation of global and local Fréchet regression as demonstrated below.
Example 2 refers to a convex space and, at first glance, it seems straightforward to
implement local regression using kernel weights on such spaces. This is however
not the case; a major difficulty is that global and local regression assign negative
weights near the boundaries, where the boundary is a very substantial part of the
domain especially in the global regression case.

For Example 3, Proposition 3 shows that (P1) and (U1) hold automatically and,
if (P0) [resp., (U0)] holds, then (P2) [resp., (U2)] is equivalent to the Hessian on
the tangent space at m⊕(x) being positive definite at 0, and in this case we may
take α = β = 2. Thus, for manifolds, local curvatures do not influence the conver-
gence rates below. Uniqueness of Fréchet means for manifolds is challenging in
general, but can be guaranteed under certain circumstances, for example, restrict-
ing the support of the underlying distribution FY [Afsari (2011)]. Alternatively,
one can consider Fréchet mean sets [Ziezold (1977)]; see also the last paragraph
in Section 9.

The following two results demonstrate the consistency of our proposed estima-
tors and also provide rates of convergence. All proofs can be found in the Supple-
mentary Material [Petersen and Müller (2019)].

THEOREM 1. Suppose (P0) holds and � is bounded. Then, for any
fixed x ∈ R, d(m̂⊕(x),m⊕(x)) = op(1). For B > 0, if (U0) holds then
sup‖x‖E≤B d(m̂⊕(x),m⊕(x)) = op(1).

THEOREM 2. Suppose that, for a fixed x ∈ Rp , (P0)–(P2) hold. Then

d
(
m̂⊕(x),m⊕(x)

) = Op

(
n−1/(2(β−1))).

Furthermore, for a given B > 0, if (U0)–(U2) hold,

sup
‖x‖E≤B

d
(
m̂⊕(x),m⊕(x)

) = Op

(
n−1/(2(α′−1)))

for any α′ > α.
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In general, the rate of convergence is determined by the local geometry near the
minimum as quantified in (P2) and (U2). The proof of the pointwise result follows
along the lines of Theorem 3.2.5 in Van der Vaart and Wellner (1996) which deals
with M-estimators, where some additional considerations are needed to deal with
the necessary estimation of the mean and covariance of X. The uniform result is
more difficult, as an uncountable number of M-estimators are considered simul-
taneously and no parametric form of the regression function is available. When
� has a smooth structure, for example, the Wasserstein space in Example 1 or a
smooth Riemannian manifold, one can conceivably also obtain a limiting distribu-
tion. We demonstrate this for the case where � is a Hilbert space in Section 5.

4. Local Fréchet regression. As the success of nonparametric regression
methods over the last decades has shown, there is often the need for local rather
than global fitting of regression functions. Local regression is more flexible but
on the other hand requires choosing a tuning parameter that balances bias and
variance. As far as we know, to date, local estimation of (2.2) for responses in
general metric spaces has been exclusively done with the Nadaraya–Watson esti-
mator [Davis et al. (2007), Hein (2009), Steinke and Hein (2009), Steinke, Hein
and Schölkopf (2010)]:

(4.1) m̂NW⊕ (x) = argmin
ω∈�

1

n

n∑
i=1

Kh(Xi − x)d2(Yi,ω),

where K is a smoothing kernel that corresponds to a probability density and h is
a bandwidth, with Kh(·) = h−1K(·/h). In this section, the proposed Fréchet re-
gression analysis is extended from the global setting, as described in the previous
sections, to a local version. The idea is to adopt the concepts of local linear re-
gression, which has been established for real-valued responses, and then to extend
them to the case where responses are random objects, in analogy to the develop-
ments in Section 2.2 for global Fréchet regression. Thus, we develop a novel local
version of smoothing in general metric spaces which goes beyond the Nadaraya–
Watson smoother (4.1). As is the case for Euclidean data, this local Fréchet re-
gression proves to be superior to Nadaraya–Watson smoothing, especially near the
boundaries, as demonstrated in the experiments in Sections 6.3 and 8. Moreover,
our analysis of these estimators separates bias and stochastic variation of the cor-
responding estimators.

For ease of representation, we consider here the case of a scalar predictor
X ∈ Rp , where p = 1; the local method can also be developed for any p with
p > 1. The target is again (2.2), where we make no structural assumptions on m⊕.
Consider the preliminary case � = R, and again write m = m⊕. In this case, the
local linear estimate [Fan and Gijbels (1996)] of m(x) is l̂(x) = β̂0, where

(β̂0, β̂1) = argmin
β0,β1

1

n

n∑
i=1

Kh(Xi − x)
(
Yi − β0 − β1(Xi − x)

)2
.
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In this sense, the estimates β̂0 and β̂1 can be viewed as M-estimators of

(
β∗

0 , β1
∗) = argmin

β0,β1

∫
Kh(z − x)

×
[∫

y dFY |X(z, y) − (
β0 + β1(z − x)

)]2
dFX(z).

(4.2)

Defining μj = E[Kh(X − x)(X − x)j ], rj = E[Kh(X − x)(X − x)jY ] and
σ 2

0 = μ0μ2 − μ2
1, the solutions to (4.2) are

β∗
0 = σ−2

0 (μ2r0 − μ1r1), β1
∗ = σ−2

0 (μ0r1 − μ1r0).

This means that l̂(x) = β̂0 can be viewed as an estimator of the intermediate target

l̃(x) = β∗
0 = μ2r0 − μ1r1

σ 2
0

= 1

σ 2
0

∫
yKh(z − x)

[
μ2 − μ1(z − x)

]
dF(z, y)

= E
[
s(X,x,h)Y

]
(4.3)

for the weight function

s(z, x,h) = 1

σ 2
0

{
Kh(z − x)

[
μ2 − μ1(z − x)

]}
.

Observing that
∫

s(z, x,h)dF(z, y) ≡ 1, it follows that l̃(x) in (4.3) corresponds
to a localized Fréchet mean,

(4.4) l̃(x) = argmin
y∈R

E
[
s(X,x,h)(Y − y)2]

.

The minimizer l̃(x) in (4.4) can be viewed as a smoothed version of the true regres-
sion function, with the bias m(x)− l̃(x) = o(1) as h → 0. Under mild assumptions
on the kernel and distribution F , this bias is O(h2), which follows from a Taylor
expansion argument.

Now we are in a position to define the local regression concept for random
objects Y ∈ �, in analogy to the global Fréchet regression. Specifically, (4.4) can
be generalized by defining L̃n(ω) = E[s(X,x,h)d2(Y,ω)], where the dependency
on n is through the bandwidth sequence h = hn, and then setting

l̃⊕(x) = argmin
ω∈�

L̃n(ω).

In contrast to Euclidean spaces or Riemannian manifolds [Yuan et al. (2012)], no
version of a Taylor expansion argument is available on general metric spaces �.
So one can ask why this weighted Fréchet mean provides a good approximation to
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the conditional mean in (2.2). It turns out that this is due to the fact (shown in the
proof of Theorem 3 below) that[∫

s(z, x,h)dFX|Y (z, y)

]
dFY (y) = dFY |X(x, y) + O

(
h2)

,

so that minimizing L̃n is approximately the same as minimizing the conditional
Fréchet function M⊕(·, x).

The target l̃⊕(x) can be estimated by using preliminary estimates

μ̂j = n−1
n∑

i=1

Kh(Xi − x)(Xi − x)j , σ̂ 2
0 = μ̂0μ̂2 − μ̂2

1,

and the empirical weights

sin(x,h) = 1

σ̂ 2
0

Kh(Xi − x)
[
μ̂2 − μ̂1(Xi − x)

]
.

Then, setting L̂n(ω) = n−1 ∑n
i=1 sin(x,h)d2(Yi,ω), the local Fréchet regression

estimate is

(4.5) l̂⊕(x) = argmin
ω∈�

L̂n(ω).

While this local estimation technique is developed here for general metric space
data, it is of interest to compare it to other local estimators that have been pre-
viously considered for spaces with additional structure, specifically the intrin-
sic local polynomial (ILPR) estimator for manifold data proposed in Yuan et al.
(2012), where covariance matrices as objects are regressed against scalar predic-
tors. Whereas the ILPR estimator requires various technical steps involving expo-
nential, logarithmic and parallel transport maps on the manifold, one advantage
of the methodology proposed here is its simplicity, only requiring distances be-
tween data objects. In terms of computation on manifolds, the current method also
enjoys the distinct advantage of requiring optimization only for a single object,
unlike the ILPR for which one has to fit both intercept and derivative terms. It is
of course also much more general, providing consistent estimators in unstructured
metric spaces. Furthermore, the function to be minimized is merely a weighted
least squares problem, potentially with negative weights. Thus, any metric space
for which a Nadaraya–Watson smoother [Hein (2009)] is computationally feasi-
ble, or any manifold for which the ILPR can be computed, is also feasible for both
local and global Fréchet regression. In the manifold case, expressions for the Rie-
mannian gradient and Hessian are available for a variety of complex manifolds
[Ferreira et al. (2013)], which can be used for Newton-type algorithms, possibly
in conjunction with stochastic optimization techniques, such as the annealing al-
gorithm of Yuan et al. (2012).

For a concrete comparison of local Fréchet regression with the ILPR, take � to
be the space of covariance matrices with d being the Log-Euclidean metric, that is,
d(ω1,ω2) = dF (Logω1,Logω2), where dF is the Frobenius metric and Log is the
inverse of the matrix exponential Exp [Arsigny et al. (2007)]. In this case, both the
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ILPR and local Fréchet regression estimates can be computed analytically. For a
sample (Xi, Yi), with Yi a positive definite covariance matrix, both methods yield
the estimate

m̂⊕(x) = Exp
(

μ̂2r̂0 − μ̂2r̂1

σ̂ 2
0

)
,

where r̂j = n−1 ∑n
i=1 Kh(Xi − x)(Xi − x)j Log(Yi). That these two methods co-

incide is not altogether surprising due to the metric being the Euclidean metric on
transformed matrices. However, it shows that in this situation local Fréchet regres-
sion gives a sensible and intuitive estimate which coincides with the previously
established manifold-based estimator.

Returning to theory, in order to obtain the rate of convergence for the quan-
tity d(m⊕(x), l̂⊕(x)), we need to quantify the convergence of the bias term
d(m⊕(x), l̃⊕(x)) and the stochastic term d(l̃⊕(x), l̂⊕(x)). This requires the as-
sumptions below. Recall that M⊕(ω, x) = E(d2(Y,ω)|X = x). For simplicity, we
assume that the marginal density f of X, within the joint distribution F , has un-
bounded support, and consider points x ∈ R for which f (x) > 0. We need the
following assumptions:

(K0) The kernel K is a probability density function, symmetric around zero.
Furthermore, defining Kkj = ∫

R Kk(u)uj du, |K14| and |K26| are both finite.
(L0) The object m⊕(x) exists and is unique. For all n, l̃⊕(x) and l̂⊕(x) exist

and are unique, the latter almost surely. Additionally, for any ε > 0,

inf
d(ω,m⊕(x))>ε

{
M⊕(ω, x) − M⊕

(
m⊕(x), x

)}
> 0,

lim inf
n

inf
d(ω,l̃⊕(x))>ε

{
L̃n(ω) − L̃n

(
l̃⊕(x)

)}
> 0.

(L1) The marginal density f of X, as well as the conditional densities gy of
X|Y = y, exist and are twice continuously differentiable, the latter for all y ∈ �,
and supx,y |g′′

y (x)| < ∞. Additionally, for any open U ⊂ �,
∫
U dFY |X(x, y) is con-

tinuous as a function of x.
(L2) There exists η1 > 0, C1 > 0 and β1 > 1 such that

M⊕(ω, x) − M⊕
(
m⊕(x), x

) ≥ C1d
(
ω,m⊕(x)

)β1,

provided d(ω,m⊕(x)) < η1.
(L3) There exists η2 > 0, C2 > 0 and β2 > 1 such that

lim inf
n

[
L̃n(ω) − L̃n

(
l̃⊕(x)

)] ≥ C2d
(
ω, l̃⊕(x)

)β2,

provided d(ω, l̃⊕(x)) < η2.

Assumptions (K0) and (L1) are common in local regression estimation and im-
ply that the smoothed marginal distribution(∫

s(z, x,h)dFX|Y (z|y)

)
dFY (y)
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converges to dFY |X(x, y) as h → 0, while (L2) and (L3) provide the rate for the
bias and stochastic terms, respectively. While (L1) is a distributional assumption,
(L2) and (L3) can be shown to hold for Examples 1–3 in Section 3, using argu-
ments similar to those in Propositions 1–3 in the Supplementary Material [Petersen
and Müller (2019)]. In these cases, it is easy to verify that Cj = 1, βj = 2 and ηj

arbitrary, j = 1,2, are admissible in (L2) and (L3). We now state our main results
for local Fréchet regression, where the first result is for the bias, the second for the
stochastic deviation and the corollary combines these results to obtain an overall
rate of convergence.

THEOREM 3. If (K0), (L0), (L1), (L2) and (P1) hold, then

d
(
m⊕(x), l̃⊕(x)

) = O
(
h2/(β1−1))

as h = hn → 0.

THEOREM 4. If (K0), (L0), (L3) and (P1) hold, and if h → 0 and nh → ∞,
then

d
(
l̃⊕(x), l̂⊕(x)

) = Op

[
(nh)−1/(2(β2−1))].

COROLLARY 1. Under the assumptions of Theorem 3 and Theorem 4,
among bandwidth sequences h = n−γ , the optimal sequence is obtained for
γ ∗ = (β1 − 1)/(4β2 + β1 − 5) and yields the rate

d
(
m⊕(x), l̂⊕(x)

) = Op

(
n−2/(β1+4β2−5)).

We note that for β1 = β2 = 2, one obtains the result

d
(
m⊕(x), l̂⊕(x)

) = Op

[
(nh)−1/2 + h2]

that is familiar for local regression with real valued responses, and with γ ∗ =
1/5 leads to the rate d(m⊕(x), l̂⊕(x)) = Op(n−2/5). While the above results are
pointwise, we remark that a uniform rate over x in a bounded interval can be
obtained by suitably strengthening assumptions (L0), (L2) and (L3), similar to the
global case.

5. Limiting distributions when � is a separable Hilbert space. A case of
particular interest arises when the random objects are functions that are assumed to
be (almost surely) square-integrable, for example, � = L2[0,1] [Faraway (1997)].
Going beyond functional data as responses, we more generally assume that � is a
separable Hilbert space with inner product 〈·, ·〉 and corresponding norm ‖·‖�. As
before, let F be a distribution on R× � with (X,Y ) ∼ F . As this setting enables
linear operations, the minimizing objects in (2.8) and (2.10) can be given explicitly
under mild assumptions on the moments of F . Unsurprisingly, for the case of func-
tional data, the minimizer of (2.10) corresponds to the estimator given in Faraway



704 A. PETERSEN AND H.-G. MÜLLER

(1997). Our developments in the following are for global Fréchet regression, but
using essentially the same arguments can be extended to local Fréchet regression,
by utilizing the tools developed in Section 4.

We will use the following notation. For q > 1, let �q be the q-fold Cartesian
product of �, with inner product 〈α,α′〉q = ∑q

l=1〈αl, α
′
l〉 for α,α′ ∈ �q , so that

�q is also a Hilbert space. For a p × p matrix A, x ∈ Rp , ω ∈ � and α ∈ �p , we
define Aα ∈ �p with elements (Aα)l = ∑p

m=1 Almαm, αT x = ∑p
l=1 xlαl ∈ � and

xω ∈ �p with elements (xω)l = xlω.

THEOREM 5. A. Let (X,Y ) ∼ F and suppose that E‖Y‖2
� < ∞. Then there

exist unique elements γ0 ∈ � and γ1 ∈ �p which satisfy, for all ω ∈ � and α ∈ �p ,

E〈Y,ω〉 = 〈γ0,ω〉 and E
〈
(X − μ)Y,α

〉
p = 〈γ1, α〉p.

With � = Var(X) and defining β1 := �−1γ1 and β0 = γ0, the solution to (2.8) is

(5.1) m⊕(x) = β0 + βT
1 (x − μ).

B. Define estimators γ̂0 = Ȳ = n−1 ∑n
i=1 Yi , γ̂1 = n−1 ∑n

i=1(Xi − X̄)Yi ,
β̂1 = �̂−1γ̂1 and β̂0 = γ̂0. The solution of (2.10) is given by

(5.2) m̂⊕(x) = β̂0 + β̂T
1 (x − X̄).

Results (5.1) and (5.2) demonstrate that explicit solutions of the minimization
problems that define the global Fréchet regression are available for the case of
responses that are random objects in Hilbert space. Moreover, in this situation one
can also obtain limiting distributions, as follows.

THEOREM 6. Set β = (β0, β
T
1 )T and β̂ = (β̂0, β̂

T
1 )T . Under the assumptions

of Theorem 5, √
n(β̂ − β) � G,

where “�” denotes weak convergence and G is a zero mean Gaussian pro-
cess on �p+1. The covariance structure of G is defined by projection covari-
ances Cov(〈G, α〉p+1) = lTα Cαlα , where α ∈ �p+1, Cα is the covariance matrix
of the vector defined in (S.14) in the Supplementary Material [Petersen and Müller
(2019)] and lα can be constructed using the expressions in (S.15) in the Supple-
ment.

We next consider weak convergence of the process

Mn(x) = √
n
(
m̂⊕(x) − m⊕(x)

)
as x varies in Rp . For any U ⊂ Rp , define the function space

l∞� (U) =
{
g : U → � : sup

x∈U

∥∥g(x)
∥∥
� < ∞

}

with norm ‖g‖U = supx∈U‖g‖�.
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COROLLARY 2. Let B > 0 be arbitrary, and define VB = {x ∈ Rp :
‖x‖E ≤ B}. Under the assumptions of Theorem 5,

sup
x∈VB

∥∥m̂⊕(x) − m⊕(x)
∥∥
� = Op

(
n−1/2)

.

Additionally, there is a zero-mean Gaussian process M on VB such that

Mn � M in l∞� (VB),

where Mn is restricted to VB .

These results show that one can take advantage of the additional structure that
is available in the case of Hilbertian objects to obtain limit distributions of the
estimates. Limit distributions are not available for general object spaces due to the
lack of a linear structure. Generally, even for the simpler case of Fréchet means,
limit results cannot be directly obtained, except in special cases. For example,
for random objects that fall on manifolds satisfying certain regularity conditions,
local linear approximations sometimes make it possible to derive limit theorems
[Barden, Le and Owen (2013)].

6. Fréchet regression for probability distributions with the Wasserstein
metric.

6.1. Computational details. Here, the space � is the set of distribution func-
tions equipped with the Wasserstein metric, as outlined in Example 1 in Sec-
tion 3. To implement the minimization required by (2.10) using a sample (Xi, Yi),
i = 1, . . . , n, of covariates and distributions, first define Q(ω) to be the quan-
tile function corresponding to ω, for any ω ∈ �, and let Q−1 be the inverse
map, mapping quantile functions to their associated distribution function. Set
ĝx = n−1 ∑n

i=1 sin(x)Q(Yi), where the weights sin(x) are given in (2.9). Note that
ĝx ∈ L2[0,1], and let dL2 be the standard L2 metric on this space. The global
Fréchet regression estimator is

m̂⊕(x) = argmin
ω∈�

d2
L2

(
ĝx,Q(ω)

) = Q−1
(
argmin
q∈Q(�)

d2
L2(ĝx, q)

)
,

where we refer to the proof of Proposition 1 in the Supplementary Material
[Petersen and Müller (2019)] for details.

Now, let uj , j = 1, . . . ,M , be an equispaced grid on [0,1] and let gj = ĝx(uj ).
Then compute

q∗ = argmin
q∈RM

‖g − q‖2
E,

subject to the constraint q1 ≤ · · · ≤ qM . This optimization problem is a quadratic
program and can be solved using a variety of techniques. The solution q∗
represents a discretized version of the approximation of the quantile function
Q(m̂⊕(x)). Similar arguments hold for the computation of the local Fréchet es-
timator.
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6.2. Simulation. To assess the performance of the global Fréchet regression
estimator in (2.10), it is first necessary to determine a generative model that pro-
duces suitably simulated data. The space of distributions with the Wasserstein met-
ric provides an ideal setting for this. The responses Y are distributions with quan-
tile functions Q(Y) and the predictors are random variables X ∈ R. For notational
simplicity, the quantile function corresponding to Y will also be denoted as Y . The
regression function is

m⊕(x)(·) = E
(
Y(·)|X = x

) = μ0 + βx + (σ0 + γ x)�−1(·),
where � is the standard normal distribution function, μ0, β ∈ R and σ0 and γ

satisfy σ0 +γ x > 0 for all x in the support of FX . This corresponds to the response
distributions being, on average, a normal distribution with parameters that depend
linearly on x.

The random response Y is generated conditional on X by adding noise
to the quantile functions, which we will demonstrate in two settings. In the
first, the distribution parameters μ|X ∼ N (μ0 + βX,v1) and σ |X ∼
Gam((σ0 + γX)2/v2, v2/(σ0 + γX)) are independently sampled, and the cor-
responding distribution is Y = μ + σ�−1. In the second setting, after sampling
the distribution parameters as in the previous setting, the resulting distribution is
“transported” in Wasserstein space following a simplified version of the algorithm
outlined in Section 8.1 of Panaretos and Zemel (2016). Specifically, random trans-
port maps T (increasing diffeomorphisms of the real line) are generated by sam-
pling uniformly from the collection of transport maps Tk(x) = x − sin(kx)/|k|, for
k ∈ {−l, . . . , l}\{0}, with Y = T ◦ (μ+σ�−1). This second setting is significantly
more complex, as the observed distributions are no longer Gaussian.

Random samples of pairs (Xi, Yi), i = 1, . . . , n were generated by sampling
Xi ∼ U(−1,1), setting μ0 = 0, σ0 = 3, β = 3 and γ = 0.5, and following the
above procedure for the two simulation settings. In the first setting, the parameter
variances were set at v1 = 0.25 and v2 = 1. In the second, the values were v1 = 1
and v2 = 2, with l = 2 used for generating the transport maps. In each setting, 200
runs were executed for three sample sizes n = 50,100,200. For the r th simulation
of a particular sample size, with m̂r⊕(x) denoting the fitted distribution function,
the quality of the estimation was measured quantitatively by the integrated squared
errors

ISEr =
∫ 1

−1
d2
W

(
m̂r⊕(x),m⊕(x)

)
dx.

In the first simulation setting, we verify that global Fréchet regression is per-
forming as expected by comparing to the best-case scenario where one knows the
finite-dimensional generating model. That is, we compute the mean μi and stan-
dard deviation of σi of the distribution Yi and regress them linearly against Xi ,
while restricting the estimates of σ0 and γ such that the regression line is posi-
tive on [−1,1]. Thus, we can compare this “oracle” linear regression with global
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FIG. 1. Boxplots of integrated squared errors for 200 simulation runs and three sample sizes n. The
left panel compares global Fréchet regression (GFR) with the oracle linear regression (OR), while
the right shows results for global Fréchet regression and the Nadaraya–Watson smoother (NW).

Fréchet regression by computing its integrated squared error for each simulation
run. These errors are shown for both methods in boxplots in Figure 1(a). It is
clear that global Fréchet regression performs just as well as the oracle procedure.
Sign-rank tests were performed to test the hypothesis of no difference between the
methods for each sample size, with the smallest of the three p-values being 0.51.

In the second simulation setting, the random transportation renders the oracle
linear regression technique above inadmissable, since the standard deviation of
the transported distribution no longer has a linear relationship with X. However,
the global Fréchet regression model still holds true. Figure 1(b) shows the de-
creasing integrated squared errors for increasing sample sizes, demonstrating the
validity and utility of global Fréchet regression for this complex regression set-
ting. Furthermore, at the suggestion of a referee, we compared our results with the
Nadaraya–Watson estimator in (4.1), where the bandwidth was chosen in the inter-
val [0.2,0.7] so as to minimize the average ISE over all simulations. This resulted
in bandwidth choices 0.5, 0.45 and 0.35 for n = 50,100 and 200, respectively. The
corresponding ISE values in Figure 1(b) demonstrate that this approach is inferior
to the global Fréchet fits, which is expected if the global model holds, analogous
to the situation in the Euclidean case.

6.3. Application to mortality profiles. Many studies and analyses have been
motivated by a desire to understand human longevity. Of particular interest is the
evolution of the distributions of age-at-death over calendar time. The Human Mor-
tality Database provides such data in the form of yearly lifetables, differentiated
by country. Currently, this database includes yearly mortality and population data
for 37 countries that are available at www.mortality.org. For a given country and
calendar year, the probability distribution for mortality can be represented by its
density. A first step is to estimate this density from the data in the lifetables for
a specified country. Consider a country for which lifetables are available for the
years ti , i = 1, . . . , n. For integer-valued ages j , j = 0, . . . ,110, the lifetable pro-
vides the size of the population mj which is at least j years old, normalized so that

http://www.mortality.org
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FIG. 2. (a) Yearly mortality densities for Chile for the years 1992–2008. (b) Global Fréchet re-
gression fits of yearly mortality densities using Xi = ti . (c) Global Fréchet regression fits using
αi = (ti , t

2
i )T .

m0 = 100,000. These values can be used to construct a histogram for age-at-death,
which in turn can be smoothed using a local linear smoother to obtain an estimate
of the density. This smoothing step was performed in Matlab using the hades
package, available at http://www.stat.ucdavis.edu/hades/. Each density was esti-
mated for ages in the interval [20,110], with the value 2 as a common smoothing
bandwidth.

As an initial example, we consider the data for Chile, which has mortality data
available for the years 1992–2008. Using the procedure outlined above, mortal-
ity density estimates Yi were obtained for the years ti = 1991 + i, i = 1, . . . ,17.
These estimates are shown as a heat map in Figure 2, linearly interpolating be-
tween years for continuity. The variation from year to year is marked by a steady
increase in both the location and height of the peak in mortality. The global Fréchet
regression fits using calendar year as predictor for linear (Xi = ti) and quadratic
[Xi = (ti, t

2
i )T ] models are shown in Figure 2(b) and 2(c), respectively. Similar to

the least squares regression plane, these fits provide a smooth visualization of the
evolution of mortality and remove the noise that is visible in the raw density data.
There seems to be little gain in fitting a quadratic model, as the global Fréchet
regression fits with linear and quadratic predictors are very similar. Leave-one-
out prediction errors were 0.088 for the linear fit and 0.0972 for the quadratic fit,
indicating that the simpler linear model is indeed preferable.

Next, we consider the data for Luxembourg, with mortality lifetable data rang-
ing from 1960–2009. The density estimates for these years are shown in Fig-
ure 3(a). We find a slightly more complicated evolution of mortality for Lux-
embourg compared to Chile. For example, the mode of the density does not
steadily increase over the years; rather, the mode seems to carve out a curved
path. Figures 3(b) and 3(c) show the global Fréchet regression fits for the linear
and quadratic global Fréchet model, with Xi = ti for the linear and Xi = (ti, t

2
i )T

for the quadratic model. The quadratic fit is better at capturing the shape of the

http://www.stat.ucdavis.edu/hades/
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FIG. 3. (a) Yearly mortality densities for Luxembourg for the years 1960–2009. (b), (c) Global
Fréchet regression fits of yearly mortality densities using Xi = ti and Xi = (ti , t

2
i )T , respectively.

peak dynamics observed in the raw sample of densities. The adjusted Fréchet R2

values (for details on these extensions of the coefficient of determination see Sec-
tion 6.4) are 0.971 and 0.975 for the linear and quadratic models, respectively.
Average leave-one-out prediction errors were 0.56 for the linear and 0.27 for the
quadratic model.

While the quadratic model seems to be indeed better for both fitting and pre-
diction than the linear model, it still does not capture some aspects of the mortal-
ity distributions for Luxembourg, particularly between 1970 and 1980. Therefore,
local fitting methods will likely prove superior. Figure 4 shows the Nadaraya–
Watson kernel regression (4.1) and the local Fréchet (4.5) fits, using bandwidths
h = 5 and h = 7, respectively. These bandwidths were chosen by minimizing the
average leave-one-out prediction error over a grid, with minimum values of 0.196
and 0.168, respectively, for Nadaraya–Watson and local Fréchet fits. This repre-
sents a 14% improvement in prediction using the local Fréchet fit as compared to
the Nadaraya–Watson at the best tuning parameter choices. From the plot of the

FIG. 4. (a), (b) Nadaraya–Watson and local Fréchet estimates for Luxembourg. (c) Absolute dif-
ference between local fits.
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absolute differences between these estimates in Figure 3(c), the superiority of local
Fréchet regression for the most part can be attributed to its improved performance
near the boundaries. Specifically, the Nadaraya–Watson estimator appears to un-
derestimate the mode of the mortality distribution in the years preceding 2009.

6.4. Inference and model selection. Many of the standard inferential tools that
are available for ordinary linear regression depend on the algebraic structure of R,
and thus are not directly extendable to Fréchet regression for metric-valued data.
However, one tool which does generalize is the coefficient of determination, R2.
Recall that in multiple linear regression modeling with real valued responses, R2

is usually interpreted as the fraction of variance of the response which is explained
by a linear relationship with the predictor variables, that is,

R2 = 1 − Var(Y − β∗
0 − (β1

∗)T (X − μ))

Var(Y )
.

Using the generalized notions of mean and variance in (2.1), we define a corre-
sponding Fréchet R2 coefficient of determination as

R2⊕ := 1 − E[d2(Y,m⊕(X))]
V⊕

.

Given a random sample (Xi, Yi), i = 1, . . . , n, R2⊕ can be estimated by

R̂2⊕ = 1 −
∑n

i=1 d2(Yi, m̂⊕(Xi))∑n
i=1 d2(Yi, ω̂⊕)

,

where

ω̂⊕ = argmin
ω∈�

n−1
n∑

i=1

d2(Yi,ω)

is the sample Fréchet mean. The values R2⊕ has similar interpretations as the or-
dinary coefficient of determination R2 and likely is also useful for inference and
model selection.

In the setting of global Fréchet regression, the null hypothesis of no effect is
equivalent to testing H0 : R2⊕ = 0, for which the estimate R̂2⊕ can be used as a
test statistic. In order to obtain a p-value, a permutation test can be performed
[Bradley (1968), Higgins (2004), Lehmann and D’Abrera (2006)]. First, the val-
ues Xi , i = 1, . . . , n, are permuted to form a new sample X̃i , i = 1, . . . , n. For each
new predictor sample, a global Fréchet regression is fitted, using the pairs (X̃i, Yi),
and the value R̂2⊕ is computed for each of these regression fits. By performing a
large number of such permutations and fits, one then obtains an empirical approx-
imation of the null distribution of the test statistic and a p-value by calculating the
quantile of the actually observed R̂2⊕ within this null distribution.
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Another potential application of the coefficient R̂2⊕ is model selection, where
one can mimic the use of the adjusted R2 in linear regression by fitting Fréchet
regression models that use various subsets of the predictor variables. For a fitted
submodel M using q ≤ p predictor values, the adjusted Fréchet R2 is then

R̂2⊕,adj(M) = R̂2⊕ − (
1 − R̂2⊕

) q

n − q − 1
.

Let Cq be the class of submodels using q predictors, 1 ≤ q ≤ p. Computing

q∗ = argmax
1≤q≤p

max
M∈Cq

R̂2⊕,adj(M)

the final model can then be taken as M∗ = argmaxM∈Cq∗ R̂2⊕,adj(M). Another
alternative for model selection is to minimize prediction error, which can be esti-
mated by k-fold cross validation.

7. Fréchet regression for correlation matrices as random objects.

7.1. Computational details. Here, we consider a space of random objects �

which consists of correlation matrices, that is, the space of square r × r symmetric
positive semidefinite matrices with unit diagonal, for some positive integer r , and
equip � with the Frobenius metric dF . Positive definite matrices have been stud-
ied previously from the random object perspective under different metrics [Arsigny
et al. (2007), Pigoli et al. (2014)]. From a sample (Xi, Yi), i = 1, . . . , n, the min-
imization in (2.10) can be reformulated by setting B̂(x) = n−1 ∑n

i=1 sin(x)Yi and
computing (see the proof of Proposition 2 in the Supplementary Material for de-
tails)

m̂⊕(x) = argmin
ω∈�

dF

(
B̂(x),ω

)2
.

Thus, the problem is reduced to finding the correlation matrix which is nearest
to the matrix B̂(x). This problem has been well studied [Borsdorf and Higham
(2010), Higham (2002), Qi and Sun (2006)], and in our implementations we used
the alternating projections algorithm, written by Nicholas Higham and available at
https://nickhigham.wordpress.com/2013/02/13/the-nearest-correlation-matrix/, to
carry out this optimization.

7.2. Functional connectivity in the brain. In recent years, the problem of iden-
tifying functional connectivity between brain voxels or regions has received a great
deal of attention, especially for resting state fMRI [Allen et al. (2014), Ferreira and
Busatto (2013), Lee, Smyser and Shimony (2013), Sheline and Raichle (2013)].
Subjects are asked to relax while undergoing a fMRI brain scan, where blood-
oxygen-level dependent signals are recorded and then processed to yield voxel-
specific time courses of signal strength. The connectivity between brain regions is

https://nickhigham.wordpress.com/2013/02/13/the-nearest-correlation-matrix/


712 A. PETERSEN AND H.-G. MÜLLER

usually quantified by the temporal correlation between representative time signals
of the two regions. Higher levels of correlation are reflective of higher connec-
tivity, giving rise to the question of which subject-specific factors might explain
observed variations in connectivity. When considering r > 2 brain regions, the re-
sulting number of pairwise correlations is r(r − 1)/2, so that standard statistical
models are inadequate for investigating the relationship between several predictors
and the connectivity response. Fréchet regression can be employed to directly ad-
dress this issue by viewing the functional connectivity measurements in a natural
way as random elements of the space of correlation matrices.

The data for our analysis come from a study of 174 cognitively normal el-
derly patients, each of whom underwent an fMRI scan at the UC Davis Imag-
ing Research Center. Preprocessing of the recorded BOLD (blood oxygenation-
level-dependent) signals was implemented by adopting the standard procedures of
slice-timing correction, head motion correction and normalization, in addition to
linear detrending to account for signal drift and band-pass filtering to include only
frequencies between 0.01 and 0.08 Hz.

Of particular interest regarding functional connectivity in the resting state is the
so-called default-mode network (DMN), including the study of age-related effects
[Ferreira and Busatto (2013)]. In one such study, Mevel et al. (2013) investigated
disruptions between anterior-posterior components in the DMN as subjects age
and found a decrease in connectivity between a seed region in the left ventral me-
dial prefrontal cortex (lvmPFC) and three other voxels located within the right
vmPFC/orbitofrontal (rvmPFC), left ventral posterior cingulate cortex (lvPCC)
and right precuneus/PCC (rpPCC) regions.

To construct a connectivity correlation matrix for each subject, signals at these
r = 4 locations were extracted and their temporal correlations computed. These
signals are taken over the interval [0,470] (in seconds), with T = 236 measure-
ments available at 2 second intervals. Hence, for the ith subject, the data are in
the form of an T × r signal matrix Si where the rows correspond to consec-
utive time points and the columns to distinct voxels. Define sijk = (Si)jk and
s̄ik = T −1 ∑T

j=1 sijk . The connectivity correlation matrix Yi for the ith subject
as it is routinely calculated for analyzing connectivity in fMRI has the elements

(Yi)kl =
∑T

j=1(sijk − s̄ik)(sij l − s̄il)

[(∑T
j=1(sijk − s̄ik)2)(

∑T
j=1(sij l − s̄il)2)]1/2

.

In our regression model, we use age as a predictor of connectivity and fit both
linear and quadratic models, that is, Xi = Zi and Xi = (Zi,Z

2
i )

T , where Zi is the
age of subject i, i = 1, . . . ,174.

Since it is unclear whether the global Fréchet regression model (2.8) holds,
we also fit the regression nonparametrically using the Nadaraya–Watson smoother
(4.1) over a range of bandwidths. One notable difference between the current data
and those used in Mevel et al. (2013) is the age range. The current analysis includes
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only elderly subjects, aged 64 to 94 years, while Mevel et al. (2013) included sub-
jects between 19 and 80 years of age. It has been observed previously [Ferreira
and Busatto (2013), Onoda, Ishihara and Yamaguchi (2012)] that age-related ef-
fects are more difficult to detect in later years. Thus, the goal for our analysis is
to investigate if the decreases in connectivity observed in Mevel et al. (2013) are
also found among a group of strictly elderly subjects, or whether the pattern is
different.

For each regression fit, the estimated mean-square prediction error (MSPE) was
calculated using five-fold cross validation, averaged over 50 runs. The MSPE val-
ues for the linear and quadratic models were 0.6489 and 0.6386, respectively.
For the Nadaraya–Watson fit, the minimum MSPE over a grid of bandwidths
was 0.6393, for bandwidth h = 7. The linear model had a p-value of 0.58 and
R̂2⊕ = 0.0041, while the quadratic model was a much better fit, with a p-value of
0.014 and R̂2⊕ = 0.0288. Figure 5 illustrates the regression fits for each compo-
nent of the lower subdiagonal of the correlation matrix. The visual and numerical
results suggest that the quadratic global Fréchet regression model is adequate for
these data, as the fit is quite similar to the Nadaraya–Watson estimator without re-
quiring any bandwidth selection. Thus, age-related changes in connectivity seem
to be more subtle in later years, with subjects over 85 demonstrating greater con-
nectivity between some regions than younger subjects between the ages of 75 and
85. While some studies have found increased connectivity with age [Ferreira and
Busatto (2013)], the quadratic model reveals that simple linear associations be-
tween age and connectivity may be inadequate.

8. Local Fréchet regression for spherical data. As a final illustration, we
implement local Fréchet regression for a situation where the random object re-
sponses lie in a Riemannian manifold object space. Specifically, choose � = S2 as
the unit sphere in R3, with geodesic distance d(y, z) = arccos(zT y) and consider
the regression function

m⊕(x) = ((
1 − x2)1/2 cos(πx),

(
1 − x2)1/2 sin(πx), x

)
, x ∈ (0,1),

which maps a spiral on the sphere. To generate a random sample (Xi, Yi), i =
1, . . . , n, Xi ∼ U(0,1) was first sampled, followed by a bivariate normal random
vector Ui on the tangent space Tm⊕(Xi)�. Finally, with ‖·‖E being the Euclidean
norm,

Yi = Expm⊕(Xi)
(Ui) = cos

(‖Ui‖E

)
m⊕(Xi) + sin

(‖Ui‖E

) Ui

‖Ui‖E

.

Random samples of size n = 50,100,200 were generated under two noise scenar-
ios, with 200 runs for each simulation. In both noise scenarios, the components of
Ui were independent, with each having a variance of 0.2 and 0.35 in the low and
high noise scenarios, respectively. Figure 6 shows two sample data sets of size 50
for the two noise scenarios.
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FIG. 5. Component-wise scatterplots and Fréchet regression fits for voxel-to-voxel correlation as
a function of age. The linear, quadratic, and Nadaraya–Watson (h = 7) fits are represented by solid,
dashed, and dot-dashed lines, respectively. Note that these fits are derived from Fréchet regression
analysis where entire correlation matrices serve as random object responses.

For estimation, a grid of bandwidths h ∈ (0.05,0.3) was used for the smooth-
ing, with K being the Epanechnikov kernel; this estimation was performed for both
local Fréchet regression and the Nadaraya–Watson smoother. The necessary opti-
mization was performed using the trust regions algorithm as implemented in the
ManOpt toolbox for Matlab [Boumal et al. (2014)]. While we found this to be an
adequate computational tool for our simulations, it may be necessary in some sce-
narios to implement a stochastic optimization scheme, such as the annealing algo-
rithm [Yuan et al. (2012)]. We also implemented an alternative regression method
for response data on a nonlinear manifold via smoothing splines [Su et al. (2012)],
with code provided by one of the authors.
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FIG. 6. Sample simulation data sets of size n = 50 under low (left) and high (right) noise settings.
The true regression curve is shown by the solid line.

To compare local Fréchet regression with Nadaraya–Watson and spline smooth-
ing, for each combination of noise setting and sample size, the mean integrated
squared error (MISE) of each method was computed across a range of tuning pa-
rameters. For our method and Nadaraya–Watson smoothing, this was done over the
grid of bandwidths. For the spline method, the three parameters and their values
used for each simulation were T = 50t + 1, t = 1,5,10,20, ε = 10−l , l = 2, . . . ,6
and λ = 10k , k = −5, . . . ,5. The minimum MISE values are shown in Table 1. We
see that local Fréchet regression outperforms the other methods in every setting,
while the spherical spline method is not a close competitor. Additionally, one can
get a sense of the bias of the two Fréchet estimation techniques by taking Fréchet
averages of the fits m̂⊕(x) across simulations, for a grid of levels x ∈ [0,1]. For
example, these averaged local Fréchet and Nadaraya–Watson regression fits, using
the bandwidths which minimize MISE, are shown in Figure 7 for the low noise
setting with n = 100. Again, the local Fréchet method is found to be superior,
especially in terms of performance near the boundaries.

TABLE 1
Best MISE values (multiplied by 100 for clarity) for local Fréchet regression (LF),

Nadaraya–Watson (NW) and spherical spline (SS) fits. In parentheses, the
minimizing bandwidths h are given for the first two methods, while

the minimizing triples (T , ε, λ) are given for the spline method

Noise n NW LF SS

Low 50 1.34 (0.13) 0.97 (0.22) 5.47 (51, 0.01, 0.01)
100 0.74 (0.13) 0.51 (0.19) 5.46 (51, 0.01, 1000)
200 0.45 (0.09) 0.31 (0.15) 5.42 (51, 0.01, 100)

High 50 3.00 (0.19) 2.61 (0.34) 16.99 (251, 0.01, 1)
100 1.73 (0.16) 1.41 (0.26) 16.26 (51, 0.001, 0.00001)
200 0.99 (0.13) 0.76 (0.21) 13.32 (51, 0.001, 0.00001)
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FIG. 7. Fréchet-averaged regression curve fits for local Fréchet regression (left, circle markers)
and Nadaraya–Watson smoothing (right, “x” markers), with true regression curve given for reference
(solid). These are from the low noise simulation with n = 100.

9. Discussion. The proposed global and local Fréchet regression models are
new tools for the analysis of random objects that are increasingly encountered in
modern data analysis. They extend the fundamental notion of a Fréchet mean to
that of conditional Fréchet means. We provide theoretical justifications including
rates of convergence for both global and local versions. The pointwise rates of
convergence are optimal for both global and local versions in the sense that in the
special case of Euclidean objects they correspond to the known optimal rates, and
under the same regularity conditions as satisfied for Euclidean objects, the rates
remain the same for objects in general metric spaces; we demonstrate this to be
the case for the Wasserstein space of distributions as one of many example spaces.

For practical applications of the global Fréchet regression model, we introduce
the concept of the Fréchet coefficient of determination, R2⊕ and explore its poten-
tial use for testing. We focus in this paper on estimation, and future work will be
needed to develop formal tests, confidence sets and predictor selection. For the de-
velopment of the local version of Fréchet regression, it proved necessary to revisit
what is meant by the concept of a local regression and to clarify the nature of the
target. In data examples, local Fréchet regression proved competitive with previ-
ously discussed local smoothing methods for special object spaces. An interesting
special case for which we obtain limit distributions is the case of responses that
live in a Hilbert space, such as functional data. Indeed, as pointed out by a referee,
this model may prove useful in the case of responses which lie on a Hilbert man-
ifold as an extrinsic regression technique in infinite dimensions [see Chapters 11
and 18 of Patrangenaru and Ellingson (2015)].

Conditional Fréchet means and the associated regression approaches have a
wide range of applications that include responses that lie in a Riemannian manifold
as a special case. For this case, we show that our general and straightforward ap-
proach is not only theoretically competitive but also works well in simulations. In
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this and other situations, uniqueness of the Fréchet mean is sometimes not guaran-
teed, for example, in the case of a uniform distribution on the sphere, in contrast to
other cases that we explored, where it is unique. For manifolds, it is often assumed
that � is complete in order to prove existence of a Fréchet mean [Bhattacharya
and Patrangenaru (2003)]. Recently, Le and Barden (2014) showed that the cut
locus of a minimizer of the Fréchet function necessarily has probability zero, lend-
ing further insight into the distributional limitations which allow for existence and
uniqueness of Fréchet means. When conditional Fréchet means are not unique,
one may need to deal with sets of Fréchet means that consist of many elements
[Patrangenaru and Ellingson (2015), Ziezold (1977)]. Extensions that fall within
the framework that we outline also include special types of linear models such as
analysis of variance and, more generally, regression models that include indicators
among the predictors, as well as polynomial regression models or models with
interactions.

SUPPLEMENTARY MATERIAL

Proofs of theoretical results (DOI: 10.1214/17-AOS1624SUPP; .pdf). The
supplement includes four sections of proofs. The first section contains proofs of
propositions verifying that our theoretical assumptions hold for the examples in-
cluded in Section 3. The other three contain proofs for each of Sections 3–5.
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