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SMOOTH BACKFITTING FOR ERRORS-IN-VARIABLES
ADDITIVE MODELS1

BY KYUNGHEE HAN AND BYEONG U. PARK

Seoul National University

In this work, we develop a new smooth backfitting method and theory for
estimating additive nonparametric regression models when the covariates are
contaminated by measurement errors. For this, we devise a new kernel func-
tion that suitably deconvolutes the bias due to measurement errors as well as
renders a projection interpretation to the resulting estimator in the space of
additive functions. The deconvolution property and the projection interpre-
tation are essential for a successful solution of the problem. We prove that
the method based on the new kernel weighting scheme achieves the optimal
rate of convergence in one-dimensional deconvolution problems when the
smoothness of measurement error distribution is less than a threshold value.
We find that the speed of convergence is slower than the univariate rate when
the smoothness of measurement error distribution is above the threshold, but
it is still much faster than the optimal rate in multivariate deconvolution prob-
lems. The theory requires a deliberate analysis of the nonnegligible effects of
measurement errors being propagated to other additive components through
backfitting operation. We present the finite sample performance of the decon-
volution smooth backfitting estimators that confirms our theoretical findings.

1. Introduction. We study the estimation of the additive regression model

Y = f1(X1) + · · · + fd(Xd) + ε,(1.1)

where E(ε | X) = 0, Y is a response variable, X = (X1, . . . ,Xd) is a d-dimensional
covariate vector and fj are unknown univariate component functions. The model
has been popular since [25] and is known to be one of the structured nonpara-
metric models that one may estimate with univariate accuracy. Indeed, [20] pro-
posed and studied a powerful kernel smoothing technique that fits (1.1) based on
the observations of (X, Y ), called smooth backfitting (SBF). They proved that
the method yields an estimator that converges to the true regression function
f (x) = E(Y | X = x) at a univariate rate, and thus avoids the curse of dimensional-
ity. In this paper, we consider the case where one does not observe Xj , but observes
noisy variables Zj = Xj + Uj contaminated by measurement errors Uj . For this
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errors-in-variables additive regression problem, we establish a suitably modified
SBF method and develop its theory. To the best of our knowledge, this is the first
attempt dealing with errors-in-variables in structured nonparametric regression.

The SBF method is based on local smoothing. The idea of local smoothing
is that, at each point in the domain where the target function sits, it gives more
weights to observations that are closer to the point, the weights being determined
by a kernel function. The very core of the matter is that, for noisy covariate values
that are close to a point of interest, the corresponding unobserved true covariate
values may be far away from the point due to measurement errors, and thus the
concomitant observations of Y may not have relevant information about the re-
gression function at the point. Therefore, one should use a nonconventional kernel
function that deconvolutes efficiently the effects of measurement errors in local
smoothing. In the standard errors-in-variable nonparametric regression, [24] in-
troduced the so-called deconvolution kernel for this purpose. Indeed, [10] and [6]
proved that nonparametric regression estimators based on the deconvolution kernel
have the same biases as in the case of no measurement errors.

In our modification of the SBF method, we introduce a novel kernel weighting
scheme that accounts for this problem in additive regression. Our new kernel func-
tion is different from the deconvolution kernel in that it is normalized so that its
integral along the line of local smoothing equals one. The normalization property
of the kernel function is required for a projection interpretation of the SBF estima-
tor, which is a key element in the theoretical development of the method; see [20].
One may normalize the deconvolution kernel by scaling it up or down, but then
the resulting normalized kernel loses the property of deconvoluting the effects of
measurement errors.

In the standard errors-in-variables nonparametric regression, [10] and [6]
showed that the variances of the regression estimators are inflated by an order of
magnitude that depends on the smoothness of the measurement error distribution.
The inflated variances are basically from stochastic terms arising from decon-
voluted kernel smoothing. In SBF additive regression, the analysis of stochastic
terms leading to the inflated variance is much more complex than the standard
nonparametric regression.

To give an idea of the difficulty involved, let (Zi , Y i) be the observations of
(Z, Y ) and K̃�

h, for a bandwidth h > 0, denote our new kernel scheme that as-
signs the weights K̃�

h(xj , zj ) to noisy covariate values zj of Zj in local smoothing
around each point xj . Let mj = E(Y | Xj = ·) denote the marginal regression
functions and define their estimators by

m̂j (xj ) =
(
n−1

n∑
i=1

K̃�
h

(
xj ,Z

i
j

))−1

n−1
n∑

i=1

K̃�
h

(
xj ,Z

i
j

)
Y i.

Then the SBF estimator f̂ (x) = f̂1(x1) + · · · + f̂d(xd) of the additive function
f (x) = f1(x1) + · · · + fd(xd) satisfies the equation

f̂ − f = T̂ (f̂ − f ) + δ̂⊕,
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where T̂ is a linear operator that maps the space of additive functions to itself
and δ̂⊕ is an additive function. The linear operator T̂ involves the estimators of
the one- and two-dimensional density functions of the unobserved covariates Xj ,
obtained by using the new kernel K̃�

h, and δ̂⊕ is constructed from the errors of m̂j ;
see Section 2.2 and Section 3.2 for the definitions of T̂ and δ̂⊕, respectively. It can
be shown that T̂ is a contraction operator, so that one has

f̂ − f =
∞∑

j=0

T̂ j δ̂⊕.(1.2)

The equation at (1.2) demonstrates that there are two types of errors we need to
analyze. One type is for the errors of the one- and two-dimensional density estima-
tors involved in T̂ , and the other is for those in m̂j as estimators of mj . The errors
of m̂j not only affect f̂j , but also are spread into the errors of other component
function estimators f̂k , k �= j , and interrelated with those of T̂ through the back-
fitting operation, which is particularly difficult to analyze since the disseminated
errors of m̂j involve nonnegligible effects of measurement errors.

In this paper, we show that the SBF estimator based on the new kernel scheme
K̃�

h has the same bias expansion as in the case of no measurement errors. But,
for the variance part, we find that it has two additional terms due to measure-
ment errors. In terms of estimating a specific component function fj , one is a
stochastic term solely from measurement errors, which one would also have ad-
ditionally in a stochastic expansion of the “oracle” estimator of fj . The oracle
estimator of fj is the one-dimensional regression estimator obtained by regress-
ing Y i − ∑

k �=j fk(X
i
k) on Xi

j . The other is a nonnegligible stochastic term arising
from the backfitting in conjunction with measurement errors. The latter term is
found to be of the same magnitude as the stochastic terms of the oracle estimator
when the distributions of the measurement errors Uj is less smooth, but it dom-
inates all other stochastic terms in the expansions of f̂j − fj , otherwise. It turns
out that our SBF estimators of fj have the optimal univariate rate in errors-in-
variables problems when the smoothness of the measurement error distributions is
less than a threshold value, and in such a case they have the same rate as oracle
estimators. For smoother measurement error distributions, however, one would get
a rate that is slower than the univariate rate, although it is much faster than the
optimal multivariate rate.

There have been a plenty of studies on structured nonparametric models. Ex-
amples include [21], [27], [19], [15], [23], [16] and [17]. But, none of these has
treated the type of the errors-in-variables problem considered in this paper. Some
earlier works on partially linear models or varying coefficient models by [18],
[28] and [26], among others, are of completely different nature and simpler than
the current study. In their frameworks, the contaminated covariates enter the linear
part, not the nonparametric part of the models, or they enter the nonparametric part
that does not have any structure. The additive model is bottommost in structured
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nonparametric regression. The methodology and theory we develop in this paper
may provide the basic building blocks for studying errors-in-variables problems in
more complex structured nonparametric models.

2. Methodology. We assume we observe i.i.d. copies of (Z, Y ), denoted by
(Zi , Y i), 1 ≤ i ≤ n, where Zi = Xi + Ui and Ui are independent of the true un-
observed covariate vectors Xi . We also assume that the true covariate vector X is
supported on a compact set in R

d , say [0,1]d without loss of generality. We rewrite
the model (1.1) as

(2.1) E(Y | X = x) = f0 + f1(x1) + · · · + fd(xd),

where now each component function has the constraint Efj (Xj ) = 0 for identifia-
bility and f0 = EY . Taking the conditional expectation of both sides of (2.1) given
Xj = xj for each 1 ≤ j ≤ d , we get

fj (xj ) = mj(xj ) − f0 − ∑
k �=j

∫ 1

0
fk(xk)

pjk(xj , xk)

pj (xj )
dxk, 1 ≤ j ≤ d,

(2.2)

where pj and pjk are the marginal densities of Xj and (Xj ,Xk), respectively, and
mj = E(Y | Xj = ·). The SBF method is to estimate the unknown functions mj ,
pj and pjk in the estimating equation (2.2) and then solve the resulting system of
estimated integral equations. The name SBF comes from the fact that the resulting
estimator of each component function fj is the minimizer of a “smoothed” version
of the objective function for the corresponding (ordinary) backfitting estimator; see
the related discussion in Section 3 of [15].

2.1. Deconvolution normalized kernels. As we mentioned in Section 1, we
need to employ a normalized kernel function that also has the ability of deconvo-
luting the measurement errors Ui

j in the covariates Zi
j in the estimation of mj , pj

and pjk in (2.2). Below we present a novel kernel weighting scheme that has both
of these properties.

Let K be a baseline kernel function that is nonnegative, symmetric and sup-
ported on [−1,1], and h > 0 be the bandwidth in local smoothing. Let X, U and
Z denote generic random variables representing Xj , Uj and Zj = Xj + Uj , re-
spectively. We assume that the densities of Uj , and thus their Fourier transforms,
are known since otherwise the densities of Xj are not identified by those of the
observed Zj . In case the densities of Uj are unknown but there are available re-
peated measurements of Xj (with errors) for each subject, then one may be able to
estimate the densities of Uj based on the repeated measurements or a preliminary
sample, and thus those of Xj ; see [7], [4], [13] and [5] for the methodology.

The classical deconvolution kernel function, introduced by [24], is

(2.3) KD(u) = 1

2π

∫ ∞
−∞

e−itu φK(t)

φU(t/h)
dt,
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where φK and φU are the Fourier transforms of K and the density of U , respec-
tively. Here, for simplicity we suppress the dependence of KD on h through the
argument in φU . In this definition, we basically assume that φU is not vanishing on
(−∞,∞). With this kernel, one assigns the weights KD(x−z

h
) to an observation

Z = z in local smoothing around x. The salient feature of KD is the “unbiased
scoring” property,

(2.4) E

[
KD

(
x − Z

h

) ∣∣∣ X

]
= K

(
x − X

h

)
, x ∈ [0,1].

The property (2.4) entails that the bias of the kernel estimators based on KD and
Zi

j is the same as that of the conventional kernel estimators based on the baseline

kernel K and the original Xi
j . Thus, the standard kernel smoothing theory for bias

in the case of no measurement errors applies in errors-in-variables problems.
Now, in SBF additive regression when the true covariates Xj are observed, a

normalized kernel function, denoted by K̃h, is constructed from K in the following
way:

(2.5) K̃h(x,u) =
[∫ 1

0
Kh(v − u)dv

]−1
Kh(x − u) · I[0,1]2(x, u),

where and throughout the paper Kh(v) = K(v/h)/h. The normalized kernel
K̃h(x,u) equals the conventional kernel Kh(x − u) for all u ∈ [0,1] if x is in
the “interior” region I0 ≡ [2h,1 − 2h]. For the standard kernel Kh(·), the interior
region is [h,1 − h] since

∫ 1
0 Kh(x − v) dv = 1 for x ∈ [h,1 − h]. However, for the

normalized kernel K̃h(·, ·) we note that∫ 1

0
K̃h(x,u) du =

∫ 1

0

Kh(x − u)∫ 1
0 Kh(v − u)dv

du = 1

for x ∈ [2h,1 − 2h]. The reason is that, for x ∈ [2h,1 − 2h], all u for which
Kh(x−u) �= 0 belong to [h,1−h], so that

∫ 1
0 Kh(v−u)dv = ∫ 1

0 Kh(u−v) dv = 1
for all u such that Kh(x − u) �= 0. With this normalized kernel, one assigns the
weight K̃h(x,Xi) to the ith covariate value Xi in local smoothing around x ∈
[0,1]. This kernel satisfies

(2.6)
∫ 1

0
K̃h(x,u) dx = 1 for all u ∈ [0,1].

In this regard, the normalized kernel K̃h is different from the typical one for bound-
ary correction, say Kh(x,u). For the latter, one normalizes Kh(x − ·) for each
x ∈ [0,1], not Kh(· − u) for each u ∈ [0,1], so that

∫ 1
0 Kh(x,u) du = 1 for all

x ∈ [0,1].
To get a kernel that has both the deconvolution and normalization properties,

one may easily think of normalizing the deconvolution kernel KD
h (x − z) as in

(2.5) with KD
h ≡ h−1KD(·/h) taking the role of Kh there, where KD is defined
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at (2.3). But, we find that the resulting kernel does not have the unbiased scoring
property such as (2.4), so that its use fails to remove the bias at a point x owing
to those unobserved covariate values Xi that are far from x. Another option is to
reverse the order of normalization and deconvolution. For this, we observe from
(2.3) that

KD
h (x − z) = 1

2πh

∫ ∞
−∞

e−it · x−z
h

φK(t)

φU(t/h)
dt

= 1

2π

∫ ∞
−∞

e−itz φKh(x−·)(t)
φU(−t)

dt.

(2.7)

Thus, one may replace the conventional kernel Kh(x −·) by the normalized kernel
K̃h(x, ·) in the formula (2.7) to define another deconvolution kernel by

(2.8) K̃D
h (x, z) = 1

2π

∫ ∞
−∞

e−itz
φ

K̃h(x,·)(t)
φU(−t)

dt,

whenever the integral is defined. The integral at (2.8) is well defined for x in
the interior I0 = [2h,1 − 2h] under some regularity conditions on φK and φU ,
to be specified below. This follows basically from the fact that, if x ∈ I0, then
K̃h(x,u) = Kh(x − u) for all u ∈ [0,1] so that K̃D

h (x, z) equals the classical de-
convolution kernel KD

h (x − z) for all z ∈ R.
However, the integral is not well defined for x in boundary regions. To see this

and motivate our new kernel scheme, define

φK(t;x) =
∫ 1

0
eit (x−u)/hK̃h(x,u) du,

suppressing its dependence on h. Then, from the fact that φ
K̃h(x,·)(t) = eitx ×

φK(−ht;x) we obtain

(2.9) K̃D
h (x, z) = 1

2πh

∫ ∞
−∞

e−it (x−z)/h φK(t;x)

φU(t/h)
dt

whenever the integral is defined. Note that φK(t;x) ≡ φK(t) when x ∈ I0. It can
be shown that φK(t;x)/φU(t/h) is still integrable over t ∈ R for all x in the
extended interior region [h,1 − h] so that the integral at (2.9) is well defined.
The tail property of φK(t;x) for x ∈ [0, h) ∪ (1 − h,1] is different from that for
x ∈ [h,1 − h], however. For x ∈ [h,1 − h], one may show |φK(t;x)| ∼ |t |−α as
|t | → ∞ with α > 0 large enough if K(u) is sufficiently smooth at u = ±1. But,
for x ∈ [0, h)∪(1−h,1] we only have |φK(t;x)| ∼ |t |−1 regardless of the smooth-
ness of K . For example, if x ∈ [0, h) and h < 1/2, then

∣∣φK(t;x)
∣∣ =

∣∣∣∣
∫ x/h

−1
eitu

(∫ 1

u−(x/h)
K(w)dw

)−1
K(u)du

∣∣∣∣
= 2|t |−1K(x/h)

(
1 + o(1)

)(2.10)
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as |t | → ∞. The second equality in (2.10) is obtained from integration by parts.
The reason we only get the slow decaying speed |t |−1 is that the range of inte-
gration, [−1, x/h], on the right-hand side of the first equation does not cover the
full support [−1,1] of K and K(u) does not vanish at the end point u = x/h.
Since φU(t) decays to zero as |t | → ∞, it means that |φK(t;x)/φU(t/h)| is not
integrable over t ∈ R.

The above investigation motivates our new kernel scheme. The idea is to re-
place φK(t;x) in (2.9) by φK(t;x) ·φK(t). Since |φK(t)| ∼ |t |−α as |t | → ∞ with
α > 0 large enough if K(u) is sufficiently smooth, |φK(t;x) · φK(t)/φU(t/h)| is
integrable for all x ∈ [0,1] under suitable conditions on K and the measurement
error U . We define our new kernel function as

(2.11) K̃�
h(x, z) = 1

2πh

∫ ∞
−∞

e−it (x−z)/h φK(t;x)φK(t)

φU(t/h)
dt.

A very attractive property of this kernel is that it can be expressed in the form of the
conventional deconvolution kernel at (2.7) with Kh(x − ·) there being replaced by
a special kernel function. Indeed, from the facts that φ

K̃h(x,·)(t) = eitxφK(−ht;x)

and that φKh
(t) = φK(ht), we have

K̃�
h(x, z) = 1

2π

∫ ∞
−∞

eit (x−z) φK(−ht;x)φK(−ht)

φU(−t)
dt

= 1

2π

∫ ∞
−∞

e−itz
φ

K̃h(x,·)∗Kh
(t)

φU(−t)
dt,

(2.12)

where K̃h(x, ·) ∗Kh(u) = ∫ ∞
−∞ Kh(u− v)K̃h(x, v) dv. In fact, K̃h(x, ·) ∗Kh(u) =

Kh ∗ Kh(x − u) when x ∈ I0. Also, for all u ∈ [0,1],

(2.13)
∫ 1

0
K̃h(x, ·) ∗ Kh(u)dx =

∫ 1

0

∫ ∞
−∞

K̃h(x, v)Kh(u − v) dv dx = 1.

Thus, in view of (2.7) and (2.8), K̃�
h(x, z) is obtained by the usual procedure of

deconvoluting a special normalized kernel K̃h(x, ·) ∗Kh with normalization being
applied to one of Kh in Kh ∗ Kh. Figure 1 depicts our deconvolution normalized
kernel K̃�

h(x, ·) for x = 0 and x = 0.5. It is for the choice h = 0.1 and for U having
the Laplace distribution with density e−|u|/2.

In the following theorem, we show that the new kernel scheme K̃�
h has both

the unbiased scoring and the normalization properties. To state the theorem, we
assume

(D1) c1(1 + |t |)−β ≤ |φU(t)| ≤ c2(1 + |t |)−β for some constants β ≥ 0 and
c1, c2 > 0.

We note that β = 0 includes the case where U ≡ 0, that is, there is no measurement
error in the corresponding covariate. For the smoothness of the baseline kernel
function K , we assume
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FIG. 1. Shapes of K̃�
h(x, ·) for x = 0 (left) and x = 0.5 (right).

(K1) the baseline kernel K is 
γ + 1�-times continuously differentiable for
some γ ≥ β , and K(
)(−1) = K(
)(1) = 0 for 0 ≤ 
 ≤ 
γ �, where 
γ � denotes the
largest integer that is less than or equal to γ , and K(
) the 
th derivative of K .

THEOREM 2.1. Under the conditions (D1) and (K1), it holds that K̃�
h(x, z) at

(2.11) or (2.12) is well defined for all x ∈ [0,1] and z ∈R. Furthermore,∫ 1

0
K̃�

h(x, z) dx = 1 for all z ∈ R,

E
(
K̃�

h(x,Z) | X = u
) = K̃h(x, ·) ∗ Kh(u) for all x,u ∈ [0,1].

(2.14)

The second property in (2.14) corresponds to what is called unbiased scoring.
As we have shown in (2.13), K̃h(x, ·) ∗ Kh(u) could be a normalized kernel that
one can use in the standard SBF additive regression without measurement errors.

PROOF OF THEOREM 2.1. For any a > 0 and fixed h > 0, there exist constants
c,C > 0 such that

sup
x∈[0,1]

∣∣φK(t;x)
∣∣ ≤ C|t |−1,

∣∣φK(t)
∣∣ ≤ C|t |−
β�−1,

∣∣φU(t/h)
∣∣ ≥ c|t |−β

for all |t | ≥ a. Thus, the integrand in (2.11) is bounded by (C2/c)|t |β−
β�−2, which
is integrable over t : |t | ≥ a since β − 
β� − 2 < −1. To prove the first part in
(2.14), we note from (2.13) that∫ 1

0
φ

K̃h(x,·)∗Kh
(t) dx =

∫ 1

0

∫ ∞
−∞

eitu · K̃h(x, ·) ∗ Kh(u)dudx

=
∫ ∞
−∞

eitu du = 2πδ0(t),
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where δ0 denotes the Dirac delta function at 0. Thus, we obtain from (2.12)∫ 1

0
K̃�

h(x, z) dx = 1

2π

∫ ∞
−∞

e−itz 2πδ0(t)

φU(−t)
dt = 1.

For the second part, if we denote the density of U by pU , then

E
(
K̃�

h(x,Z) | X = u
) = 1

2π

∫ ∞
−∞

∫ ∞
−∞

e−it (u+v)
φ

K̃h(x,·)∗Kh
(t)

φU(−t)
pU(v) dt dv

= 1

2π

∫ ∞
−∞

e−ituφ
K̃h(x,·)∗Kh

(t) dt

= K̃h(x, ·) ∗ Kh(u),

the last equality is followed by the Fourier inversion theorem. �

2.2. Smooth backfitting estimation with K̃�
h. In the system of equations at

(2.2), we estimate pj , pjk and mj using the new kernel K̃�
h introduced in Sec-

tion 2.1. Namely, we estimate them, respectively, by

p̂j (xj ) = n−1
n∑

i=1

K̃�
hj

(
xj ,Z

i
j

)
,

p̂jk(xj , xk) = n−1
n∑

i=1

K̃�
hj

(
xj ,Z

i
j

)
K̃�

hk

(
xk,Z

i
k

)
,

m̂j (xj ) = n−1
n∑

i=1

K̃�
hj

(
xj ,Z

i
j

)
Y i/p̂j (xj ),

(2.15)

where we allow the bandwidths hj for smoothing across different coordinates to
be different from each other. Our SBF estimator of (fj : 1 ≤ j ≤ d) is then defined
to be the solution (f̂j : 1 ≤ j ≤ d) of the estimated system of integral equations,

(2.16) f̂j (xj ) = m̂j (xj ) − Ȳ −
d∑

k �=j

∫ 1

0
f̂k(xk)

p̂jk(xj , xk)

p̂j (xj )
dxk, 1 ≤ j ≤ d,

subject to the constraints

(2.17)
∫ 1

0
f̂j (xj )p̂j (xj ) dxj = 0, 1 ≤ j ≤ d.

We briefly discuss the existence of the solution of (2.16) subject to (2.17),
borrowing the idea in the existing theory of SBF [20]. For this, we define
a projection operator π̂j : L2(R

d) → Hj , where Hj = {g ∈ L2(R
d) : g(x) =

gj (xj ) for a univariate function gj }. Specifically,

(2.18) π̂j g(xj ) =
∫

g(x)
p̂(x)

p̂j (xj )
dx−j ,
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where p̂(x) = n−1 ∑n
i=1 K̃�

h1
(x1,Z

i
1) · · · K̃�

hd
(xd,Zi

d) and x−j for a d-vector x
equals the (d − 1)-vector (x1, . . . , xj−1, xj+1, . . . , xd). Then (2.16) can be rewrit-
ten as

f̂j = π̂j

(
m̂ − Ȳ −

d∑
k �=j

f̂k

)
, 1 ≤ j ≤ d,

where m̂(x) = p̂(x)−1n−1 ∑n
i=1 K̃�

h1
(x1,Z

i
1) · · · K̃�

hd
(xd,Zi

d)Y i is a full-dimen-
sional estimator of E(Y | X = x). In fact, π̂j m̂ = m̂j due to the normalization
property in (2.14). Let T̂ = (I − π̂d)(I − π̂d−1) · · · (I − π̂1) be a linear operator
that maps H to itself, where H is the space of additive functions g of the form
g(x) = g1(x1) + · · · + gd(xd) with each gj ∈ Hj and I is the identity map. Also,
for m̂c

j = m̂j − Ȳ define m̂⊕ = m̂c
d +(I − π̂d)m̂c

d−1 +· · ·+(I − π̂d) · · · (I − π̂2)m̂
c
1.

Then one can deduce that the estimated additive function f̂ (x) = f̂1(x1) + · · · +
f̂d(xd) satisfies f̂ = T̂ f̂ + m̂⊕. One can also prove that T̂ is a contraction operator
with probability tending to one, that is,

(2.19) P
(‖T̂ ‖ ≤ c

) → 1 as n → ∞
for some constant 0 < c < 1. The latter property follows basically from the uni-
form consistency of p̂j and p̂jk as estimators of pj and pjk on the interiors
[2hj ,1 − 2hj ] and [2hj ,1 − 2hj ] × [2hk,1 − 2hk], respectively, which we es-
tablish in the next section. Indeed, if we define T in the same way as T̂ with p̂ and
p̂j in its definition being replaced by the true densities p and pj , respectively, then
one can argue that ‖T ‖ < 1 using the results in Appendix A.4 of [2]. The existence
and uniqueness of the solution of the equation f̂ = T̂ f̂ + m̂⊕ now follows from
(2.19). The solution is given by f̂ = ∑∞

j=0 T̂ j m̂⊕. Furthermore, because of the
constraints (2.17), each component function estimator f̂j is uniquely determined.

In practice, the SBF equation is solved by an iteration algorithm. Let f̂
[0]
j denote

the initial estimators and f̂
[r]
j the updates in the r th iteration step. Then

f̂
[r]
j (xj ) = m̂j (xj ) − Ȳ −

j−1∑
k=1

∫ 1

0
f̂

[r]
k (xk)

p̂jk(xj , xk)

p̂j (xj )
dxk

−
d∑

k=j+1

∫ 1

0
f̂

[r−1]
k (xk)

p̂jk(xj , xk)

p̂j (xj )
dxk.

(2.20)

If the initial estimators f̂
[0]
j are chosen so that they satisfy the constraints (2.17),

then all subsequent updates f̂
[r]
j satisfy (2.17) automatically. The updating formula

(2.20) can be also expressed in terms of T̂ , m̂⊕ and f̂ [r](x) = f̂
[r]
1 (x1) + · · · +

f̂
[r]
d (xd). Indeed, we have f̂ [r] = T̂ f̂ [r−1] + m̂⊕, r ≥ 1. Since T̂ is a contraction

with probability tending to one, f̂ [r] = T̂ r f̂ [0] + ∑r−1
j=0 T̂ j m̂⊕ converges to f̂ =∑∞

j=0 T̂ j m̂⊕ and thus f̂
[r]
j to f̂j as r → ∞, with probability tending to one as n

tends to infinity.
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3. Theoretical properties. In this section, we establish the theory for the SBF
estimation introduced in Section 2. Without loss of generality, we assume f0 =
0 and ignore Ȳ in the discussion that follows, since Ȳ = f0 + Op(n−1/2). For
simplicity, we first consider the case where all the measurement error distributions
have the same smoothness order β ≥ 0 as in the condition (D1) in Section 2.1. The
case where φUj

have different decaying speeds at tails will be treated at the end of
this section. Some additional conditions we need are given below:

(K2) The joint density p of X is bounded away from zero and infinity on [0,1]d
and partially continuously differentiable, and pj and pjk are also (partially) con-
tinuously differentiable.

(K3) E|Y |α < ∞ for some α > 5/2 and E(Y 2 | Xj = ·) are continuous on
[0,1].

(K4) fj are twice continuously differentiable on [0,1].
(D2) |tβφUj

(t)| → cβ for some cβ �= 0 and |tβ+1φ′
Uj

(t)| = O(1) as |t | → ∞,
where β is the nonnegative constant in (D1).

(D3)
∫ |tγ φK(t)|dt < ∞, where γ is the nonnegative constant in (K1).

The above conditions are typically assumed in kernel smoothing theory and
in standard deconvolution problems; see [20], [16] and [6], among others. The
condition (D2) enables us to obtain an inequality enveloping K̃�

h (Lemma 5.1). The
condition (D3) is used to get uniform convergence rates of various K̃�

h-weighted
quantities. The latter condition was also used [22], among others, for the uniform
consistency of the deconvolution kernel density and regression estimators.

3.1. Consistency of projection operators. Define πj in the same way as π̂j at
(2.18) with p̂ and p̂j being replaced by p and pj , respectively. We establish the
consistency of the projection operators π̂j as estimators of πj . This is a fundamen-
tal property that our SBF theory is built on. The consistency entails that ‖T̂ − T ‖
converges to zero in probability, so that T̂ is a contraction with probability tending
to one. It also implies that the solution of the backfitting equation (2.16) exists
and unique and that the backfitting iteration at (2.20) converges to the solution of
(2.16). The consistency of π̂j relies on the following proposition.

PROPOSITION 3.1. Under the conditions (K1), (K2) and (D1)–(D3), it fol-
lows that

sup
xj∈[0,1]

∣∣p̂j (xj ) −Ep̂j (xj )
∣∣ = Op

(√√√√ logn

nh
1+2β
j

)
,

sup
(xj ,xk)∈[0,1]2

∣∣p̂jk(xj , xk) −Ep̂jk(xj , xk)
∣∣ = Op

(√√√√ logn

nh
1+2β
j h

1+2β
k

)
.

(3.1)
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It also holds that

sup
xj∈I0j

∣∣Ep̂j (xj ) − pj (xj )
∣∣ ≤ Cjhj ,

sup
xj∈I0j ,xk∈I0k

∣∣Ep̂jk(xj , xk) − pjk(xj , xk)
∣∣ ≤ Cjk(hj + hk)

(3.2)

for some constants Cj and Cjk , where I0j = [2hj ,1 − 2hj ].

One may prove (3.1) in the above proposition using Lemma 5.1, the order of
magnitude of E|K̃�

h(x,Z)|2 in the proof of Theorem 3.3, the unbiased scoring
property in (2.14) and an exponential inequality in the standard theory of kernel
smoothing. In the case of standard deconvolution kernel, similar results are pro-
vided by [22], for example. The second result (3.2) in Proposition 3.1 is due to the
unbiased scoring property proved in Theorem 2.1. If we assume second (partial)
derivatives of pj and pjk , then the bias orders at (3.2) would be h2

j and h2
j + h2

k ,
respectively, instead of hj and hj + hk . In that case, we can achieve the one- and
two-dimensional optimal rates n−2/(5+2β) and n−2/(6+4β) for the estimation of pj

and pjk , respectively, by choosing the bandwidth orders hj � n−1/(5+2β) for p̂j

and hj ,hk � n−1/(6+4β) for p̂jk .
From Proposition 3.1 it holds that infxj∈[0,1] p̂j (xj ) > c with probability tending

to one for some constant c > 0. These together with (3.1), (3.2) and the facts that
[0,1]∩ I c

0j and [0,1]2 ∩ (I0j × I0k)
c have Lebesgue measures 4hj and 4(hj +hk),

respectively, give the following proposition that demonstrates the consistency of
π̂j . Let ‖ · ‖2 denote the L2-norm defined by ‖g‖2

2 = ∫ 1
0 g(u)2 du.

PROPOSITION 3.2. Assume that (K1), (K2), (D1)–(D3) hold and that n(hj ×
hk)

1+2β/ logn → ∞ as n → ∞. Then

‖π̂j − πj‖ ≡ sup
{‖π̂j g − πjg‖2 : g ∈ L2

(
R

d)
,‖g‖2 = 1

} = op(1).

3.2. Asymptotic properties of component estimators. We now discuss the sta-
tistical properties of the component function estimators f̂j . The main innovation
in the development of our theory, beyond the ones in standard SBF additive re-
gression and in one-dimensional deconvolution, is a careful decomposition of the
errors in m̂j . The decomposition is based on two attributes of the effects of the
measurement errors Ui

j , one attribute contributing to the biases of f̂j and the other
to the variances.

From the equation (2.16) and the fact π̂j fj = fj due to the normalization prop-
erty in (2.14), it follows that

(3.3) f̂j − fj = m̂j − π̂j (f1 + · · · + fd) −
d∑

k �=j

π̂j (f̂k − fk).
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Note that f1(x1) + · · · + fd(xd) = E(Y | X = x), and thus πj (f1 + · · · + fd) =
mj . This means that m̂j − π̂j (f1 + · · · + fd) in (3.3) tell how m̂j are accurate as
estimators of mj neglecting the errors in π̂j as estimators of πj . We define

δ̂j = m̂j − π̂j (f1 + · · · + fd)

and δ̂⊕ = δ̂d + (I − π̂d)δ̂d−1 + (I − π̂d)(I − π̂d−1)δ̂d−2 + · · · + (I − π̂d) · · · (I −
π̂2)δ̂1. As in Section 2.2, we get from (3.3) that

(3.4) f̂ − f = T̂ (f̂ − f ) + δ̂⊕ =
∞∑

j=0

T̂ j δ̂⊕.

The expression at (3.4) reveals that the errors δ̂j of m̂j are propagated into the SBF
estimation error f̂ − f through the backfitting operation.

We decompose δ̂j into five terms. Let εi = Y i −E(Y i | Xi ) and define

V i
nk =

∫ 1

0
K̃�

hk

(
xk,Z

i
k

)(
fk

(
Xi

k

) − fk(xk)
)
dxk.

Then it holds that δ̂j = δ̂A
j + δ̂B

j + δ̂C
j , where

δ̂A
j (xj ) = p̂j (xj )

−1n−1
n∑

i=1

K̃�
hj

(
xj ,Z

i
j

)
εi,

δ̂B
j (xj ) = p̂j (xj )

−1n−1
n∑

i=1

K̃�
hj

(
xj ,Z

i
j

)(
fj

(
Xi

j

) − fj (xj )
)
,

δ̂C
j (xj ) =

d∑
k �=j

p̂j (xj )
−1n−1

n∑
i=1

K̃�
hj

(
xj ,Z

i
j

)
V i

nk.

We further decompose each of δ̂B
j and δ̂C

j into two terms: δ̂∗
j (xj ) = δ̂∗

1j (xj ) +
δ̂∗

2j (xj ) for ∗ = B or C, where

δ̂B
1j (xj ) = p̂j (xj )

−1n−1
n∑

i=1

E
(
K̃�

hj

(
xj ,Z

i
j

) | Xj

)(
fj

(
Xi

j

) − fj (xj )
)
,

δ̂B
2j (xj ) = p̂j (xj )

−1n−1
n∑

i=1

[
K̃�

hj

(
xj ,Z

i
j

) −E
(
K̃�

hj

(
xj ,Z

i
j

) | Xj

)]

× (
fj

(
Xi

j

) − fj (xj )
)
,(3.5)

δ̂C
1j (xj ) =

d∑
k �=j

p̂j (xj )
−1n−1

n∑
i=1

K̃�
hj

(
xj ,Z

i
j

)
E

(
V i

nk | Xi
k

)
,
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δ̂C
2j (xj ) =

d∑
k �=j

p̂j (xj )
−1n−1

n∑
i=1

K̃�
hj

(
xj ,Z

i
j

)[
V i

nk −E
(
V i

nk | Xi
k

)]
.

Recall that the unbiased scoring property in (2.14) entails E(K̃�
hj

(xj ,Z
i
j ) | Xj) =

K̃hj
(xj , ·)∗Khj

(Xi
j ) and it equals Kh ∗Kh(xj −Xi

j ) = (K ∗K)hj
(xj −Xi

j ) when
xj ∈ I0j = [2hj ,1 − 2hj ].

In the next two theorems, we demonstrate how the above five terms in the de-
composition of the errors δj are propagated through the backfitting operation. Let

τn,j (β) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, β < 1/2,√
logh−1

j , β = 1/2,

h
1/2−β
j , β > 1/2.

Below we first present the orders of magnitude of the three stochastic terms δ̂A
j , δ̂B

2j

and δ̂C
2j . We find that δ̂A

j (xj ) and δ̂B
2j (xj ) have a typical stochastic error rate in one-

dimensional deconvolution problems. We note that δ̂B
2j (xj ) vanishes when Ui

j ≡ 0

since K̃�
h(x,u) = K̃hj

(xj , ·) ∗ Khj
(u) in that case. The fifth term δ̂C

2j (xj ), which is

negligible in the case where Ui
j ≡ 0, dominates δ̂A

j (xj ) and δ̂B
2j (xj ) depending on

the smoothness of the measurement error distributions.

THEOREM 3.3. Assume that (K1)–(K4) and (D1)–(D3) hold. Then, uniformly
for xj ∈ [0,1],

δ̂A
j (xj ) = Op

(√√√√ logn

nh
1+2β
j

)
, δ̂B

2j (xj ) = Op

(√√√√ logn

nh
1+2β
j

)
,

δ̂C
2j (xj ) = Op

(√√√√ logn

nh
1+2β
j

∑
k �=j

τn,k(β)

)
.

The above theorem remains to hold even if (K4) is replaced by that fj are con-
tinuously differentiable. In the propagation of δ̂A

j , δ̂B
2j and δ̂C

2j through the backfit-
ting operation, their effects do not spread to other component function estimators
f̂k , k �= j , to the first-order, as is demonstrated in the following theorem. However,
the other two terms, δ̂B

1j and δ̂C
1j , affect the biases of other component function

estimators through the backfitting operation and their effects are shaped into some
deterministic bias terms as given in the theorem. These bias terms also appear in
the SBF estimation without measurement errors, that is, with Ui

j ≡ 0.

To state the theorem, let μ
,j (xj ) = h−

j

∫ 1
0 (vj − xj )


K̃hj
(xj , ·) ∗ Khj

(vj ) dvj ,

where K̃hj
(·, ·) is the normalized kernel defined in (2.5). Note that μ1,j (xj ) ≡ 0



2230 K. HAN AND B. U. PARK

and μ2,j (xj ) ≡ μ2 for x ∈ I0j , where μ2 = ∫
u2K ∗ K(u)du. Define (�j : 1 ≤

j ≤ d) to be the minimizer of

∫
[0,1]d

(
�n,f (x) −

d∑
j=1

h2
j�j (xj )

)2

p(x) dx

subject to the constraints

(3.6)
∫ 1

0
�j(xj )pj (xj ) dxj = μ2

∫ 1

0
f ′

j (xj )p
′
j (xj ) dxj , 1 ≤ j ≤ d,

where �n,f (x) = μ2
∑d

j=1 h2
jf

′
j (xj )p

(1)
j (x)/p(x) is a full-dimensional determin-

istic function and p
(1)
j (x) = ∂p(x)/∂xj . In fact, (h2

j�j : 1 ≤ j ≤ d) is the solution
of the system of equations

(3.7) h2
j�j = πj

(
�n,f − ∑

k �=j

h2
k�k

)
, 1 ≤ j ≤ d,

subject to (3.6). In the following theorem, we assume that all bandwidth hj are of
the same order of magnitude, hj � h � n−c for some c > 0. Let τn be defined in
the same way as τn,j with hj being replaced by a common bandwidth order. Also,
let rn,j denote generic stochastic terms such that

sup
xj∈I0j

∣∣rn,j (xj )
∣∣ = oP

(
h2 +

√
logn

nh1+2β
· τn(β)

)
,

sup
xj∈[0,1]

∣∣rn,j (xj )
∣∣ = OP

(
h2) + oP

(√
logn

nh1+2β
· τn(β)

)
.

(3.8)

THEOREM 3.4. Under the conditions of Theorem 3.3, if nh3+4β/ logn is
bounded away from zero, then

f̂j (xj ) = fj (xj ) + δ̂A
j (xj ) + δ̂B

2j (xj ) + δ̂C
2j (xj )

+ μ1,j (xj )

μ0,j (xj )
f ′

j (xj )hj + 1

2
μ2f

′′
j (xj )h

2
j + �j(xj )h

2
j + rn,j (xj ),

1 ≤ j ≤ d.

It would be interesting to compare Theorem 3.4 with a stochastic expansion
of the oracle estimator of fj . The oracle estimator of fj is the one-dimensional
deconvolution kernel estimator that utilizes the knowledge of all other component
functions fk , k �= j . It is given by

f̂ ora
j (xj ) = p̂j (xj )

−1n−1
n∑

i=1

K̃�
hj

(
xj ,Z

i
j

)[
Y i − ∑

k �=j

fk

(
Xi

k

)]
.
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Using the standard theory of kernel smoothing and that of nonparametric decon-
volution, we may prove that

f̂ ora
j (xj ) = fj (xj ) + δ̂A

j (xj ) + δ̂B
2j (xj ) + μ1,j (xj )

μ0,j (xj )
f ′

j (xj )hj + 1

2
μ2f

′′
j (xj )h

2
j

+ oP

(
h2 +

√
logn

nh1+2β

)
.

This demonstrates that our SBF estimators f̂j have two additional terms, �j(xj )h
2
j

and δ̂C
2j (xj ), in comparison with the expansion of the oracle estimators, both of

which are from the backfitting operation.
According to Theorem 3.3, δ̂C

2j (xj ) has the same order of magnitude as δ̂A
j (xj )

and δ̂B
2j (xj ) in case β < 1/2, while it dominates them when β ≥ 1/2. By combin-

ing Theorems 3.3 and Theorem 3.4, we get the following corollary.

COROLLARY 3.5. Assume the conditions of Theorem 3.3. (i) When β < 1/2,

sup
xj∈I0j

∣∣f̂j (xj ) − fj (xj )
∣∣ = OP

(
n−2/(5+2β)

√
logn

)
,

sup
xj∈I c

0j

∣∣f̂j (xj ) − fj (xj )
∣∣ = OP

(
n−1/(5+2β))

by choosing hj � n−1/(5+2β). (ii) When β = 1/2,

sup
xj∈I0j

∣∣f̂j (xj ) − fj (xj )
∣∣ = OP

(
n−1/3 logn

)
,

sup
xj∈I c

0j

∣∣f̂j (xj ) − fj (xj )
∣∣ = OP

(
n−1/6)

by choosing hj � n−1/6. (iii) When β > 1/2,

sup
xj∈I0j

∣∣f̂j (xj ) − fj (xj )
∣∣ = OP

(
n−1/(2+2β)

√
logn

)
,

sup
xj∈I c

0j

∣∣f̂j (xj ) − fj (xj )
∣∣ = OP

(
n−1/(4+4β))

by choosing hj � n−1/(4+4β).

For the above corollary, we have used the fact that μ1,j (xj ) = 0 for xj ∈ I0j .
According to Corollary 3.5, f̂j achieve the optimal rate that one can achieve in
one-dimensional deconvolution problems [8], in the case β < 1/2. It is interest-
ing to notice that one also gets different convergence rates, depending on whether
0 ≤ β < 1/2, β = 1/2 or β > 1/2, in the estimation of distribution function
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and quantiles with contaminated data; see [11] and [5] for details. Although the
rates when β > 1/2 are slower than the corresponding rates when β ≤ 1/2, they
are much faster than the optimal d-variate rates. As shown by [9], the optimal
rates in d-variate deconvolution problems are n−2/(4+d+d2β) in the interior and
n−1/(4+d+2dβ) on the boundary.

We close this section by briefly commenting on the case where not all βj are
the same. In the latter case, in the statement of Theorem 3.3, we only need to

replace h
1+2β
j by h

1+2βj

j and τn,k(β) by τn,k(βk). For an analog of Theorem 3.4,

the remainders rn,j at (3.8) in the expansions of f̂j now satisfy

sup
xj∈I0j

∣∣rn,j (xj )
∣∣ = oP

(
h2 +

√
logn

nh1+2β∗ · τn(β∗)
)
,

sup
xj∈[0,1]

∣∣rn,j (xj )
∣∣ = OP

(
h2) + oP

(√
logn

nh1+2β∗ · τn(β∗)
)
,

where β∗ = max1≤j≤d βj . Here, we present the slowest rate of convergence of
f̂j among all components. The slowest rate actually determines the rate of the
convergence of f̂ = f̂1 + · · · + f̂d as an estimator of the regression function f =
f1 + · · · + fd . The slowest rate corresponds to the component that has the largest
βj = β∗. Let j∗ = arg max1≤j≤d βj . Then, from the versions of Theorems 3.3 and

3.4 for different βj it follows that f̂j∗(u) − fj∗(u) = Op(n−2/(5+2β∗)√logn) and
Op(n−1/3 logn), respectively, when β∗ < 1/2 and β∗ = 1/2, uniformly for u in
the interior with the bandwidths hj � n−1/(5+2β∗). In case β∗ > 1/2, we have
f̂j∗(u) − fj∗(u) = Op(n−1/(2+2β∗)√logn) uniformly for u in the interior with the
bandwidths hj � n−1/(4+4β∗). The rates on the boundary are Op(n−1/(5+2β∗)) and
Op(n−1/(4+4β∗)), respectively, when β∗ ≤ 1/2 and β∗ > 1/2.

4. Finite sample performance. We first examine how the use of our decon-
volution normalization kernels improves the estimation accuracy in comparison
with naive applications of the standard smooth backfitting technique that ignores
the presence of measurement errors. Below in this section, we refer to them as D-
SBF and N-SBF, respectively. For the D-SBF estimators, we used K̃�

h introduced
at (2.11), and for the N-SBF the conventional normalized kernel K̃h at (2.5). For
both, we used f̂

[0]
j ≡ 0 as the initial estimators in the updating equations at (2.20).

In our simulation, the response variable Y was generated by

Y = g1(X1) + g2(X2) + g3(X3) + g4(X4) + ε,(4.1)

where Xj and ε ∼ N(0,0.252) are independent. We set Xj = �(Wj) where �

is the cumulative distribution function of N(0,1) and W = (W1, . . . ,W4)
� has a

multivariate normal distribution with mean zero and covariance � with �j,k =
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(1/2)|j−k|, 1 ≤ j, k ≤ 4. We considered g1(x) = −2x, g2(x) = arctan(2π(x −
0.5)), g3(x) = pdf�(4,0.1)(x) and g4(x) = cos(3πx), defined on [0,1], where
�(4,0.1) stands for a Gamma distribution with shape and scale parameters 4 and
0.1, respectively. The function g3 is asymmetric and g4 is periodic. As for the dis-
tributions of the measurement errors Uj , we took a Laplace and a double gamma
difference (DGD) distributions. Laplace distributions are often adopted in the lit-
erature as a representative of ordinary smooth distributions, and we note that β

in (D1) equals 2 for Laplace distributions. A DGD distribution [1] is obtained
by taking difference of two independent Gamma random variables with the same
scale parameter. Its smoothness equals β if it is the difference of two �(β/2, θ)

random variables. DGD distributions are known to form a family of symmetric
variance gamma distributions; see [14]. We used a DGD distribution with β = 0.4.
We generated Ui

j independently across components j as well as across subjects i,
from a Laplace and a DGD distribution. The noise-to-signal ratio (NSR), defined
by Var(Uj )/Var(Xj ), was set to be 0.1 or 0.2, and the scale parameters of the
Laplace or DGD distributions were chosen to satisfy a given NSR for each simula-
tion setting. We estimated the centered component functions fj = gj −∫ 1

0 gj using
a set of generated pseudo samples Xn = {(Y i,Zi) : 1 ≤ i ≤ n} of sizes n = 400 and
1000 according to the model (4.1).

As means of comparison, we computed the mean integrated squared errors
(MISE), the integrated squared bias (ISB) and the integrated variance (IV) for
each component. Let X (m)

n be the mth Monte Carlo sample. For f̂j denoting ei-
ther our D-SBF or the conventional N-SBF estimators and for f̂j,m the estimates

constructed from X (m)
n , we approximated the MISEs of f̂j by the formula

MISE(f̂j ) ≈ 1

M

M∑
m=1

∫ 1

0

(
f̂j,m(xj ) − fj (xj )

)2
dxj ,(4.2)

where we took M = 200. We estimated the ISB and the IV similarly. We used
the Epanechnikov kernel as the baseline kernel function K . To the effect of com-
paring their respective optimal performances in regard to bandwidth choice, we
chose the respective optimal bandwidths for the D-SBF and N-SBF and used
them in computing the criterion values. For this, we generated M0 samples sep-
arately from X (1)

n , . . . ,X (M)
n and computed the approximate MISE values ac-

cording to the formula (4.2) using the M0 samples on the grid of bandwidth
{0.05 + 0.01i : 0 ≤ i ≤ 15}. We tried several choices of M0 and found that those
M0 ≥ 20 gave the same optimal bandwidths. For instance, in the case of β = 2 and
NSR = 0.1, we found that for the N-SBF the best bandwidths were h = 0.08,0.06
for n = 400,1000, respectively, while for the D-SBF they were h = 0.12,0.09, re-
spectively. We noted that the optimal bandwidths were larger for larger β or larger
NSR, which is supported by our theoretical results in Section 3.

The results based on these optimal bandwidths are presented in Tables 1–4 and
Figures 2 and 3. From the tables, we clearly see that the D-SBF is better than
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TABLE 1
Double gamma difference (DGD) measurement error distribution with β = 0.4 and

NSR(σ 2
U/σ 2

X) = 0.2, based on 200 MC samples

Naive SBF Deconvolution SBF
Sample size
& criterion j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

400 MISE 0.056 0.095 0.059 0.057 0.029 0.033 0.037 0.031
ISB 0.043 0.082 0.048 0.044 0.022 0.022 0.019 0.013
IV 0.013 0.013 0.011 0.013 0.007 0.011 0.018 0.018

1000 MISE 0.050 0.088 0.044 0.047 0.015 0.019 0.021 0.019
ISB 0.044 0.080 0.038 0.040 0.008 0.011 0.007 0.007
IV 0.006 0.008 0.006 0.007 0.007 0.008 0.014 0.012

TABLE 2
Double gamma difference (DGD) measurement error distribution with β = 0.4 and

NSR(σ 2
U/σ 2

X) = 0.1, based on 200 MC samples

Naive SBF Deconvolution SBF
Sample size
& criterion j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

400 MISE 0.049 0.080 0.046 0.042 0.028 0.031 0.032 0.028
ISB 0.038 0.069 0.037 0.032 0.023 0.023 0.019 0.014
IV 0.011 0.011 0.009 0.010 0.005 0.008 0.013 0.014

1000 MISE 0.043 0.070 0.030 0.031 0.012 0.016 0.016 0.014
ISB 0.038 0.064 0.026 0.026 0.008 0.011 0.007 0.007
IV 0.005 0.006 0.004 0.005 0.004 0.005 0.009 0.007

TABLE 3
Laplace measurement error distribution with β = 2 and NSR = 0.2, based on 200 MC samples

Naive SBF Deconvolution SBF
Sample size
& criterion j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

400 MISE 0.064 0.114 0.115 0.133 0.047 0.047 0.094 0.058
ISB 0.046 0.094 0.098 0.113 0.024 0.020 0.017 0.009
IV 0.018 0.020 0.017 0.020 0.023 0.027 0.077 0.049

1000 MISE 0.056 0.094 0.092 0.114 0.021 0.025 0.046 0.033
ISB 0.045 0.084 0.083 0.104 0.005 0.005 0.019 0.012
IV 0.011 0.010 0.009 0.010 0.016 0.020 0.027 0.021
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TABLE 4
Laplace measurement error distribution with β = 2 and NSR = 0.1, based on 200 MC samples

Naive SBF Deconvolution SBF
Sample size
& criterion j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

400 MISE 0.048 0.078 0.068 0.074 0.024 0.027 0.062 0.038
ISB 0.035 0.064 0.055 0.060 0.011 0.011 0.039 0.012
IV 0.013 0.014 0.013 0.014 0.013 0.016 0.023 0.026

1000 MISE 0.044 0.069 0.055 0.063 0.016 0.021 0.033 0.025
ISB 0.037 0.062 0.049 0.056 0.007 0.010 0.008 0.007
IV 0.007 0.007 0.006 0.007 0.009 0.011 0.025 0.018

the naive SBF in all cases in terms of the MISE, and that the MISE of the D-
SBF decreases faster than the naive SBF as the sample size increases. The smaller
values of the MISE for the D-SBF are due to the much smaller values of the ISB.
This demonstrates that the deconvolution procedure done by our new kernel K̃�

h at
(2.11) is successful in correcting the bias due to measurement errors. The biases of
the N-SBF do not decrease substantially as the sample size increases. One further
thing to note is that the margin of the improvement by the D-SBF is larger for
smaller β . Figures 2 and 3 depict the bias and variance curves of the D-SBF and
N-SBF estimators. Here, we only report the results for the case β = 2.0 and NSR =
0.1 since those for other cases of β and NSR gave similar lessons. The left panels
of the figures suggest visually what we observe in the tables for the bias properties.
The biases of the D-SBF estimators are improved as the sample size increases, but
this is not the case with the N-SBF.

What if the measurement error distribution is misspecified in the construction
of K̃�

h? Under the Laplace measurement error setting of Table 4, we used four
DGD distributions with different smoothness β but the same NSR = 0.1, to con-
struct K̃�

h. We found MISE(f̂1) + · · · + MISE(f̂4) = 0.207,0.191,0.161,0.187
for β = 0.5,1.0,4.0,8.0, respectively, when n = 400. Note that the correspond-
ing sum of the four MISEs in the case the error distribution is correctly specified
(the case n = 400 in Table 4) equals 0.151. The results suggest that our decon-
volution method is not much sensitive to the misspecification of the error dis-
tribution. A similar phenomenon was also observed in [10]. We also examined
what happens if we use the deconvolution kernel when the covariates are not ac-
tually contaminated. For this, we chose a Laplace and a DGD error distribution
with β = 2.0 and 0.4, respectively, and used them in constructing K̃�

h. We found
MISE(f̂1) + · · · + MISE(f̂4) = 0.094 and 0.084 for the Laplace and DGD decon-
volution kernels, respectively, while the N-SBF (no deconvolution) gave 0.047.

It is also of interest to see whether our proposed method still works for asym-
metric measurement errors. For this, we tried a Gamma measurement error with
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FIG. 2. The case n = 400, β = 2.0 and NSR = 0.1. From the top, the bias (left) and variance curves
(right) of the estimators of f1, f2, f3 and f4, based on 200 MC replications. The black curves are
for the D-SBF and the blue for the N-SBF, with the true functions fj depicted as dot-dashed red
curves on the left panels.

β = 1 and NSR = 0.1. The results for the sample size n = 400 are contained in Ta-
ble 5 and Figure 4. They demonstrate that the use of our proposed deconvolution
kernel K̃�

h corrects effectively the bias owing to the one-sided measurement error
as well. An interesting phenomenon in Figure 4 that deserves particular attention
and is more clearly visible in the two bottom panels is that the N-SBF curves are
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FIG. 3. The case n = 1000, β = 2.0 and NSR = 0.1.

shifted to the right of their targets. This is due to the uncorrected effects of positive
measurement errors.

The results given above are for the case where the bandwidths hj ≡ h and h

is chosen optimally. The performance of the proposed deconvolution kernel esti-
mators depends on the choice of bandwidth, as is demonstrated in Theorems 3.3
and 3.4. We also found this when we located in a grid search the optimal common
bandwidths hopt that gave the results in Tables 1–5. For example, in the case where
β = 2.0, NSR = 0.1 and n = 400, we found that the MISEs of the D-SBF estima-
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TABLE 5
Gamma measurement error distribution with β = 1.0 and NSR = 0.1, based on 200 MC samples of

size n = 400

Naive SBF Deconvolution SBF

Criterion j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

MISE 0.040 0.100 0.189 0.206 0.023 0.026 0.037 0.037
ISB 0.027 0.086 0.175 0.191 0.005 0.006 0.014 0.015
IV 0.013 0.014 0.014 0.015 0.018 0.020 0.023 0.022

tors of fj for j = 1,2,3,4 were 0.044, 0.046, 0.054, 0.040, respectively, when
hj = hopt/2, and 0.048, 0.116, 0.326, 0.489, respectively, when hj = 2hopt. In the
practical implementation of our method, we may want to determine data-driven
bandwidths and choose possibly different ĥj for different component functions
fj . Below, we suggest a simple method based on a “bandwidth factor” scheme,
and assess its performance.

FIG. 4. The case of a Gamma measurement error (asymmetric) with β = 1.0 and NSR = 0.1.
The D-SBF estimates (black) and N-SBF (blue) averaged over 200 MC replications, with the true
functions fj (red). The sample size n = 400.
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TABLE 6
Same setting as Table 2 (n = 400), but with data-driven bandwidth selectors

Naive SBF Deconvolution SBF

Criterion j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

MISE 0.046 0.076 0.044 0.042 0.018 0.021 0.034 0.028
ISB 0.036 0.065 0.031 0.031 0.009 0.008 0.004 0.005
IV 0.010 0.011 0.013 0.011 0.009 0.013 0.030 0.022

Let m̂j (·;hj ) denote the marginal regression estimators as defined in (2.15).
First, for each j = 1, . . . , d , choose the bandwidth hj that minimizes the marginal
goodness-of-fit

∑n
i=1(Y

i − m̂j (Z
i
j ;hj ))

2. For each given common factor α >

0, compute the smooth backfitting goodness-of-fit GOF(α) = ∑n
i=1(Y

i − Ȳ −∑d
j=1 f̂j (Z

i
j ;αhj ))

2. Then, find α̂ = arg minα>0 GOF(α) and finally choose ĥj =
α̂hj . One could use a cross-validatory version of the GOF criterion but it would
be computationally expensive since our method requires the Fourier and inverse-
Fourier transformations for deconvolution, the normalization step and the iterative
backfitting, for every different choice of bandwidth. In fact, we applied the above
simple bandwidth selection method to both the N-SBF and the D-SBF estimators
under our simulation settings, and found it worked very well. The results for the
case β = 0.4, NSR = 0.1 and n = 400 are presented in Table 6. A comparison
with Table 2 suggests that the D-SBF estimators with the data-driven bandwidth
selectors have comparable with or even better performance than those that use an
optimally chosen universal bandwidth.

5. Proofs of theorems. In this section, we provide the proofs of Theorems
3.3 and 3.4. We begin by a lemma that gives an enveloping inequality for the
deconvolution and normalized kernel function K̃�

h. The lemma is used frequently
in our asymptotic analysis and its proof is given in the Supplementary Material
[12]. Proofs of other technical details are also found there.

LEMMA 5.1. Assume the conditions (K1), (D1) and (D2). Then there exists a
constant C > 0 such that

h1+β
∣∣K̃�

h(x, z)
∣∣ ≤ C · h

h + |x − z|
for all x ∈ [0,1] and z ∈ R.

5.1. Proof of Theorem 3.3. We first note that δ̂A
j , δ̂B

2j and δ̂C
2j have mean zero.

For the proof of the first part of the theorem, we compute E|K̃�
hj

(xj ,Zj )|2. Define

Jβ(v;x) = 1

2πcβ

∫ ∞
−∞

e−itvtβφK(t;x)φK(t) dt,
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where cβ is the constant that appears in the condition (D2). As a function of the
first argument, Jβ(·;x) is square integrable. Indeed, it holds that∫ ∞

−∞
∣∣Jβ(v;x)

∣∣2 dv = 1

2πc2
β

∫ ∞
−∞

t2β
∣∣φK(t;x)

∣∣2φK(t)2 dt

≤ (const) ·
∫ ∞

0
(1 + t)2(β−
β�−2) dt < ∞.

(5.1)

The equality in (5.1) follows from the Plancherel identity and the fact that
2πcβJβ(·;x) is the Fourier transform of the function g defined by g(t) =
tβφK(·;x)φK(·). The inequality in (5.1) holds due to the condition (K1). Let pUj

and pZj
denote the densities of Uj and Zj , respectively. Then it follows that

E
∣∣K̃�

hj
(xj ,Zj )

∣∣2 = h−1
j

∫ ∞
−∞

∫ ∞
−∞

∣∣∣∣ 1

2π

∫ ∞
−∞

e−itv φK(t;xj )φK(t)

φUj
(t/hj )

dt

∣∣∣∣2

× pj (xj − u − hjv)pUj
(u) dv du

= h
−1−2β
j pZj

(xj )

∫ ∞
−∞

∣∣Jβ(v;xj )
∣∣2 dv + o

(
h

−1−2β
j

)
,

(5.2)

uniformly for xj ∈ [0,1]. The first part of the theorem now follows from an expo-
nential inequality for sums of independent mean zero random variables, applied to
δ̂A
j conditioning on {Zi

j : 1 ≤ i ≤ n}.
For δ̂B

2j , we apply an exponential inequality conditioning on {Xi
j : 1 ≤ i ≤ n}.

For this, we need to approximate n−1 ∑n
i=1 E(|K̃�

hj
(xj ,Z

i
j )(fj (X

i
j ) − fj (xj ))|2 |

Xi
j ). Similarly, as in the case of δ̂A

j , we obtain

E
∣∣K̃�

hj
(xj ,Zj )

(
fj (Xj ) − fj (xj )

)∣∣2
= h

−1−2β
j pZj

(xj )E
[(

fj (Xj ) − fj (xj )
)2 | Zj = xj

]
×

∫ ∞
−∞

∣∣Jβ(v;xj )
∣∣2 dv + o

(
h

−1−2β
j

)
,

uniformly for xj ∈ [0,1]. This implies the second part of the theorem.
The calculation of the magnitude of δ̂C

2j ≡ ∑
k �=j δ̂C

k,2j is more involved. We treat

δ̂C
k,2j for each k �= j . We apply an exponential inequality to δ̂C

k,2j , now conditioning

on {Xi
k : 1 ≤ i ≤ n}. The order of magnitude of δ̂C

k,2j (xj ) is determined by that of

n−1
n∑

i=1

E
(∣∣K̃�

hj

(
xj ,Z

i
j

)(
V i

nk −E
(
V i

nk | Xi
k

))∣∣2 | Xi
k

)

= n−1
n∑

i=1

E
(
E

(∣∣K̃�
hj

(
xj ,Z

i
j

)∣∣2 | Xi
j ,X

i
k

) · ∣∣V i
nk −E

(
V i

nk | Xi
k

)∣∣2 | Xi
k

)

≤ (const) · h−1−2β
j n−1

n∑
i=1

E
(∣∣V i

nk −E
(
V i

nk | Xi
k

)∣∣2 | Xi
k

)
.

(5.3)
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The equality in (5.3) follows since Uj ’s are independent among themselves and
also independent of Xj ’s so that E(|K̃�

hj
(xj ,Zj )|2 | Xj,Xk,Uk) = E(|K̃�

hj
(xj ,

Zj )|2 | Xj,Xk). The inequality in (5.3) holds since

E
(∣∣K̃�

hj
(xj ,Zj )

∣∣2 | Xj = ξ
)

= h
−1−2β
j pUj

(xj − ξ)

∫ ∞
−∞

∣∣Jβ(v;xj )
∣∣2 dv + o

(
h

−1−2β
j

)
,

(5.4)

which is bounded by Ch
−1−2β
j uniformly for xj and ξ for some constant C > 0.

The result (5.4) may be obtained by using similar arguments as in deriving (5.2).
The right-hand side of the inequality (5.3) is of the same magnitude as

h
−1−2β
j ·E∣∣Vnk −E(Vnk | Xk)

∣∣2 ≤ h
−1−2β
j ·E|Vnk|2.

We calculate the magnitude of E|Vnk|2. Let Dk(u) = (fk(Xk) − fk(u))I[0,1](u)

and φDk
denote its Fourier transform. We first note that Vnk = Vnk,1 +Vnk,2, where

Vnk,1 = 1

2π

∫ ∞
−∞

eitZk
φK(hkt)

2φDk
(−t)

φUk
(t)

dt,

Vnk,2 = 1

2π

∫
I c

0k

∫ ∞
−∞

e−it (xk−Zk)
φK(hkt)[φK(hkt;xk) − φK(hkt)]

φUk
(t)

× (
fk(Xk) − fk(xk)

)
dt dxk.

From the Plancherel equality and the fact that |φDk
(t)| ≤ (const) · (1 + |t |)−1, we

find that

E|Vnk,1|2 ≤ ‖pZk
‖∞

4π2

∫ ∞
−∞

∣∣∣∣
∫ ∞
−∞

eitz φK(hkt)
2φDk

(−t)

φUk
(t)

dt

∣∣∣∣2 dz

= ‖pZk
‖∞

2π

∫ ∞
−∞

∣∣∣∣φK(hkt)
2φDk

(−t)

φUk
(t)

∣∣∣∣2 dt

≤ C1h
1−2β
k

∫ ∞
0

(hk + t)2β−2φK(t)4 dt

(5.5)

for some constant C1 > 0. The right-hand side of (5.5) has different magnitudes
for different ranges of β . In case β < 1/2, we may prove that

κn ≡
∫ ∞

0
(hk + t)2β−2φK(t)4 dt ≤ C2h

2β−1
k

for some constant C2 > 0, using the fact that |φK(t)| ≤ (1 + |t |)−
β�−1. We may
also show that κn ≤ C3 when β > 1/2 and κn ≤ C4 logh−1

k when β = 1/2, for
some positive constants C3 and C4. This establishes E|Vnk,1|2 = O(τn,k(β)2).
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Now, we compute E|Vnk,2|2. For this, we note that∣∣∣∣
∫
I c

0k

e−itxk
(
φK(hkt;xk) − φK(hkt)

)(
fk(Xk) − fk(xk)

)
dxk

∣∣∣∣ ≤ C5hk

for some constant C5 > 0. This follows from the facts that |φK(hkt;xk)|, |φK(hkt)|
and |fk(Xk) − fk(xk)| are bounded and that the length of I c

0k is 4hk . Thus, by the
Plancherel equality again, we obtain

E|Vnk,2|2 ≤ C2
5h2

k‖pZk
‖∞

4π2

∫ ∞
−∞

∣∣∣∣
∫ ∞
−∞

eitz φK(hkt)

φUk
(t)

dt

∣∣∣∣2 dz

= C2
5h2

k‖pZk
‖∞

2π

∫ ∞
−∞

∣∣∣∣φK(hkt)

φUk
(t)

∣∣∣∣2 dt

≤ C6h
1−2β
k

∫ ∞
0

(hk + t)2β(1 + t)−2
β�−2 dt.

(5.6)

The integral on the right-hand side of (5.6) is bounded by some constant for all
β ≥ 0. This verifies E|Vnk,2|2 = O(h

1−2β
k ), and thus completes the proof of Theo-

rem 3.3.

5.2. Proof of Theorem 3.4. We first present two lemmas. The proofs of these
lemmas and some other technical details can be found in the online Supplemen-
tary Material [12]. Let dn,j = πj�n,f ∈ Hj for 1 ≤ j ≤ d . Also, let aj (u) =
μ1,j (u)f ′

j (u) and cj (u) = μ2f
′′
j (u)/2.

LEMMA 5.2. Under the conditions of Theorem 3.4, it follows that

δ̂B
1j + δ̂C

1j = dn,j +
d∑

k=1

π̂j

(
hk

ak

μ0,k

+ h2
kck

)
+ rn,j .

LEMMA 5.3. Let (h2
j �̂j : 1 ≤ j ≤ d) with each �̂j ∈ Hj be the solution of

the system of equations

(5.7) h2
j �̂j = dn,j − π̂j

(∑
k �=j

h2
k�̂k

)
, 1 ≤ j ≤ d,

subject to the constraints

h2
j

∫ 1

0
�̂j (xj )p̂j (xj ) dxj = −

∫ 1

0

(
fj (xj ) + hj

aj (xj )

μ0,j (xj )
+ h2

j cj (xj )

)

× p̂j (xj ) dxj .

(5.8)

Under the conditions of Theorem 3.4, it holds that

(5.9) h2
j �̂j = h2

j�j + rn,j .
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Now we prove Theorem 3.4. From (3.3) and Lemma 5.2, we get

f̂j − fj = δ̂A
j + δ̂B

2j + δ̂C
2j + hj

aj

μ0j

+ h2
j cj + dn,j

−
d∑

k �=j

π̂j

(
f̂k − fk − hk

ak

μ0,k

− h2
kck

)
+ rn,j .

(5.10)

Define D̂j = f̂j − fj − hj
aj

μ0,j
− h2

j cj ∈ Hj . Then (5.10) is equivalent to

(5.11) D̂j = δ̂A
j + δ̂B

2j + δ̂C
2j + dn,j −

d∑
k �=j

π̂j D̂k + rn,j , 1 ≤ j ≤ d.

Let D̂+ = D̂1 + · · · + D̂d ∈ H. Define δ̂A⊕, δ̂B
2⊕, δ̂C

2⊕ and dn,⊕ in the same way as

δ̂⊕ with δ̂j being replaced by δ̂A
j , δ̂B

2j , δ̂C
2j and dn,j , respectively. As we get (3.4)

from (3.3), we obtain from (5.11)

(5.12) D̂+ = T̂ D̂+ + δ̂A⊕ + δ̂B
2⊕ + δ̂C

2⊕ + dn,⊕ =
∞∑

j=0

T̂ j (
δ̂A⊕ + δ̂B

2⊕ + δ̂C
2⊕ + dn,⊕

)
.

Define δ̂A+ = δ̂A
1 + · · · + δ̂A

d . Likewise, define δ̂B
2,+ and δ̂C

2,+ from δ̂B
2j and δ̂C

2j , re-
spectively.

We claim that

(5.13)
∞∑

j=0

T̂ j δ̂A⊕ = δ̂A+ + rn,+,

∞∑
j=0

T̂ j δ̂∗
2⊕ = δ̂∗

2,+ + rn,+

for ∗ = B and C, where rn,+ denote generic terms such that rn,+ = rn,1+· · ·+rn,d .
We note that �̂n,+ ≡ ∑∞

j=0 T̂ j dn,⊕ solves the equation �̂n,+ = T̂ �̂n,+ + dn,⊕.
This means that

(5.14) �̂n,+ = h2
1�̂1 + · · · + h2

d�̂d,

where (h2
j �̂j : 1 ≤ j ≤ d) is the solution of the system of equations (5.7) in

Lemma 5.3. The j th component (function) of �̂n,+ may differ from h2
j �̂j (·)

only by a constant function (possibly random), say cn,j (·) ≡ cn,j , such that∑d
j=1 cn,j = 0. Since T̂ is linear, (5.12)–(5.14) imply

(5.15) D̂j = δ̂A
j + δ̂B

2j + δ̂C
2j + h2

j �̂j + rn,j + c∗
n,j , 1 ≤ j ≤ d,
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for some constant functions c∗
n,j (possibly random) such that

∑d
j=1 c∗

n,j = 0. We
note that ∫ 1

0
δ̂A
j (xj )p̂j (xj ) dxj = n−1

n∑
i=1

εi = Op

(
n−1/2)

,

∫ 1

0
δ̂B

2j (xj )p̂j (xj ) dxj = n−1
n∑

i=1

(
V i

nj −E
(
V i

nj | Xi
j

))

= Op

(
n−1/2τn,j (βj )

)
,∫ 1

0
δ̂C
k,2j (xj )p̂j (xj ) dxj = n−1

n∑
i=1

(
V i

nk −E
(
V i

nk | Xi
k

))

= Op

(
n−1/2τn,k(βk)

)
.

(5.16)

We may prove the above results using the normalization property of K̃�
hj

and the

fact that E|Vnj |2 = O(τn,j (βj )
2). Due to the constraints on �̂j at (5.8) and the

results (5.16), we may set c∗
n,j ≡ 0 for all 1 ≤ j ≤ d in (5.15). From Lemma 5.3,

we establish that

D̂j = δ̂A
j + δ̂B

2j + δ̂C
2j + h2

j�j + rn,j , 1 ≤ j ≤ d.

This completes the proof of Theorem 3.4.
We prove the claim (5.13). The claim follows if we prove that, for all k �= j ,

π̂kδ̂
A
j (u) = op

(
n−1/2h

−1/2−βj

j

√
logn

) = π̂kδ̂
B
2j (u),

π̂kδ̂
C
2j (u) = op

(
n−1/2h

−1/2−βj

j

√
logn

d∑
l �=j

τn,l(βl)

)
,

(5.17)

uniformly for u ∈ [0,1]. We prove the first and third parts of (5.17). The proof of
the second part is similar to that of the third part. Below in our presentation, we fix
a pair (j, k) such that j �= k and suppress (j, k) in some places. Define

Q(xj , xk) = pjk(xj , xk)

pj (xj )pk(xk)
, Q̂(xj , xk) = p̂jk(xj , xk)

p̂j (xj )p̂k(xk)
.

Then we may write

(
π̂kδ̂

A
j

)
(u) = n−1

n∑
i=1

εi(Wi
1(u) + Wi

2(u)
)
,

where Wi
1(u) = ∫ 1

0 K̃�
hj

(xj ,Z
i
j )Q(xj , u) dxj , Wi

2(u) = ∫ 1
0 K̃�

hj
(xj ,Z

i
j )(Q̂(xj ,

u) − Q(xj ,u)) dxj . Using the arguments in calculating the magnitude of E|Vnk|2
in the proof of Theorem 3.3 and the fact that Q is bounded, we can show that
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E|W1(u)|2 = O(τn,j (βj )
2) uniformly for u ∈ [0,1]. Since h

−1/2−βj

j /τn,j (βj ) →
∞ as n → ∞, this establishes

(5.18) sup
u∈[0,1]

∣∣∣∣∣n−1
n∑

i=1

εiWi
1(u)

∣∣∣∣∣ = op

(
n−1/2h

−1/2−βj

j

√
logn

)
.

Now, for the second term of π̂kδ̂
A
j , we note that Wi

2(u) involves Zi
k as well as

Zi
j . We use an exponential inequality, now conditioning on {(Zi

j ,Z
i
k) : 1 ≤ i ≤ n}.

Since

sup
u∈[0,1]

n−1
n∑

i=1

∣∣Wi
2(u)

∣∣2

≤ max
1≤i≤n

sup
u∈[0,1]

∣∣∣∣
∫ 1

0
K̃�

hj

(
xj ,Z

i
j

)(
Q̂(xj , u) − Q(xj ,u)

)
dxj

∣∣∣∣2

≤ (const)h
−2βj

j ‖Q̂ − Q‖2∞

= op

(
h

−1−2βj

j

)
,

(5.19)

we conclude that

(5.20) sup
u∈[0,1]

∣∣∣∣∣n−1
n∑

i=1

εiWi
2(u)

∣∣∣∣∣ = op

(
n−1/2h

−1/2−βj

j

√
logn

)
.

The second inequality in (5.19) is due to (5.24) below. The first part of (5.17) now
follows from (5.18) and (5.20).

The proof of the third part is more involved and needs refined arguments. We
prove it using some probability bounds in empirical process theory. Recall that

δ̂C
l,2j (xj ) = p̂j (xj )

−1n−1
n∑

i=1

∫ 1

0
K̃�

hj

(
xj ,Z

i
j

)[
K̃�

hl

(
xl,Z

i
l

) −E
(
K̃�

hl

(
xl,Z

i
l

) | Xi
l

)]

× [
fl

(
Xi

l

) − fl(xl)
]
dxl

and δ̂C
2j (xj ) = ∑

l �=j δ̂C
l,2j (xj ). We fix l �= j and analyze π̂kδ̂

C
l,2j . Note that l may

equal k although both of them are different from j . For a bivariate function G, we
define

Ai
nj (u,G) =

∫ 1

0
K̃�

hj

(
xj ,Z

i
j

)
G(xj ,u) dxj ,

and let Ṽ i
nl = V i

nl −E(V i
nl | Xi

l ) for simplicity of notation. Then

(
π̂kδ̂

C
l,2j

)
(u) = n−1

n∑
i=1

Ai
nj (u, Q̂)Ṽ i

nl .
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Take an arbitrarily small ε > 0 and put εn ≡ εn(ε) = ε · n−1/2h
−1/2−βj

j

√
logn ·

τn,l(βl). Then, using the techniques in the proof of Theorem 3.3, we may prove

(5.21) P

(∣∣∣∣∣n−1
n∑

i=1

Ai
nj (u,G)Ṽ i

nl

∣∣∣∣∣ > εn/2

)
→ 0

for each fixed u ∈ [0,1] and bounded G. In fact,

(5.22) n−1
n∑

i=1

Ai
nj (u,G)Ṽ i

nl = Op

(
n−1/2h

−βj

j

√
logn · τn,l(βl)

)
.

The proof of (5.22) can be found in the online Supplementary Material [12]. From
(5.21) and an application of the symmetrization technique, it follows that

P

(
sup

u∈[0,1]
sup

G∈Gn

∣∣∣∣∣n−1
n∑

i=1

Ai
nj (u,G)Ṽ i

nl

∣∣∣∣∣ > εn

)

≤ 4P

(
sup

u∈[0,1]
sup

G∈Gn

∣∣∣∣∣n−1
n∑

i=1

RiAi
nj (u,G)Ṽ i

nl

∣∣∣∣∣ > εn/4

)(5.23)

for any function class Gn, where Ri are i.i.d. Rademacher sequence, that is,
P(Ri = 1) = P(Ri = −1) = 1/2, independent of T i ≡ (Xi

j ,U
i
j ,X

i
l ,U

i
l ,X

i
k,U

i
k).

We prove the right-hand side of (5.23) converges to zero, as n tends to infin-
ity, for Gn where Q̂ belongs with a high probability. Specifically, we set Gn ≡
Gn(D1,D2) to be a class of bivariate functions G such that:

(i) sup
u1,u2∈[0,1]

∣∣G(u1, u2)
∣∣ ≤ D1,

(ii) sup
u1∈[0,1]

∣∣G(u1, u2) − G
(
u1, u

′
2
)∣∣ ≤ D2 · ∣∣u2 − u′

2
∣∣ · h−1/2

j .

By taking D1 and D2 sufficiently large, we may make the probability P(Q̂ ∈ Gn)

sufficiently large. For this, we need nh
2βj

j h
3+2βk

k / logn is bounded away from

zero. Let In(2−
) and Gn(2−
) denote 2−
- and D12−
-covering sets of [0,1] and
Gn, respectively. Their entropies equal 2
/D1 and 
 · log 2, respectively. For each
(u,G) ∈ [0,1]×Gn and 
 ≥ 0, we choose (u
,G
) ∈ In(2−
)×Gn(2−
) such that
|u
 −u| ≤ 2−
 and ‖G
 −G‖∞ ≤ D12−
. We may choose (u0,G0) = (0,0). Note
that Ai

nj (0,0) = 0. Here, we suppress the dependency of the choice {(uj ,Gj ) :
j ≥ 0} on (u,G). We can prove

(5.24) max
1≤i≤n

sup
u∈[0,1]

∣∣Ai
nj (u,G)

∣∣ ≤ c1h
−βj

j ‖G‖∞, max
1≤i≤n

∣∣Ṽ i
nl

∣∣ ≤ c2h
−βl

l

for some absolute constant c1, c2 > 0. The proof of (5.24) can be found in the
online Supplementary Material [12]. For such c1 and c2 and for D2 in the definition
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of Gn, we define

Jn = min
{

 ≥ 1 : 2−
 ≤ εnh

1/2+βj

j h
βl

l

16 · c1c2D2

}
.

Then, since |Ai
nj (u,G)V i

nl − Ai
nj (uJn,GJn)V

i
nl| ≤ εn/8, we have

(5.25) sup
u∈[0,1]

sup
G∈Gn

∣∣∣∣∣n−1
n∑

i=1

(
Ai

nj (u,G)Ṽ i
nl − Ai

nj (uJn,GJn)Ṽ
i
nl

)∣∣∣∣∣ ≤ εn/8.

The bound at (5.25) let us consider the supremum in (5.23) restricted to those
(u,G) in In(2−Jn)×Gn(2−Jn). Let Tn denote the set of T i , 1 ≤ i ≤ n. Take η
 > 0
such that

∑∞

=1 η
 ≤ 1. Then it follows that

P

(
sup

u∈In(2−Jn)

sup
G∈Gn(2−Jn)

∣∣∣∣∣n−1
n∑

i=1

RiAi
nj (u,G)Ṽ i

nl

∣∣∣∣∣ > εn/8 | Tn

)

≤
Jn∑


=1

exp
(
D−1

1 2
 + 
 log 2
)

× ∗
supP

(∣∣∣∣∣n−1
n∑

i=1

Ri[Ai
nj (u
,G
) − Ai

nj (u
−1,G
−1)
]
Ṽ i

nl

∣∣∣∣∣
> η
 · εn/8 | Tn

)
,

(5.26)

where sup∗ runs over all (u
,G
) ∈ In(2−
) × Gn(2−
) and (u
−1,G
−1) ∈
In(2−
+1) × Gn(2−
+1) with |u
 − u
−1| ≤ 2−
+1 and ‖G
 − G
−1‖∞ ≤ 2−
+1.
We may make the probability of

�n ≡ n−1
n∑

i=1

∣∣Ṽ i
nl

∣∣2 · ∣∣Ai
nj (u
,G
) − Ai

nj (u
−1,G
−1)
∣∣2

≤ c3D
2
22−2
h

−1−2βj

j τn,l(βl)
2

(5.27)

sufficiently large by choosing a constant c3 > 0 sufficiently large. Applying the
Höffding inequality and choosing η
 = 2−
/2

√

/9, we find that, on the event

where the inequality (5.27) holds, each summand on the right-hand side of (5.26)
is bounded by

exp
(
D−1

1 2
 + 
 log 2 − nε2
nη

2



128 · �n

)
≤ exp

(
−
 · ε2 logn

128 · 92 · c3 · D2
2

)
.
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This proves

P

(
sup

u∈In(2−Jn)

sup
G∈Gn(2−Jn)

∣∣∣∣∣n−1
n∑

i=1

RiAi
nj (u,G)Ṽ i

nl

∣∣∣∣∣ > εn/8

)

≤ 2 exp
(
− ε2 logn

128 · 92 · c3 · D2
2

)
→ 0.

This completes the proof of Theorem 3.4.

6. Concluding remarks. In this paper, we proposed a way of constructing
normalized kernels with the unbiased scoring property that are suitable for errors-
in-variables additive regression. We studied how the smooth backfitting method
based on the proposed kernel scheme works theoretically and empirically. One
challenging extension of our study is a treatment in case φUj

are unknown. In that
case, one may estimate them from repeated observations Zi

j
 = Xi
j +Ui

j
 for each
subject i, where Uj
’s are identically distributed as Uj . An example is given in [7]
for symmetric Uj . In case the densities of Uj are believed to belong to a parametric
family, one may get estimators of φUj

that converge at the parametric rate; see the
related discussion in [6]. With estimators φ̂Uj

of φUj
, one can basically plug them

into the definition (2.11) to construct the corresponding versions, say K̄�
hj

, of K̃�
hj

.
One may then use them in the estimation of pj , pjk and mj , as in (2.15), and use
the estimated functions m̂j , p̂j and p̂jk in the backfitting equations (2.16). The
resulting kernels K̄�

hj
satisfy the normalization property at (2.14) if φ̂Uj

(0) = 1.
However, the unbiased scoring property at (2.14) does not hold in general even
though φ̂Uj

are constructed from separate independent observations. It holds only
asymptotically if φ̂Uj

converge to the respective φUj
at some rates. The asymptotic

properties of the estimators of fj based on K̄�
hj

depend on how fast φ̂Uj
converge

to φUj
, the investigation of which we think is a challenging topic one may pursue

in a future study.
One may be also interested in an extension of our theory to the super smooth

measurement error case. The distribution of the measurement error U is called
super smooth if its Fourier transform φU satisfies

d1|t |α1 exp
(−|t |β/γ

) ≤ ∣∣φU(t)
∣∣ ≤ d2|t |α2 exp

(−|t |β/γ
)

for some positive constants d1, d2, β and γ and for some constants α1 and α2. In
the definition of our K̃�

h at (2.11) as well as in that for the classical deconvolution
kernel KD at (2.3), φU appears in the denominator of the integrand. To make KD

and K̃�
h well defined, one needs a strong regularity for φK . Usually in the literature

for KD , φK is assumed to be compactly supported; see [10], [7], [6] and [5], for
example. Meanwhile, our theory as well as the existing smooth backfitting theory
is developed for compactly supported K . A natural question is then whether there
exists a compactly supported K whose Fourier transform φK is also compactly
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supported. The answer is “no” except the trivial choice K ≡ 0, in which case both
the supports of K and φK are an empty set. It can be shown that K ≡ 0 is the only
function whose Fourier transform is compactly supported (empty set). In general,
the faster |φK | decays at tails, the more the support of K stretches out. Thus, to deal
with the super smooth case in the errors-in-variables additive regression problem,
one needs to develop new smooth backfitting theory for noncompactly supported
kernels, which we think is another challenging topic for future study.

Other extensions one may be interested in include those to generalized additive
models, varying coefficient models and partially linear additive models. Also, an
extension to the Berkson errors-in-variables case, and to the prediction problem as
studied in [3] are topics for future study.

SUPPLEMENTARY MATERIAL

Supplement to “Smooth backfitting for errors-in-variables additive mod-
els” (DOI: 10.1214/17-AOS1617SUPP; .pdf). The supplement contains proofs of
Lemmas 5.1, 5.2 and 5.3. It also gives proofs of (3.1), (5.22) and (5.24).
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