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JUMP FILTERING AND EFFICIENT DRIFT ESTIMATION FOR
LÉVY-DRIVEN SDES

BY ARNAUD GLOTER∗, DASHA LOUKIANOVA∗ AND HILMAR MAI†

Université d’Evry Val d’Essonne∗ and ENSAE-ParisTech†

The problem of drift estimation for the solution X of a stochastic dif-
ferential equation with Lévy-type jumps is considered under discrete high-
frequency observations with a growing observation window. An efficient and
asymptotically normal estimator for the drift parameter is constructed un-
der minimal conditions on the jump behavior and the sampling scheme. In
the case of a bounded jump measure density, these conditions reduce to
n�3−ε

n → 0, where n is the number of observations and �n is the maximal
sampling step. This result relaxes the condition n�2

n → 0 usually required
for joint estimation of drift and diffusion coefficient for SDEs with jumps.
The main challenge in this estimation problem stems from the appearance
of the unobserved continuous part Xc in the likelihood function. In order to
construct the drift estimator, we recover this continuous part from discrete
observations. More precisely, we estimate, in a nonparametric way, stochas-
tic integrals with respect to Xc. Convergence results of independent interest
are proved for these nonparametric estimators.

1. Introduction. The class of solutions of Lévy-driven stochastic differential
equations (SDEs) has recently attracted a lot of attention in the literature due to
its many applications in various areas such as finance, physics and neuroscience.
Indeed, it includes important examples taken from finance such as the well-known
Barndorff–Nielsen–Shephard model, the Kou model and the Merton model (cf.
[2], [14] and [23]) as well as the stochastic Morris–Lecar neuron model (cf., e.g.,
[5]) from neuroscience to name just a few. Consequently, statistical inference for
these models has recently become an active domain of research.

In this work, we aim at estimating the unknown drift parameter θ ∈ � ⊂ R
d

based on discrete observations Xθ
t0
, . . . ,Xθ

tn
of the process Xθ given by

Xθ
t = Xθ

0 +
∫ t

0
b
(
θ,Xθ

s

)
ds +

∫ t

0
σ

(
Xθ

s

)
dWs

(1.1)

+
∫ t

0
γ

(
Xθ

s−
)
dLs, t ∈ R+,

where W = (Wt)t≥0 is a one-dimensional Brownian motion and L a pure jump
Lévy process with Lévy measure ν.
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We consider here the setting of high frequency observations with a growing
time window, that is, for the discrete sample Xθ

t0
, . . . ,Xθ

tn
with 0 ≤ t0 ≤ · · · ≤ tn

we assume that the sampling step �n := max{ti − ti−1 : 1 ≤ i ≤ n} tends to 0 and
tn → ∞ as n → ∞. It is well known that due to the presence of the diffusion
part, one can only estimate the drift consistently if tn → ∞. A crucial point for
applications in the high frequency setting is to impose minimal conditions on the
sampling step size �n. This will be one of our main objectives in this paper.

The topic of high frequency estimation for discretely observed diffusions with-
out jumps is well developed by now; see, for example, [32], [13] and references
therein for joint estimation of drift and diffusion coefficient. Less results are known
when a jump component is added to the process. In the case of high frequency
estimation for diffusion with an additional jump component, [22] investigates
Gaussian quasi-likelihood estimators of a joint drift-diffusion-jump part parame-
ter. A contrast-type estimation function, for joint estimation of drift, diffusion and
jump parts when the jumps are of compound Poisson type, is studied in [29]. These
results are generalized in [26] to include more general driving Lévy processes, and
[24] also provide a large generalization of this paper. The LAN property for drift
and diffusion parameters is studied in [30] via Malliavin calculus techniques. In
all these papers, joint estimation is considered under conditions on the sampling
scheme and the Lévy measure, which, in the case of a bounded jump measure
density, is at best n�2

n → 0.
It is important to note here that the principles of the estimation of the drift, dif-

fusion or jump law parameters are of completely different nature. The estimation
of the volatility is feasible on a compact interval, whereas the estimation of the
drift and the jump law requires a growing time window. Also, due to the Poisson
structure of the jump part, the estimation of the jump parameter can be well sepa-
rated from those of the drift and the diffusion part. In this work, we focus therefore
on the estimation of the drift parameter only and construct a consistent, asymptot-
ically normal and efficient estimator, under conditions on the jump behavior and
the sampling scheme, which in the case of bounded jump measure density reduce
to n�3−ε

n → 0.
A natural approach to estimate the unknown drift parameter would be to use a

maximum likelihood estimation, but the likelihood function based on the discrete
sample is not tractable in this setting, since it depends on the transition densi-
ties of X, which are not explicitly known. On the contrary, the continuous-time
likelihood function is explicit. Our aim is to approximate this function from dis-
crete data, and hence define some contrast function. The main difficulty is that the
continuous-time likelihood involves the continuous part Xc of X that is unobserv-
able under discrete sampling. Intuitively, this tells us that the continuous part Xc

has to be recovered, hence the jumps of X have to be removed in order to obtain
an approximation of the continuous likelihood function.

The question of estimation of the continuous part of an Itô-semimartingale ap-
pears naturally in many statistical inference questions (cf., e.g., [3] and [18]) and
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constitutes in itself an interesting nonparametric problem. In this article, we study
the question of estimation of stochastic integrals with respect to the continuous part
of X from a discrete sample of X. Propositions 4.1 give explicit rates of conver-
gence for our estimators of these quantities. Besides being of independent interest,
these results constitute the main tool for the asymptotic analysis of our drift esti-
mators.

The technique we use in order to recover stochastic integrals with respect to the
continuous part of X consists in comparing the increments of X with a threshold,
suggested by the typical behavior of a continuous part of X. This approach will
be called jump filtering in the sequel. The thresholding technics are not new and
were also used in [29], [18], [17] and [3]. Note that we do not raise the question of
optimality of the threshold’s choice, aspect studied, for example, in [27], [28] and
[6]. In contrast, we have paid particular attention to the improvement of the existing
conditions on the sampling scheme, which in particular became possible thanks to
a careful study of the joint law of the biggest jump and of the total contribution of
the other jumps in each sampling interval (Lemma 6.3).

The drift estimator is then constructed by applying a jump filter to the dis-
cretized likelihood function and maximizing the resulting criterion function to
obtain what will be called the filtered MLE (FMLE). To study the properties of
the FMLE, we first focus on the MLE obtained from continuous observations and
show that this MLE is asymptotically normal (Theorem 5.2) with explicit asymp-
totic variance. We then prove the LAN property which gives by Hájek–Le Cam’s
convolution theorem that the continuous MLE is efficient (Theorem 5.3). We show
in the next step that the FMLE attains asymptotically the same distribution as the
MLE based on continuous observations, which proves the efficiency of the FMLE
(Theorem 3.2). The last step is mainly based on our results for the jump filter
(Proposition 4.1).

The consistency of the FMLE is obtained without further assumptions on the
sampling scheme. The asymptotic normality necessitates some additional condi-
tions on the rate at which �n goes to 0 that depend on the behavior of the Lévy
measure ν near zero. In the case where ν has a bounded Lebesgue density, these
conditions reduce to n�3−ε

n → 0 for some ε > 0. We believe that this condition
is unavoidable, because it is already necessary in the Euler discretization scheme
of the stochastic integral with respect to Xc (Lemma 4.3). This condition appears
in [21] for a different parametric drift estimator of stable Lévy-driven Ornstein–
Uhlenbeck. It is in accordance with the condition n�3

n → 0 of [7] in the case of
drift estimation for continuous diffusions, hence our result can be seen as a gener-
alization of [7] to the presence of jumps.

In the literature on joint estimation of drift and diffusion parameters for models
with diffusion and jump part, the condition n�2

n → 0 is usually required (cf. [22],
[29] and [26]). The same condition on the sampling scheme appears for joint esti-
mation in the case of continuous diffusions in [32]. Hence, our work shows that by
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focusing on drift estimation the condition n�2
n → 0 can be relaxed in the presence

of jumps as well.
As will be seen in Section 7 (given in the Supplemental Material [9]), many

popular models lead to explicit estimators, which do not require the knowledge of
the diffusion coefficient and that perform well in numerical examples. In particular,
we discuss the practical choice of the threshold level and its link with the volatility
parameter of Xc.

The structure of the paper is as follows. In Section 2, the problem setting and the
main assumptions of this work are introduced. Section 3 contains the construction
of the drift estimator from discrete observations together with the main results.
In Section 4, we discuss the approximation of the continuous martingale part and
state results on the jump filtering error. In Sections 5 and 6, we prove the main
results and the convergence of the jump filter, respectively. The two Sections 7–8
are provided in Supplemental Material [9]. Section 7 is devoted to applications
to popular parametric jump diffusion models and some numerical examples. Sec-
tion 8 contains the proofs of some auxiliary or technical results used in the pa-
per.

2. Model, assumptions and ergodicity. Let � be a compact subset of Rd and
Xθ a solution to (1.1), which can be rewritten as

Xθ
t = Xθ

0 +
∫ t

0
b
(
θ,Xθ

s

)
ds +

∫ t

0
σ

(
Xθ

s

)
dWs

+
∫ t

0

∫
R\{0}

γ
(
Xθ

s−
)
zμ(ds, dz), t ∈ R+,

where W = (Wt)t≥0 is a one-dimensional Brownian motion and μ is the
Poisson random measure on [0,∞) × R associated with the jumps of the
Lévy process L = (Lt )t≥0 with Lévy–Khintchine triplet (0,0, ν) such that∫

0<|z|≤1 |z|dν(z) < ∞. The initial condition Xθ
0 , W and L are independent.

2.1. Assumptions. We suppose that the functions b : � ×R → R, σ : R → R

and γ : R→R satisfy the following assumptions.

ASSUMPTION 1. The functions σ(x), γ (x) and for all θ ∈ �, b(θ, x) are glob-
ally Lipschitz. Moreover, the Lipschitz constant of b is uniformly bounded on �.

Under Assumption 1, equation (1.1) admits a unique nonexplosive càdlàg
adapted solution possessing the strong Markov property; cf. [1] (Theorems 6.2.9.
and 6.4.6).

ASSUMPTION 2. For all θ ∈ �, there exists a constant t > 0, such that Xθ
t

admits a density pθ
t (x, y) with respect to the Lebesgue measure on R; bounded
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in y ∈ R and in x ∈ K for every compact K ⊂ R. Moreover, for every x ∈ R,
and every open ball U ∈ R there exists a point z = z(x,U) ∈ supp(ν) such that
γ (x)z ∈ U .

The last assumption was used in [19] to prove the irreducibility of the process
Xθ ; see also [20] for other sets of conditions, sufficient for irreducibility.

ASSUMPTION 3 (Ergodicity).

(i) For all q > 0,
∫
|z|>1 |z|qν(dz) < ∞.

(ii) For all θ ∈ �, there exists a constant C > 0 such that xb(θ, x) ≤ −C|x|2,
if |x| → ∞.

(iii) |γ (x)|/|x| → 0 as |x| → ∞.
(iv) |σ(x)|/|x| → 0 as |x| → ∞.
(v) ∀θ ∈ �, ∀q > 0, we have E|Xθ

0 |q < ∞.

Assumption 2 ensures together with Assumption 3 the existence of unique in-
variant distribution πθ , as well as the ergodicity of the process Xθ , as stated in
Lemma 2.1 below.

ASSUMPTION 4 (Jumps).

(i) The jump coefficient γ is bounded from below, that is, infx∈R |γ (x)| :=
γmin > 0 (wlog we suppose γmin ≥ 1).

We assume that the set of conditions (ii)–(iv) below holds, or that condition (ii′)
below holds:

(ii) the Lévy measure ν satisfies
∫

0<|z|≤1 |z|ν(dz) < ∞;
(iii) the Lévy measure ν is absolutely continuous with respect to the Lebesgue

measure;
(iv) the jump coefficient γ is upper bounded, that is, supx∈R |γ (x)| :=

γmax < ∞.
(ii′) ν(R) < ∞.

Note that the integrability condition given by the Assumption 4(ii) is automat-
ically satisfied in the finite activity case (ii′). The condition (ii) of Assumption 4
insures that the trajectories of the driving Lévy process L are a.s. of finite variation,
and hence the integral with respect to L in (1.1) can be defined as a deterministic
Lebesgue–Stieltjes integral. The points (iii), (iv) of the Assumption 4 are technical
and needed in the infinite activity case. They can be removed in the simpler case
of finite jump activities, and this is why we introduce the two sets of assumptions
(ii)–(iv) and (ii′).

The following assumption insures the existence of the likelihood function.
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ASSUMPTION 5 (Nondegeneracy). There exists some α > 0, such that
σ 2(x) ≥ α for all x ∈ R.

ASSUMPTION 6 (Identifiability). For all θ �= θ ′, (θ, θ ′) ∈ �2,∫
R

(b(θ, x) − b(θ ′, x))2

σ 2(x)
dπθ (x) > 0.

We can see (cf. Proposition 8.1 in the Supplemental Material [9]) that this last
assumption is equivalent to

(2.1) ∀θ �= θ ′,
(
θ, θ ′) ∈ �2, b(θ, ·) �= b

(
θ ′, ·).

For f : � → R denote by ∇θf : � → R
d the gradient column vector and by

∂2
θ f := (∂2

θi ,θj
f )1≤i,j≤d the Hessian matrix of f . We define |θ | as the Euclid-

ian norm of θ ∈ R
d , and |∂2

θ f | :=
√∑n

i,j=1 |∂2
θi ,θj

f |2 as the Euclidian norm of
the Hessian matrix of f . We say that f : R → R is sub-polynomial, if there exists
some polynomial function P :R→R such that |f (x)| ≤ |P(x)| for all x ∈ R. The
following assumption is used to insure the uniform in θ convergence needed in the
proofs of consistency and asymptotic normality.

ASSUMPTION 7 (Hölder-continuity of drift).

(i) For all x ∈ R, b(·, x) is Hölder-continuous with respect to θ ∈ �:

∀θ, θ ′,
∣∣b(θ, x) − b

(
θ ′, x

)∣∣ ≤ K(x)
∣∣θ − θ ′∣∣κ ,

where 0 < κ ≤ 1 and K : R→R+ is sub-polynomial.
(ii) For all x ∈ R, b(·, x) is twice continuously differentiable with respect to θ

and ∇b(·, x) and ∂2b(·, x) are Hölder-continuous with respect to θ ∈ �:

∀θ, θ ′,
∣∣∇b(θ, x) − ∇b

(
θ ′, x

)∣∣ ≤ K1(x)
∣∣θ − θ ′∣∣κ1,

∀θ, θ ′,
∣∣∂2

θ b(θ, x) − ∂2
θ b

(
θ ′, x

)∣∣ ≤ K2(x)
∣∣θ − θ ′∣∣κ2,

where 0 < κ1, κ2 ≤ 1 and K1,K2 :R→R+ are is sub-polynomial.

We also need the following technical assumption.

ASSUMPTION 8. The functions b, σ , ∇θb, ∂2
θ b are twice continuously differ-

entiable with respect to x. The functions σ ′, σ ′′ as well as the functions

x 
→ sup
θ∈�

∣∣∣∣∂i+j b(θ, x)

∂ix∂j θ

∣∣∣∣
are sub-polynomial for all 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2.
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Define the asymptotic Fisher information by

(2.2) I (θ) =
(∫

R

∂θi
b(θ, x)∂θj

b(θ, x)

σ 2(x)
πθ (dx)

)
1≤i,j≤d

.

ASSUMPTION 9. For all θ ∈ �, I (θ) is nondegenerated.

2.2. Ergodic properties of solutions. In all our statistical analysis, an impor-
tant role is played by ergodic properties of solutions of equation (1.1). The fol-
lowing lemma is a generalization of a result of [19]. It states conditions for the
existence of an invariant measure πθ such that an ergodic theorem holds and mo-
ments of all order exist. A proof is given in Section 8 of the Supplemental Material
[9].

LEMMA 2.1. Under Assumptions 1 to 4, for all θ ∈ �, Xθ admits a unique
invariant distribution πθ and the ergodic theorem holds:

(1) for every measurable function g : R → R satisfying πθ(g) < ∞, we have
a.s.

lim
t→∞

1

t

∫ t

0
g
(
Xθ

s

)
ds = πθ(g).

(2) For all q > 0, πθ(|x|q) < ∞.
(3) For all q > 0, supt∈R E[|Xθ

t |q] < ∞ and supt∈R E[|Xθ
t−|q] < ∞.

(4) Moreover,

lim
t→∞

1

t

∫ t

0
E

[∣∣Xθ
s

∣∣q]
ds = πθ (|x|q)

.

3. Construction of the estimator and main results. We define a discrete
approximation of the continuous time likelihood function by employing a jump
filtering technique, and hence obtain an approximate maximum likelihood estima-
tor. We prove that this drift estimator attains asymptotically the same performance
as the maximum likelihood estimator based on continuous observations under suit-
able assumptions on the jump behavior of the driving Lévy process L.

3.1. Construction of the estimator. Let Xθ be given by (1.1). We denote by P θ

the law of Xθ on the Skorokhod space D[0,∞) of real-valued càdlàg functions,
and P θ

t its restriction on D[0, t). From now on, we denote the true parameter
value by θ
, an interior point of the parameter space � that we want to estimate.
We shorten X for Xθ


and P , E, π for respectively P θ

, Eθ


, πθ

. Suppose that

we observe a finite sample:

Xt0, . . . ,Xtn; 0 = t0 ≤ t1 ≤ · · · ≤ tn.
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Every observation time point depends also on n, but to simplify our notation we
suppress this index. We will be working in a high-frequency setting, that is,

�n := sup
i=0,...,n−1

(ti+1 − ti)
n→∞−−−→ 0.

We assume limn→∞ tn = ∞ and n�n = O(tn) as n → ∞. Under Assumption 5,
P θ

t and Pt are mutually locally absolutely continuous for any θ ∈ � (cf., e.g.,
[12]). We define the likelihood function by

Lt (θ,X) = exp
(∫ t

0
σ(Xs)

−2b(θ,Xs) dXc
s

(3.1)

− 1

2

∫ t

0
σ(Xs)

−2b(θ,Xs)
2 ds

)
,

and the log-likelihood function as

(3.2) �t (θ) := lnLt (θ,X).

Note that our choice for the likelihood Lt (θ,X) differs from the Radon–Nicodym

density dP θ
t

dPt
by the multiplicative factor not depending on θ . The crucial point

here is the appearance of Xc in (3.1), since when X is observed discretely, its
continuous part remains unknown. To handle this problem, we use a jump filter as
described below.

For g : [0, tn] → R, set �n
i g = gti − gti−1, i = 1, . . . , n. In particular, �n

i X =
Xti −Xti−1 , �n

i X
c = Xc

ti
−Xc

ti−1
and �n

i Id = ti − ti−1. Let (ai
n), i = 1, . . . , n, be a

sequence of positives random variables, bounded from above and below by some
constants a, ā: 0 < a ≤ ai

n ≤ ā < ∞ and such that ai
n is measurable with respect

to the observations {Xtj ; j < i}. Let ε ∈ (0,1/2) and denote

(3.3) vi
n = ai

nvn, vn = �1/2−ε
n , n ≥ 1, i = 1, . . . , n.

Define a discrete, jump-filtered approximation �n
tn

of the log-likelihood function as
follows:

�n
tn
(θ) =

n∑
i=1

σ(Xti−1)
−2b(θ,Xti−1)�

n
i X1|�n

i X|≤vi
n

(3.4)

− 1

2

n∑
i=1

σ(Xti−1)
−2b(θ,Xti−1)

2�n
i Id.

The cut-off sequence (vi
n) is chosen in order to asymptotically filter the increments

of X containing jumps. The increments of the continuous martingale part are typ-
ically of the order �

1/2
n which leads to the definition (3.3). We allow the threshold

level associated to �n
i X to depend on a random coefficient ai

n based on the past
observations (Xtj )j<i . Although the asymptotic results we obtain do not depend
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on the choice of the ai
n, numerical simulations show that choosing properly these

weights is crucial when dealing with finite sample. The challenge now is to find
suitable conditions on �n, ε and ν to make the likelihood (3.2) well approximated
by its discretized and jump filtered counterpart (3.4) even in the case of infinite
activity. Of course, we can choose ε arbitrarily small, which is a choice we have in
mind. Finally, we define an estimator θ̂n of θ
 as

(3.5) θ̂n ∈ argmax
θ∈�

�n
tn
(θ)

and in the sequel we call it the filtered MLE (FMLE).

3.2. Main results. The following theorem gives a general consistency result
for the FMLE θ̂n that holds for finite and infinite activity without further assump-
tions on n, �n and vn.

THEOREM 3.1 (Consistency). Suppose that Assumptions 1 to 8 hold, then the
FMLE θ̂n is consistent in probability:

θ̂n
P−→ θ
, n → ∞.

Recall that the Fisher information I is given by (2.2). The following theorem
gives the asymptotic normality of the FMLE.

THEOREM 3.2 (Asymptotic normality). Suppose that Assumptions 1 to 9
hold. Assume furthermore that n�3−ε

n → 0,

√
n�3/2−2ε

n

(∫
|z|≥3avn/γmin

ν(dz)

)1−ε/2
→ 0 and

√
n�n

(∫
|z|≤3āvn

|z|ν(dz)

)1−ε/2
→ 0

as n → ∞. Then the FMLE θ̂n is asymptotically normal:

t1/2
n (θ̂n − θ
)

L→ N
(
0, I−1(θ
)

)
, n → ∞.

Furthermore, the FMLE θ̂n is asymptotically efficient in the sense of the Hájek–
Le Cam convolution theorem.

REMARK 1. In the case of finite activity and if ν has a bounded Lebesgue den-
sity, the conditions relating n, �n and vn in the Theorem 3.2 reduce to n�3−ε̃

n → 0,
where ε̃ > 0 is arbitrarily small.
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EXAMPLE 3.3 (Generalized tempered stable jumps). To illustrate the influ-
ence of the jump behavior of L on the conditions on n and �n given in The-
orem 3.2, let us consider the example of a generalized tempered α-stable driv-
ing Lévy process (cf. [4], p. 119). In this case, the Lévy density is given by
ν(dz) = C|z|−(1+α)e−λ|z| dz, with λ > 0, C > 0 and satisfies the conditions of
Theorem 3.2 if α < 1. This density is bounded for α ≤ −1, unbounded and inte-
grable for −1 < α < 0 and unbounded and nonintegrable for 0 ≤ α < 1.

The conditions on n, �n and ν in Theorem 3.2 can be summarized in
n�2−α−ε̃

n ∨ n�3−4ε
n → 0 for some explicit ε̃ > 0. We observe that a higher

Blumenthal–Getoor index α requires a faster convergence of �n to zero. This
in line with the intuition that when the intensity of small jumps increases (i.e., α

increases) more and more frequent observations are needed to have a sufficient
performance of the jump filter.

4. Nonparametric estimation of Xc via jump filtering. The estimation
problem considered in this work leads naturally to the more fundamental prob-
lem of approximation of the continuous martingale part Xc from discrete obser-
vations of a jump diffusion X. In this section, we prove approximation results
of this sort for integral functionals with respect to Xc. Since we need both uni-
form and nonuniform versions for the drift estimation problem, both settings will
be discussed. Recall that the cut-off sequence vi

n as well as vn were defined in

(3.3). We denote by
P−→ the convergence in P -probability. If (Zn)n∈N is a se-

quence of random variables and (un)n∈N is a positive valued sequence, we say that
Zn = OL1(un) [resp., Zn = oL1(un)] if E|Zn| = O(un) [resp. E|Zn| = o(un)]. We

say that Zn = oP (un) if Zn/un
P−→ 0.

PROPOSITION 4.1 (Jump filtering). Suppose that Assumptions 1 to 4 hold.
Suppose that f : � ×R→R satisfies:

(a) for all x ∈R, θ 
→ f (θ, x) is κ-Hölder continuous for some 0 < κ ≤ 1:

∀θ, θ ′,
∣∣f (θ, x) − f

(
θ ′, x

)∣∣ ≤ C(x)
∣∣θ − θ ′∣∣κ,

where C : R→R+ is sub-polynomial;
(b) for all θ ∈ �, f (θ, ·) ∈ C2(R) and supθ∈� |f (θ, ·)|, supθ∈� |f ′

x(θ, ·)| and
supθ∈� |f ′′

x (θ, ·)| are sub-polynomial.

Then the following statements hold:

(i) without any assumption on the way that �n → 0 as n → ∞,

(n�n)
−1 sup

θ∈�

∣∣∣∣∣
∫ tn

0
f (θ,Xs) dXc

s −
n∑

i=1

f (θ,Xti−1)�
n
i X1|�n

i X|≤vi
n

∣∣∣∣∣ P−→ 0;
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(ii) if n�3−ε
n → 0,

√
n�3/2−ε

n

(∫
|z|≥3avn/γmin

ν(dz)

)1−ε/2
→ 0 and

√
n�n

(∫
|z|≤3āvn

|z|ν(dz)

)1−ε/2
→ 0

as n → ∞, then for any θ ∈ �,

(n�n)
−1/2

∣∣∣∣∣
∫ tn

0
f (θ,Xs) dXc

s −
n∑

i=1

f (θ,Xti−1)�
n
i X1|�n

i X|≤vi
n

∣∣∣∣∣ P−→ 0.

The proof of Proposition 4.1 is based on the following two lemmas. Lemma 4.2
describes the approximation of the discretized stochastic integral with respect to
Xc by the jump filter. Lemma 4.3 describes the convergence of the Euler scheme in
order to approximate the stochastic integral with respect to Xc by the correspond-
ing discrete sum. All the results of this section are proved in Section 6.

LEMMA 4.2 (Jump filtering error). Assume that X satisfies Assumptions 1 to
4 and f : � × R → R is such that supθ∈� |f (θ, x)| is sub-polynomial. Then the
following hold:

(i) without any assumption on the way that �n → 0 as n → ∞,

sup
θ∈�

∣∣∣∣∣
n∑

i=1

f (θ,Xti−1)
(
�n

i X
c − �n

i X1|�n
i X|≤vi

n

)∣∣∣∣∣
= OL1

(
n�3/2−ε/2

n

(∫
|z|≥avn/γmin

ν(dz)

)1−ε/2

+ n�n

(∫
|z|≤3āvn

|z|ν(dz)

)1−ε/2
+ n�2

n

)
;

(ii) for all θ ∈ �, if n�3−ε
n (

∫
|z|≥3avn/γmin

ν(dz))2−ε → 0, as n → ∞, then

n∑
i=1

f (θ,Xti−1)
(
�n

i X
c − �n

i X1|�n
i X|≤vi

n

)
= oP (

√
n�n) + OL1

(
n�2

n

)
+ oL1

(
n�2−ε

n

(∫
|z|≥3avn/γmin

ν(dz)

)1−ε/2)

+ OL1

(
n�n

(∫
|z|≤3āvn

|z|ν(dz)

)1−ε/2)
.

The approximation of the stochastic integral is treated in the following lemma.
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LEMMA 4.3 (Euler scheme). Suppose that f : � × R → R satisfies the fol-
lowing assumptions:

(a) for all x ∈R, θ 
→ f (θ, x) is κ-Hölder continuous for some 0 < κ ≤ 1:

∀θ, θ ′,
∣∣f (θ, x) − f

(
θ ′, x

)∣∣ ≤ K(x)
∣∣θ − θ ′∣∣κ;

where K : R→R+ is sub-polynomial;
(b) for all θ ∈ �, x 
→ f (θ, x) ∈ C2(R) and supθ∈� |f (θ, ·)|, supθ∈� |f ′

x(θ, ·)|
and supθ∈� |f ′′

x (θ, ·)| are sub-polynomial.

Under Assumptions 1 to 4, we obtain:

(i) without any assumption on the way that �n → 0, as n → ∞,

sup
θ∈�

(n�n)
−1

∣∣∣∣∣
∫ tn

0
f (θ,Xs) dXc

s −
n∑

i=1

f (θ,Xti−1)�
n
i X

c

∣∣∣∣∣ P−→ 0;

(ii) if n�3−ε
n → 0, then, as n → ∞,

∀θ ∈ �, (n�n)
−1/2

∣∣∣∣∣
∫ tn

0
f (θ,Xs) dXc

s −
n∑

i=1

f (θ,Xti−1)�
n
i X

c

∣∣∣∣∣ P−→ 0.

When discretizing the likelihood function, we need the following lemma, whose
proof can be found in the Section 6.

LEMMA 4.4. Suppose that Assumptions 1–4 are satisfied. Suppose that f :
� × R → R is such that ∀θ ∈ �, f (θ, ·) ∈ C1(R) and supθ∈� |f ′(θ, ·)| is sub-
polynomial. Then we obtain:

(i) as n → ∞,

sup
θ∈�

∣∣∣∣∣
∫ tn

0
f (θ,Xs) ds −

n∑
i=1

f (θ,Xti−1)�
n
i Id

∣∣∣∣∣ = OL1
(
n�3/2

n

);
(ii) if n�3−ε

n → 0, then

∀θ ∈ �, (n�n)
−1/2

∣∣∣∣∣
∫ tn

0
f (θ,Xs) ds −

n∑
i=1

f (θ,Xti−1)�
n
i Id

∣∣∣∣∣ P−→ 0.

5. Proofs of main results.

5.1. MLE for continuous observations. Let θ̄t be the true MLE maximizing
the log-likelihood function given by (3.2) and based on continuous observations:

(5.1) θ̄t ∈ argmax
θ∈�

�t (θ).

Before moving to discrete observations, we prove here some asymptotic results
for θ̄t . This is a first step in order to prove the asymptotic results for the FMLE.
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THEOREM 5.1. Suppose that Assumptions 1–6 and 7(i) are satisfied. Then

lim
t→∞ θ̄t = θ
 P -a.s.

PROOF. Denote

�̃t (θ) :=
∫ t

0

(b(θ,Xs) − b(θ
,Xs))

σ (Xs)
dWs

(5.2)

− 1

2

∫ t

0

(b(θ,Xs) − b(θ
,Xs))
2

σ 2(Xs)
ds.

Using (1.1) and the fact that the observed trajectory corresponds to the true value
of parameter θ
, we can easily see that

(5.3) �t (θ) = �̃t (θ) +
∫ t

0

b(θ
,Xs)

σ (Xs)
dWs + 1

2

∫ t

0

b2(θ
,Xs)

σ 2(Xs)
ds.

The difference between �(θ) and �̃t (θ) does not depend on θ , hence also θ̄t ∈
argmaxθ∈� �̃t (θ). For θ ∈ �, define Mt(θ) := ∫ t

0
(b(θ,Xs)−b(θ
,Xs))

σ (Xs)
dWs . The pro-

cess (Mt(θ), t ≥ 0) is a continuous local martingale, with quadratic variation given

by At(θ) := 〈M(θ)〉t = ∫ t
0

(b(θ,Xs)−b(θ
,Xs))
2

σ 2(Xs)
ds. Note that �̃t (θ) = −1

2At(θ) +
Mt(θ). Recall that π , given by the Lemma 2.1 is an invariant distribution of X

and denote

(5.4) �̃(θ) = −1

2
π

(
(b(θ, ·) − b(θ
, ·))2

σ 2(·)
)
.

Using Assumptions 5, 7(i) and Lemma 2.1(2), we see that for all θ ∈ �, �̃(θ) ∈ R.
Hence, using the Lemma 2.1(1) for all θ ∈ �,

lim
t→∞− 1

2t
At (θ) = �̃(θ) P -a.s.

Moreover, using Assumptions 1, 5 and 7(i) we can see that the family

(5.5)
{

1

t
At (θ)

}
t>0

is equicontinuous P -a.s.

Indeed, 1
t
|At(θ)−At(θ

′)| ≤ C|θ − θ ′|κ 1
t

∫ t
0 |K̃(Xs)|ds, where K̃ is some polyno-

mial function. Using the ergodic theorem, which holds thanks to the Lemma 2.1,
1
t

∫ t
0 |K̃(Xs)|ds converges almost surely to some finite limit. Hence (5.5) follows.

As a consequence,

(5.6) lim
t→∞ sup

θ∈�

∣∣∣∣− 1

2t
At (θ) − �̃(θ)

∣∣∣∣ = 0 P -a.s.

Denote At(θ, θ ′) := 〈Mt(θ) − Mt(θ
′)〉t . Using Assumptions 5 and 7(i), for all

(θ, θ ′) ∈ �2,

At

(
θ, θ ′) ≤ C

∣∣θ − θ ′∣∣2κ
Vt ,
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where Vt := ∫ t
0 (K2(Xs)

σ 2(Xs)
∨ 1) ds → ∞, if t → ∞. Therefore, all assumptions of the

Theorem 2 in [16] are satisfied. As a conclusion, the family {Mt(θ)
At (θ)

; θ ∈ �, t ≥ 0}
satisfies the uniform law of large numbers on any compact K ∈ � not containing
θ
, that is,

lim
t→∞ sup

θ∈K

∣∣∣∣Mt(θ)

At(θ)

∣∣∣∣ = 0.

We deduce, using (5.6), that limt→∞ supθ∈K |Mt(θ)
t

| = 0, and hence, P -a.s.

(5.7) sup
θ∈K

∣∣t−1�̃t (θ) − �̃(θ)
∣∣ → 0.

We can now derive the a.s. consistency of θ̄t following the classical Wald’s method.
We refer for instance to Theorem 5.7 in [31] for a simple presentation of Wald’s
approach, and stress out the fact that all convergences, and hence consistency holds
P -a.s. in our setting. Indeed, observe that �̃(θ) ≤ 0, and �̃(θ) = 0 ⇐⇒ θ = θ
,
which implies

(5.8) sup
θ :d(θ,θ
)≥ε

�̃(θ) < �̃(θ
).

We deduce from (5.7) and (5.8) that P -a.s. for all ε > 0, limt→∞ supd(θ,θ
)≥ε
1
t
×

�̃t (θ) < �̃(θ
), and hence for t > t (ω) large enough supd(θ,θ
)≥ε �̃t (θ) < �̃t (θ

). It

yields, for t > t (ω), d(θ̄t , θ

) < ε, which means the a.s. consistency. �

Recall that I is the Fisher information given by (2.2).
The next result is a central limit theorem for the estimation error. It is important

for us in the sequel, since the asymptotic variance serves as a benchmark for the
case of discrete observations.

THEOREM 5.2. Suppose that Assumptions 1–9 hold. Then the MLE θ̄t is
asymptotically normal:

t1/2(θ̄t − θ
)
L→ N

(
0, I−1(θ
)

)
as t → ∞.

PROOF. Due to Assumptions 5 and 7, Theorem 2.2 in [10] and Theorem 1 in
[16] for all t > 0 the criterion function �̃t (θ,X) is twice continuously differentiable
in θ .

From (5.2), the score function can be written as ∇θ � = ∇θ �̃ = (∂θ1 �̃t , . . . ,

∂θd
�̃t )

T where

∂θi
�̃t (θ) = −

∫ t

0

(b(θ,Xs) − b(θ
,Xs))∂θi
b(θ,X)

σ 2(Xs)
ds

(5.9)

+
∫ t

0

∂θi
b(θ,Xs)

σ (Xs)
dWs,
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for i = 1, . . . , d . A Taylor expansion around θ̄t yields

t−1
∫ 1

0
∂2
θ �̃t

(
θ
 + s(θ̄t − θ
)

)
ds × √

t(θ̄t − θ
)

(5.10)

= − 1√
t
∇θ �̃t (θ


),

where ∂2
θ �̃t is the Hessian matrix of �̃. Hence, to obtain a CLT for the estimation

error t1/2(θ̄t − θ
) we will first show the convergence of the right-hand side in
(5.10). Equation (5.9) gives for θ = θ
, ∇θ �̃t (θ


) = ∫ t
0

∇θ b(θ
,Xs)
σ (Xs)

dWs , such that
the central limit theorem for multidimensional local martingales [15] implies

(5.11) t−1/2∇θ �̃t

(
θ
) = t−1/2

∫ t

0

∇θb(θ
,X)

σ(Xs)
dWs

L→ N
(
0, I (θ
)

)
.

In the next step, we prove the convergence of
∫ 1

0
1
t
∂2
θ �̃t (θ


 + s(θ̄t − θ
)) ds. From
(5.9), we see that for (i, j) ∈ {1, . . . , d},

∂2
θiθj

�̃t (θ) = −
∫ t

0

(b(θ,Xs) − b(θ
,Xs))∂
2
θi ,θj

b(θ,Xs)

σ 2(Xs)
ds

−
∫ t

0

∂θi
b(θ,Xs)∂θj

b(θ,Xs)

σ 2(Xs)
ds

(5.12)

+
∫ t

0

∂2
θiθj

b(θ,Xs)

σ (Xs)
dWs

:= U1
t (θ) + U2

t (θ) + U3
t (θ).

Using the ergodic theorem, P -a.s.

1

t
U1

t (θ) → U1∞(θ) := −
∫
R

(b(θ, x) − b(θ
, x))∂2
θiθj

b(θ, x)

σ 2(x)
π(dx);

1

t
U2

t (θ) → U2∞(θ) := −
∫
R

∂θi
b(θ, x)∂θj

b(θ, x)

σ 2(x)
π(dx) = −Ii,j (θ).

Moreover, using Assumptions 7 and 8 and the same argument, which were used
to prove the equicontinuity (5.5) we obtain that the families of functions (θ 
→
U1

t

t
(θ))t≥0 and (θ 
→ U2

t

t
(θ))t≥0 are almost surely equicontinuous. Finally, the uni-

form law of large numbers for local martingales [16] together with Assumptions 5,
7 and 8 gives that P -a.s.

sup
θ∈�

t−1∣∣U3
t (θ)

∣∣ = sup
θ∈�

t−1
∣∣∣∣∫ t

0

∂2
θ b(θ,Xs)

σ (Xs)
dWs

∣∣∣∣ → 0.
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Using (5.12) and the three last displays, we obtain P -a.s.

sup
θ∈�

∣∣t−1∂2
θ �̃t (θ) − (

U1∞(θ) − I (θ)
)∣∣→0.

Using this uniformity together with the a.s. convergence θ̄t → θ
, we get P -a.s.

sup
s∈[0,1]

∣∣t−1∂2
θ �̃t

(
θ
 + s(θ̄t − θ
)

) − (−I (θ
)
)∣∣→0

and

(5.13) t−1
∫ 1

0
∂2
θ �̃t

(
θ
 + s(θ̄t − θ
)

)
ds→ − I (θ
).

Finally, from the nondegeneracy of the Fisher information matrix I (θ
), (5.10),
(5.11), (5.13) and Slutsky’s theorem, we deduce the asymptotic normality of the
estimator. �

5.2. Local asymptotic normality and efficiency. To obtain an asymptotic effi-
ciency result in the sense of Hájek–Le Cam’s convolution theorem, we state now
the local asymptotic normality property for the statistical experiment induced by
the family (P θ )θ∈�. From this result, we can deduce the efficiency of the dis-
cretized estimator with jump filter (cf. Theorem 3.2).

THEOREM 5.3. Suppose that Assumptions 1 to 9 are satisfied. Then the family
(P θ )θ∈� is locally asymptotically normal, that is, for all h ∈ R

d , we have the
convergence in distribution under P ,

(5.14) �t

(
θ
 + h√

t

)
− �t (θ


)
L→ −1/2h�I (θ
)h + N, as t → ∞,

where N ∼ N (0, h�I (θ
)h). As a consequence, the drift estimator θ̄t is asymptot-
ically efficient in the sense of the Hájek–Le Cam convolution theorem.

The proof of Theorem 5.3 is given in Section 8 (see the Supplemental Material
[9]).

5.3. Proofs of Theorems 3.1 and 3.2.

PROOF OF THEOREM 3.1. Let �̃ : � →R be given by (5.4) and define

(5.15) �(θ) = �̃(θ) + 1

2
π

(
b2(θ
, x)

σ 2(x)

)
.

Under Assumptions 1 and 5 and Lemma 2.1 the last term in the right-hand side of
(5.15) is finite. We will apply Wald’s method for proving consistency of M estima-
tors (see, e.g., Theorem 5.7 in [31]). It follows from (5.8) that supθ;d(θ,θ
)≥ε �(θ) <
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�(θ
). Therefore, it remains to prove that limn→∞ supθ∈� |t−1
n �n

tn
(θ)−�(θ)| = 0 in

probability. To obtain this last statement, we decompose this difference as follows:

sup
θ∈�

∣∣�(θ) − t−1
n �n

tn
(θ)

∣∣ ≤ sup
θ∈�

∣∣�(θ) − t−1
n �tn(θ)

∣∣
(5.16)

+ sup
θ∈�

∣∣t−1
n

(
�tn(θ) − �n

tn
(θ)

)∣∣.
Using respectively the ergodic theorem given by Lemma 2.1(1) and the law of

large numbers for continuous local martingales ([25] p. 178), we see that a.s.

1

t

∫ t

0

b2(θ
,Xs)

σ 2(Xs)
ds → π

(
b2(θ
, x)

σ 2(x)

)
and

1

t

∫ t

0

b(θ
,Xs)

σ (Xs)
dWs → 0.

Using these last display, (5.3), and (5.7), we see that the first term of the decom-
position (5.16) tends to zero P -almost surely. In order to show the convergence to
zero in probability of the second term, we decompose it as follows, using (3.4):

sup
θ∈�

∣∣t−1
n

(
�tn(θ) − �n

tn
(θ)

)∣∣ ≤ sup
θ∈�

t−1
n

∣∣J 1
n (θ)

∣∣ + sup
θ∈�

t−1
n

∣∣J 2
n (θ)

∣∣,
where we have denoted

J 1
n (θ) :=

∫ tn

0
σ(Xs)

−2b(θ,Xs) dXc
s

−
n∑

i=1

σ(Xti−1)
−2b(θ,Xti−1)�

n
i X1|�n

i X|≤vi
n

and

J 2
n (θ) := 1

2

∫ tn

0
σ(Xs)

−2b(θ,Xs)
2 ds − 1

2

n∑
i=1

σ(Xti−1)
−2b(θ,Xti−1)

2�n
i Id.

Hence, it remains to prove the convergence to zero of t−1
n |J 1

n (θ)| and t−1
n |J 2

n (θ)|
uniformly in θ . For t−1

n |J 1
n (θ)|, we apply Proposition 4.1, together with the fact

that n�n = O(tn). Indeed, using Assumptions 7 and 8 we see that the function
f (θ, x) = σ(x)−2b(θ, x)2 satisfies all the assumptions of the Proposition 4.1. For
the second term t−1

n |J 2
n (θ)|, we use Lemma 4.4. �

PROOF OF THEOREM 3.2. A Taylor expansion around θ̂n yields

(5.17)
1

tn

∫ 1

0
∂2
θ �n

tn

(
θ
 + s(θ̂n − θ
)

)
ds × t1/2

n (θ̂n − θ
) = − 1

t
1/2
n

∇θ �
n
tn
(θ
).
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For the right-hand side, we write that

(5.18)
1

tn1/2 ∇θ �
n
tn
(θ
) = ∇θ �

n
tn
(θ
) − ∇θ �tn(θ


)

t
1/2
n

+ ∇θ �tn(θ

)

t
1/2
n

.

By (5.11), we have that under P

(5.19)
∇θ �tn(θ


)

t
1/2
n

L→ N
(
0, I (θ
)

)
, n → ∞.

The first term of the sum on the right-hand side of (5.18) has the form

∇θ �
n
tn
(θ
) − ∇θ �tn(θ


)

t
1/2
n

= −t−1/2
n

(∫ tn

0
σ(Xs)

−2∇θb(θ
,Xs) dXc
s

−
n∑

i=1

σ(Xti−1)
−2∇θb(θ
,Xti−1)�

n
i X1|�n

i X|≤vi
n

)

+ t−1/2
n

1

2

(∫ tn

0
σ(Xs)

−2∇θb(θ
,Xs)
2 ds

−
n∑

i=1

σ(Xti−1)
−2∇θb(θ
,Xti−1)

2�n
i Id

)
.

By applying Proposition 4.1 for k = 1, . . . , d with fk(θ

, x) = σ(x)−2∂θk

b(θ
, x),
and using Assumptions 7–8, we obtain that

t−1/2
n

(∫ tn

0
σ(Xs)

−2∂θk
b(θ
,Xs) dXc

s

−
n∑

i=1

σ(Xti−1)
−2∂θk

b(θ
,Xti−1)�
n
i X1|�n

i X|≤vi
n

)
P−→ 0

as n → ∞. Furthermore, Lemma 4.4(ii) leads to

t−1/2
n

(∫ tn

0
σ(Xs)

−2∂θk
b(θ
,Xs)

2 ds

−
n∑

i=1

σ(Xti−1)
−2∂θk

b(θ
,Xti−1)
2�n

i Id

)
P−→ 0,

as n → ∞. Combining now the last three displays results in
∇θ �n

tn
(θ
)−∇θ �tn (θ
)

t
1/2
n

P−→
0 such that (5.18) and (5.19) give t

−1/2
n ∇θ �

n
tn
(θ
)

d→ N(0, I (θ
)), n → ∞.
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To complete the proof, it remains to show the convergence of the left-hand side
in (5.17). For (j, k) ∈ {1, . . . , d}2 and θ ∈ �,

t−1
n sup

θ∈�

∣∣(∂2
θj θk

�n
tn
(θ) − ∂2

θj θk
�tn(θ)

)∣∣
≤ t−1

n sup
θ∈�

∣∣∣∣∣
∫ tn

0
σ(Xs)

−2∂2
θj θk

b(θ,Xs) dXc
s

−
n∑

i=1

σ(Xti−1)
−2∂2

θj θk
b(θ,Xti−1)�

n
i X1|�n

i X|≤vi
n

∣∣∣∣∣
+ t−1

n sup
θ∈�

∣∣∣∣∣
∫ tn

0
σ(Xs)

−2∂θj
b(θ,Xs)∂θk

b(θ,Xs) ds

−
n∑

i=1

σ(Xti−1)
−2∂θj

b(θ,Xs)∂θk
b(θ,Xs)�

n
i Id

∣∣∣∣∣
+ t−1

n sup
θ∈�

∣∣∣∣∣
∫ tn

0
σ(Xs)

−2∂2
θj θk

b(θ,Xs)b(θ,Xs) ds

−
n∑

i=1

σ(Xti−1)
−2∂2

θj θk
b(θ,Xs)b(θ,Xs)�

n
i Id

∣∣∣∣∣
:= U1

n + U2
n + U3

n .

Proposition 4.1 together with Assumptions 7–8 state that

(5.20) U1
n

P→ 0, as n → ∞.

Lemma 4.4(i) gives for k = 2,3

(5.21) Uk
n

P→ 0, as n → ∞.

Recall that, by (5.1), θ̄t is a maximizer of the log-likelihood (3.2) based on the
continuous observations. Combining (5.20) and (5.21) with consistency of θ̂ and
θ̄ , we get∫ 1

0

1

tn

∣∣∂2
θ �n

tn

(
θ
 + s(θ̂n − θ
)

) − ∂2
θ �tn

(
θ
 + s(θ̄tn − θ
)

)∣∣ds
P→ 0,

and hence, using (5.13), we deduce 1
tn

∫ 1
0 ∂2

θ �n
tn
(θ
 + s(θ̂n − θ
)) ds

P→ −I (θ
), as
n → ∞. The result follows. �

6. Proofs for jump filtering. In this section, we prove the results stated
in Section 4. We start by proving Lemma 4.2. We recall some notation: μ de-
notes the Poisson random measure on [0,∞) × R associated with the jumps of
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the Lévy process L, the intensity of this jump measure is ds × ν(dz). We de-
fine μ̃ = μ − ds × ν(dz) as the compensated Poisson measure, and we have
Lt = ∫ t

0
∫
R

zμ(ds, dz).
In the proof, we use some moment inequalities for jump diffusions and their

continuous parts, gathered in the following lemma.

LEMMA 6.1. Let X satisfy Assumptions 1–4. Let Fs = σ {(Wu)0<u≤s,

(Lu)0<u≤s,X0}. Then for all t > s:

(1) for all p ≥ 2, E[|Xt − Xs |p]1/p ≤ C|t − s|1/p;
(2) for all p ≥ 2, p ∈ N, E[|Xt − Xs |p|Fs] ≤ C|t − s|(1 + |Xs |p);
(3) for all p > 1, E[|Xc

t − Xc
s |p]1/p ≤ C|t − s|1/2.

The proof of Lemma 6.1 is given in Section 8 (see the Supplemental Material
[9]).

REMARK 2. Using Lemma 6.1(3), the definition of vi
n (3.3) and Markov’s

inequality we see that for all p > 1,

P
(∣∣�n

i X
c
∣∣ ≥ vi

n

) ≤ P
(∣∣�n

i X
c
∣∣ ≥ avn

) = O
(
�p/2

n v−p
n

) = O
(
�εp

n

)
.

In our proofs, we extensively use the Lemma 9 from Genon-Catalot and Jacod
[8] that we recall below.

LEMMA 6.2 ([8]). Let (Fn
i ), i = 1, . . . , n, be a filtration for each n ≥ 1, (en

i ),
i = 1, . . . , n; n ∈ N, U be random variables, with en

i being Fn
i measurable. Sup-

pose that

n∑
i=1

E
[
en
i |Fn

i−1
] P−→ U and

n∑
i=1

E
[(

en
i

)2|Fn
i−1

] P−→ 0.

Then
∑n

i=1 en
i → U in probability.

PROOF OF LEMMA 4.2. We start by proving (i). For all n ∈ N
∗, i ∈ N

∗ we
define the set where increments of X are small:

Ki
n = {∣∣�n

i X
∣∣ ≤ vi

n

}
,

and the event on which all the jumps of L on the interval (ti−1, ti] are small:

(6.1) Ni
n = {|�Ls | ≤ 3vi

n/γmin; ∀s ∈ (ti−1, ti]}, where �Ls := Ls − Ls−.

Let us denote by XJ the jump part of X given by

XJ
t =

∫ t

0

∫
R\{0}

γ (Xs−)zμ(ds, dz), t ≥ 0.
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Using these notation, we introduce the quantities

B1
n(θ) := −

n∑
i=1

f (θ,Xti−1)
(
�n

i X
J )

1Ki
n∩(Ni

n)
c;

B2
n(θ) := −

n∑
i=1

f (θ,Xti−1)
(
�n

i X
J )

1Ki
n∩Ni

n
;

B3
n(θ) :=

n∑
i=1

f (θ,Xti−1)
(
�n

i X
c)1(Ki

n)c∩(Ni
n)c;

B4
n(θ) :=

n∑
i=1

f (θ,Xti−1)
(
�n

i X
c)1(Ki

n)c∩(Ni
n).

We can decompose the difference as follows:

n∑
i=1

f (θ,Xti−1)
(
�n

i X
c − �n

i X1|�n
i X|≤vi

n

)
(6.2)

= B1
n(θ) + B2

n(θ) + B3
n(θ) + B4

n(θ).

We start by studying the convergence of B1
n(θ). The proof for the control of this

term is slightly different in the case where Assumption 4(i)–(iv) holds and in the
case where Assumption 4(i), (ii′) holds. We focus first on the former case, as it
contains the situation ν(R) = ∞ which is more difficult to address, and hence we
assume now on that Assumption 4(i)–(iv) holds.

Let T ∗
i ∈ (ti−1; ti] such that |�LT ∗

i
| = max{|�Ls |; s ∈ (ti−1; ti]}. Remark that

T ∗
i is well defined, as from Assumption 4(iii) there is, almost surely, a unique time

at which the Lévy process admits a jump with maximal size. We introduce the
event

(6.3) Ai
n =

{ ∑
ti−1<s≤ti;s �=T ∗

i

|�Ls | ≤ vi
n

γmax

}
,

where γmax is defined in Assumption 4(iv).
To estimate B1

n(θ), we make the decomposition:

Ki
n ∩ (

Ni
n

)c = Ki
n ∩ (

Ni
n

)c ∩ Ai
n ∪ Ki

n ∩ (
Ni

n

)c ∩ (
Ai

n

)c
.

Note that

Ki
n ∩ (

Ni
n

)c ∩ Ai
n

⊂
{∣∣∣∣�n

i X
c + γ (XT ∗

i −)�LT ∗
i

+ ∑
ti−1<s≤ti

s �=T ∗
i

�Xs

∣∣∣∣ ≤ vi
n;
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∣∣γ (XT ∗
i −)�LT ∗

i

∣∣ > 3vi
n;

∣∣∣∣ ∑
ti−1<s≤ti

s �=T ∗
i

�Xs

∣∣∣∣ ≤ vi
n

}

⊂ {∣∣�n
i X

c
∣∣ ≥ vi

n

} ⊂ {∣∣�n
i X

c
∣∣ ≥ avn

}
.

Hence, using Remark 2 we get for all p > 1

(6.4) P
(
Ki

n ∩ (
Ni

n

)c ∩ Ai
n

) ≤ P
(∣∣�n

i X
c
∣∣ ≥ avn

) = O
(
�εp

n

)
.

Then, using the L2-isometry for stochastic integral with respect to the compen-
sated Poisson measure and the Jensen’s inequality, we get

E
∣∣�n

i X
J
∣∣2 ≤ 2E

∣∣∣∣∫ ti

ti−1

∫
R\{0}

γ (Xs−)zμ̃(ds, dz)

∣∣∣∣2

+ 2E

[∫ ti

ti−1

∫
R\{0}

γ (Xs)z dsν(dz)

]2

≤ 2
∫ ti

ti−1

∫
R\{0}

E
[
γ 2(Xs)

]
z2 dsν(dz)

+ 2
∫ ti

ti−1

∫
R\{0}

E
[
γ 2(Xs)

]|z|dsν(dz)

×
∫ ti

ti−1

∫
R\{0}

|z|dsν(dz)

= O(�n),

where in the last line we have used Assumption 1, Assumption 3(i), Assump-
tion 4(ii) and Lemma 2.1 statement (3).

Together with this last bound, Hölder’s inequality, sub-polynomial growth of f

and (3) from Lemma 2.1 this gives for any p > 1 that

(6.5) E sup
θ∈�

∣∣∣∣∣
n∑

i=1

f (θ,Xti−1)
(
�n

i X
J )

(1Ki
n∩(Ni

n)
c∩Ai

n
)

∣∣∣∣∣ = O
(
n�εp

n

)
.

To estimate the contribution of the event Ki
n ∩ (Ni

n)
c ∩ (Ai

n)
c, we need the follow-

ing lemma.

LEMMA 6.3. Under Assumptions 1–3 and 4(i)–(iv), we have for some C > 0,

P
((

Ni
n

)c ∩ (
Ai

n

)c) ≤ C
�2

n

avn/γmin

∫
|z|≥3avn/γmin

ν(dz).

The proof of Lemma 6.3 is given in Section 8 (see the Supplemental Material
[9]).
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Using the Hölder inequality, sub-polynomial growth of f , Lemma 2.1(3), and
Lemma 6.3, we get for 1/p + 1/q = 1 and some C > 0,

E sup
θ∈�

∣∣∣∣∣
n∑

i=1

f (θ,Xti−1)
(
�n

i X
c − �n

i X1|�n
i X|≤vi

n

)
1Ki

n∩(Ni
n)

c∩(Ai
n)c

∣∣∣∣∣
≤

n∑
i=1

(
E sup

θ∈�

∣∣f (θ,Xti−1)
∣∣p(∣∣�n

i X
c
∣∣ + vi

n

)p)1/p

× (
P

((
Ni

n

)c ∩ (
Ai

n

)c))1/q

≤ Cn
(
�1/2

n + āvn

)( �2
n

avn

∫
|z|≥3avn/γmin

ν(dz)

)1/q

(6.6)

using Lemma 6.1(3)

≤ Cnvε/2
n �2−ε

n

(∫
|z|≥3avn/γmin

ν(dz)

)1−ε/2

choosing 1/q = 1 − ε/2.

From (6.5) and (6.6), we get

(6.7) E sup
θ∈�

∣∣B1
n(θ)

∣∣ = o

(
n�3/2−ε/2

n

(∫
|z|≥avn/γmin

ν(dz)

)1−ε/2)
+ O

(
n�2

n

)
.

This gives a control for B1
n(θ) in the situation where Assumption 4(i)–(iv) holds

true. Actually (6.7) is valid if we replace Assumption 4(i)–(iv) with Assump-
tion 4(i), (ii′) using Lemma 6.4 below.

LEMMA 6.4. Assume Assumptions 1– 3, 4(i), (ii′). Then we have

P
(
Ki

n ∩ (
Ni

n

)c) = O
(
�2

n

)
and E

[
sup
θ∈�

∣∣B1
n(θ)

∣∣] = O
(
n�2

n

)
.

The proof of Lemma 6.4 is given in Section 8 (see the Supplemental Material
[9]).

We now estimate B2
n(θ). It is clear that E supθ∈� |B2

n(θ)| is bounded by
n∑

i=1

E sup
θ∈�

∣∣∣∣f (θ,Xti−1)

∫ ti

ti−1

∫
R\{0}

γ (Xs−)zμ(ds, dz)

∣∣∣∣1Ki
n∩Ni

n

≤
n∑

i=1

E

∫ ti

ti−1

∫
|z|≤3vi

n/γmin

sup
θ∈�

∣∣f (θ,Xti−1)γ (Xs−)z
∣∣μ(ds, dz)

≤
n∑

i=1

∫ ti

ti−1

∫
|z|≤3āvn/γmin

E
[
sup
θ∈�

∣∣f (θ,Xti−1)γ (Xs)
∣∣]|z|ν(dz) ds

= O

(
n�n

∫
|z|≤3āvn/γmin

|z|ν(dz)

)
.
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Since γmin ≥ 1, we obtain

E sup
θ∈�

∣∣B2
n(θ)

∣∣ = O

(
n�n

∫
|z|≤3āvn/γmin

|z|ν(dz)

)
(6.8)

≤ O

(
n�n

∫
|z|≤3āvn

|z|ν(dz)

)
.

To estimate B3
n(θ), we first give a useful control on the probability of (Ni

n)
c:

P
((

Ni
n

)c) = 1 − P

(∫ ti

ti−1

∫
|z|>3vi

n/γmin

μ(ds, dz) = 0
)

≤ 1 − P

(∫ ti

ti−1

∫
|z|>3avn/γmin

μ(ds, dz) = 0
)

(6.9)
≤ 1 − e

−�n

∫
|z|>3avn/γmin

ν(dz)

= O

(
�n

∫
|z|>3avn/γmin

ν(dz)

)
.

Hence, using Hölder’s inequality, the assumptions on f and (3) of Lemma 6.1 we
obtain for any q > 1 that

E sup
θ∈�

∣∣B3
n(θ)

∣∣ ≤ E

n∑
i=1

sup
θ∈�

∣∣f (θ,Xti−1)
∣∣∣∣�n

i X
c
∣∣1{|�n

i X|>vn,(Ni
n)c}

≤ O
(
�1/2

n

) n∑
i=1

P
((

Ni
n

)c)1/q(6.10)

≤ O
(
n�1/2

n

)
�1/q

n

(∫
|z|>3avn/γmin

ν(dz)

)1/q

.

It remains to estimate the term B4
n(θ) in the decomposition (6.2). Observe that for

all p′ > 1,

P
((

Ki
n

)c ∩ Ni
n

)
= P

(∣∣∣∣�n
i X

c + ∑
ti−1<s≤ti

�Xs

∣∣∣∣ > vi
n;Ni

n

)

≤ P

(∣∣�n
i X

c
∣∣ >

vi
n

2

)
+ P

(∣∣∣∣ ∑
ti−1<s≤ti

�Xs

∣∣∣∣ >
vi
n

2
;Ni

n

)

≤ C�εp′
n + P

(∣∣∣∣∫ ti

ti−1

γ (Xs−)

∫
|z|≤3vi

n/γmin

zμ(ds, dz)

∣∣∣∣ >
avn

2

)

≤ C�εp′
n + C�n

avn

∫
|z|≤3āvn/γmin

|z|ν(dz),
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where C > 0. Using Hölder’s inequality twice, this last bound, sub-polynomial
growth of f and Lemma 6.1(3) we can easily see that with 1/q = 1 − ε/2 we get

E sup
θ∈�

∣∣B4
n(θ)

∣∣ = E sup
θ∈�

∣∣∣∣∣
n∑

i=1

f (θ,Xti−1)
(
�n

i X
c)1(Ki

n)c∩Ni
n

∣∣∣∣∣
≤

n∑
i=1

(
E sup

θ∈�

∣∣f (θ,Xti−1)
∣∣p∣∣�n

i X
c
∣∣p)1/p

P 1/q((
Ki

n

)c ∩ Ni
n

)

≤ Cn�1/2
n

(
�εp′

n + �n

vn

∫
|z|≤3āvn/γmin

|z|ν(dz)

)1−ε/2
(6.11)

≤ Cn�1/2
n �(1/2+ε)(1−ε/2)

n

(∫
|z|≤3āvn/γmin

|z|ν(dz)

)1−ε/2
+ Cn�2

n,

≤ Cn�1+ε/4
n

(∫
|z|≤3āvn/γmin

|z|ν(dz)

)1−ε/2
+ Cn�2

n,

since p′ can be chosen arbitrarily large. Finally, collecting (6.7), (6.8), (6.10) with
1/q = 1−ε/2 and (6.11), and using γmin ≤ 1, we obtain the first part of the lemma.

We continue with the proof of (ii). In (i), we obtain a bound which is used
in the proof of the consistency. This bound vanishes when divided by n�n. The
bound of (ii) is used to prove the asymptotic normality of the estimator, with the
rate

√
n�n, and is sharper. Especially, the bound (6.10) that we have obtained for

the term supθ∈� |B3
n(θ)| is insufficient. Below, we find an improved control on

|B3
n(θ)|, but without the uniformity with respect to θ .
To prove (ii), we consider again the decomposition (6.2). Using (6.5) and (6.6),

we can see that

E
∣∣B1

n(θ)
∣∣ = o

(
n�2−ε

n

(∫
|z|≥3avn/γmin

ν(dz)

)1−ε/2)
+ O

(
n�2

n

)
,

while (6.8) gives the bound for E|B2
n(θ)|, and (6.11) gives the bound for E|B4

n(θ)|.
Hence, proving the point (ii) of the lemma reduces to show that

B3
n(θ) = oP (

√
n�n) + oL1

(
n�2−ε

n

(∫
|z|≥3avn/γmin

ν(dz)

)1−ε/2)
+ OL1

(
n�2

n

)
.

To estimate B3
n(θ), we use a decomposition

B3
n(θ) =

n∑
i=1

f (θ,Xti−1)
(
�n

i X
c)1(Ni

n)c

(6.12)

−
n∑

i=1

f (θ,Xti−1)
(
�n

i X
c)1Ki

n∩(Ni
n)c .
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We will show that the first term of this decomposition goes to zero after
suitable normalization. Let ei := f (θ,Xti−1)�

n
i X

c1(Ni
n)c . Denote Fn

i = Fti =
σ {(Ws)0≤s≤ti , (Ls)0≤s≤ti ,X0}, then

E
[
ei |Fn

i−1
] = f (θ,Xti−1)E

[∫ ti

ti−1

σ(Xs) dWs1(Ni
n)c |Fn

i−1

]

+ f (θ,Xti−1)E

[∫ ti

ti−1

b(θ
,Xs) ds1(Ni
n)c |Fn

i−1

]
.

Observe that (Ws)s≥0 remains a Brownian motion with respect to the filtration
enlarged by σ((Ls)s≥0), since L and W are independent. Therefore,

E

[∫ ti

ti−1

σ(Xs) dWs1(Ni
n)c |Fn

i−1

]

= E

[
1(Ni

n)cE

[∫ ti

ti−1

σ(Xs) dWs |Fn
i−1 ∨ σ

(
(Ls)s≥0

)]|Fn
i−1

]
= 0,

where we have used that Ni
n is Fn

i−1 ∨ σ((Ls)s≥0) measurable, recalling (6.1) and
the fact that vi

n is Fn
i−1 measurable. This yields to∣∣E[

ei |Fn
i−1

]∣∣ ≤ ∣∣f (θ,Xti−1)
∣∣ ∫ ti

ti−1

E
[∣∣b(θ
,Xs)

∣∣1(Ni
n)c |Fn

i−1
]
ds.

With a proof similar to the proof of (6.9), we can show that

(6.13) P
((

Ni
n

)c | Fn
i−1

) = O

(
�n

∫
|z|>3avn/γmin

ν(dz)

)
.

Then, using the Hölder inequality, Lipshitz continuity of b(θ
, ·) we write for p, q

such that p−1 + q−1 = 1, p ≥ 2 and C > 0,

E
[∣∣b(θ
,Xs)

∣∣1(Ni
n)c |Fn

i−1
]

≤ (
E

[∣∣b(θ
,Xs)
∣∣p|Fn

i−1
])1/p

P
((

Ni
n

)c | Fn
i−1

)1/q

≤ C
(
E

[∣∣b(θ
,Xs) − b(θ
,Xti−1)
∣∣p|Fti−1

]
+ ∣∣b(θ
,Xti−1)

∣∣p)1/p
P

((
Ni

n

)c | Fn
i−1

)1/q

≤ C
((

E
[|Xs − Xti−1 |p|Fti−1

])1/p

+ ∣∣b(θ
,Xti−1)
∣∣)(�n

∫
|z|>3avn/γmin

ν(dz)

)1/q

≤ C

(
�n

∫
|z|>3avn/γmin

ν(dz)

)1/q(
�1/p

n

(
1 + |Xti−1 |p

)1/p + ∣∣b(θ
,Xti−1)
∣∣),

where in the last line we have used Lemma 6.1(2).
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Using the fact that b(θ
, ·) and |f (θ, ·)| are sub-polynomial and choosing again
1/q = 1 − ε/2 (which also guarantees p > 2,), we obtain

∣∣E[
ei |Fn

i−1
]∣∣ ≤ h

(|Xti−1 |
)
�2−ε/2

n

(∫
|z|>3avn/γmin

ν(dz)

)1−ε/2
,

where h is a polynomial. Hence, if n�
3/2
n (

∫
|z|>3avn/γmin

ν(dz))2−ε → 0,

E

[
n∑

i=1

∣∣∣∣E[
ei√
n�n

∣∣∣∣Fn
i−1

]∣∣∣∣
]

= O

(
n1/2�3/2−ε/2

n

(∫
|z|>3a vn

γmin

ν(dz)

)1−ε/2)
(6.14)

→ 0.

Next, we bound the second moment of ei . By Hölder’s inequality with 1/q =
1 − ε/2, 1/p = 1 − 1/q , the sublinear growth of f , together with Lemma 6.1(3),
we have

E
[
e2
i

] ≤ E
[
f (θ,Xti−1)

2p(
�n

i X
c)2p]1/p

P
[(

Ni
n

)c]1/q

≤ C�nP
[(

Ni
n

)c]1−ε/2

= O

(
�2−ε/2

n

(∫
|z|>3avn/γmin

ν(dz)

)1−ε/2)
by (6.13).

Hence, using �n

∫
|z|>3avn/γmin

ν(dz) ≤ C �n

vn

∫
|z|>3avn/γmin

|z|ν(dz) → 0, since∫
|z|>0 |z|ν(dz) < ∞, we have

E

[∣∣∣∣∣
n∑

i=1

E

[(
ei√
n�n

)2∣∣∣∣Fn
i

]∣∣∣∣∣
]

=
n∑

i=1

E

[(
ei√
n�n

)2]
(6.15)

= O

(
�1−ε/2

n

(∫
|z|>3avn/γmin

ν(dz)

)1−ε/2)
→ 0.

Under (6.14) and (6.15), we obtain from Lemma 9 in [8] (Lemma 6.2) that

1√
n�n

n∑
i=1

f (θ,Xti−1)�
n
i X

c1(Ni
n)c =

n∑
i=1

ei√
n�n

P−→ 0

if n�3−ε
n (

∫
|z|>3avn/γmin

ν(dz))2−ε → 0.
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Recall that the second term in the decomposition (6.12) of B3
n(θ) is given by

n∑
i=1

f (θ,Xti−1)�
n
i X

c1Ki
n∩(Ni

n)c .

We will now bound this term in L
1. We first assume that Assumption 4(i)–(iv)

holds. Using the set Ai
n defined by (6.3), we decompose

1Ki
n∩(Ni

n)c = 1Ki
n∩(Ni

n)c∩Ai
n
+ 1Ki

n∩(Ni
n)c∩(Ai

n)c .

Using (6.4), we deduce for all p > 1,

E

∣∣∣∣∣
n∑

i=1

f (θ,Xti−1)
(
�n

i X
c)(1Ki

n∩(Ni
n)

c∩Ai
n
)

∣∣∣∣∣
= O

(
n�εp

n

)
.

Then, exactly as for the proof of (6.6), we get

E

∣∣∣∣∣
n∑

i=1

f (θ,Xti−1)
(
�n

i X
c)(1Ki

n∩(Ni
n)

c∩(Ai
n)c )

∣∣∣∣∣
= o

(
n�2−ε

n

(∫
|z|≥3avn/γmin

ν(dz)

)1−ε/2)
.

As a result,

B3
n(θ) = oP (

√
n�n) + oL1

(
n�2−ε

n

(∫
|z|≥3avn/γmin

ν(dz)

)1−ε/2)
+ OL1

(
n�2

n

)
.

This proves the assertion (ii) of the lemma in the case where Assumption 4(i)–(iv)
holds.

If we replace Assumption 4(i)–(iv), with Assumption 4(i), (ii′), one can use
Lemma 6.4 to get that B3

n(θ) = oP (
√

n�n) + OL1(n�
5/2−ε
n ), and the results fol-

lows. �

PROOF OF LEMMA 4.3. Using dXc
s = b(θ
,Xs) ds +σ(Xs) dWs , we decom-

pose the difference as∫ tn

0
f (θ,Xs) dXc

s −
n∑

i=1

f (θ,Xti−1)�
n
i X

c

(6.16)
= An,1(θ) + An,2(θ) + An,3(θ),
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where

An,1(θ) :=
n∑

i=1

∫ ti

ti−1

(
f (θ,Xs) − f (θ,Xti−1)

)
σ(Xs) dWs,

An,2(θ) :=
n∑

i=1

∫ ti

ti−1

(
f (θ,Xs) − f (θ,Xti−1)

)(
b(θ
,Xs)

(6.17)
− b(θ
,Xti−1)

)
ds,

An,3(θ) :=
n∑

i=1

∫ ti

ti−1

(
f (θ,Xs) − f (θ,Xti−1)

)
b(θ
,Xti−1) ds.

Let us start by proving (ii). Recall that Ft = σ {X0,Wu,Lu;u ≤ t}, t ≥ 0. Using
the martingale property and Itô’s isometry of the stochastic integral together with
the finite increments formula applied to f , we obtain

E
[
A2

n,1(θ)
] = E

[
n∑

i=1

(∫ ti

ti−1

(
f (θ,Xs) − f (θ,Xti−1)

)
σ(Xs) dWs

)2
]

= E

n∑
i=1

∫ ti

ti−1

(
f (θ,Xs) − f (θ,Xti−1)

)2
σ 2(Xs) ds

≤
n∑

i=1

∫ ti

ti−1

E
[
(Xs − Xti−1)

2f ′2(θ, x̃)σ 2(Xs)
]
ds,

where x̃ is a point between Xs and Xti−1 . Note that |x̃| ≤ |Xs | + |Xti−1 |. Using
the sub-polynomial growth of σ and supθ |f ′(θ, ·)|, Hölder’s inequality, (3) of the
Lemma 2.1 and (1) of the Lemma 6.1 yields

(6.18) E
[
(Xs − Xti−1)

2f ′2(θ, x̃)σ 2(Xs)
] ≤ CE

[|Xs − Xti−1 |2q]1/q ≤ C�1/q
n ,

where q > 1 and C is a positive constant. Hence, for all θ ∈ �, E[A2
n,1(θ)] ≤

Cn�
1+1/q
n , and consequently, if 1/q = 1 − ε/2,

(6.19)
1√
n�n

An,1(θ)
L2−→ 0.

Using Lipshitz continuity of b, the assumptions on f and the same arguments
than for obtaining (6.18), we get that E[|(f (θ,Xs) − f (θ,Xti−1))(b(θ
,Xs) −
b(θ
,Xti−1))|] ≤ C�

1/q
n for s ∈ (ti−1, ti]. It follows immediately that

(6.20) E
[
sup
θ∈�

∣∣An,2(θ)
∣∣] ≤ Cn�1+1/q

n .

Hence, by choosing 1/q = 1 − ε/2 such that n�
1+2/q
n = n�3−ε

n → 0 it follows
that

(6.21)
1√
n�n

sup
θ∈�

∣∣An,2(θ)
∣∣ L1−→ 0.
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Observe that by Itô’s formula An,3(θ) can be written as

An,3(θ) = an(θ) + bn(θ) + cn(θ),

where

an(θ) =
n∑

i=1

b(θ
,Xti−1)

∫ ti

ti−1

ds

∫ s

ti−1

f ′(θ,Xu)σ (Xu)dWu,

bn(θ) =
n∑

i=1

b(θ
,Xti−1)

∫ ti

ti−1

ds

∫ s

ti−1

[
f ′(θ,Xu)b(θ
,Xu)

+ f ′′(θ,Xu)
1

2
σ 2(Xu)

]
du,

cn(θ) =
n∑

i=1

b(θ
,Xti−1)

∫ ti

ti−1

ds
∑

τ∈[ti−1,s]

(
f (θ,Xτ ) − f (θ,Xτ−)

)
,

where nonzero terms in the last sum corresponds to the jumps of X. Denote

ēn
i := 1√

n�n

∫ ti

ti−1

ds

∫ s

ti−1

b(θ
,Xti−1)f
′(θ,Xu)σ (Xu)dWu.

Using the martingale property of the stochastic integral with respect to W , we
obtain

E
[
ēn
i |Fn

i−1
] = 0,

where Fn
i−1 = Fti−1 . Using Hölder’s inequality and isometry property of the

stochastic integral, we get

E
(
E

[(
ēn
i

)2|Fn
i−1

]) = E
[(

ēn
i

)2]
≤ 1

n

∫ ti

ti−1

dsE

(∫ s

ti−1

b(θ
,Xti−1)f
′(θ,Xu)σ (Xu)dWu

)2

= 1

n

∫ ti

ti−1

ds

∫ s

ti−1

E
[
b2(θ
,Xti−1)f

′2(θ,Xu)σ
2(Xu)

]
du

≤ C
�2

n

n
,

where in the last inequality we have used the uniform in θ sub-polynomial growth
of f ′ and b, sub-linear growth of σ and Lemma 2.1(3). Therefore,

E

n∑
i=1

E
[(

ēn
i

)2|Fn
i−1

] ≤ C�2
n → 0 when n → ∞.

We conclude, using Lemma 9 in [8] (Lemma 6.2), that ∀θ ∈ �,

(6.22)
1√
n�n

an(θ) =
n∑

i=1

ēn
i

P−→ 0.
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Using again uniform in θ sub-polynomial growth of b, f ′, f ′′, sub-linearity of σ

and (3) of Lemma 2.1, we easily see that

(6.23) E sup
θ∈�

∣∣bn(θ)
∣∣ ≤ Cn�2

n.

Let us now derive a bound for the jump term cn:

E sup
θ∈�

∣∣cn(θ)
∣∣

≤
n∑

i=1

∫ ti

ti−1

dsE

[∫ s

ti−1

∫
R\{0}

∣∣b(θ
,Xti−1)
∣∣∣∣f (

θ,Xu− + γ (Xu−)z
)

(6.24)

− f (θ,Xu−)
∣∣μ(du, dz)

]

≤
n∑

i=1

∫ ti

ti−1

ds

∫ s

ti−1

du

∫
R\{0}

E
∣∣b(θ
,Xti−1)f

′(θ, x̃)γ (Xu−)
∣∣|z|ν(dz),

where in the second inequality we used again the finite increments formula and
denoted x̃ the corresponding point between Xu− and Xu = Xu− + γ (Xu−)z. Note
that again |x̃| ≤ |Xu−| + |Xu|. According to the Assumptions 3(i), (iii) and the
assumption (b) of the lemma, the functions γ , b(θ
, ·) and supθ |f ′(θ, ·)| are sub-
polynomial, and ν(|z|) < ∞. Therefore, using (3) from Lemma 2.1 we have

sup
θ∈�

∫
R\{0}

E
∣∣b(θ
,Xti−1)f

′(θ, x̃)γ (Xu−)
∣∣|z|ν(dz) < ∞.

This last inequality together with (6.24) gives

(6.25) E sup
θ∈�

∣∣cn(θ)
∣∣ = O

(
n�2

n

)
.

From (6.22), (6.23) and (6.25), we conclude that under condition n�3−ε
n → 0,

(6.26)
1√
n�n

An,3(θ)
P−→ 0.

Finally, the previous display together with (6.19) and (6.21) proves (ii) of the
lemma.

To prove claim (i), we will again use the decomposition of the difference given
by (6.16). Using the same arguments as in (6.18) and Lemma 6.1(1), we get for
some p > 1, C > 0 and x̃ between Xs and Xti−1 :

E sup
θ∈�

∣∣An,3(θ)
∣∣

≤ C

n∑
i=1

∫ ti

ti−1

E
[∣∣f ′(θ, x̃)

(
1 + |Xti−1 |p

)∣∣|Xs − Xti−1 |
]
ds
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≤ C

n∑
i=1

∫ ti

ti−1

E
(|Xs − Xti−1 |2

)1/2(
E

[∣∣f ′(θ, x̃)
∣∣2(

1 + |Xti−1 |2p)])1/2
ds

≤ C

n∑
i=1

∫ ti

ti−1

�1/2
n ds ≤ Cn�3/2

n .

Hence

1

n�n

sup
θ∈�

∣∣An,3(θ)
∣∣ L1−→ 0.

The bound (6.20) gives

1

n�n

sup
θ∈�

∣∣An,2(θ)
∣∣ L1−→ 0.

From (6.19), we know that

∀θ ∈ �,
1

n�n

An,1(θ)
P−→ 0.

Let us prove that this convergence holds uniformly with respect to θ . Denote φ :
[0, tn] → [0, tn], φ(s) = ti−1 if ti−1 ≤ s < ti , i = 0, . . . , n − 1, and define

Mn(θ) := 1

tn
An,1(θ) = 1

tn

∫ tn

0

(
f (θ,Xs) − f (θ,Xφ(s))

)
σ(Xs) dWs.

Using the Burkholder–Davis–Gundy inequality, Hölder continuity of f , sub-
polynomial growth of its Hölder constant K , sub-linear growth of σ and the bound-
edness of moments of X given by (3) of Lemma 2.1, we find that for any p ≥ 2
and some C > 0,

E
∣∣Mn(θ) − Mn

(
θ ′)∣∣p

≤ ∣∣θ − θ ′∣∣κp C

t
p/2
n

E

(
1

tn

∫ tn

0

(
K2(Xs) + K2(Xφ(s))

)
σ(Xs)

2 ds

)p/2

≤ ∣∣θ − θ ′∣∣κp C

t
p/2+1
n

∫ tn

0
E

(
K2(Xs) + K2(Xφ(s))

)p/2
σ(Xs)

p ds

≤ C
∣∣θ − θ ′∣∣κp.

Choosing p > d
κ

and using the Theorem 20 in the Appendix of [11], we obtain the

convergence 1
n�n

supθ∈� |An,1(θ)| P−→ 0, and statement (i) follows. �

We have now collected all the tools to prove the convergence of the jump fil-
ter approximation toward integral functionals with respect to the Xc as stated in
Proposition 4.1.
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PROOF OF PROPOSITION 4.1. We decompose the difference as follows:∣∣∣∣∣
∫ tn

0
f (θ,Xs) dXc

s −
n∑

i=1

f (θ,Xti−1)�
n
i X1|�n

i X|≤vi
n

∣∣∣∣∣
≤

∣∣∣∣∣
∫ tn

0
f (θ,Xs) dXc

s −
n∑

i=1

f (θ,Xti−1)�
n
i X

c

∣∣∣∣∣(6.27)

+
∣∣∣∣∣

n∑
i=1

f (θ,Xti−1)�
n
i X

c −
n∑

i=1

f (θ,Xti−1)�
n
i X1|�n

i X|≤vi
n

∣∣∣∣∣
and prove first statement (i). Using Lemma 4.3, the first term of (6.27) divided by
n�n goes to zero uniformly without any condition on �n.

Lemma 4.2(i) and the fact that vn = �
1/2−ε
n gives

(n�n)
−1 sup

θ

∣∣∣∣∣
n∑

i=1

f (θ,Xti−1)
(
�n

i X
c − �n

i X1|�iX|≤vi
n

)∣∣∣∣∣
= OL1

(
�1/2−ε/2

n

(∫
|z|≥avn/γmin

ν(dz)

)1−ε/2

+
(∫

|z|≤3āvn

|z|ν(dz)

)1−ε/2
+ �n

)

= OL1

(
�

1/2−ε/2
n

v
1−ε/2
n

(∫
|z|≥avn/γmin

|z|ν(dz)

)1−ε/2

+
(∫

|z|≤3āvn

|z|ν(dz)

)1−ε/2
+ �n

)
P−→ 0,

where we have used that
∫
z �=0 |z|ν(dz) < ∞ by Assumptions 3–4. Hence statement

(i) is proved.
Now we prove statement (ii). For any θ ∈ �, under the condition n�3−ε

n → 0,
the second statement of Lemma 4.3 gives the convergence to 0 of the first term in
the decomposition (6.27), divided by

√
n�n. The convergence to 0 of the second

term of (6.27), divided by
√

n�n, immediately follows from Lemma 4.2 and the
conditions of (ii). �

PROOF OF LEMMA 4.4. Let us first prove (i). Using Lemma 6.1(1), with some
x̃ between Xti−1 and Xs in the third line below, we obtain

E sup
θ∈�

∣∣∣∣∣
∫ tn

0
f (θ,Xs) ds −

n∑
i=1

f (θ,Xti−1)�iId

∣∣∣∣∣
= E sup

θ∈�

∣∣∣∣∣
n∑

i=1

∫ ti

ti−1

f (θ,Xs) − f (θ,Xti−1) ds

∣∣∣∣∣
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≤
n∑

i=1

∫ ti

ti−1

E
[
sup
θ∈�

∣∣f (θ,Xs) − f (θ,Xti−1)
∣∣]ds

≤
n∑

i=1

∫ ti

ti−1

E
[
sup
θ∈�

∣∣f ′(θ, x̃)
∣∣|Xs − Xti−1 |

]
ds

≤
n∑

i=1

∫ ti

ti−1

(
E sup

θ∈�

∣∣f ′(θ, x̃)
∣∣2)1/2(

E|Xs − Xti−1 |2
)1/2

ds

≤ Cn�3/2
n .

We now prove (ii). We find that∫ tn

0
f (θ,Xs) ds −

n∑
i=1

f (θ,Xti−1)�
n
i Id =

n∑
i=1

∫ ti

ti−1

(
f (θ,Xs) − f (θ,Xti−1)

)
ds,

and it is then apparent that this term can be treated exactly as the term An,3(θ)

given by equation (6.17). Hence, from (6.26) (which requires the condition
n�3−ε

n → 0) we have the result. �
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SUPPLEMENTARY MATERIAL

Jump filtering and efficient drift estimation for Lévy-driven SDEs (DOI:
10.1214/17-AOS1591SUPP; .pdf). The supplement contains the two additional
Sections 7–8. In Section 7, we investigate the numerical performance of the es-
timator for the finite sample. We consider the case of Ornstein–Uhlbenbeck and
“Hyperbolic” diffusion models, with finite or infinite activity jump measure. We
compare the results for different choices of the threshold constants an

i [recall (3.3)].
In Section 8, we give a proof the Lemma 2.1 about the ergodicity of the process,
and of the LAN property (Theorem 5.3). Next, we gather the proofs of the tech-
nical Lemmas 6.1, 6.3 and 6.4, and show that the identifiability Assumption 6 is
equivalent to (2.1).
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