The Annals of Statistics

2018, Vol. 46, No. 5, 2062-2093
https://doi.org/10.1214/17-A0S 1612

© Institute of Mathematical Statistics, 2018

GLOBAL TESTING AGAINST SPARSE ALTERNATIVES UNDER
ISING MODELS
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University of California, Berkeley* and Columbia University'

In this paper, we study the effect of dependence on detecting sparse sig-
nals. In particular, we focus on global testing against sparse alternatives for
the means of binary outcomes following an Ising model, and establish how
the interplay between the strength and sparsity of a signal determines its de-
tectability under various notions of dependence. The profound impact of de-
pendence is best illustrated under the Curie—Weiss model where we observe
the effect of a “thermodynamic” phase transition. In particular, the critical
state exhibits a subtle “blessing of dependence” phenomenon in that one can
detect much weaker signals at criticality than otherwise. Furthermore, we de-
velop a testing procedure that is broadly applicable to account for dependence
and show that it is asymptotically minimax optimal under fairly general reg-
ularity conditions.

1. Introduction. Motivated by applications in a multitude of scientific disci-
plines, statistical analysis of “sparse signals” in a high dimensional setting, be it
large-scale multiple testing or screening for relevant features, has drawn consider-
able attention in recent years. For more discussions on sparse signal detection type
problems see, for example, Addario-Berry et al. (2010), Arias-Castro, Donoho and
Huo (2005), Arias-Castro and Wang (2015), Arias-Castro et al. (2008), Cai and
Yuan (2014), Donoho and Jin (2004), Hall and Jin (2010), Ingster, Tsybakov and
Verzelen (2010), Mukherjee, Pillai and Lin (2015), and references therein. A criti-
cal assumption often made in these studies is that the observations are independent.
Recognizing the potential limitation of this assumption, several recent attempts
have been made to understand the implications of dependence in both theory and
methodology; see, for example, Arias-Castro, Candes and Plan (2011), Hall and
Jin (2008, 2010), Jin and Ke (2016), Wu et al. (2014). These earlier efforts, setting
in the context of Gaussian sequence or regression models, show that it is impor-
tant to account for dependence among observations, and under suitable conditions,
doing so appropriately may lead to tests that are as powerful as if the observations
were independent. However, it remains largely unknown how the dependence may
affect our ability to detect sparse signals beyond Gaussian models. The main goal
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of the present work is to fill in this void. In particular, we investigate the effect
of dependence on detection of sparse signals for Bernoulli sequences, a class of
problems arising naturally in many genomics applications [e.g., Mukherjee, Pillai
and Lin (2015)].

Let X = (X1,..., X,) T € {£1}" be a random vector such that P(X; = +1) =
pi. In a canonical multiple testing setup, we want to test collectively that Hy :
pi=1/2,i=1,2,...,n. Of particular interest here is the setting when X;’s may
be dependent. A general framework to capture the dependence among a sequence
of binary random variables is the so-called Ising models, which have been studied
extensively in the literature [Ellis and Newman (1978), Ising (1925), Majewski, Li
and Ott (2001), Onsager (1944), Stauffer (2008), Mézard and Montanari (2009)].
An Ising model specifies the joint distribution of X as

(1) PouX=x):= ! exp (leQX + [.LTX) vx € {£1}"
* ZQ.u T \2 ’ ’
where Q is an n x n symmetric and hollow matrix, p := (1, ..., an)T € R" and

Z(Q, p) is a normalizing constant. Throughout the rest of the paper, the expecta-
tion operator corresponding to (1) will be analogously denoted by Eq . It is clear
that the matrix Q characterizes the dependence among the coordinates of X, and
X;’s are independent if Q = 0. Under model (1), the relevant null hypothesis can
be expressed as u = 0. More specifically, we are interested in testing it against a
sparse alternative:

2) Hy:u=0 vs Hi:peE(s,B),
where

E(s, B) := {;L eR": |supp(u)|=s,and min pu; > B > O]
i€supp(p)

and

supp(u) :={l1 <i <n:pu; #0}.

Our goal here is to study the impact of Q in doing so.

To this end, we adopt an asymptotic minimax framework that can be traced back
at least to Burnasev (1979), Ingster (1994, 1998). See Ingster and Suslina (2003)
for further discussions. Let a statistical test for Hy versus H; be a measurable {0, 1}
valued function of the data X, with 1 indicating rejecting the null hypothesis Hy
and O otherwise. The worst case risk of a test 7' : {£1}" — {0, 1} can be given by

(3) Risk(T, E(s, B), Q) :=Poo(T(X)=1)+ sup )]P’Q,,,,(T(X)=0),

HEE(s,B

where Pq,, denotes the probability measure as specified by (1). We say that a
sequence of tests T indexed by n corresponding to a sequence of model-problem
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pair (1) and (3), to be asymptotically powerful (resp., asymptotically not powerful)
against E (s, B) if
limsup Risk(7, E(s, B), Q)

n—oo

4

=0 (resp., lhn_l)longlsk(T, E(s, B),Q) > 0).
The goal of the current paper is to characterize how the sparsity s and strength B
of the signal (u) jointly determine if there is a powerful test, and how the behavior
changes with Q. In particular,

e for a general class of Ising models, we provide tests for detecting arbitrary sparse
signals and show that they are asymptotically rate optimal for Ising models on
regular graphs in the high temperature regime;

e for Ising models on the cycle graph, we establish rate optimal results for all
regimes of temperature, and show that the detection thresholds are the same as
the independent case;

e for the Curie—Weiss model [Kac (1969), Nishimori (2001)], we provide sharp
asymptotic detection thresholds for detecting arbitrarily sparse signals, which
reveal an interesting phenomenon at the thermodynamic phase transition point
of a Curie—Weiss magnet.

Our tools for analyzing the rate optimal tests depend on the method of exchange-
able pairs [Chatterjee (2007b)], which might be of independent interest.

The rest of the paper is organized as follows. In Section 2, we study in detail the
optimal detection thresholds for the Curie—Weiss model and explore the effects
of the presence of a “thermodynamic phase transition” in the model. Section 3
is devoted to developing and analyzing testing procedures in the context of more
general Ising models where we also show that under some conditions on Q, the
proposed testing procedure is indeed asymptotically optimal. Finally, we conclude
with some discussions in Section 5. The proof of the main results is relegated to
Section 6. The proof of additional technical arguments can be found in Mukherjee,
Mukherjee and Yuan (2018).

2. Sparse testing under Curie—Weiss model. In most statistical problems,
dependence reduces effective sample size and, therefore, makes inference harder.
This, however, turns out not necessarily to be the case in our setting. The effect of
dependence on sparse testing under Ising model is more profound. To make this
more clear, we first consider one of the most popular examples of Ising models,
namely the Curie-Weiss model. In the Curie-Weiss model,

1 (9 L
exp| — Z XiXj +Z,U~ixi>,
Z(Q,[L) n I<i<j<n i=1

(5 Py p(X=x):=
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where in this section, with slight abuse of notation, we rename Pq 4, Eq, ., and
Z(Q,p) by Py, Eg p and Z(0, u), respectively, for brevity. The Curie—Weiss
model is deceivingly simple and one of the classical examples that exhibit the so-
called “thermodynamic” phase transition at 6 = 1; see, for example, Kac (1969),
Nishimori (2001). It turns out that such a phase transition directly impacts how
well a sparse signal can be detected. Following the convention, we shall refer to
6 =1 as the critical state, 6 > 1 the low temperature states and 6 < 1 the high
temperature states.

2.1. Hightemperature states. We consider first the high temperature case, that
is, 0 <6 < 1. Itis instructive to begin with the case when 6 =0, thatis, X, ..., X},
are independent Bernoulli random variables. By the central limit theorem,

ﬁ(if - % Ztanh(,u,,-)) —y N(O, % Zsech2(,u,~)>,

i=1 i=1

where

X =

S|

n
Z X;.
i=1
In particular, under the null hypothesis,
VnX =4 N(,1).

This immediately suggests a test that rejects Hy if and only /nX > L, for a di-
verging sequence L, = o(n~Y2gtanh(B)) is asymptotic powerful, in the sense of
(4), for testing (2) whenever s tanh(B) > n!/?. This turns out to be the best one
can do in that there is no powerful test for testing (2) if s tanh(B) = 0 (n'/?); see,
for example, Mukherjee, Pillai and Lin (2015). An immediate question of interest
is what happens if there is dependence, that is 0 < 8 < 1. This is answered by
Theorem 1 below.

THEOREM 1. Consider testing (2) based on X following the Curie—Weiss
model (5) with 0 < 0 < 1. If stanh(B) > n'/2, then the test that rejects Hy if
and only if /uX > L, for a diverging L, such that L, = o(n~'/?stanh(B)) is
asymptotically powerful for (2). Conversely, if s tanh(B) = O (n'/?), then there is
no asymptotically powerful test for (2).

Theorem 1 shows that, under high temperature states, the sparse testing problem
(2) behaves similarly to the independent case. Not only the detection limit remains
the same, but also it can be attained even if one neglects the dependence while
constructing the test.
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2.2. Low temperature states. Now consider the low temperature case when
6 > 1. The naive test that rejects Hy whenever \/nX > L, is no longer asymptot-
ically powerful in these situations. In particular, X concentrates around the roots
of x = tanh(fx) and ﬁ)? is larger than any L, = O (n'/?) with a nonvanishing
probability, which results in an asymptotically strictly positive probability of Type
I error for a test based on rejecting Ho if \/nX > L,,.

To overcome this difficulty, we shall consider a slightly modified test statistic:

2= 1S a5

n i=1 JFi

Note that

tanh( > X, ) =Ego(X;|Xj:j#1)
J#I

is the conditional mean of X; given {X; : j # i} under the Curie—Weiss model
with g = 0. In other words, we average after centering each observation X; by its
conditional mean, instead of the unconditional mean, under Hy. The idea of cen-
tering by the conditional mean is similar in spirit to the pseudo-likelihood estimate
of Besag (1974, 1975); see also Bhattacharya and Mukherjee (2018), Chatterjee
(2007a), Guyon (1995).

We can then proceed to reject Hy if and only if \/nX > L,. The next theorem
shows that this procedure is indeed optimal with the appropriate choice of L,.

THEOREM 2. Consider testing (2) based on X following the Curie—Weiss
model (5) with 8 > 1. If stanh(B) > n'/2, then the test that rejects Hy if and
only if«/ﬁf( > L, for a diverging L,, such that L,, = o(n~'/%s tanh(B)) is asymp-
totically powerful for (2). Conversely, if stanh(B) = O(n'/?), then there is no
asymptotically powerful test for (2).

Theorem 2 shows that the detection limits for low temperature states remain the
same as that for high temperature states, but a different test is required to achieve
it.

2.3. Critical state. The situation however changes at the critical state 6 = 1,
where a much weaker signal could still be detected. This is made precise by our
next theorem, where we show that detection thresholds, in terms of s tanh(B), for
the corresponding Curie—Weiss model at criticality scales as n~>/4 instead of n=1/2
as in either low or high temperature states. Moreover, it is attainable by the test that
rejects Hy whenever n'/4X > L, for appropriately chosen L,,.

THEOREM 3. Consider testing (2) based on X following the Curie—Weiss
model (5) with 0 = 1. If s tanh(B) > nl/4, then a test that rejects Hy if and only if
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n'/4X > L, for a suitably chosen diverging sequence Ly, is asymptotically pow-
erful for (2). Conversely, if stanh(B) = O (n'/*), then there is no asymptotically
powerful test for (2).

A few comments are in order about the implications of Theorem 3 in contrast
to Theorems 1 and 2. Previously, the distributional limits for the total magnetiza-
tion Y_"_, X; has been characterized in all the three regimes of high (6 < 1), low
(6 > 1) and critical (¢ = 1) temperatures [Ellis and Newman (1978)] when p = 0.
More specifically, they show that

_ 1
ﬁxiN(O,ﬁ> ifo <1,
WAL W ife=1,

1
"T—0( —m©®)?)

(ﬁ(X—m(e))|X>0)—d>N<0 ) ifo> 1,

where W is a random variable on R with density proportional to e=*'/12 with
respect to Lebesgue measure, and m (@) is the unique positive root of the equa-
tion z = tanh(fz) for 6 > 1. A central quantity of their analysis is studying
the roots of this equation. Our results demonstrate parallel behavior in terms of
detection of sparse external magnetization w. In particular, if the vector u =
(B,...,B,0,0,...,0) with the number of nonzero components equal to s, we
obtain the fixed-point equation z = ptanh(6z + B) + (1 — p)tanh(8z), where
p :=s/n. One can get an informal explanation of the detection boundary for the
various cases from this fixed- point equation. As, for example, in the critical case
when 6 = 1, we get the equation

z= ptanh(z + B) + (1 — p)tanh(z) =
z — tanh(z) = p[tanh(z + B) — tanh(z)].

The LHS of the second equality is of order z> for z ~ 0, and the RHS is of order
ptanh(B). This gives the relation 2~ ptanh B), which gives the asymptotic or-
der of the mean of X under the alternative as z ~ (p tanh B)!/3. Since under Hy the
fluctuation of X is n~1/4, for successful detection we need n~'/4 « (ptanh B)!/3,
which is equivalent to s tanh(B) > n'/4 on recalling that s = np. Similar heuristic
justification holds for other values of 0 as well.

Interestingly, both below and above phase transition the detection problem con-
sidered here behaves similar to that in a disordered system of i.i.d. random vari-
ables, in spite having different asymptotic behavior of the total magnetization in
the two regimes. However, an interesting phenomenon continues to emerge at
6 = 1 where one can detect a much smaller signal or external magnetization [mag-
nitude of stanh(B)]. In particular, according to Theorem 1 and Theorem 2, no
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signal is detectable of sparsity s < +/n, when 6 # 1. In contrast, Theorem 3 estab-
lishes signals satisfying s tanh(B) > n'/* is detectable for n'/* < s « \/n, where
an < b, means a, = O(b,). As mentioned before, it is well known that the Curie—
Weiss model undergoes a phase transition at & = 1. Theorem 3 provides a rigorous
verification of the fact that the phase transition point & = 1 can reflect itself in
terms of detection problems, even though 6 is a nuisance parameter. In particu-
lar, the detection is easier than at noncriticality. This is interesting in its own right
since the concentration of X under the null hypothesis is weaker than that for 6 < 1
[Chatterjee and Dey (2010)] and yet a smaller amount of signal enables us to break
free of the null fluctuations. We shall make this phenomenon more transparent in
the proof of the theorem.

3. Sparse testing under general Ising models. As we can see from the previ-
ous section, the effect of dependence on sparse testing under Ising models is more
subtle than the Gaussian case. It is of interest to investigate to what extent the be-
havior we observed for the Curie—Weiss model applies to the more general Ising
model, and whether there is a more broadly applicable strategy to deal with the
general dependence structure. To this end, we further explore the idea of centering
by the conditional mean we employed to treat low temperature states under the
Curie—Weiss model, and argue that it indeed works under fairly general situations.

3.1. Conditional mean centered tests. Note that under the Ising model (1),
EQ.o(X;|X; 1 j # i) = tanh(m; (X)),

where
n
miX) =Y 0i;X;.
j=1

Following the same idea as before, we shall consider a test statistic

n

> [Xi — tanh(m; (X))],

i=1

~ 1
X=-
n
and proceed to reject Hy if and only if /i X > L,. The following result shows that
the same detection limit s tanh(B) >> n'/2 can be achieved by this test as long as

1Qllese—t0e = Op(1), Where [|Qll¢,— ¢, = max),, <1 [[Qx]le, for p,g > 0.

THEOREM 4. Let X follow an Ising model (1) with Q such that ||Q|| ¢, — ¢, =
O(1). Consider testing hypotheses about p as described by (2). If stanh(B) >
n'/2, then the test that rejects Hy if and only if \/ﬁf( > L, for any L, — oo such
that L, = o(n~'/2s tanh(B)) is asymptotically powerful.
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The condition [|Ql|¢,,—¢,, = O(1) is a regularity condition which holds for
many common examples of the Ising model in the literature. In particular, Q
often times can be associated with a certain graph G = (V, E) with vertex set
V =[n]:={1,...,n} and edge set E C [n] x [n] so that Q = (n0)G/(2|E]),
where G is the adjacency matrix for G, |E| is the cardinality of E, and 8 e Ris a
parameter independent of n deciding the degree of dependence in the spin-system.
Below we provide several more specific examples that are commonly studied in
the literature.

Dense graphs. Recall that

n’|6)|
20E|

n
= max il <
”Q”Zoo—%oc lfifnj; |Ql]| =

If the dependence structure is guided by densely labeled graphs so that |E| =
O (n?), then [|Ql¢ e = O(D).

Regular graphs. When the dependence structure is guided by a regular graph
of degree d,,, we can write Q = 6G/d,,. Therefore,

n
101
Q s 0o = Max ijl=—-dy=10|,
QUi = s, 310111 = - =

and again obeying the condition ||Q||¢,,—¢, = O(1).

Erdés—Rényi graphs. Another example is the Erd6s—Rényi graph where an
edge between each pair of nodes is present with probability p, independent of
each other. It is not hard to derive from Chernoff bound and union bounds that
the maximum degree dyax and the totally number of edges | E£| of an Erd6s—Rényi
graph satisfy with high probability:

nin—1)
dmax <npy,(1+46), and |E|> Tpn (1 =9)

for any § € (0, 1), provided that np, > logn. This immediately implies that
1Qll ety = Op(1).

In other words, the detection limit established in Theorem 4 applies to all of
these types of Ising models. In particular, it suggests that, under the Curie—Weiss
model, the ﬁf( based test can detect sparse external magnetization u € E(s, B)
if stanh(B) > n'/2, for any 6 € R, which, in the light of Theorems 1 and 2, is
optimal in both high and low temperature states.
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3.2. Optimality. The detection limit presented in Theorem 4 matches those
obtained for independent Bernoulli sequence model. It is of interest to understand
to what extent the upper bounds in Theorem 4 are sharp. The answer to this ques-
tion might be subtle. In particular, as we see in the Curie—Weiss case, the optimal
rates of detection thresholds depend on the presence of thermodynamic phase tran-
sition in the null model. To further illustrate the role of criticality, we now consider
an example of the Ising model without phase transition and the corresponding be-
havior of the detection problem (2) in that case. Let

0
Q,‘JZEH{H—H:I modn}

so that the corresponding Ising model can be identified with a cycle graph of length
n. Our next result shows that the detection threshold remains the same for any 6,
and is the same as the independent case, that is, 6§ = 0.

THEOREM 5. Suppose X ~ P ., where Q is the scaled adjacency matrix of
the cycle graph of length n, that is, Q; j = %l{li —jl=1 mod n} for some 6 € R.
If stanh(B) < C4/n for some C > 0, then no test is asymptotically powerful for
the testing problem (2).

In view of Theorem 4, if s tanh(B) > n'/2 then the test that rejects Hy if and
only if ﬁf( > L, for any L, — oo such that L, = o(n~'2gtanh(B)) is asymp-
totically powerful for the testing problem (2). Together with Theorem 5, this shows
that for the Ising model on the cycle graph of length n, which is a physical model
without thermodynamic phase transitions, the detection thresholds mirror those
obtained in independent Bernoulli sequence problems [Mukherjee, Pillai and Lin
(2015)].

The difference between these results and those for the Curie—Weiss model
demonstrates the difficulty of a unified and complete treatment to general Ising
models. We offer here, instead, a partial answer and show that the test described
earlier in the section (Theorem 4) is indeed optimal under fairly general weak de-
pendence for reasonably regular graphs.

THEOREM 6. Suppose X ~ Pq, , as in (1) and consider testing hypotheses
about p as described by (2). Assume Q; j > 0 for all (i, j) such that ||Q|l¢o— e, <
o < 1 for some constant p > 0, ||Q||12: = 0(y/n), and

2

.
1 o1, 1" o).

n

1

-

If stanh(B) < C\/n for some constant C > 0, then no test is asymptotically pow-
erful for (2).
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Theorem 6 provides rate optimal lower bound to certain instances pertaining
to Theorem 4. One essential feature of Theorem 6 is the implied impossibility
result for the s < /n regime. More precisely, irrespective of signal strength, no
tests are asymptotically powerful when the number of signals drop below /n in
asymptotic order. This is once again in parallel to results in Mukherjee, Pillai and
Lin (2015), and provides further evidence that low dependence/high temperature
regimes (as encoded by [|Qll¢,,—¢,, < p < 1) resemble independent Bernoulli en-
sembles. Theorem 6 immediately implies the optimality of the conditional mean
centered tests for a couple of common examples.

High degree regular graphs. When the dependence structure is guided by a
regular graph, that is, Q = (%G, it is clear that

17 L
Q _0.

jor- =

If 0 <0 < 1 and d, = \/n, then one can easily verify the conditions of Theorem 6
since

IQlle—see, =6 <1, and [Q|E=n6%/d,.

Dense Erdos—Rényi graphs. When the dependence structure is guided by a
Erd6s—Rényi graph on n vertices with parameter p,, that is, Q = 6/(np,)G with
Gi,j ~ Bernoulli(p,) independently for all 1 <i < j < n, we can also verify that
the conditions of Theorem 6 hold with probability tending to one if 0 <6 < 1 and
pn bounded away from 0. As before, by Chernoff bounds, we can easily derive
that with probability tending to one,

dmax 01+ 8)np,

1Qlltoe— b0 =0 < =0(1+96)
npn npn
and
0> 62(1 +&)n(n— Dp
2 n
QI n2p2 E ij = 2n2p% 2pn( + 4),

nl<i<j<n

for any 6 > 0. Finally, denote by d; the degree of the ith node, then

. 22( 1zd)

npntl

1TQ1

o

Z (n—1)pn)°

p” i=1
= 0,(1),
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by Markov inequality and the fact that

E[Z(di —(n— 1>pn)2] =n(n — D pa(l — pa)-

i=1

4. Simulation results. We now present results from a set of numerical exper-
iments to further demonstrate the behavior of the various tests in finite samples.
To fix ideas, we shall focus on the Curie—Weiss model since it exhibits the most
interesting behavior in terms of the effect of thermodynamic phase transitions re-
flecting itself on the detection thresholds for the presence of sparse magnetiza-
tion. In order to demonstrate the detection thresholds cleanly in the simulation,
we parametrized sparsity s as s = n' "% for a € (0, 1). In this parametrization,
the theoretical detection thresholds obtained for the Curie—Weiss model can be re-
stated as follows. For 6 # 1, Theorem 1 and Theorem 2 suggest that the critical

signal strength equals tanh(B) ~ n=G=® In particular, if tanh(B) = n~", then

no test is asymptotically powerful when r > % — «; whereas the test based on

.. . . . . 1
conditionally centered magnetization is asymptotically powerful when r < 5 —a.

Moreover, for o > 1/2, all tests are asymptotically powerless irrespective of the
amount of signal strength. However, 6 = 1, Theorem 3 demonstrates that the crit-

ical signal strength equals tanh(B) ~ n—G=® n particular, if tanh(B) = n~",

then no test is asymptotically powerful when r > % — «a; whereas the test based

on total magnetization is asymptotically powerful when r < % — a. Moreover, for

o > 3/4, all tests are asymptotically powerless irrespective of the amount of the
signal strength. The simulation presented below is designed to capture the differ-
ent scenarios where nontrivial detection is possible, that is, « < 1/2 for 8 # 1 and
o <3/4for6=1.

We evaluated the power of the two tests, based on total magnetization and the
conditionally centered magnetization, respectively, at the significance level of 5%
and sample size n = 1000. We generated the test statistics 500 times under the
null and take the 95%-quantile as the critical value. The power against different
alternatives are then obtained empirically from 500 repeats each. The simulation
from a Curie—Weiss model in the presence of magnetization is done using the
Gaussian trick or the auxiliary variable approach as demonstrated by Lemma 3.
In particular, for a given 6 and w in the simulation parameter set, we generated
a random variable Z (using package rstan in R) with density proportional to

Sop(2) = ”9222 — Y7, logcosh(fz + ;). Next, given this realization of Z = z
we generated each component of X = (X1, ..., X;;) independently taking values in

. (i +20)x; .
+1 with Py ,, (X; = x;) = Mﬁ Thereafter, Lemma 3 guarantees the joint
distribution of X indeed follows a Curie—Weiss model with temperature parameter
6 and magnetization . We believe that this method is much faster than the one-

spin at a time Glauber dynamics which updates the whole chain X one location at
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a time. We have absorbed all issues regarding mixing time in the simulation of Z,
which being a one-dimensional continuous random variable behaves much better
in simulation.

In Figure 1, we plot the power of both tests for 8 = 0.5 (high temperature, condi-
tionally centered magnetization), 8 = 1 (critical temperature, total magnetization)
and 6 = 1.5 (low temperature, conditionally centered magnetization). Each plot
was produced by repeating the experiment for a range of equally spaced signal
sparsity-strength pairs («, r) with an increment of size 0.05. In addition, we plot
in red the theoretical detection boundary given by r = 1/2 — « for noncritical tem-
perature (6 # 1) and r = 3/4 — « for critical temperature (6 = 1). These simulation
results agree very well with our theoretical development.

5. Discussions. In this paper, we study the asymptotic minimax rates of de-
tection for arbitrary sparse signals in Ising models, considered as a framework
to study dependency structures in binary outcomes. We show that the detection
thresholds in Ising models might depend on the presence of a “thermodynamic”
phase transition in the model. In the context of a Curie—Weiss—Ising model, the
presence of such a phase transition results in substantial faster rates of detection
of sparse signals at criticality. On the other hand, lack of such phase transitions,
in the Ising model on the line graph, yields results parallel to those in independent
Bernoulli sequence models, irrespective of the level of dependence. We further
show that for Ising models defined on graphs enjoying certain degree of regularity,
detection thresholds parallel those in independent Bernoulli sequence models in
the low dependence/high temperature regime. It will be highly interesting to con-
sider other kinds of graphs left out by Theorem 6 in the context of proving match-
ing lower bounds to Theorem 4. This seems highly challenging and might depend
heavily on the sharp asymptotic behavior of the partition function of more general
Ising model under low-magnetization regimes. The issue of unknown dependency
structure Q, and especially the estimation of unknown temperature parameter 6
for Ising models defined on given underlying graphs, is also subtle as shown in
Bhattacharya and Mukherjee (2018). In particular, the rate of consistency of an
estimator of 6 under the null model (i.e., 4 = 0) depends crucially on the posi-
tion of & with respect to the point of criticality and in particular high temperature
regimes (i.e., low positive values of 6) may preclude the existence of any consistent
estimator. The situation becomes even more complicated in presence of external
magnetization (i.e., u # 0). Finally, this paper opens up several interesting avenues
of future research. In particular, investigating the effect of dependence on detection
of segment type structured signals deserves special attention.

6. Proof of main results. In this section, we collect the proofs of our main
results. It is convenient to first prove the general results, namely the upper bound
given by Theorem 4 and lower bound by Theorem 6, and then consider the special
cases of the Ising model on a cycle graph, and the Curie—Weiss model.
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FIG. 1. The power of testing procedures in the dense signal setup. (a) shows the power of the
conditionally centered magnetization test for 6 = 0.5, (b) shows the power of the total magnetization
test for 6 =1 and (c) shows the power of the conditionally centered magnetization test for 6 = 1.5.
The theoretical detection threshold is drawn in red.
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FIG. 1. (Continued).

6.1. Proof of Theorem 4. 'The key to the proof is the tail behavior of

n

1
for®X) =~ DX —EQu(XilX;:j#i)]

i=1

1

= — Z|:X,~ — tanh(
i=1

n'_

> QiX; +Mj>],

J#i
where Eq , means the expectation is taken with respect to the Ising model (1). In

particular, we shall make use of the following concentration bound for fq , (X).

LEMMA 1. Let X be a random vector following the Ising model (1). Then for
anyt >0,

nt?
Pou(lfouXz1) = zexp{_4<1 +1Qll s e)? }

Lemma 1 follows from a standard application of Stein’s method for concentra-
tion inequalities [Chatterjee (2005, 2007b), Chatterjee and Dey (2010)]. We defer
the detailed proof to the Appendix.
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We are now in position to prove Theorem 4. We first consider the Type I error.
By Lemma 1, there exists a constant C > 0 such that

Pg.o(v/nX > L,) <2exp(—CL?2) — 0.

It remains to consider the Type II error. Note that

X — fouX) = %i[tanh(Z Qij X+ Mi) - tanh(Z Qinj)}

i=1 J#i J#i
1
= - Z [tanh(ZQinj—l—,ui) —tanh(ZQ,-ij)}
iesupp(p) J#i J#
1
= > [tanh(ZQ,-,X,- + B> —tanh(ZQ,-ij)},
iesupp(u) J#i J#i

where the inequality follows from the monotonicity of tanh.
Observe that for any x e R and y > 0,

[1— tanhz(x)] tanh(y)
1 4 tanh(x) tanh(y)

> [1 — tanh(x)] tanh(y),

tanh(x + y) — tanh(x) =
(6)

where the inequality follows from the fact that | tanh(x)| < 1. Thus,

s tanh(B)
X_fQ,/L(X)Z Z |:1—tanh(ZQ,~ij>:|.
iesupp(p) J#i
Because
> Qi X < 11Qlles— oo
J#i
we get
S s tanh(B)
X — fouX) > ———=[1 — tanh(||Qll too—¢0) -
Therefore,
s tanh(B)

VX —/nfouX) = [1 — tanh(1Qllee— )] > L

i

This, together with another application of Lemma 1, yields the desired claim.

6.2. Proof of Theorem 6. The proof is somewhat lengthy and we break it into
several steps.
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6.2.1. Reduction to magnetization. We first show that a lower bound can be
characterizing the behavior of X under the alternative. To this end, note that for
any test 7' and a distribution 7w over E(s, B), we have

Risk(7, B 5, Q) =Poo(TX)=1)+ sup Pq,(T(X)=0)
HEE(s,B)

= Poo(TX0=1) + [ Pou(T(X) =0)dr(w)

The rightmost-hand side is exactly the risk when testing Hy against a simple alter-
native where X follows a mixture distribution:

P,(X=x):= ‘/IP’Q,,L(X =x)dm ().
By the Neymann—Pearson lemma, this can be further lower bounded by
RisK(T. E(5, B), Q) = Po(Lx (X) > 1) + [ Pou(La(X) < 1) dr(w).

where

is the likelihood ratio.
We can now choose a particular prior distribution 7 to make L, a monotone
function of X. To this end, let & be supported over

E(s, B) = {n €10, BY" : [supp(w)| = s},
so that
T(W) < Z(Q.W)  VmeEG, B).
It is not hard to derive that, with this particular choice,
L, (X) x Z exp(u.TX) =Eg exp(B Z Xi),
pe&(s,B) ieS

where E5 means expectation over S, a uniformly sampled subset of [r] of size s. It
is clear, by symmetry, that the rightmost-hand side is invariant to the permutation
of the coordinates of X. In addition, it is an increasing function of

1 n
l{i € [n]: X; =1}|=§<H+ZX1'>,
i=1

and hence an increasing function of X.
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The observation that L, (X) is an increasing function of X implies that there
exists a sequence k, such that

Risk(T, E(s, B), Q) = Pq.o(L,(X) > 1) + / Po.u(Lr(X) < 1)dr(p)
= IPQ,()(Z Xi > /cn) +/]PQ44 (Z X; < /cn> dm(w)
i=1 i=1
ZPQ’O(ZX,‘>K;1)+ i~l’lf PQ,Ilv(ZXiSKn)-

=1 KEE(s,B) i=1

It now remains to study the behavior of X.
In particular, it suffices to show that, for any fixed x > 0,

n
(7) 1li1nlioréﬂP>Q,0{X;xi >xﬁ} >0,
1=
and for any x,, — o0,
n
(8) limsup sup Pgp (Z X; > xnﬁ> =0.
n=>00 nek(s,B) i=1

Assuming (7) holds, then for any test 7 to be asymptotic powerful, we need «, >
/1 to ensure that

n
PQvO{ZXi > Kn} — 0.
i=l
But, in the light of (8), this choice necessarily leads to
n
inf PQ,,L{ZXi < Kn} — 1,
HEE(s,B) i1
so that
Risk(7, E(s, B),Q) — 1.
In other words, there is no asymptotic powerful test if both (7) and (8) hold. We

now proceed to prove them separately.

) 6.2.2. Proof of (8). Recall that m;(X) = 2?21 Q;;jX; and assume u €
E(s, B) with s tanh(B) < C/n. Also letr = (rq, ..., rn) | where r = r(Q) := Q1.
We split the proof into two cases, depending on whether B <1 or B > 1.
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The case of B € [0, 1]. Write

Zx Z i — tanh(m; (X) + ;)]

i=1

+ Z[tanh(m,-(X) + ;) — tanh(m; (X))]
i=1

n n
+ Z[tanh(mi(X)) —m;i(X)] + Zmi(x)~
i=1 i=l1
Observe that
Zmi(x) =1"QX = ZriX,- =p* ZXi + Z(”i — ) Xi,
i=1 i=1 i=1 i=1

where p, = %lTr = %ITQI. Thus,

(1—p) Y X; = Z  — tanh(m; (X) + 17)]

i=1

+ Z[tanh(m,-(X) + ;) — tanh(m; (X))]
i=1

+ Y [tanh(m; (X)) — m; (X)) + Y _(ri — ps) X;
i=1 i=1
=: A1+ Ar 4+ Az + Ay

It is clear that

We now argue that for any x,, — oo,

9 sup IP’Q,,,{AJ- >
wei(s,B)

x”f}—>0 i=1,...,4.
4(1—p*) /

The case for A4 follows from our assumption (]|Q1 — I Ql 112 = O(1)) upon the
Cauchy—Schwarz inequality. The case A follows immedlately from Lemma 1. On
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the other hand, we note that

n

> [tanh(m; (X) + ;) — tanh(m; (X))]
i=1

< _|tanh(m; (X) + ;) — tanh(m; (X))

i=l

n
<) tanh(u;) = s tanh(B),
i=1
where the second inequality follows from the subadditivity of tanh. The bound (9)
for A then follows from the fact that s tanh(B) = O (/n).
We now consider Asz. Recall that |x — tanh(x)| < x2. It suffices to show that, as
Xp — 00,

(10) sup PQ,,L!me(X) > ixn\/ﬁ} — 0,

HEE(s, B) i=1
which follows from Markov inequality and the following lemma.

LEMMA 2. Let X be a random vector following the Ising model (1). Assume
that Q; j > 0 for all (i, j) such that ||Qll¢o,—¢o, < p for some constant p < 1, and

Q|2 = O(/n). Then for any fixed C > 0,

1 n
lim sup sup WEQ’M (Z m%(X)) < 00.

n—00  pel0,1]" iz

i ui<Cyn

The proof of Lemma 2 is deferred to the Appendix in Mukherjee, Mukherjee
and Yuan (2018).

The case of B > 1. In this case, stanh(B) < C./n implies s < C’\/n, where
C':= C/tanh(1). Also, since the statistic ) 7_, X; is stochastically nondecreasing
in B, without loss of generality it suffices to show that, for a fixed S C [n] obeying
IS =5,

11 limsuplimsuplimsup sup PQ,M{ZXi>K\/E}=0.

K—oo n=00 B—o00 ,cH(s,B) iese
supp(u)=S

Now, for i € S we have for u € Z(s, B)
B+mi(x)

PouXi =11X;j=x}, ] 71 = gy o m

1 1
= 1L o—2m®™—28 = | § (228"
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and so limg oo PQu(X; = 1,i € S) = 1 uniformly in u € é(s, B) with s <
C’/n. Also note that for any configuration (x;, j € S°) we have

Pou(Xi=xi,i € S°|X; =1,i €8)

(12)
ocexp( Z xlx]Ql]+Z-xl/’LSl)a
i,jese ieS¢
where fig5i =35 Qij < |Qlles—to < p- Further we have
n n n
(13) dohsi=).2 Q=) Qj=Cpn
i=1

i=1jes jeSi=1

‘We shall refer to the distribution in (12) as ]P)Qs i where QS isthe(m—s) x (n—s)

principle matrix of Q by restricting the index in S¢. Therefore, we simply need to
verify that Qg satisfy the conditions for Q in Theorem 6. Trivially, Q;; > 0 for all

i, jand ||Q||goo_>goo < 1Qlpe—> o, < p. For verifying the third condition, that is,
lTQl

HQl— — o),

note that

lTQl 2

o) = HQI—

a Z rl(Q)_rJ(Q))

l_]l

_n—s 1 ‘ o )
) 2(n—s>l§c(r’(Q) (@)
T
5 1'Qt

n

2

Therefore, with op(1) denoting a sequence of real numbers that converges to 0
uniformly over u € E(s, B),

limsup sup IP’Q,M{ZXZ->K\/E}

B—o00 ycE(s,B) iese
supp(u)=S
<limsup sup {PQ#(Z Xi>Kﬁ|Xj=1,jES)+OB(1)}
B—00 pel(s,B) iese

supp(u)=S
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=limsup sup ]P)Qs.ﬁs<z Xi> Kﬁ)

B=00 puek(s,B) iese
supp(u)=S
< sup sup PQS,;ZS(Z X,~>Kﬁ),
SC[I’!] ﬂ.sl iesc

Yiese ftsi<C'p/n
where the last line follows from (13). The proof of the claim (11) thereafter follows

using the same argument as that for the case when B < 1 since fis; < p < 1 for
eachi e S°.

6.2.3. Proof of (7). lItis clear that, by symmetry,

> Kﬁ) =21P>Q,0(i X; > Kﬁ).
i=1

n

>,

i=1

(14) PQ,O(

In establishing (8), we essentially proved that
n

(15) limsuplimsup sup Pq,p (Z X; > Kﬁ) =0.

K—o0 7N=00 4 eB(s,B) i=1
By choosing K large enough, we can make the right-hand side of (14) less than
1/2. This gives
(16) Z exTQx/z <2 Z exTQx/Z’

xe{—1,1} xeDy, k

where Dy, x := {| >/, Xi| < K/n}. Then, setting C, := {}_]_, X; > 1/n}, for
any K > A we have
PQ.0(Cy) = Pg,0(C, N Dy k)

X' Qx/2
_ ZXGC,,QD,,,K e Qx/

C Yxeqonap X2
x'Qx/2

- 1 2 xeC,nD, x €
T2 Yiep, XU

_ X' Qx/24+ = YL xi
e 2Ky ec,nD, € o/n

v

2 Y xen, x ¢ &/?
. e K1 P uiy(Co N Dy k) Z(Q, pu(t))
2 PQ.0(Dy k) Z(Q,0)
e—ZKt

z — PQ.ut)(Ch N Dy k),
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where p(r) = tn~'/21. In the last inequality we use the fact that the function ¢ —
Z(Q, u(1)) is nonincreasing in ¢ on [0, 00), as

3 1 " 1 =
—7(Q.u(t)) = —E X;>—FE X; =0.
Py (Q,u()) NG Q,u(t); N Q,Olgl i

To show (7), it thus suffices to show that there exists K large enough and ¢ > 0
such that

llilrggréfIPQ,u(,)(Cn N D, k) >0.
To this end, it suffices to show that for any A > 0 there exists ¢ such that
n

(17) liminfPq ) (X} X; > Aﬁ) > 0.

1=
If (17) holds, then there exists ¢ > 0 such that

1}'11n_1)i01<1>fIP’Q,,L(,) (Cp) > 0.

It now suffices to show that for any ¢ fixed one has

limsuplimsup Pq (1) (Dy, g ) =0,

K—o0 Nn—>00

which follows from (15).
It now remains to show (17). To begin, note that for 2 > 0,
h
EQ.umXi =EqQum) tfﬂmh<mz’(X) + ﬁ)

tanh(m; (X)) + tanh(%)

—E
QA anh(m; (X)) tanh(L)

> 1|:IEJ tanh(m; (X)) + tanh<i>]
) Q,u(h) i \/ﬁ

- 1t h< h )
—tanh| — ).
2 Jn
In the last inequality, we use Holley inequality [e.g., Theorem 2.1 of Grimmett
(2006)] for the two probability measures Pq o and Pq, ) to conclude
EQ,um) tanh(m,- (X)) >EqQ.,o0 tanh(mi (X)) =0,

in the light of (2.7) of Grimmett (2006). Adding over 1 <i <n gives

1 i Jn h
18 F'(h)=—E X; > —t h(—)
(18) " (h) T Q,u(m; R W
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where F, (h) is the log normalizing constant for the model Pq ;). Thus, using
Markov’s inequality one gets

- —Lyn ¥ B
Fouw (Z Xi = Aﬁ) =Poun(e V== =™
i=1

<expl{h+ Fu(t — 1) = F, (1)}

Using (18), the exponent in the rightmost-hand side can be estimated as

bt Folt — 1) — Fo(t) =,\—ftil Fl(hydh < — ?tanh(tjﬁl),

which is negative and uniformly bounded away from O for all n large for ¢ =
4x + 1, from which (17) follows.

6.3. Proof of Theorem 5. We set m;(X) = ?:1 Q;;X; and assume pu €

E(s, B) with stanh(B) < C./n. By the same argument as that of Section 6.2.1,
it suffices to show that there does not exist a sequence of positive reals {L,},>1
such that

n n
IPQ,O(Z X; > L,,) +Po.p (Z X; < L,1> — 0.

i=1 i=1

Suppose, to the contrary, that there exists such a sequence. For any ¢ € R, we have

EQ’oexp{ﬁéXi} =%{/—3)1) = A1 (ﬁ)n + Az(ﬁ)n,

where

e? cosh(r) + (—=1)iT1/e29 sinh(¢)2 + e—20
e + e~ '

Ai(t) =

This computation for the normalizing constants for the Ising model on the cycle
graph of length # is standard [Ising (1925)]. By a direct calculation we have

21(0) = 1 > A2(0) =tanh(6),
11(0) = 25(0) =0,
c(0) :=17(0) > 0,

and so

Lyn oy, t n t n n—oo 0(9)f2
Eq.0ev" =1 =)»1<— + M| — — e 2 .
’ Jn N/
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This implies that under Hy

1 & d
T ;X,- — N(0,c(9)),

which for any A > 0 gives

n
1;;3%%@@0(2 X; > xﬁ) > 0.

i=1

n

Therefore, L, > +/n. Now invoking Lemma 1, for any K > 0 we have
PQ,[L{ Z(Xl — tanh(mi (X) —|— Ml)) > K\/ﬁ} S 26_[(2/4(]+9)2.
i=1

On this set, we have for a universal constant C < oo

n

> (X; — tanh(m; (X)))

i=1

=

Y (Xi — tanh(m; (X) + Mz))‘

i=1

—+

Z(tanh(m,-(X) + wi) — tanh(m,-(X)))‘

i=1
n
< K/n+C)_tanh(u;)
i=1
< K+/n + Cstanh(B),
and so

i(X,- — tanh(m,- (X)))

i=1

IPQ,,L[ > K/n+Cs tanh(B)}

(19)
< 2e—K2/4(1+9)2‘

Also, setting g(¢) :=1t/6 — tanh(¢), we get
n

> (Xi — tanh(m; (X)) =Y _ g(m;i(X)) = {Qa(X) — R (X)}g(6).

i=1 i=1
where
0,(X):={1<i<n:m(X)=06}|,
R,(X) := Hl <i<n:mX) = —9}\.

Indeed, this holds, as in this case m; (X) can take only three values {—6, 0, 8}, and
g(+) is an odd function. Thus using (19) gives

g(0)

Po.u, { 10, (X) — R,(X)| >
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But then we have

IEDQ,un

n n
> Xi> Ln} = PQ,#{Zmi(X) > 0Ln}
i=1 i=1

=PQu{0n(X) — Ry(X) > Ly}
< 2o~ K2 /4146)?

as

K \/n + Cstanh(B)

8(0)
This immediately yields the desired result.

L,>

6.4. Proof of Theorem 1. By Theorem 6, there is no asymptotically powerful
test if s tanh(B) = O (n'/?). It now suffices to show that the naive test is indeed
asymptotically powerful. To this end, we first consider the Type I error. By Theo-
rem 2 of Ellis and Newman (1978),

- 1
X—=4N0,——),
Vn d ( 1 0)
which immediately implies that Type I error
Pg’o(\/ﬁ)_( >L,)— 0.

Now consider Type II error. Observe that

) 12
X fou® = Ztanh(ZQi,«Xj + m)

i=1 i

1< =
=— Ztanh(@X +pni —0X;/n)
n‘
i=1

1 & -
=—> tanh(0X +p;)) + O(n "),
n
i=1
where the last equality follows from the fact that tanh is Lipschitz. In addition,

1¢ . oo 1 . _
=Y tanh(0X + ;) =tanh(@X) + -~ ) [tanh(6X + p;) — tanh(6X)]
n i=1 iesupp(p)

_ 1 _ _
>tanh(0X)+— > [tanh(§X + B) — tanh(6X)]
i €supp(p)

s tanh(B)
n

> tanh(6 X) + [1 —tanh(6 X)],

> tanh(6 X) +

stannﬂ[l — tanh(6)],
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where the second to last inequality follows from (6). In other words,

s tanh(B)
NGO

Since sup,cp %h(“) < 00, an application of Lemma 1, together with the fact

that L, = o(n~'/%s tanh(B)) yields
Py u(vnX > Ly) — 1.

V(X —tanh(0X)) — /n fou(X) > [1 — tanh(8)].

6.5. Proof of Theorem 2. The proof of attainability follows immediately from
Theorem 4. Therefore, here we focus on the proof of the lower bound. As before,
by the same argument as those following Section 6.2.1, it suffices to show that
there does not exist a sequence of positive reals {L,},>1 such that

n n
PQ,(,(Z X; > Ln> + P (Z Xi < L,,) — 0.

i=1 i=1
From the proof of Lemma 1 and the inequality | tanh(x) — tanh(y)| < |[x — yl,
for any fixed ¢ < oo and u € E(s, B) we have

2

0 .
tanh(@X) + —+ %) < Qe 2nap ,

Py ,L<X > —tanh(@X + B) +

where
2 26 26

an==+=+=.
n n n

Also note that

— tanh(@X + B) + tanh(@X) <tanh(6X) + C tanh(B),

for some constant C < oo. Therefore

0
Py u{ — tanh(6X) > C— tanh(B) + + 7} < 2exp(—t2/2nan)-

Since s tanh(B) = O (n'/?), we have

(20) sup Py ,,,{ — tanh(6X) > L)} <2exp(—t*/2nay)

nel(s,B) vn

for some finite positive constant C (¢). Now, invoking Theorem 1 of Ellis and New-
man (1978), under Hy : p = 0 we have

- - d 1 —m?

where m is the unique positive root of m = tanh(6m). The same argument as that
from Section 6.2.1 along with the requirement to control the Type I error then
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imply that without loss of generality one can assume the test ¢, rejects if X >
m+ L,, where L, > n~1/2.

Now, note that g(x) = x — tanh(fx) implies that g’(x) is positive and increasing
on the set [m, co) and, therefore,

g(x) = g(m) + (x —m)g'(m).

This gives
. _ . C)
PQ,/L X>m +Ln,X —tanh(QX) < W
- 5 C(1) >
<P X L, X—m<—"_1|,
<Bou(Xom+ L X m= ooln

which is O for all large 7, as L, 3> n~!/2. This, along with (20) gives
liminf inf g u(1—¢,) >1,

n—=>00 1 eq(s,B)

thus concluding the proof.

6.6. Proof of Theorem 3. The proof of Theorem 3 is based on an auxiliary
variable approach known as Kac’s Gaussian transform [Kac (1959)], which basi-

cally says that the moment generating function of N (0, 1) is ¢'*/2, This trick has
already been used in computing asymptotics of log partition functions [Comets
and Gidas (1991), Mukherjee (2013), Park and Newman (2004)].

In particular, the proof relies on the following two technical lemmas. The proof
to both lemmas is relegated to the Appendix in Mukherjee, Mukherjee and Yuan
(2018) for brevity.

LEMMA 3. Let X follow a Curie—Weiss model of (5) with 6 > 0. Given X = x
let Z,, be a normal random variable with mean x and variance 1/(n6). Then:

(a) Given Z, = z the random variables (X1, ..., X,) are mutually indepen-
dent, with
eHitz0)xi
Py p(Xi =x;) =

em+z9 + efuifzf) ’
where x; € {—1, 1}
(b) The marginal density of Z, is proportional to eI+ ywhere
nbz>
2

n
— Zlog cosh(@z + ;).

i=l

(21) fop(@) =
(©)

2
n
sup Eg (Z(X,- — tanh(u; + QZ,,))) <n.
u1el0,00)" i=1
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While the previous lemma applies to all & > 0, the next one specializes to the
case 0 = 1 and gives crucial estimates which will be used in proving Theorem 3.
For any u € (R1)", set

1 n
A) = —3 tanh(u,).
i=1

This can be thought of as the total amount of signal present in the parameter p. In
particular, note that for u € E(s, B) we have

Alp) > s tanh(B)

’

and for u € é(s, B) we have

A(w) = s tanh(B) .

In the following, we abbreviate s tanh(B)/n := A,,.

LEMMA 4. (a) If 0 =1, for any p € E(s, B) the function f, ,(-) defined by
(21) is strictly convex, and has a unique global minimum m,, € (0, 1], such that

(22) m; = ©(Aw)).
(b)

limsuplimsup Py ,(Z, — m, > Kn*1/4) =0.
K—oo n—>00

©IfA;, > n=3/% then there exists 8 > 0 such that

limsup sup Py n(Z, <ém,)=0.
n—=>00 w:A(u)>=An

The proof of Lemma 4 can be found in the Appendix in Mukherjee, Mukherjee
and Yuan (2018). We now come back to the proof of Theorem 3. To establish the

upper bound, define a test function ¢, by ¢,(X) =1 if X > 28A,11/ 3, and O other-
wise, where § is as in part (c) of Lemma 4. By Theorem 1 of Ellis and Newman
(1978), under Hy : p = 0 we have

(23) A% Ly,
where Y is a random variable on R with density proportional to e /12 Since
A, > n—3/% we have
Pg.o(X > 25AL°3) =o(1),
and so it suffices to show that

(24) sup  Pp (X <28AL3) =o(1).
pAp)=A,
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To this effect, note that

n n n
> Xi =) (X; —tanh(w; + Zy,)) + Y _ tanh(u; + Zy,)
i=1 i=1 i=1

n
> > (X; —tanh(p; + Zy,)) + ntanh(Z,).
i=1

Now by Part (c) of Lemma 3 and Markov’s inequality,
n
> (Xi —tanh(u; + Z,))| < 6nA,/>
i=1
with probability converging to 1 uniformly over p € [0, 00)”. Thus it suffices to
show that
sup  Pg(nZ, <38nAl°%) =o(1).
wAp=ZA,
But this follows on invoking Parts (a) and (c) of Lemma 4, and so the proof of the
upper bound is complete.
To establish the lower bound, by the same argument as that from Section 6.2.1,
it suffices to show that there does not exist a sequence of positive reals {L,},>1
such that

n n
Pg.0 (Z X; > L,,) +Po.p (Z X; < L,,) — 0.
i=1 i=1
If lim, 0o n /4L, < 0o, then (23) implies
liminfEy ¢, > 0,
n—oo

and so we are done. Thus assume without loss of generality that n=3/4L, — oo.
In this case, we have

n n n
> Xi =) (X; —tanh(w; + Zy)) + Y _ tanh(u; + Zy,)
i=1 i=1 i=1

n n
< 2_(Xi —tanh(u; + Zy)) + ) _tanh(ui) +n|Zyl,
i=1 i=1
and so

n
Py (Z Xi > Ln>

i=1

SPQ,[L{ >Ln/3}

+P9,u{nzn > L, /3} +P9,u{nzn <—Ly/3},

n
ZXi — tanh(u; + Zp)
i=1
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where we use the fact that

n

> tanh(ui) = O (n'/*) < L.

i=1
Now by Part (c) of Lemma 3 and the Markov inequality, the first term above
converges to 0 uniformly over all w. Also by Parts (a) and (b) of Lemma 4,
Po.u{inZ, > L,/3} converges to O uniformly over all g such that A(u) =
O(n=3/*). Finally, note that the distribution of Z, is stochastically increasing in
M, and so

P@,u{”lzn < _Ln/3} = IP)9,0{”Zn < _Ln/?’},

which converges to 0 by (23). This completes the proof of the lower bound.
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SUPPLEMENTARY MATERIAL

Supplement to ““Global testing against sparse alternatives under Ising mod-
els” (DOL: 10.1214/17-AO0S1612SUPP; .pdf). The supplementary material contain
the proofs of additional technical results.
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