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WELL-POSEDNESS AND REGULARITY FOR QUASILINEAR
DEGENERATE PARABOLIC-HYPERBOLIC SPDE

BY BENJAMIN GESS∗,† AND MARTINA HOFMANOVÁ‡

Max Planck Institute for Mathematics in the Sciences∗, Universität Bielefeld† and
Technical University Berlin‡

We study quasilinear degenerate parabolic-hyperbolic stochastic partial
differential equations with general multiplicative noise within the framework
of kinetic solutions. Our results are twofold: First, we establish new regularity
results based on averaging techniques. Second, we prove the existence and
uniqueness of solutions in a full L1 setting requiring no growth assumptions
on the nonlinearities. In addition, we prove a comparison result and an L1-
contraction property for the solutions, generalizing the results obtained in
[Ann. Probab. 44 (2016) 1916–1955].
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1. Introduction. We study the regularity and well-posedness of quasilinear
degenerate parabolic-hyperbolic SPDE of the form

du+ div
(
B(u)

)
dt = div

(
A(u)∇u

)
dt +Φ(x,u)dW,

u(0) = u0,
(1.1)

where x ∈ TN , t ∈ (0, T ), W is a cylindrical Wiener process, u0 ∈ L1(TN), B ∈
C2(R,RN), A ∈ C1(R,RN×N) takes values in the set of symmetric nonnegative
definite matrices and �(x,u) are Lipschitz continuous diffusion coefficients.

Equations of this form arise in a wide range of applications including the
convection-diffusion of an ideal fluid in porous media. The addition of a stochastic
noise is often used to account for numerical, empirical or physical uncertainties.
In view these applications, we aim to treat (1.1) under general assumptions on the
coefficient A, B and initial data u0. In particular, the coefficients are not necessar-
ily linear nor of linear growth and A is not necessarily strictly elliptic. Hence, in
particular, we include stochastic scalar conservation laws

du+ div
(
B(u)

)
dt = Φ(x,u)dW

and stochastic porous media equations

du+ div
(
B(u)

)
dt = �u[m] dt +Φ(x,u)dW,

with m> 2 and u[m] := sgn(u)|u|m.
One of the main points of this paper is to provide a full L1 approach to (1.1).

That is, we prove regularity estimates and well-posedness for (1.1) assuming no
higher integrability. More precisely, only u0 ∈ L1(TN) and no growth assumptions
on the nonlinearities A, B are assumed, in contrast to the previous work [16]. In
particular, no Lipschitz continuity (and thus linear growth) assumptions on A, B
are supposed.

This causes severe difficulties: First, the weak form of (1.1) is not necessarily
well defined since A(u), B(u) are not necessarily in L1

loc(T
N) for u ∈ L1(TN).

Therefore, renormalized solutions have to be considered (cf. [1, 9, 21]). Second, in
order to prove the uniqueness of L1 entropy solutions an equi-integrability condi-
tion or, equivalently, a decay condition for the entropy defect measure is required
(see a more detailed discussion below). The usual decay condition used in the de-
terministic case is not applicable in the stochastic case and a new condition and
proof has to be found. Third, in the stochastic case, the usual proof of existence
of entropy solutions relying on the Crandall–Liggett theory of m-accretive oper-
ators in L1(TN) cannot be applied (cf. [8, 12, 13]). Instead, the construction of
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entropy solutions presented in this paper relies on new regularity estimates based
on averaging techniques. The application of averaging techniques and the resulting
regularity results are new for parabolic-hyperbolic SPDE of the type (1.1).

At the same time, L1(TN) is a natural space to consider the well-posedness for
SPDE of the type (1.1) since the operators div(B(·)), div(A(·)∇·) are accretive in
L1(TN) (cf. the discussion of the e-property after Theorem 1.1 below). In addi-
tion, and in contrast to the deterministic case, restricting to bounded solutions, and
hence, by localization, to Lipschitz continuous coefficients A, B in (1.1) does not
seem to be sensible in the stochastic case, since in general no uniform L∞ bound
will be satisfied by solutions to (1.1), due to the unboundedness of the driving
noise W .

In the previous work [16], SPDE of the type (1.1) have been considered via a ki-
netic approach under more restrictive assumptions. More precisely, high moment
bounds and integrability u0 ∈ ⋂p≥1 L

p(�;Lp(TN)), boundedness of the diffu-
sion matrix A and polynomial growth of B ′′ had to be assumed. This, in particular,
rules out application to porous media equations. Due to these more restrictive as-
sumptions all of the above mentioned difficulties do not appear in [16]. While we
follow the principle setup to prove uniqueness of kinetic solutions, the proof has to
be significantly extended in order to incorporate the necessity to work with renor-
malized solutions and the above mentioned weaker decay condition of the entropy
defect measure. The essential difficulty in the proof of existence of solutions is
the derivation of uniform estimates in some (fractional) Sobolev space. The re-
spective arguments of [16] do not apply in the more general setting considered
here. We therefore take a different route by adapting the (deterministic) averaging
techniques by Tadmor and Tao [51] to the context of SPDE, which is entirely new.

As a particular example, (1.1) contains stochastic porous media equations

(1.2) du = �u[m] dt +Φ(x,u)dW with m> 2.

Stochastic porous media equations have attracted a lot of interest in recent years
(cf., e.g., [3, 47–49] and the references therein). All of these results rely on an H−1

approach, that is, on treating �(·)[m] as a monotone operator in H−1. In contrast to
the deterministic case, an L1 approach to stochastic porous media equations had
not yet been developed, since an analog of the concept of mild solutions in the
Crandall–Liggett theory of m-accretive operators (cf. [8, 54]) could not be found.
However, the L1 framework offers several advantages: First, more general classes
of SPDE may be treated; second, contractive properties in L1 norm are sometimes
better than those in H−1 norm. We next address these points in more detail.

Concerning the class of SPDE, informally speaking, the H−1 approach re-
lies on applying (−�)−1 to (1.2) which then allows to use the monotonicity of
φ(u) := u[m] in order to prove the uniqueness of solutions. While this works well
for the operator �φ(·), the reader may easily check that this approach fails in the
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presence of hyperbolic terms divB(u) as in (1.1) and can only be applied to reac-
tion diffusion equations

(1.3) du = �u[m] dt + f (u)dt +Φ(x,u)dW with m> 2

under unnecessarily strong assumptions on the reaction term f (cf., e.g., [14, 48]
where (1.3) with f satisfying rather restrictive assumptions has been considered).
Roughly speaking, the problem is that the Nemytskii operator u �→ f (u) is not
necessarily monotone in H−1 even if f is a monotone function. This changes
drastically in the L1 setting, since both u �→ divB(u) and u �→ f (u) are accre-
tive operators on L1 under relatively mild assumptions. In this paper, we resolve
these issues by establishing a full L1 approach to (1.1) based on entropy/kinetic
methods. In particular, this extends available results on stochastic porous media
equations by allowing hyperbolic terms divB(u) and our framework immediately1

extends to reaction terms u �→ f (u) assuming only that f is weakly monotone
and C2.

We proceed by stating the main well-posedness result obtained in this paper;
see Theorem 4.3 and Theorem 4.9 below. The precise framework will be given in
Section 2 below, and for specific examples, see Section 2.4.

THEOREM 1.1. Let u0 ∈ L1(TN) and assume that A
1
2 is γ -Hölder continuous

for some γ > 1
2 . Then kinetic solutions to (1.1) are unique. Moreover, if u1, u2 are

kinetic solutions to (1.1) with initial data u1,0 and u2,0, respectively, then

ess sup
t∈[0,T ]

E
∥∥(u1(t)− u2(t)

)+∥∥
L1(TN) ≤ ∥∥(u1,0 − u2,0)

+∥∥
L1(TN).

Assume in addition that A, B satisfy a nondegeneracy assumption [cf. (2.3)
below]. Then there exists a unique kinetic solution u to (1.1) satisfying u ∈
C([0, T ];L1(TN)), P-a.s., and for all p,q ∈ [1,∞) there exists a constant C > 0
such that

E ess sup
t∈[0,T ]

∥∥u(t)∥∥pqLp ≤ C
(
1 + ‖u0‖pqLp

)
.

The second direction of advantages of the L1 approach lies in dynamical prop-
erties. A natural question for stochastic porous media equations is their long-time
behavior, that is, the existence and uniqueness of invariant measures, mixing prop-
erties, etc. If u, v are two solutions to (1.2) with initial conditions u0, v0 respec-
tively, then

(1.4) E
∥∥u(t)− v(t)

∥∥
H−1 ≤ eCt‖u0 − v0‖H−1 ∀t ≥ 0,

1We choose not to include the details on the treatment of reaction terms f (u) in this paper, since
their treatment is similar to the noise terms �(u)dW .
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for some constant C > 0. The constant C corresponds to the Lipschitz norm of
u �→ �(u) as a map from H−1 to L2(U ;H−1). In particular, the dynamics induced
by (1.2), in general, will not be nonexpanding in H−1. In contrast, we show that

E
∥∥u(t)− v(t)

∥∥
L1 ≤ ‖u0 − v0‖L1 ∀t ≥ 0,

that is, in the L1 setting we can choose the constant C in (1.4) to be zero. In partic-
ular, this implies the e-property (cf. [39]) for the associated Markovian semigroup
Ptf (x) := Ef (uxt ) on L1(TN). The e-property has proven vital in the proof of
existence and uniqueness of invariant measures for SPDE with degenerate noise
(cf. [23, 29, 30, 39]).

For x ∈ L1(TN), let

Px := (
ux·
)
∗P,

that is, Px is the law of ux· on C([0,∞);L1(TN)), where ux· denotes the ki-
netic solution to (1.1) with initial condition x. We equip C([0,∞);L1(TN))

with the canonical filtration Gt and evaluation maps πt(w) := w(t) for w ∈
C([0,∞);L1(TN)), t ≥ 0. As in [15], using Theorem 1.1, we obtain the following.

COROLLARY 1.2. The family {Px}x∈L1 is a time-homogeneous Markov pro-
cess on C([0,∞);L1(TN)) with respect to Gt , that is,

Ex

(
F(πt+s)|Gs

)= Eπs

(
F(πt )

)
Px-a.s.

In addition, {Px}x∈L1(TN) is Feller and satisfies the e-property (cf. [39]).

As mentioned above, we prove new regularity estimates for kinetic solutions to
(1.1) of the type

u(t) ∈ Wα,1(TN ) for a.e. (ω, t),

for some α > 0, based on stochastic velocity averaging lemmas. In particular, these
estimates provide a smoothing property with respect to the initial data, which typ-
ically is the first step towards the construction of an invariant measure.

Even in the case of pure stochastic porous media equations (1.2) this ex-
tends previously available regularity results; for related deterministic results, see
[7, 22, 37, 51], for stochastic hyperbolic conservation laws, see [17]. Our approach
is mainly based on [51], but substantial difficulties due to the stochastic integral
have to be overcome. Indeed, in most of the deterministic results (with the notable
exception of [7]), the time variable does not play a special role and is regarded
as another space variable and, in particular, space-time Fourier transforms are em-
ployed in the proofs. This changes in the stochastic case due to the irregularity of
the noise in time. Therefore, it was argued in [17] that these methods are not suit-
able for the stochastic case and instead the approach of [7] which does not rely on
Fourier transforms in time was employed. In the present paper, we rely on differ-
ent arguments: We put forward averaging lemmas that rely on space-time Fourier
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transforms, Littlewood–Paley decomposition and a careful analysis of each of the
appearing terms. As a consequence, we are able to estimate the stochastic integral
as well as the kinetic measure term directly by averaging techniques, without any
additional damping (as compared to [7, 17]). Moreover, our averaging lemmas ap-
ply to the case of nonhomogeneous equations, that is, PDEs with zero, first- and
second-order terms and multiplicative noise.

More precisely, as a corollary of our main regularity result for (1.1), see Theo-
rem 3.1 and Corollary 3.3 below. We obtain the following.

THEOREM 1.3. Assume that A, B satisfy a nondegeneracy condition [cf. (2.3)
below] and are of polynomial growth of order p. Let u be a kinetic solution to (1.1).
Then

E‖u‖L1([0,T ];Ws,1(TN)) � ‖u0‖2p+3

L
2p+3
x

+ 1,

for some s > 0.

We now proceed with a more detailed discussion of the comparison to the proof
of well-posedness of entropy solutions for deterministic parabolic-hyperbolic PDE
in the L1 setting (cf. [11])

(1.5) du+ div
(
B(u)

)
dt = div

(
A(u)∇u

)
dt.

The inclusion of stochastic perturbation causes several additional difficulties. First,
the proof of existence of solutions in [11] relies on the (simple) proof of BV reg-
ularity of solutions to (1.5). Such a BV estimate is not known in the stochastic
case and does not seem to be easy to obtain (for a discussion of the necessity of
such estimates in the construction of a solution, see Section 4.2 below). In the Lp

setting of [16], the BV regularity was replaced by Wσ,1 regularity which held true
for smooth initial conditions based on similar calculations as in the uniqueness
proof. Since we do not suppose any growth assumptions on the coefficients A,B

in (1.1), these arguments cannot be used here anymore. Therefore, we instead rely
on regularity obtained by averaging techniques. In contrast to [16], our regularity
estimates do not only prove preservation of some regularity of the initial condi-
tion, but yield a regularizing effect. Indeed, the initial condition does not need to
be smooth for the averaging lemma to imply regularity for positive times. This
fact in particular permits to reduce the number of approximation layers used in the
proof of existence.

Second, the equi-integrability estimates encoded in the decay properties of the
kinetic measure in the deterministic situation, that is, in the assumption (cf. [11],
Definition 2.2(iv))

lim|ξ |→∞

∫
m(t, x, ξ)dt dx = 0
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do not seem to be suitable in the stochastic case, since the multiplicative noise term
�(x,u) is less well behaved in terms of these estimates (cf. Section 4.2.2 below).
Indeed, the corresponding proof of a priori estimates proceeds along different lines
than in the deterministic case (cf. Proposition 4.7 below). Therefore, we replace
these decay estimates by the weaker decay condition

(1.6) lim
�→∞

1

2�
E

∫
12�≤|ξ |≤2�+1m(t, x, ξ)dt dx dξ = 0

and prove the uniqueness of kinetic solutions under this weaker assumption. The
above difficulty is due to working in an L1-setting. In the situation of initial
data/solutions in L2, as in [16], the kinetic measure can be shown to have a.s.
finite mass which allows to replace (1.6) by a stronger assumption.

The kinetic approach to (deterministic) scalar conservation laws was intro-
duced by Lions, Perthame, Tadmor in [43] and extended to parabolic-hyperbolic
PDE in [11], including PDE of porous media type. In the stochastic case,
the well-posedness of such PDE had not previously been shown. Under more
restrictive assumptions, as outlined above, the well-posedness to (1.1) has
been obtained in [16]. Special cases of SPDE of the type (1.1) have attracted
a lot of interest in recent years. For deterministic hyperbolic conservation
laws, see [6, 36, 40, 42, 43, 45, 46]. Stochastic degenerate parabolic equa-
tions were studied in [5, 16, 32] and stochastic conservation laws in
[4, 10, 17–19, 24, 33, 35, 38, 50, 53]. Recently, also scalar conservation laws
driven by rough paths have been considered in [20, 25, 34]. Other types of
stochastic scalar conservation laws, for which randomness enters in form of
a random flux have been considered in [26, 28, 41, 44]. Stochastic quasi-
linear parabolic-hyperbolic SPDE with random flux have been considered in
[27].

The paper is organized as follows. In Section 2, we introduce the precise frame-
work and the concept of kinetic solutions. Our main regularity result will be proven
in Section 3. This is then used in Section 4 to prove the well-posedness for kinetic
solutions.

2. Preliminaries.

2.1. Notation. In this paper, we use the brackets 〈·, ·〉 to denote the dual-
ity between the space of distributions over TN × R and C∞

c (TN × R) and the
duality between Lp(TN × R) and Lq(TN × R). If there is no danger of con-
fusion, the same brackets will also denote the duality between Lp(TN) and
Lq(TN). By M([0, T ] × TN × R), we denote the set of Radon measures on
[0, T ] × TN × R and M+([0, T ] × TN × R) then contains nonnegative Radon
measures and Mb([0, T ] × TN × R) contains finite measures. We also use the
notation

n(φ) =
∫
[0,T ]×TN×R

φ(t, x, ξ)dn(t, x, ξ),
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where n ∈ M([0, T ] × TN × R), φ ∈ Cc([0, T ] × TN × R). In order to signify
that n ∈ M([0, T ] × TN × R) is only considered on [0, T ] × TN × D for some
compact set D ⊂ R we write n1D . In particular,

‖n1D‖Mt,x,ξ =
∫
[0,T ]×TN×D

d|n|(t, x, ξ).
The differential operators of gradient ∇ , divergence div and Laplacian � are

always understood with respect to the space variable x. For two matrices A, B of
the same size, we set A : B :=∑

ij aij bij . Throughout the paper, we use the term
representative for an element of a class of equivalence.

Finally, we use the letter C to denote a generic constant that might change from
one line to another. We also employ the notation x � y if there exists a constant C
independent of the variables under consideration such that x ≤ Cy and we write
x ∼ y if x � y and y � x. By x �z y, we mean that the corresponding proportional
constant depends on the quantity z.

2.2. Setting. We now give the precise assumptions on each of the terms ap-
pearing in the above equation (1.1). We work on a finite-time interval [0, T ],
T > 0, and consider periodic boundary conditions: x ∈ TN where TN =
RN |(2πZN) is the N -dimensional torus. For the flux B , we assume

(2.1) B = (B1, . . . ,BN) ∈ C2(R,RN )
and we set b = ∇B . The diffusion matrix A = (Aij )

N
i,j=1 ∈ C1(R;RN×N) is as-

sumed to be symmetric, positive semidefinite and its square root σ := A
1
2 is as-

sumed to be locally γ -Hölder continuous for some γ > 1/2, that is, for all R > 0
there is a constant C = C(R) such that

(2.2)
∣∣σ(ξ)− σ(ζ )

∣∣≤ C(R)|ξ − ζ |γ ∀ξ, ζ ∈ R, |ξ |, |ζ | ≤ R.

We will further require a nondegeneracy condition for the symbol L associated to
the kinetic form of (1.1)

L(iu, in, ξ) := i
(
u+ b(ξ) · n)+ n∗A(ξ)n.

For J, δ > 0 and η ∈ C∞
b (R) nonnegative, let

�
η
L(u,n; δ) := {

ξ ∈ suppη; ∣∣L(iu, in, ξ)
∣∣≤ δ

}
,

ω
η
L(J ; δ) := sup

u∈R,n∈ZN

|n|∼J

∣∣�η
L(u,n; δ)∣∣

and Lξ := ∂ξL. We suppose that there exist α ∈ (0,1), β > 0 and a measurable
map ϑ ∈ L∞

loc(R; [1,∞)) such that

ω
η
L(J ; δ) �η

(
δ

J β

)α
,

sup
u∈R,n∈ZN

|n|∼J

sup
ξ∈suppη

|Lξ (iu, in, ξ)|
ϑ(ξ)

�η J
β ∀δ > 0, J � 1.

(2.3)
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The requirement of a suitable nondegeneracy condition is classical in the theory
of averaging lemmas and, therefore, it will be essential for Theorem 3.1. The lo-
calization η and the weight ϑ give two possibilities to control the growth of Lξ

in ξ . In the proof of existence in Section 4.2.3, we employ (2.3) with ϑ ≡ 1 and
η compactly supported which allows to obtain regularity of the localized average∫
R χu(ξ)η(ξ)dξ without any further integrability assumptions on u. On the con-

trary, with a suitable choice of ϑ , we may consider η ≡ 1 to obtain regularity of u
itself provided it possesses certain additional integrability. We refer the reader to
Section 2.4 for further discussion of (2.3) as well as for application to particular
examples.

Regarding the stochastic term, let (�,F , (Ft )t≥0,P) be a stochastic basis with
a complete, right-continuous filtration. Let P denote the predictable σ -algebra on
� × [0, T ] associated to (Ft )t≥0. The initial datum u0 is F0-measurable and the
process W is a cylindrical Wiener process, that is, W(t) = ∑

k≥1 βk(t)ek with
(βk)k≥1 being mutually independent real-valued standard Wiener processes rel-
ative to (Ft )t≥0 and (ek)k≥1 a complete orthonormal system in a separable Hilbert
space U. In this setting, we can assume without loss of generality that the σ -
algebra F is countably generated and (Ft )t≥0 is the filtration generated by the
Wiener process and the initial condition. For each z ∈ L2(TN), we consider a
mapping Φ(z) : U → L2(TN) defined by Φ(z)ek = gk(·, z(·)). We suppose that
gk ∈ C(TN ×R) and there exists a sequence (αk)k≥1 of positive numbers satisfy-
ing D :=∑

k≥1 α
2
k < ∞ such that∣∣gk(x,0)
∣∣+ ∣∣∇xgk(x, ξ)

∣∣+ ∣∣∂ξgk(x, ξ)∣∣≤ αk ∀x ∈ TN, ξ ∈ R.(2.4)

Note that it follows from (2.4) that

(2.5)
∣∣gk(x, ξ)∣∣≤ αk

(
1 + |ξ |) ∀x ∈ TN, ξ ∈ R

and for all x, y ∈ TN , ξ, ζ ∈ R

(2.6)
∑
k≥1

∣∣gk(x, ξ)− gk(y, ζ )
∣∣2 ≤ C

(|x − y|2 + |ξ − ζ |2).
Consequently, denoting G2(x, ξ) =∑

k≥1 |gk(x, ξ)|2 it holds

G2(x, ξ) ≤ 2D
(
1 + |ξ |2) ∀x ∈ TN, ξ ∈ R.

The conditions imposed on Φ imply that it maps L2(TN) to the space of Hilbert–
Schmidt operators from U to L2(TN), denoted by L2(U;L2(TN)). Thus, given a
predictable process u ∈ L2(�× (0, T );L2(TN)), the stochastic integral in (1.1) is
a well-defined process taking values in L2(TN) (see [15] for a detailed construc-
tion).
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2.3. Kinetic solutions. Let us introduce the definition of kinetic solution as
well as the related definitions used throughout this paper. It is a generalization of
the concept of kinetic solution studied in [16], which is suited for establishing well-
posedness in the L1-framework, that is, for initial conditions in L1(�;L1(TN)).
In that case, the corresponding kinetic measure is not finite and one can only prove
suitable decay at infinity.

DEFINITION 2.1 (Kinetic measure). A mapping m from � to M+([0, T ] ×
TN ×R), the set of nonnegative Radon measures over [0, T ] ×TN ×R, is said to
be a kinetic measure provided:

(i) For all ψ ∈ Cc([0, T )×TN ×R), the process∫
[0,t]×TN×R

ψ(s, x, ξ)dm(s, x, ξ)

is predictable.
(ii) Decay of m for large ξ : it holds true that

lim
�→∞

1

2�
Em(A2�) = 0,

where

A2� = [0, T ] ×TN × {
ξ ∈ R;2� ≤ |ξ | ≤ 2�+1},

DEFINITION 2.2 (Kinetic solution). A function u ∈ L1(� × [0, T ],P,dP ⊗
dt;L1(TN)) is called a kinetic solution to (1.1) with initial datum u0 if the follow-
ing conditions are satisfied:

(i) For all φ ∈ C∞
c (R), φ ≥ 0,

div
∫ u

0
φ(ζ )σ (ζ )dζ ∈ L2(�× [0, T ] ×TN ).

(ii) For all φ1, φ2 ∈ C∞
c (R), φ1, φ2 ≥ 0, the following chain rule formula holds

true in L2(�× [0, T ] ×TN)

(2.7) div
∫ u

0
φ1(ζ )φ2(ζ )σ (ζ )dζ = φ1(u)div

∫ u

0
φ2(ζ )σ (ζ )dζ.

(iii) Let φ ∈ C∞
c (R), φ ≥ 0, and let nφ : � → M+([0, T ] ×TN) be defined as

follows: for all ϕ ∈ C∞
c ([0, T ] ×TN),

(2.8) nφ(ϕ) =
∫ T

0

∫
TN

ϕ(t, x)

∣∣∣∣div
∫ u

0

√
φ(ζ )σ (ζ )dζ

∣∣∣∣2 dx dt.

There exists a kinetic measure m such that, for all ϕ ∈ C∞
c ([0, T ] × TN), ϕ ≥ 0

and φ ∈ C∞
c (R), φ ≥ 0, it holds m(ϕφ) ≥ nφ(ϕ), P-a.s., and, in addition, the pair
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(f = 1u>ξ ,m)2 satisfies, for all ϕ ∈ C∞
c ([0, T )×TN ×R), P-a.s.,∫ T

0

〈
f (t), ∂tϕ(t)

〉
dt + 〈

f0, ϕ(0)
〉+ ∫ T

0

〈
f (t), b · ∇ϕ(t)

〉
dt

+
∫ T

0

〈
f (t),A : D2ϕ(t)

〉
dt

= −∑
k≥1

∫ T

0

∫
TN

gk
(
x,u(t, x)

)
ϕ
(
t, x, u(t, x)

)
dx dβk(t)

− 1

2

∫ T

0

∫
TN

G2(x,u(t, x))∂ξϕ(t, x, u(t, x))dx dt +m(∂ξϕ).

(2.9)

The definition of a kinetic solution given in Definition 2.2 generalizes the def-
inition of kinetic solutions given in [16], Definition 2.2, which applies to the case
of high integrability, that is, for u ∈ Lp(�;Lp([0, T ] × TN)) for all p ≥ 1. We
note that in particular the chain rule (2.7) is weaker than the corresponding version
[[16], (2.5)]. As a consequence, the parabolic dissipation nφ does not necessarily
define a measure with respect to the variable ξ . It was already mentioned above
that the kinetic measure m is generally not a finite measure and the decay assump-
tion from Definition 2.1(ii), is weaker than the one in [16], Definition 2.1(ii).

REMARK 2.3. Let u ∈ Lp(�;Lp([0, T ] × TN)) for all p ≥ 1. Then u is a
kinetic solution to (1.1) in the sense of [16], Definition 2.2, if and only if u is a
kinetic solution in the sense of Definition 2.2.

REMARK 2.4. We emphasize that a kinetic solution is, in fact, a class of equiv-
alence in L1(� × [0, T ];L1(TN)) so not necessarily a stochastic process in the
usual sense. The term representative is then used to denote an element of this class
of equivalence.

We will further use the notions of Young measures and kinetic functions for the
definition of which we refer to [16], Definition 2.4, Definition 2.5, Remark 2.6.

2.4. Applications. In this section, we consider the model example of a
convection-diffusion SPDE with polynomial nonlinearities, that is, let N = 1 and
consider

du+ ∂x

(
uk

k

)
dt = ∂x

(|u|m−1∂xu
)

dt +Φ(x,u)dW,

2Here, 1u>ξ is considered as a function of four variables, namely (ω, t, x, ξ) �→ 1u(ω,t,x)>ξ .
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that is, (1.1) with b(ξ) = B ′(ξ) = ξk−1, A(ξ) = |ξ |m−1, for k ≥ 2, m> 2. Hence,

L(iu, in, ξ) = i
(
u+ ξk−1n

)+ |ξ |m−1n2,∣∣Lξ (iu, in, ξ)
∣∣� |ξ |k−2|n| + |ξ |m−2n2.

(2.10)

For η ∈ C∞
b (R) and u ∈ R, n ∈ Z, |n| ∼ J , we consider

�
η
L(u,n; δ) = {

ξ ∈ suppη; ∣∣i(u+ ξk−1n
)+ |ξ |m−1n2∣∣≤ δ

}
and observe that �η

L(u,n; δ) ⊂ �A ∩�b where

�A := {
ξ ∈ suppη; |ξ |m−1|n|2 ≤ δ

}
,

�b := {
ξ ∈ suppη; ∣∣i(u+ ξk−1n

)∣∣≤ δ
}
.

Note that the set �A is localized around 0 in the sense that

�A =
{
ξ ∈ suppη; |ξ | ≤

(
δ

J 2

) 1
m−1
}
,

whereas the set �b is moving according to the value of u:

�b =
{
ξ ∈ suppη;

(
u− δ

J

) 1
k−1 ≤ ξ ≤

(
u+ δ

J

) 1
k−1
}
.

In view of the second part of the condition (2.3), we choose β = 2 whenever a
second-order operator is present. Therefore, we set β = 2 and α = 1

m−1 , which
yields the first part of (2.3) independently of η

(2.11) ω
η
L(J ; δ) �

(
δ

J 2

) 1
m−1

.

Regarding the second condition, it is necessary to control the ξ -growth in (2.10).
Our formulation of the nondegeneracy condition (2.3) offers two ways of do-
ing so: either using a (compactly supported) localization η or a weight ϑ . Us-
ing the first approach, Theorem 3.1 yields regularity of the localized average
η̄(u) = ∫

R χu(t,x)(ξ)η(ξ)dξ without any further integrability assumptions on the
solution u. On the other hand, the second approach allows to obtain regularity of
the solution u itself, that is, setting η ≡ 1, but requires higher integrability of u. To
be more precise, in the case of (2.10) we set ϑ(ξ) = 1 + |ξ |k∨m−2 and assume that
u ∈ Lp(�× [0, T ] ×TN) for p = 2(k ∨m− 2)+ 3.

In the case of a purely hyperbolic equation with a polynomial nonlinearity
b(ξ) = ξk−1, k ≥ 2, we obtain

�
η
L(u,n; δ) =

{
ξ ∈ suppη; u− δ

J
≤ ξk−1 ≤ u+ δ

J

}
,

which implies the first condition in (2.3) independently of η with α = 1
k−1 , β = 1.

For the second condition, we proceed the same way as above.



WELL-POSEDNESS AND REGULARITY FOR QUASILINEAR SPDE 2507

3. Regularity. In this section, we establish a regularity result for solutions to
(1.1), based on averaging techniques. Throughout this section, we use the follow-
ing notation: for a kinetic solution u, let χ := χu = 1u>ξ − 10>ξ . Then we have,
in the sense of distributions,

(3.1) ∂tχ + b(ξ) · ∇χ −A(ξ) : D2χ = ∂ξq −
∞∑
k=1

(∂ξχ)gkβ̇k +
∞∑
k=1

δ0gkβ̇k,

where q = m − 1
2G

2δu=ξ . For η ∈ C∞
b (R), let η̄ ∈ C∞ be such that η̄′ = η and

η̄(0) = 0. We then have

η̄(u) =
∫
R
χu(t,x)(ξ)η(ξ)dξ.

THEOREM 3.1. Assume (2.1), (2.4). Let η ∈ C∞
b (R;R+) and assume that

there are α ∈ (0,1), β > 0 and a measurable map ϑ ∈ L∞
loc(R; [1,∞)) such that

(2.3) is satisfied. Let Θη :R →R+ such that Θ ′
η = (|ξ |2 +1)ϑ2(ξ)(η(ξ)+|η′|(ξ)).

If u is a kinetic solution to (1.1), then

η̄(u) =
∫
R
χu(t,x)(ξ)η(ξ)dξ ∈ Lr(�× [0, T ];Ws,r(TN )), s <

α2β

6(1 + 2α)

with 1
r
> 1−θ

2 + θ
1 , θ = α

4+α
and

(3.2)

∥∥η̄(u)∥∥Lr(�×[0,T ];Ws,r (TN))

�η

∥∥η̄(|u0|)∥∥1/2
L1
ω,x

+ ∥∥Θη

(|u|)∥∥1/2
L1
ω,t,x

+ sup
0≤t≤T

∥∥η̄(|u|)∥∥L1
ω,x

+ ∥∥mϑ
(
η + ∣∣η′∣∣)∥∥

L1
ωMt,x,ξ

+ 1,

where the constant in the inequality depends on b and A via the constants appear-
ing in (2.3) only and on η only via its C1 norm.

REMARK 3.2. If η is compactly supported, then we may always take ϑ ≡ 1
in (2.3). Furthermore, in this case the right-hand side in (3.2) is always finite.

In order to deduce regularity for u itself, we choose η ≡ 1. If ϑ is a polynomial
of order p, then Θη is a polynomial of order 2p + 3 and by Lemma 4.6 below

we have ‖Θη(|u|)‖
1
2

L1
ω,t,x

� ‖u0‖
2p+3

2

L
2p+3
ω,t,x

+ 1 and ‖mϑ‖L1
ωMt,x,ξ

� ‖u0‖p+2
Lp+2 + 1. In

conclusion, we obtain the following.

COROLLARY 3.3. Suppose (2.3) is satisfied for η ≡ 1 and ϑ being a polyno-
mial of order p. Let u be the kinetic solution3 to (1.1). Then

‖u‖Lr(�×[0,T ];Ws,r (TN)) � ‖u0‖2p+3

L
2p+3
ω,x

+ 1.

3Well-posedness of kinetic solutions to (1.1) is proved in Section 4 below.
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PROOF OF THEOREM 3.1. The proof proceeds in several steps. In the first
step, the solution χ = χu = f −10>ξ is decomposed into Littlewood–Paley blocks
χJ and subsequently each Littlewood–Paley block is decomposed according to the
degeneracy of the symbol L(iu, in, ξ). This decomposition of f serves as the basis
of the following averaging techniques. In the second step, each part of the decom-
position is estimated separately, relying on the nondegeneracy condition (2.3). In
the last step, these estimates are combined and interpolated in order to deduce the
regularity of f .

The principle idea of the above decomposition of f follows [51]. However, the
stochastic integral in (1.1) leads to additional difficulties and requires a different
treatment of the time variable. This is resolved here by passing to the mild form
[cf. (3.4) below] and then estimating all occurring terms separately, interpolating
the estimates in the end.

Decomposition of χ . We introduce a cut-off in time, that is, let φ = φλ ∈
C1([0,∞)) such that 0 ≤ φ ≤ 1, φ ≡ 1 on [0, T − λ], φ ≡ 0 on [T ,∞) and
|∂tφ| ≤ 1

λ
for some λ ∈ (0,1) to be eventually sent to 0. For notational simplicity,

we omit the superscript λ in the following computations and let it only reappear at
the end of the proof, where the passage to the limit in λ is discussed.

Then, χφ solves, in the sense of distributions,

∂t (χφ)+ b(ξ) · ∇(χφ)−A(ξ) : D2(χφ)

= ∂ξ (φq)−
∞∑
k=1

∂ξ (χφ)gkβ̇k +
∞∑
k=1

δ0φgkβ̇k + χ∂tφ.
(3.3)

Next, we decompose χ into Littlewood–Paley blocks χJ , such that the Fourier
transform in space χ̂J is supported by frequencies |n| ∼ J for J dyadic. This is
achieved by taking a smooth partition of unity 1 ≡ ϕ0(z) +∑

J�1 ϕ(J
−1z) such

that ϕ0 is a bump function supported inside the ball |z| ≤ 2 and ϕ is a bump func-
tion supported in the annulus 1

2 ≤ |z| ≤ 2, and setting

χ0(t, x, ξ) := F−1
x

[
ϕ0(n)χ̂(t, n, ξ)

]
(x),

χJ (t, x, ξ) := F−1
x

[
ϕ

(
n

J

)
χ̂ (t, n, ξ)

]
(x), J � 1.

This leads to the decomposition χ = χ0+∑J�1 χJ . The regularity of χ0 be-
ing trivial, we only focus on the estimate of χJ for J � 1. Localizing (3.3) in
Littlewood–Paley blocks yields

∂t (χJ φ)+ b(ξ) · ∇(χJφ)−A(ξ) : D2(χJφ)

= ∂ξ (φqJ )−
∞∑
k=1

∂ξ (χφgk)J β̇k +
∞∑
k=1

(χφ∂ξgk)J β̇k

+
∞∑
k=1

δ0φ(gk)J β̇k + χJ ∂tφ.
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After a preliminary step of regularization, we may test by S∗(T − t)ϕ for ϕ ∈
C(TN) in (3.1), where S(t) denotes the solution semigroup to the linear operator
χ �→ b(ξ) · ∇χ −A(ξ) : D2χ . This leads to the mild form

(χJ φ)(t) = S(t)χJ (0)+
∫ t

0
S(t − s)∂ξ (φqJ )ds

−
∞∑
k=1

∫ t

0
S(t − s)∂ξ (gkχφ)J dβk(s)

(3.4)

+
∞∑
k=1

∫ t

0
S(t − s)

(
(∂ξgk)χφ

)
J dβk(s)

+
∞∑
k=1

∫ t

0
S(t − s)δ0φgk,J dβk(s)+

∫ t

0
S(t − s)χJ ∂tφ ds,

where we have used

ϕ

(
n

J

)
Fx

[∫ t

0
S(t − s)∂ξ (χφ)gk dβk(s)

]
(n)

=
∫ t

0
e−(ib(ξ)·n+n∗A(ξ)n)(t−s)∂ξFx(gkχφ)J (s, n, ξ)dβk(s)

−
∫ t

0
e−(ib(ξ)·n+n∗A(ξ)n)(t−s)Fx

(
(∂ξgk)χφ

)
J (s, n, ξ)dβk(s)

and

ϕ

(
n

J

)
Fx

[∫ t

0
S(t − s)δ0φgk dβk(s)

]
(n)

=
∫ t

0
e−(ib(ξ)·n+n∗A(ξ)n)(t−s)δ0φĝk,J (n, ξ)dβk(s).

For J � 1 fixed, we next decompose the action in ξ -variable according to the
degeneracy of the operator L(iu, in, ξ). Namely, for K dyadic, let 1 ≡ ψ0(z) +∑

K�1 ψ1(K
−1z) be a smooth partition of unity such that ψ0 is a bump function

supported inside the ball |z| ≤ 2 and ψ1 is a bump function supported in the annu-
lus 1

2 ≤ |z| ≤ 2, and write

10≤t (χJ φ)(t, x, ξ)

=F−1
tx

[
ψ0

(L(iu, in, ξ)

δ

)
Ftx

[
10≤t (χJ φ)

]
(u,n, ξ)

]
(t, x)

+ ∑
K�1

F−1
tx

[
ψ1

(L(iu, in, ξ)

δK

)
Ftx

[
10≤t (χJ φ)

]
(u,n, ξ)

]
(t, x)

=: χ(0)
J (t, x, ξ)+ ∑

K�1

χ
(K)
J (t, x, ξ).
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Hence, we consider the decomposition

10≤tχφ = 10≤tχ0φ + ∑
J�1

(
χ
(0)
J (t, x, ξ)+ ∑

K�1

χ
(K)
J (t, x, ξ)

)
.

Since ψ0 is supported at the degeneracy, we will apply a trivial estimate. However,
ψ1 is supported away from the degeneracy and, therefore, we may use the equation
and the nondegeneracy assumption (2.3). From (3.4), we obtain

χ
(K)
J (t, x, ξ) = F−1

tx ψ1

(L(iu, in, ξ)

δK

)
Ftx

[
10≤t S(t)χ0,J

+ 10≤t

∫ t

0
S(t − s)∂ξ (φqJ )ds

− 10≤t

∞∑
k=1

∫ t

0
S(t − s)∂ξ (gkχφ)J dβk(s)

+ 10≤t

∞∑
k=1

∫ t

0
S(t − s)

(
(∂ξgk)χφ

)
J dβk(s)

+ 10≤t

∞∑
k=1

∫ t

0
S(t − s)δ0φgk,J dβk(s)

+ 10≤t

∫ t

0
S(t − s)χJ ∂tφ ds

]
(t, x).

Multiplying the above by η ∈ C∞
b (R) and integrating over ξ ∈ R, we set∫

R
χ
(K)
J (t, x, ξ)η(ξ)dξ =: I1 + I2 − I3 + I4 + I5 + I6

and we estimate the right-hand side term by term below. Note that since

Ftx

[
10≤t

∫ t

0
S(t − s)∂ξ (gkχφ)J dβk(s)

]
= Ft

[
10≤t

∫ t

0
e−(ib(ξ)·n+n∗A(ξ)n)(t−s)∂ξ ̂(gkχφ)J (s, ξ, n)dβk(s)

]
= 1

(2π)1/2

∫ ∫
10≤s≤te

−(ib(ξ)·n+n∗A(ξ)n)(t−s)∂ξ ̂(gkχφ)J dβk(s)e
−itu dt

=
∫ ∞

0
e−(ib(ξ)·n+n∗A(ξ)n)re−iru dr

× 1

(2π)1/2

∫ ∞
0

∂ξ ̂(gkχφ)J (s, ξ, n)e
−isu dβk(s)

= 1

i(u+ b(ξ) · n)+ n∗A(ξ)n

1

(2π)1/2

∫ ∞
0

∂ξ ̂(gkχφ)J (s, ξ, n)e
−isu dβk(s),
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we have

I3 = 1

(2π)1/2

1

(δK)

×
∫
R
F−1
tx

[
ψ̃

∞∑
k=1

∫ ∞
0

e−isu∂ξ ̂(gkχφ)J (s, ξ, n)dβk(s)

]
η(ξ)dξ,

where we set ψ̃(z) := ψ1(z)/z and for notational simplicity omitted the argument,
that is,

ψ̃ = ψ̃

(L(iu, in, ξ)

δK

)
in I3. The same convention will often be used in the sequel. We argue similarly for
the remaining terms Ii , for example, for I2 we note that

Ftx

[
10≤t

∫ t

0
S(t − s)∂ξ (φqJ )ds

]
= 1

i(u+ b(ξ) · n)+ n∗A(ξ)n
Ftx

[
10≤t ∂ξ (φqJ )

]
.

Estimating Ii , i = 1, . . . ,6.

Estimate of I1. Using Plancherel and Hölder’s inequality, we observe

‖I1‖2
L2
t,x

= 1

2π(δK)2

∥∥∥∥∫
R
F−1
tx

[
ψ̃χ̂J (0, n, ξ)

]
η(ξ)dξ

∥∥∥∥2

L2
t,x

= 1

2π(δK)2

∫
u

∑
n

∣∣∣∣∫
R
ψ̃χ̂J (0, n, ξ)η(ξ)dξ

∣∣∣∣2 du

≤ 1

2π(δK)2

∫
u

∑
n

∫
R

∣∣∣∣ψ̃(L(iu, in, ξ)

δK

)∣∣∣∣21suppη dξ

×
∫
R

1{|u+b(ξ)·n|2+|n∗A(ξ)n|2<(2δK)2}
∣∣χ̂J (0, n, ξ)

∣∣2η2(ξ)dξ du.

Then using (2.3) and∫
u

1{|u+b(ξ)·n|2+|n∗A(ξ)n|2<(2δK)2} du ≤
∫
u

1{|u|2<(2δK)2} du � δK(3.5)

we obtain

‖I1‖2
L2
t,x

� 1

δK

(
δK

Jβ

)α∥∥χJ (0)η
∥∥2
L2
x,ξ

.(3.6)
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Estimate of I2. First, we integrate by parts to obtain

‖I2‖L1
t W

−ε,qε
x

= 1

δK

∥∥∥∥∫
R
F−1
tx

[
ψ̃Ftx(10≤tφ∂ξqJ )

]
η(ξ)dξ

∥∥∥∥
L1
t W

−ε,qε
x

≤ 1

(δK)2

∥∥∥∥∫
R
F−1
tx

[
ψ̃ ′Lξ (iu, in, ξ)

ϑ(ξ)

×Ftx(10≤tφϑqJ )(u, ξ, n)

]
η(ξ)dξ

∥∥∥∥
L1
t W

−ε,qε
x

+ 1

(δK)2

∥∥∥∥∫
R
F−1
tx

[
ψ̃Ftx(10≤tφqJ )(u, ξ, n)

]
η′(ξ)dξ

∥∥∥∥
L1
t W

−ε,qε
x

,

with the convention ψ̃ ′ = ψ̃ ′(L(iu,in,ξ)
δK

) and similarly for ψ̃ . We apply Lemma A.1
to estimate the second term on the right-hand side. For the first one, we first note
that (2.3) implies that (for simplicity restricting to the case β = 2 while β = 1 can
be handled analogously)

|b′
i (ξ)|
ϑ(ξ)

�η |n|, |A′
ij (ξ)|
ϑ(ξ)

�η 1, i, j ∈ {1, . . . ,N}.
Since Lξ (iu, in, ξ) is a polynomial in n, we may apply [2], Lemma 2.2, to deduce
that

m(n, ξ) := Lξ (iu, in, ξ)

ϑ(ξ)
= ib′(ξ) · n+ n∗A′(ξ)n

ϑ(ξ)

localized to |n| ∼ J , ξ ∈ suppη, is an L1-Fourier multiplier with norm bounded by
Jβ . Revisiting the proof of Lemma A.1 (see proof of [51], Lemma 2.2) with the
multiplier ψ(

m(u,n,ξ)
δ

) replaced by ψ(
m(u,n,ξ)

δ
)m(n, ξ) then yields

‖I2‖L1
t W

−ε,qε
x

� 1

(δK)2J
β
∥∥φϑqJ (η + ∣∣η′∣∣)∥∥

Mt,x,ξ
,

where N
q ′
ε
< ε < 1 < qε <

N
N−ε

and ε is chosen sufficiently small. Consequently,

‖I2‖L1
t,x

� 1

(δK)2J
β+ε

∥∥φϑqJ (η + ∣∣η′∣∣)∥∥
Mt,x,ξ

.(3.7)

Estimate of I3. Using Plancherel and Itô’s formula, we note that

E‖I3‖2
L2
t,x

= 1

2π(δK)2

×E

∥∥∥∥∥
∫
R
F−1
tx

[
ψ̃

∞∑
k=1

∫ ∞
0

e−isu∂ξ ̂(gkχφ)J (s, ξ, n)dβk(s)

]
η(ξ)dξ

∥∥∥∥∥
2

L2
t,x
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= 1

2π(δK)2

×
∫
u

∑
n

E

∣∣∣∣∣
∞∑
k=1

∫ ∞
0

∫
R
ψ̃e−isu∂ξ ̂(gkχφ)J (s, ξ, n)η(ξ)dξ dβk(s)

∣∣∣∣∣
2

du

= 1

2π(δK)2

×
∫
u

∑
n

E

∫ ∞
0

∞∑
k=1

∣∣∣∣∫
R
ψ̃e−isu∂ξ ̂(gkχφ)J (s, ξ, n)η(ξ)dξ

∣∣∣∣2 ds du

� 1

(δK)4

×
∫
u

∑
n

E

∫ ∞
0

∞∑
k=1

∣∣∣∣∫
R
ψ̃ ′Lξ (iu, in, ξ)

ϑ(ξ)
̂(gkχϑφ)J (s, ξ, n)η(ξ)dξ

∣∣∣∣2 ds du

+ 1

(δK)4

∫
u

∑
n

E

∫ ∞
0

∞∑
k=1

∣∣∣∣∫
R
ψ̃ ̂(gkχφ)J (s, ξ, n)η

′(ξ)dξ
∣∣∣∣2 ds du.

Hence, by (2.3) it follows that

E‖I3‖2
L2
t,x

� 1

(δK)4E

∫ ∞
0

∫
u

∑
n

∫
R

∣∣∣∣ψ̃ ′Lξ (iu, in, ξ)

ϑ(ξ)

∣∣∣∣21suppη dξ

×
∫
R

1{|u+b(ξ)·n|2+|n∗A(ξ)n|2<(2δK)2}

×
∞∑
k=1

∣∣ ̂(gkχϑφ)J (s, ξ, n)
∣∣2η2 dξ duds

+ 1

(δK)4E

∫ ∞
0

∫
u

∑
n

∫
R

∣∣∣∣ψ̃(L(iu, in, ξ)

δK

)∣∣∣∣21suppη dξ

×
∫
R

1{|u+b(ξ)·n|2+|n∗A(ξ)n|2<(2δK)2}

×
∞∑
k=1

∣∣ ̂(gkχϑφ)J (s, ξ, n)
∣∣2∣∣η′∣∣2 dξ duds

� 1

(δK)4

(
δK

Jβ

)α
J 2βE

∫ ∞
0

∫
u

∑
n

∫
R

1{|u+b(ξ)·n|2+|n∗A(ξ)n|2<(2δK)2}
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×
∞∑
k=1

∣∣ ̂(gkχϑφ)J (s, ξ, n)
∣∣2η2 dξ duds

+ 1

(δK)4

(
δK

Jβ

)α
E

∫ ∞
0

∫
u

∑
n

∫
R

1{|u+b(ξ)·n|2+|n∗A(ξ)n|2<(2δK)2}

×
∞∑
k=1

∣∣ ̂(gkχϑφ)J (s, ξ, n)
∣∣2∣∣η′∣∣2 dξ duds

and due to (3.5) we obtain

E‖I3‖2
L2
t,x

≤ 1

(δK)3

(
δK

Jβ

)α
J 2β

∞∑
k=1

E
∥∥(gkχϑφ)J (η + ∣∣η′∣∣)∥∥2

L2
t,x,ξ

.(3.8)

Estimate of I4. By Plancherel and Itô’s formula, we have

E‖I4‖2
L2
t,x

� 1

(δK)2E

∥∥∥∥∥
∫
R
F−1
tx

×
[
ψ̃

∞∑
k=1

∫ ∞
0

e−isuFx

(
(∂ξgk)χφ

)
J (s, ξ, n)dβk(s)

]
η(ξ)dξ

∥∥∥∥∥
2

L2
t,x

= 1

(δK)2

×
∫
u

∑
n

E

∣∣∣∣∣
∞∑
k=1

∫ ∞
0

∫
R
ψ̃e−isuFx

(
(∂ξgk)χφ

)
J (s, ξ, n)η(ξ)dξ dβk(s)

∣∣∣∣∣
2

du

= 1

(δK)2

∫
u

∑
n

E

×
∫ ∞

0

∞∑
k=1

∣∣∣∣∫
R
ψ̃e−isuFx

(
(∂ξgk)χφ

)
J (s, ξ, n)η(ξ)dξ

∣∣∣∣2 ds du.

Thus, it follows from (2.3), (3.5) and (2.4) that

E‖I4‖2
L2
t,x

� 1

(δK)2

∫
u

∑
n

∫
R

∣∣∣∣ψ̃(L(iu, in, ξ)

δK

)∣∣∣∣21suppη dξ

×E

∫ ∞
0

∫
R

1{|u+b(ξ)·n|2+|n∗A(ξ)n|2<(2δK)2}(3.9)
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×
∞∑
k=1

∣∣Fx

(
(∂ξgk)χφ

)
J (s, ξ, n)

∣∣2η2 dξ ds du

� 1

δK

(
δK

Jβ

)α ∞∑
k=1

E
∥∥((∂ξgk)χηφ)J ∥∥2

L2
t,x,ξ

.

Estimate of I5. We have, using (3.5),

E‖I5‖2
L2
t,x

= 1

2π(δK)2E

∥∥∥∥∥
∫
R
F−1
tx

×
[
ψ̃

∞∑
k=1

∫ ∞
0

e−isuδ0φĝk,J (n, ξ)dβk(s)

]
η(ξ)dξ

∥∥∥∥∥
2

L2
t,x

= 1

2π(δK)2E

∥∥∥∥∥
∫
R
ψ̃

∞∑
k=1

∫ ∞
0

e−isuδ0φĝk,J (n, ξ)dβk(s)η(ξ)dξ

∥∥∥∥∥
2

L2
u,n

= η(0)2

2π(δK)2

∫
u

∑
n

E

×
∣∣∣∣∣

∞∑
k=1

∫ ∞
0

ψ̃

(L(iu, in,0)

δK

)
e−isuφĝk,J (n,0)dβk(s)

∣∣∣∣∣
2

du

= η(0)2

2π(δK)2

∫
u

∑
n

∫ ∞
0

∞∑
k=1

∣∣∣∣ψ̃(L(iu, in,0)

δK

)
φĝk,J (n,0)

∣∣∣∣2 ds du

�η

1

δK

∞∑
k=1

∥∥gk,J (·,0)
∥∥2
L2
x
.

(3.10)

Estimate of I6. It holds

‖I6‖L1
t,x

� 1

δK

∥∥∥∥∫
R
F−1
tx

[
ψ̃Ftx(10≤tχJ ∂tφ)

]
η(ξ)dξ

∥∥∥∥
L1
t,x

� 1

δK
‖∂tφχJ η‖L1

t,x,ξ
.

(3.11)

Estimating χ
(K)
J . Let us denote

K := ∥∥χJ (0)η
∥∥
L2
ω,x,ξ

+ ∥∥φqJϑ(η + ∣∣η′∣∣)∥∥
L1
ωMt,x,ξ

+
( ∞∑
k=1

∥∥(gkχϑφ)J (η + ∣∣η′∣∣)∥∥2
L2
ω,t,x,ξ

)1/2
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+
( ∞∑
k=1

∥∥((∂ξgk)χηφ)J ∥∥2
L2
ω,t,x,ξ

)1/2

+
( ∞∑
k=1

∥∥gk,J (·,0)
∥∥2
L2
x

)1/2

+ ‖∂tφχJ η‖L1
ω,t,x,ξ

.

Then using (3.6), (3.7), (3.8), (3.9), (3.10), (3.11) we deduce∥∥∥∥∫
R
χ
(K)
J η dξ

∥∥∥∥
L1
ω,t,x

= sup
ϕ∈L∞

ω,t,x‖ϕ‖L∞
ω,t,x

≤1

E

〈∫
R
χ
(K)
J η dξ,ϕ

〉

�η K
[(

1

δK

) 1
2
(
δK

Jβ

) α
2 + 1

(δK)2J
β+ε +

(
1

(δK)3

) 1
2
(
δK

Jβ

) α
2
Jβ

+
(

1

δK

) 1
2
(
δK

Jβ

) α
2 +

(
1

δK

) 1
2 + 1

δK

]
.

Now summing over all dyadic K , since all the powers of K appearing on the right-
hand side are negative, we deduce∑

K�1

∥∥∥∥∫
R
χ
(K)
J η dξ

∥∥∥∥
L1
ω,t,x

� K
[
δ

1
2 (α−1)J− βα

2 + δ−2Jβ+ε + δ− 3−α
2 J

2−α
2 β

+ δ− 1
2 (1−α)J− βα

2 + δ− 1
2 + δ−1].

Estimating χJ . We let χJφη := ∫
R χJφη dξ and write

K(r,χJφη) := inf
F 0
J ∈L2

ω,t,x ,F
1
J ∈L1

ω,t,x

χJ φη=F 0
J +F 1

J

(∥∥F 0
J

∥∥
L2
ω,t,x

+ r
∥∥F 1

J

∥∥
L1
ω,t,x

)
, r > 0,

where χJφη = F 0
J + F 1

J with F 0
J := ∫

R χ
(0)
J η dξ , F 1

J := ∑
K�1

∫
R χ

(K)
J η dξ . By

Lemma A.1 and (2.3), we have∥∥F 0
J

∥∥2
L2
t,x

=
∥∥∥∥∫

R
F−1
tx

[
ψ0

(L(iu, in, ξ)

δ

)
Ftx(χJ φ)(u,n, ξ)

]
η(ξ)dξ

∥∥∥∥2

L2
t,x

�
(

δ

J β

)α
‖χJ ηφ‖2

L2
t,x,ξ

.

Hence, we obtain

K(r,χJφη) � δ
α
2 J− βα

2 ‖χJ ηφ‖L2
ω,t,x,ξ

+ rK
[
δ

1
2 (α−1)J− βα

2 + δ−2Jβ+ε

+ δ− 3−α
2 J

2−α
2 β + δ− 1

2 (1−α)J− βα
2 + δ− 1

2 + δ−1]



WELL-POSEDNESS AND REGULARITY FOR QUASILINEAR SPDE 2517

and we intend to choose r to equilibrate these bounds. To do so, let τ, κ > 0 to be
chosen later and set δ = rτ J κ . This yields

r−τ α
2 K(r,χJφη) � Jα

κ−β
2 ‖χJ ηφ‖L2

ω,t,x,ξ

+K
[
r1− τ

2 J
−κ(1−α)−βα

2 + r1−τ( 4+α
2 )J−2κ+β+ε

+ r1− 3
2 τ J− 3−α

2 κ+ 2−α
2 β + r1−τ( 1+α

2 )J− 1
2κ + r1−τ( 2+α

2 )J−κ ].
Optimizing in τ , κ yields κ = 2

3β , τ = 2
4+α

. which obviously can be satisfied.
Hence, with θ := α

4−α
,

J
αβ
6 rθK(r,χJφη) � ‖χJ ηφ‖L2

ω,t,x,ξ
+K

[
r

3+α
4+α J− 1

3β + J− 2−α
6 β+ε + r

1+α
4+α

+ r
3

4+α J− 2−α
6 β + r

2
4+α J− 4−α

6 β].
Finally, since for r large we have the elementary estimate

K(r,χJφη) ≤ ‖χJφη‖L2
ω,t,x

,

we apply the K-method of real interpolation to deduce

J
αβ
6 ‖χJφη‖(L2

ω,t,x ,L
1
ω,t,x )θ,∞

≤ J
αβ
6
∥∥r−θK(r,χJφη)

∥∥
L∞
r

≤ J
αβ
6
∥∥r−θK(r,χJφη)1r≤R

∥∥
L∞
r

+ J
αβ
6
∥∥r−θK(r,χJφη)1r≥R

∥∥
L∞
r

� ‖χJφη‖L2
ω,t,x,ξ

+K
[
R

3+α
4+α J− 1

3β + J− 2−α
6 β+ε +R

1+α
4+α

+R
3

4+α J− 2−α
6 β +R

2
4+α J− 4−α

6 β]+ J
αβ
6 R−θ‖χJφη‖L2

ω,t,x
.

Let us take R = J τ for some τ > 0 to be chosen below. Then

(3.12)

J
αβ
6 ‖χJφη‖(L2

ω,t,x ,L
1
ω,t,x )θ,∞

� ‖χJφη‖L2
ω,t,x,ξ

+K
[(
J τ ) 3+α

4+α J− 1
3β + J− 2−α

6 β+ε + (J τ ) 1+α
4+α

+ (J τ ) 3
4+α J− 2−α

6 β + (
J τ ) 2

4+α J− 4−α
6 β]

+ J
αβ
6
(
J τ )−θ‖χJφη‖L2

ω,t,x
.

Now we aim to choose τ in order to minimize the maximum of the exponents of
J occurring on the right-hand side in the previous inequality. Optimizing for τ the
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terms
3 + α

4 + α
τ − β

3
,

1 + α

4 + α
τ,

3

4 + α
τ − 2 − α

6
β,

2

4 + α
τ − 4 − α

6
β, − α

4 + α
τ + αβ

6

yields the choice τ = βα(4+α)
6(1+2α) . With this choice, all the exponents in the right-

hand side of (3.12) are of order less than αβ
6 . Multiplication with J

−αβ
6 thus leads

to negative powers of J on the right-hand side, the worst (i.e., the maximal) one

being − α2β
6(1+2α) . Therefore, since ε was chosen small, we obtain that

‖χJφη‖(L2
ω,t,x ,L

1
ω,t,x )θ,∞ � J

− α2β
6(1+2α)

[‖χJφη‖L2
ω,t,x,ξ

+K + ‖χJφη‖L2
ω,t,x

]
.

Note that although all the above norms are global in time, that is, t ∈ (−∞,∞),
the integrands are localized on [0, T ] due to the cut-off φ = φλ.

Conclusion. The real interpolation of two Lebesgue spaces is given by a
Lorentz space (see [52], Section 1.18.6, Theorem 1, namely,(

L2
ω,t,x,L

1
ω,t,x

)
θ,∞ = L

r̃,∞
ω,t,x,

1

r̃
= 1 − θ

2
+ θ

1
.

In the case of a bounded domain, Lr̃,∞
ω,t,x is embedded in the Lebesgue space Lr

ω,t,x

whenever r̃ > r (see [31], Exercise 1.1.11),(
L2
ω,t,x,L

1
ω,t,x

)
θ,∞ ↪→ Lr

ω,t,x,
1

r
>

1 − θ

2
+ θ

1
.

Thus letting s <
α2β

6(1+2α) we deduce

‖χφη‖Lr(�×[0,T ];Ws,r (TN))

� ‖χφη‖L2
ω,t,x,ξ

+ ∥∥χ(0)η∥∥L2
ω,x,ξ

+
( ∞∑
k=1

∥∥((∂ξgk)χηφ)∥∥2
L2
ω,t,x,ξ

)1/2

+
( ∞∑
k=1

∥∥gkχϑφ(η + ∣∣η′∣∣)∥∥2
L2
ω,t,x,ξ

)1/2

+
( ∞∑
k=1

∥∥gk(·,0)
∥∥2
L2
x

)1/2

+ ∥∥φϑq(η + ∣∣η′∣∣)∥∥
L1
ωMt,x,ξ

+ ‖∂tφχη‖L1
ω,t,x,ξ

+ ‖χφη‖L2
ω,t,x

.

(3.13)
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Since the constant in inequality (3.13) is independent of λ, we may send λ → 0.
First, we observe that

lim sup
λ→0

∥∥∂tφλχη
∥∥
L1
ω,t,x,ξ

� sup
0≤t≤T

‖χη‖L1
ω,x,ξ

.

Using the dominated convergence theorem for the remaining terms, we obtain the
following estimate for uη = χη :∥∥uη∥∥Lr(�×[0,T ];Ws,r (TN))

� ‖χη‖L2
ω,t,x,ξ

+ ∥∥χ(0)η∥∥L2
ω,x,ξ

+
( ∞∑
k=1

∥∥(∂ξgk)χη∥∥2
L2
ω,t,x,ξ

)1/2

+
( ∞∑
k=1

∥∥gkχϑ(η + ∣∣η′∣∣)∥∥2
L2
ω,t,x,ξ

)1/2

+
( ∞∑
k=1

∥∥gk(·,0)
∥∥2
L2
x

)1/2

+ ∥∥qϑ(η + ∣∣η′∣∣)∥∥
L1
ωMt,x,ξ

+ sup
0≤t≤T

‖χη‖L1
ω,x,ξ

+ ‖χη‖L2
ω,t,x

.

It remains to estimate the right-hand side in terms of the available bounds for the
kinetic solution u and the corresponding kinetic measure m. Note that this estimate
will depend on the localization η. First, due to the definition of the equilibrium
function χ , it follows immediately that

‖χη‖L2
ω,t,x,ξ

�η

∥∥uη∥∥1/2
L1
ω,t,x

,
∥∥χ(0)η∥∥L2

ω,x,ξ
�η

∥∥uη0∥∥1/2
L1
ω,x

,

sup
0≤t≤T

‖χη‖L1
ω,x,ξ

= sup
0≤t≤T

∥∥uη∥∥L1
ω,x

, ‖χη‖L2
ω,t,x

�η

∥∥uη∥∥1/2
L1
ω,t,x

.

Second, similarly and due to (2.4) we have with Θη such that Θ ′
η = (|ξ |2 +

1)ϑ2(ξ)(η(ξ)+ |η′|(ξ)),( ∞∑
k=1

∥∥(∂ξgk)χη∥∥2
L2
ω,t,x,ξ

)1/2

+
( ∞∑
k=1

∥∥gkχϑ(η + ∣∣η′∣∣)∥∥2
L2
ω,t,x,ξ

)1/2

+
( ∞∑
k=1

∥∥gk(·,0)
∥∥2
L2
x

)1/2

�η

∥∥Θη(u)
∥∥1/2
L1
ω,t,x

+ 1.

Finally, since q = m− 1
2G

2δu=ξ , we deduce∥∥qϑ(η + ∣∣η′∣∣)∥∥
L1
ωMt,x,ξ

�η

∥∥mϑ
(
η + ∣∣η′∣∣)∥∥

L1
ωMt,x,ξ

+ 1.
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At this point, it is worth noticing that all estimates were uniform in η up to con-
stants depending on ‖η‖C1 and (2.3). Since Θη(u) ≥ uη, we conclude∥∥η̄(u)∥∥Lr(�×[0,T ];Ws,r (TN))

�η

∥∥η̄(|u0|)∥∥1/2
L1
ω,x

+ ∥∥Θη

(|u|)∥∥1/2
L1
ω,t,x

+ sup
0≤t≤T

∥∥η̄(|u|)∥∥L1
ω,x

+ ∥∥mϑ
(
η + ∣∣η′∣∣)∥∥

L1
ωMt,x,ξ

+ 1.

with 1
r
> 1−θ

2 + θ
1 and s <

α2β
6(1+2α) which completes the proof. �

4. Well-posedness. In this section, we present the proof of the main well-
posedness result Theorem 1.1. The uniqueness part of Theorem 1.1 will be proved
in Theorem 4.3 below, the existence in Theorem 4.9 below.

4.1. Uniqueness. In this section, we prove comparison results, and thus
uniqueness for kinetic solutions to (1.1). We emphasize that we do not assume any
higher Lp estimates for the kinetic solutions, thus providing a proof of uniqueness
in the general L1 setting. Recall that in this case and in contrast to [16], the kinetic
measure is not finite and we only have a weak control of its decay for large ξ ; cf.
Definition 2.1(ii). Moreover, the corresponding chain rule can only be formulated
in a weaker sense. In addition, we only assume that σ is locally Hölder continuous
and b′ is locally bounded. In particular, no polynomial growth condition for b′ is
required. This generalizes previous related uniqueness results given in [16], Sec-
tion 3. The additional difficulties are resolved here by introducing an additional
cutoff argument chosen adapted to the weaker decay condition (1.6).

Analogously to [16], Proposition 3.1, [32], Proposition 10 and [18], Proposi-
tion 3.1, one may prove the existence of left- and right-continuous representatives
for kinetic solutions.

PROPOSITION 4.1. Let u be a kinetic solution to (1.1). Then f = 1u>ξ admits
representatives f− and f+ which are almost surely left and right continuous,
respectively, at all points t∗ ∈ [0, T ] in the sense of distributions over TN × R.
More precisely, for all t∗ ∈ [0, T ] there exist kinetic functions f ∗,± on �×TN ×R

such that setting f±(t∗) = f ∗,± yields f± = f almost everywhere and〈
f±(t∗ ± ε

)
,ψ
〉→ 〈

f±(t∗),ψ 〉ε ↓ 0 ∀ψ ∈ C2
c

(
TN ×R

)
,P-a.s.,

where the zero set does not depend on ψ nor t∗. Moreover, there is a countable set
Q ⊆ [0, T ] such that P-a.s. for all t∗ ∈ [0, T ] \Q we have f+(t∗) = f−(t∗).

The next step relies on the doubling of the variables technique. However, it is
necessary to establish a new version, which is suitable for the L1-setting.
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Let (�ε), (ψδ) be standard Dirac sequences on TN and R, respectively, and
let (K�) be a sequence of smooth cut-off functions defined as follows: Let K ∈
C∞(R) be such that 0 ≤ K(ξ) ≤ 1, K ≡ 1 if |ξ | ≤ 1, K ≡ 0 if |ξ | ≥ 2, and
|K ′(ξ)| ≤ 1. Define K�(ξ) := K(

ξ

2�
), � ∈N. Then |K ′

�(ξ)| ≤ 1
2�

12�≤|ξ |≤2�+1 .
In the sequel, we use the following convention: When no integral bounds are

specified, we integrate with respect to (x, y, ξ, ζ, η) ∈ (TN)2 ×R3. In addition, we
only specify the kinetic and Young measures, but omit the Lebesgue measure (also
with respect to the time variable).

PROPOSITION 4.2 (Doubling of variables). Let u1, u2 be kinetic solutions
to (1.1). Denote f1 = 1u1>ξ , f2 = 1u2>ξ with the corresponding Young measures
ν1 = δu1 , ν2 = δu2 , respectively. Then for all t ∈ [0, T ] we have

E

∫
�ε(x − y)K�(η)ψδ(η − ξ)ψδ(η − ζ )f±

1 (x, t, ξ)f̄±
2 (y, t, ζ )

≤ E

∫
�ε(x − y)K�(η)ψδ(η − ξ)ψδ(η − ζ )f1,0(x, ξ)f̄2,0(y, ζ )

+ I + J + K +L(δ, �),

where lim�→∞ limδ→0 L(δ, �) = 0 and

I = E

∫ t

0

∫
f1f̄2

(
b(ξ)− b(ζ )

) · ∇x�ε(x − y)K�(η)ψδ(η − ξ)ψδ(η − ζ ),

J = E

∫ t

0

∫
f1f̄2

(
A(ξ)+A(ζ )

) : D2
x�ε(x − y)K�(η)ψδ(η − ξ)ψδ(η − ζ )

−E

∫ t

0

∫
�ε(x − y)K�(η)ψδ(η − ξ)dν1

x,s(ξ)dnψδ(η−·)
2 (y, s)

−E

∫ t

0

∫
(TN)2

∫
R3

�ε(x − y)K�(η)ψδ(η − ζ )dν2
y,s(ζ )dnψδ(η−·)

1 (x, s),

K = 1

2
E

∫ t

0

∫
�ε(x − y)K�(η)ψδ(η − ξ)ψδ(η − ζ )

×∑
k≥1

∣∣gk(x, ξ)− gk(y, ζ )
∣∣2 dν1

x,s(ξ)dν2
y,s(ζ ).

PROOF. A similar approach as in [32], Proposition 3.2, and [19], Proposi-
tion 9, yields for α(x, ξ, y, ζ, η) := �ε(x − y)K�(η)ψδ(η − ξ)ψδ(η − ζ ) that

E

∫
f+

1 (t)f̄+
2 (t)α

= E

∫
f1,0f̄2,0α +E

∫ t

0

∫
f1f̄2

(
b(ξ)− b(ζ )

)·∇xα

+E

∫ t

0

∫
f1f̄2A(ζ ) : D2

yα +E

∫ t

0

∫
f1f̄2A(ξ) : D2

xα
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+ 1

2
E

∫ t

0

∫
f̄2∂ξαG

2
1 dν1

x,s(ξ)− 1

2
E

∫ t

0

∫
f1∂ζαG

2
2 dν2

y,s(ζ )

−E

∫ t

0

∫
G1,2α dν1

x,s(ξ)dν2
y,s(ζ )−E

∫ t

0

∫
f̄−

2 ∂ξα dm1(x, s, ξ)

+E

∫ t

0

∫
f+

1 ∂ζ α dm2(y, s, ζ ) =: I1 + · · · + I9.

We need to treat the last five terms I5, . . . , I9. Using the fact that∫
R
ψδ(η − ξ)∂ζψδ(η − ζ )K�(η)dη

= −
∫
R
∂ξψδ(η − ξ)ψδ(η − ζ )dη +

∫
R
ψδ(η − ξ)ψδ(η − ζ )K ′

�(η)dη

together with the decomposition of the kinetic measure m2 from Definition 2.2(iii),
it follows

I9 ≤ −E

∫ t

0

∫
�ε(x − y)K�(η)ψδ(η − ξ)dν1

x,s(ξ)dnψδ(η−·)
2 (y, s)

+ 1

2�
E

∫ t

0

∫
TN

∫
R

12�−δ≤|ζ |≤2�+1+δ dm2(y, s, ζ ),

where, according to Definition 2.1(ii), the second term on the right-hand side van-
ishes if we let δ → 0 and then � → ∞. By symmetry,

I8 ≤ −E

∫ t

0

∫
�ε(x − y)K�(η)ψδ(η − ζ )dν2

y,s(ζ )dnψδ(η−·)
1 (x, s)

+ 1

2�
E

∫ t

0

∫
TN

∫
R

12�−δ≤|ξ |≤2�+1+δ dm1(x, s, ξ).

Next, we have

I5 + I6 + I7

= K + 1

2
E

∫ t

0

∫
f̄2�ε(x − y)ψδ(η − ξ)ψδ(η − ζ )K ′

�(η)G
2
1 dν1

s,x(ξ)

− 1

2
E

∫ t

0

∫
f1�ε(x − y)ψδ(η − ξ)ψδ(η − ζ )K ′

�(η)G
2
2 dν2

y,s(ζ )

=: K + I51 + I61

and due to (2.4)

I51 ≤ D

2�
E

∫ t

0

∫
TN

∫
R

12�−δ≤|ξ |≤2�+1+δ dν1
s,x(ξ)dx ds

+ D

2�
E

∫ t

0

∫
TN

∫
R

12�−δ≤|ξ |≤2�+1+δ|ξ |2 dν1
s,x(ξ)dx ds.
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We further note that

D

2�
E

∫ t

0

∫
TN

∫
R

12�−δ≤|ξ |≤2�+1+δ|ξ |2 dν1
s,x(ξ)dx ds

≤ D
2�+1 + δ

2�
E

∫ t

0

∫
TN

∫
R

12�−δ≤|ξ |≤2�+1+δ|ξ |dν1
s,x(ξ)dx ds

≤ D
2�+1 + δ

2�
E

∫ t

0

∫
TN

12�−δ≤|u1(s,x)|
∣∣u1(s, x)

∣∣dx ds.

Hence,

lim sup
δ→0

I51 ≤ D

2�
t +DE

∫ t

0

∫
TN

12�≤|u1(s,x)|
∣∣u1(s, x)

∣∣dx ds.

By dominated convergence, this implies that lim�→∞ limδ→0 I51 = 0 and I61 may
be treated analogously, which completes the proof. �

Finally, we have all in hand to prove the comparison principle leading to the
proof of uniqueness as well as continuous dependence on the initial condition.

THEOREM 4.3 (Comparison principle). Let u be a kinetic solution to (1.1).
Then there exist u+ and u−, representatives of u, such that, for all t ∈ [0, T ],
f±(t, x, ξ) = 1u±(t,x)>ξ for a.e. (ω, x, ξ), where f± are as in Proposition 4.1.

Moreover, if u1, u2 are kinetic solutions to (1.1) with initial data u1,0, u2,0,
respectively, then

(4.1) sup
t∈[0,T ]

E
∥∥(u±

1 (t)− u±
2 (t)

)+∥∥
L1(TN) ≤ E

∥∥(u1,0 − u2,0)
+∥∥

L1(TN).

PROOF. Using Proposition 4.2, we have

E

∫
TN

∫
R
f±

1 (x, t, ξ)f̄±
2 (x, t, ξ)dξ dx

= E

∫
�ε(x − y)K�(η)ψδ(η − ξ)ψδ(η − ζ )f±

1 (x, t, ξ)f̄±
2 (y, t, ζ )

+ ηt (ε, δ, �)

≤ E

∫
�ε(x − y)K�(η)ψδ(η − ξ)ψδ(η − ζ )f1,0(x, ξ)f̄2,0(y, ζ )

+ I + J + K +L(δ, �)+ ηt (ε, δ, �),

with I, J, K as in Proposition 4.2 and lim�→∞ limε,δ→0 ηt (ε, δ, �) = 0. We aim to
find suitable bounds for the terms I, J, K.
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Since b′ is locally bounded, setting ‖b′‖∞,δ,� := ‖b′‖L∞(−2�+1−δ,2�+1+δ), we
have

|I| ≤ ∥∥b′∥∥∞,δ,�E

∫ t

0

∫
f1f̄2|ξ − ζ |ψδ(η − ζ )ψδ(η − ξ)K�(η)

∣∣∇x�ε(x − y)
∣∣

≤ 82�
∣∣TN

∣∣2ε−1δ
∥∥b′∥∥∞,δ,�t.

In order to estimate the term J, we observe that

J = E

∫ t

0

∫
f1f̄2

(
σ(ξ)− σ(ζ )

)2 : D2
x�ε(x − y)K�(η)ψδ(η − ξ)ψδ(η − ζ )

+ 2E
∫ t

0

∫
f1f̄2σ(ξ)σ (ζ ) : D2

x�ε(x − y)K�(η)ψδ(η − ξ)ψδ(η − ζ )

−E

∫ t

0

∫
�ε(x − y)K�(η)ψδ(η − ξ)dν1

x,s(ξ)dnψδ(η−·)
2 (y, s)

−E

∫ t

0

∫
�ε(x − y)K�(η)ψδ(η − ζ )dν2

y,s(ζ )dnψδ(η−·)
1 (x, s)

= J1 + J2 + J3 + J4.

Since σ is locally γ -Hölder continuous due to (2.2), it holds

|J1| ≤ Ctδ2γ ε−2‖σ‖Cγ ([−2�+1−δ,2�+1+δ]).

Next, we will show that

(4.2) J2 + J3 + J4 ≤ 0.

From (2.7) and (2.8), we have

J3 + J4

= −E

∫ t

0

∫
(TN)2

∫
R
�ε(x − y)K�(η)ψδ(η − u1)

×
∣∣∣∣divy

∫ u2

0

√
ψδ(η − ζ )σ (ζ )dζ

∣∣∣∣2
−E

∫ t

0

∫
(TN)2

∫
R
�ε(x − y)K�(η)ψδ(η − u2)

×
∣∣∣∣divx

∫ u1

0

√
ψδ(η − ξ)σ (ξ)dξ

∣∣∣∣2
≤ −2E

∫ t

0

∫
(TN)2

∫
R
�ε(x − y)K�(η)

√
ψδ(η − u1)

√
ψδ(η − u2)

× divx

∫ u1

0

√
ψδ(η − ξ)σ (ξ) · divy

∫ u2

0

√
ψδ(η − ζ )σ (ζ )
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= −2E
∫ t

0

∫
(TN)2

∫
R
�ε(x − y)K�(η)

× divx

∫ u1

0
ψδ(η − ξ)σ (ξ) · divy

∫ u2

0
ψδ(η − ζ )σ (ζ ).

Equation (4.2) now follows from

J2 = 2E
∫ t

0

∫
(TN)2

∫
R
�ε(x − y)K�(η)

× divy

∫ u2

0
σ(ζ )ψδ(η − ζ )dζ · divx

∫ u1

0
σ(ξ)ψδ(η − ξ) ≤ −J3 − J4.

Due to (2.6), we have

K ≤ CE

∫ t

0

∫
�ε(x − y)|x − y|2ψδ(η − ζ )ψδ(η − ξ)K�(η)dν1

x,s(ξ)dν2
y,s(ζ )

+CE

∫ t

0

∫
�ε(x − y)ψδ(η − ζ )ψδ(η − ξ)K�(η)|ξ − ζ |2 dν1

x,s(ξ)dν2
y,s(ζ )

≤ Ctδ−1ε2 +Ctδ.

As a consequence, we deduce, for all t ∈ [0, T ],
E

∫
TN

∫
R
f±

1 (x, t, ξ)f̄±
2 (x, t, ξ)dξ dx

≤ E

∫
�ε(x − y)K�(η)ψδ(η − ξ)ψδ(η − ζ )f1,0(x, ξ)f̄2,0(y, ζ )

+Cε−1δ2�
∥∥b′∥∥∞,δ,�t +Ctδ2γ ε−2‖σ‖Cγ ([−2�+1−δ,2�+1+δ]) +Ctδ−1ε2

+Ctδ +L(δ, �)+ ηt (ε, δ, �).

Taking δ = εβ with β ∈ (1/γ,2) and letting ε → 0 yields

E

∫
TN

∫
R
f±

1 (x, t, ξ)f̄±
2 (x, t, ξ)dξ dx

≤ E

∫
TN

∫
R
K�(η)f1,0(x, η)f̄2,0(x, η)dx dη

+ lim
δ→0

L
(
εβ, �

)+ lim
ε→0

ηt
(
ε, εβ, �

)
.

Taking � → ∞, we conclude

E

∫
TN

∫
R
f±

1 (x, t, ξ)f̄±
2 (x, t, ξ)dξ dx ≤ E

∫
TN

∫
R
f1,0(x, η)f̄2,0(x, η)dx dη.

The conclusion of (4.1) from this proceeds along the lines of the proof of [16],
Theorem 3.3, where we refer for the details. �
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4.2. Existence. In this section, we prove the existence of kinetic solutions.
The proof of existence is based on a two-level approximation procedure. One of
which is a vanishing viscosity approximation. One difficulty in the construction of
a kinetic solution to (1.1) is the verification of the chain-rule in Definition 2.2(ii).
In contrast to the other conditions, the chain-rule is not necessarily preserved un-
der taking weak limits, so that strong convergence of the approximating solutions
is needed. This strong convergence is particularly hard to obtain in the vanish-
ing viscosity approximation. We resolve this obstacle by employing the regularity
estimates established in Section 3.

As mentioned above, the proof of existence proceeds in two steps, correspond-
ing to two layers of approximation. In the first step, we replace the initial con-
dition u0 by a smooth, bounded approximation uκ0 ∈ L∞(� × TN) such that
uκ0 ∈ C∞

c (TN) P-a.s. and

uκ0 → u0 in L1(�;L1(TN ))
and we also replace the diffusion matrix A by a symmetric, positive definite matrix
Aκ given by

Aκ(ξ) := κ Id+A(ξ), ξ ∈ R.

In the second step, we replace Aκ by a bounded, symmetric and positive definite
matrix Aκ,τ given by its square root

σ
κ,τ
ij (ξ) = √

κδij +

⎧⎪⎪⎨⎪⎪⎩
σij (ξ) if |ξ | ≤ 1

τ
,

σij

(
sgn(ξ)

τ

)
if |ξ | > 1

τ
,

and we further approximate the flux B by Bτ , defined by setting

(
bτ
)′
(ξ) :=

⎧⎪⎪⎨⎪⎪⎩
b′(ξ) if |ξ | ≤ 1

τ
,

b′
(

sgn(ξ)

τ

)
if |ξ | > 1

τ
.

Since σ and b′ are locally bounded, σκ,τ and (bτ )′ are bounded for each κ, τ > 0
fixed and Bτ is of sub-quadratic growth. Moreover,

Aκ,τ (ξ) = κ Id+A(ξ), Bτ (ξ) = B(ξ) ∀|ξ | ≤ 1

τ
,

and thus Aκ,τ → A locally uniformly. Hence, we consider

duκ,τ + div
(
Bτ (uκ,τ ))dt = div

(
Aκ,τ (uκ,τ )∇uκ,τ

)
dt +Φ

(
uκ,τ

)
dW,

uκ,τ (0) = uκ0 .
(4.3)

In the case of (4.3), the results from [16], Section 4, are applicable, which yields
the existence and uniqueness of a weak solution to (4.3) and appropriate bounds.
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We will then pass to the limit, first employing the compactness method from [32],
Section 4.3, for the limit τ → 0, then proving the strong convergence in L1 as
κ → 0 directly using the regularity properties established in Section 3.

In the following subsection, we establish uniform Lp bounds on the approxi-
mating solutions. Next, in Section 4.2.2 we prove uniform bounds on the corre-
sponding kinetic dissipation measures and we conclude the proof of existence in
Section 4.2.3.

4.2.1. Lp-estimates. Let us start with an a priori Lp-estimate for solutions to
(1.1).

PROPOSITION 4.4. Let u be a kinetic solution to (1.1). Then

(4.4) E ess sup
0≤t≤T

∥∥u(t)∥∥pqLp ≤ CT,p,q

(
1 +E‖u0‖pqLp

)
for all p,q ∈ [1,∞) and for some constant CT,p,q > 0.

PROOF. The proof relies on the Itô formula applied to (1.1) and the function

u �→
∫
TN

(
1 + |u|2)p2 dx = ∥∥(1 + |u|2)p4 ∥∥2

L2 .

In order to make the following calculations rigorous, one works on the level of
the approximations uκ,τ introduced above. This leads to a uniform estimate which
implies (4.4) for the (unique) limiting kinetic solution u by lower-semicontinuity
of the norm. Since this limiting procedure is standard, we restrict to presenting the
main, informal arguments here.

Itô’s formula yields∥∥(1 + ∣∣u(t)∣∣2)p4 ∥∥2
L2 = ∥∥(1 + |u0|2)p4 ∥∥2

L2

− p

∫ t

0

∫
TN

(
1 + |u|2)p2 −1

udiv
(
B(u)

)
dx ds

+ p

∫ t

0

∫
TN

(
1 + |u|2)p2 −1

udiv
(
A(u)∇u

)
dx ds

+ p
∑
k≥1

∫ t

0

∫
TN

(
1 + |u|2)p2 −1

ugk(x,u)dx dβk

+ p

2

∫ t

0

∫
TN

(
1 + |u|2)p2 −2(1 + (p − 1)|u|2)G2(x, u)dx ds.

Due to the periodic boundary conditions, the second term on the right-hand side
vanishes after an integration by parts. The third term is nonpositive due to integra-
tion by parts and positive semidefinitness of A. The fourth one may be estimated,
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using (2.5), by∣∣∣∣p2
∫ t

0

∫
TN

(
1 + |u|2)p2 −2(1 + (p − 1)|u|2)G2(x, u)dx ds

∣∣∣∣
≤ C

∫ t

0

∫
TN

(
1 + |u|2)p2 dx ds = C

∫ t

0

∥∥(1 + ∣∣u(s)∣∣2)p4 ∥∥2
L2 ds.

Finally, for the stochastic integral, taking the supremum, the qth power and the
expectation, we have by Burkholder–Davis–Gundy’s inequality, (2.5) and Young’s
inequality

E sup
0≤t≤T

∣∣∣∣p∑
k≥1

∫ t

0

∫
TN

(
1 + |u|2)p2 −1

ugk(x,u)dx dβk

∣∣∣∣q

≤ CE

(∫ T

0

∥∥(1 + |u|2)p4 ∥∥2
L2

∑
k≥1

∥∥(1 + |u|2)p4 − 1
2
∣∣gk(u)∣∣∥∥2

L2 dt
) q

2

≤ 1

2
sup

0≤t≤T

∥∥(1 + |u|2)p4 ∥∥2q
L2 +CTE

∫ T

0

∥∥(1 + |u|2)p4 ∥∥2q
L2 dt.

Thus, Gronwall’s lemma yields

E sup
0≤t≤T

∥∥(1 + |u|2)p4 ∥∥2q
L2 ≤ CT,q

∥∥(1 + |u0|2)p4 ∥∥2q
L2 .

Since

‖u‖pqLp ≤ ∥∥(1 + |u|2)p4 ∥∥2q
L2 ≤ Cp,q

(
1 + ‖u‖pqLp

)
,

this concludes the proof. �

4.2.2. Decay of the kinetic measure. To appreciate the difficulty and methods
introduced in the following, we recall that in the deterministic case

∂tf (t)+ b(ξ) · ∇f (t)+A(ξ) : D2f (t) = ∂ξm

bounds on the kinetic measure m are easily derived (informally) by testing with
1[k,∞)(ξ) and integrating in t , x, ξ , which corresponds to computing the derivative
∂t (u− k)+ via the chain-rule. In the stochastic case, this has to be replaced by the
Itô formula informally leading to terms of the form

∫
g2
k (x, u)δu=k dξ dx dt which

are not easy to control. Therefore, new techniques are needed in the stochastic
case and a less restrictive decay assumption on the kinetic measure is used [cf. the
discussion before (1.6)].

LEMMA 4.5. Let u0 ∈ Lr(�;L1(TN)) for some r ∈ [1,∞) and let u be a
kinetic solution to (1.1). Then, for all k ∈ N,

E
∣∣m([0, T ] ×TN × [−k, k])∣∣r ≤ C

(
r, k, T ,E‖u0‖rL1

)
,

for some C > 0 depending on D only.
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PROOF. Step 1: For k > 0, set

θk(u) = 1[−k,k](u),

!k(u) =
∫ u

−k

∫ r

−k
θk(s)ds dr.

Let γ ∈ C1
c ([0, T )) be nonnegative such that γ (0) = 1, γ ′ ≤ 0. Then after a pre-

liminary step of regularization we may take ϕ(t, x, ξ) = γ (t)!′
k(ξ) in (2.9) to get

E

∣∣∣∣∫ T

0

∫
TN

!k

(
u(t, x)

)∣∣γ ′(t)
∣∣dx dt

∣∣∣∣r +E

∣∣∣∣∫
A+
k

γ (t)dm(t, x, ξ)

∣∣∣∣r
� E

∣∣∣∣∫
TN

!k

(
u0(x)

)
dx
∣∣∣∣r

+E

∣∣∣∣∫ T

0

∫
TN

γ (t)G2(x,u(t, x))θk(u(t, x))dx dt
∣∣∣∣r

+E

∣∣∣∣∑
j≥1

∫ T

0

∫
TN

gj
(
x,u(t, x)

)
!′

k

(
u(t, x)

)
γ (t)dx dβk(t)

∣∣∣∣r ,
where A+

k = [0, T ] × TN × [−k, k]. Since 0 ≤ !k(u) ≤ 2k(k + |u|) and, due to
(2.5),

1

2
G2(x, u)θk(u) ≤ 1

2
D
(
1 + |u|)21[−k,k](u) ≤ D

(
1 + k2).

Since 0 ≤ !′
k(u) ≤ 2k1−k≤u, we may estimate the stochastic integral using the

Burkholder–Davis–Gundy inequality, the Minkowski integral inequality, (2.5) and
the Young inequality as follows:

E

∣∣∣∣∑
j≥1

∫ T

0

∫
TN

gj
(
x,u(t, x)

)
!′

k

(
u(t, x)

)
γ (t)dx dβj (t)

∣∣∣∣r

� E

(∫ T

0

∑
j≥1

(∫
TN

gj (x,u)!
′
k(u)dx

)2
dt
) r

2

≤ 2krE
(∫ T

0

(∫
TN

(∑
j≥1

∣∣gj (x,u)∣∣2) 1
2

dx
)2

dt
) r

2

� 2DkrE

(∫ T

0

(∫
TN

(
1 + |u|)dx

)2
dt
) r

2

≤ DkrE sup
0≤t≤T

‖1 + u‖r
L1 +DkrE

(∫ T

0
‖1 + u‖L1 dt

)r
≤ C

(
D,kr, T r,E‖u0‖rL1

)
,
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where we also used Proposition 4.4 with p = 1, q = r for the last step. The claim
follows. �

LEMMA 4.6. Let u0 ∈ L1(�;L1(TN)), u be a kinetic solution to (1.1) and
! ∈ C2(R) be nonnegative, convex such that !′′(ξ)(1 +|ξ |2) ≤ C!(1 +!(ξ)) for
some constant C! > 0. Then

sup
t∈[0,T ]

E

∫
TN

!
(
u(t, x)

)
dx +E

∫ T

0

∫
!′′(ξ)dm(t, x, ξ)

≤ C

(
E

∫
TN

!
(
u0(x)

)
dx + 1

)
for some C > 0 depending on D, C! only.

PROOF. Let ! be as in the statement and γ ∈ C1
c ([0, T )) be nonnegative such

that γ (0) = 1, γ ′ ≤ 0. Taking ϕ(t, x, ξ) = γ (t)!′(ξ) in (2.9) we get

E

∫ T

0

∫
TN

!
(
u(t, x)

)∣∣γ ′(t)
∣∣dx dt +E

∫
!′′(ξ)γ (t)dm(t, x, ξ)

� E

∫ T

0

∫
TN

γ (t)G2(x,u(t, x))!′′(u(t, x))dx dt

+E

∫
TN

!
(
u0(x)

)
dx.

(4.5)

By assumption,

1

2
G2(x, u)!′′(u) ≤ D

(
1 + |u|2)!′′(u) ≤ C

(
1 +!(u)

)
.

Letting now γ → 1[0,t], an application of Gronwall’s lemma completes the
proof. �

We proceed with an estimate which is a modification of [17], Proposition 16,
and applies to the case multiplicative noise.

PROPOSITION 4.7. Let u0 ∈ L1(�;L1(TN)) and let u be a kinetic solution to
(1.1). Then

ess sup
0≤t≤T

E
∥∥(u(t)− 2n

)+∥∥
L1
x
+ ess sup

0≤t≤T

E
∥∥(u(t)+ 2n

)−∥∥
L1
x
+ 1

2n
Em(A2n)

≤ C
(
T ,E‖u0‖L1

x

)
δ(n) ∀n ∈N0,

where

A2n = [0, T ] ×TN × {
ξ ∈ R;2n ≤ |ξ | ≤ 2n+1}
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and δ(n) depends only on D and on the functions

R �→ E
∥∥(u0 −R)+

∥∥
L1
x
, R �→ E

∥∥(u0 +R)−
∥∥
L1
x
,

and satisfies limn→∞ δ(n) = 0.
Furthermore,

E
(
ess sup
0≤t≤T

∥∥(u(t)− 2n
)+∥∥

L1
x

)+E
(
ess sup
0≤t≤T

∥∥(u(t)+ 2n
)−∥∥

L1
x

)
≤ C

(
T ,D,E‖u0‖L1

x

)[
δ(n)+ δ

1
2 (n)

]
,

(4.6)

where δ(n) is as above, in addition possibly depending on the function

R �→ E
∥∥(1 + |u|)1R≤|u|

∥∥
L1
x,t
.

PROOF. Step 1: For k > 0, set

θk(u) = 1

k
1k≤u≤2k, !k(u) =

∫ u

0

∫ r

0
θk(s)ds dr.

Let η = (21D) ∨ 1, γ ∈ C1
c ([0, ηT )) be nonnegative such that γ (0) = 1, γ ′ ≤ 0.

Then taking ϕ(t, x, ξ) = γ (ηt)!′
k(ξ) in (2.9) we get

ηE

∫ T

0

∫
TN

!k

(
u(t, x)

)∣∣γ ′(ηt)
∣∣dx dt + 1

k
E

∫
A+
k

γ (ηt)dm(t, x, ξ)

= 1

2
E

∫ T

0

∫
TN

γ (ηt)G2(x,u(t, x))θk(u(t, x))dx dt

+E

∫
TN

!k

(
u0(x)

)
dx,

(4.7)

where A+
k = [0, T ] ×TN × {ξ ∈ R;k ≤ ξ ≤ 2k}. Note that(

u− 3

2
k

)+
≤ !k(u) ≤ (u− k)+,

and, using (2.5),

(4.8)
1

2η
G2(x, u)θk(u) ≤ D

1 + |u|2
ηk

1k≤u≤2k ≤ D
1 + 4k2

ηk

(u− l)+

k − l

for all k > l ≥ 0, u ∈ R. We choose l = 3
4k and observe, by choice of η and for

k ≥ 1,

(4.9) α := D
1 + 4k2

ηk(k − l)
= 4D

1 + 4k2

ηk2 < 1.
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Consequently, we deduce from (4.7) that

E

∫ T

0

∫
TN

(
u(t, x)− 2l

)+∣∣γ ′(ηt)
∣∣dx dt

≤ αE

∫ T

0

∫
TN

(
u(t, x)− l

)+
γ (ηt)dx dt

+E

∫
TN

(
u0(x)− l

)+ dx.

(4.10)

We can now iterate the above procedure by replacing k by 2k. To do so, we need
to check that applying (4.7) to k̃ = 2k, the chosen constant α appearing in (4.10)

is the same as before. The condition (4.9) now reads 4D 1+4(2k)2

4ηk2 < 1, which holds
true due to (4.9). We deduce that

E

∫ T

0

∫
TN

(
u(t, x)− 4l

)+∣∣γ ′(ηt)
∣∣dx dt

≤ αE

∫ T

0

∫
TN

(
u(t, x)− 2l

)+
γ (ηt)dx dt +E

∫
TN

(
u0(x)− 2l

)+ dx.

Since the same argument can be applied to k̃ = 2nk, l̃ = 2nl for any n ∈N, we set

ψn(t) := E

∫
TN

(
u(t, x)− 2nl

)+ dx

and after letting γ approximate 1[0,ηt] we finally obtain

ψn+1(t) ≤ α

∫ t

0
ψn(s)ds +ψn(0).

Now we proceed similarly as in [17], Proposition 16. Since (u− l)+ ≤ (u−2l)+ +
l, we have

ψ0(t) = E

∫
TN

(
u(t, x)− l

)+ dx

≤ E

∫
TN

(
u(t, x)− 2l

)+ dx + l

= ψ1(t)+ l

so

ψ1(t) ≤ α

∫ t

0
ψ0(s)ds +ψ0(0) ≤ α

∫ t

0
ψ1(s)ds + αlt +ψ0(0)

and Gronwall’s lemma implies

ψ0(t) ≤ M := C
(
T ,‖u0‖L1

)
.
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Thus, we deduce

ψ1(t) ≤ αtM +ψ0(0), ψ2(t) ≤ α2 t
2

2
M + αtψ0(0)+ψ1(0),

and generally

ψn+1(t) ≤ αn+1 tn+1

n+ 1!M +
n∑

k=0

αk t
k

k!ψn−k(0).

Let

δ(n) = αn +
n−1∑
k=0

αkψn−1−k(0),

which satisfies δ(n) → 0 as n → ∞ due to the assumption on u0. Therefore, it
follows that

ψn+1(t) ≤ (M + 1)eT δ(n+ 1)

and consequently,

ess sup
0≤t≤T

E

∫
TN

(
u(t, x)− 2n+1l

)+ dx ≤ C
(
T ,E‖u0‖L1

x

)
δ(n+ 1).

Thus, as a consequence of (4.7), (4.8) and the fact that k > l we get

ess sup
0≤t≤T

E

∫
TN

(
u(t, x)− 2nk

)+ dx + 1

2nkη
E

∫
A+

2nk

dm(t, x, ξ)

≤ C
(
T ,E‖u0‖L1

x

)
δ(n).

Choosing k = 1 completes the proof.
Step 2: To prove (4.6), we start similarly as in Step 1 but take the supremum in

time before taking the expectation. The iterative inequality then reads

E ess sup
0≤t≤T

∫
TN

(
u(t, x)− 2n+1l

)+ dx dt

≤ αE

∫ T

0

∫
TN

(
u(t, x)− 2nl

)+ dx dt +E

∫
TN

(
u0(x)− 2nl

)+ dx

+E sup
0≤t≤T

∣∣∣∣∑
j≥1

∫ t

0

∫
TN

gj
(
x,u(t, x)

)
!′

2nk
(
u(t, x)

)
dx dβj (t)

∣∣∣∣
≤ C

(
T ,α,E‖u0‖L1

x

)
δ(n)

+CE

(∫ T

0

∫
TN

G2(x,u(t, x))∣∣!′
2nk
(
u(t, x)

)∣∣2 dx dt
) 1

2
.
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Using (2.5), we estimate

E sup
0≤t≤T

∣∣∣∣∑
j≥1

∫ t

0

∫
TN

gj
(
x,u(t, x)

)
!′

2nk
(
u(t, x)

)
dx dβj (t)

∣∣∣∣
� E

(∫ T

0

(∫
TN

(
1 + |u|)12nk≤u dx

)2
dt
) 1

2

�
(
E sup

0≤t≤T

∥∥1 + |u|∥∥L1
x

) 1
2
(
E

∫ T

0

∫
TN

(
1 + |u|)12nk≤u dx dt

) 1
2
.

The right-hand side converges to 0 as n → ∞ due to the dominated convergence
theorem. Hence the estimate (4.6) follows using Proposition 4.4. �

Based on the equi-integrability estimate (4.6), we can deduce that kinetic solu-
tions have continuous paths in L1(TN) a.s.

COROLLARY 4.8 (Continuity in time). Let u0 ∈ L1(�;L1(TN)) and let u be
a kinetic solution to (1.1). Then there exists a representative of u with almost surely
continuous trajectories in L1(TN).

PROOF. Based on Proposition 4.1, Theorem 4.3 and (4.6) we are in a position
to apply [17], Lemma 17, which implies the continuity in L1. Indeed, let us first
show that u+ constructed in Theorem 4.3 is P-a.s. right continuous in L1(TN).
Due to Proposition 4.1, we have that f+(t + ε) ⇀∗ f+(t) in L∞(TN × R) P-
a.s. as ε → 0. Due to Theorem 4.3, for all t ∈ [0, T ) the kinetic function f+(t)
is at equilibrium, that is, f+(t, x, ξ) = 1u+(t,x)>ξ for a.e. (ω, x, ξ). Finally, (4.6)
implies

lim
n→∞E sup

t∈[0,T ]
∥∥(u+(t)− 2n

)±∥∥
L1
x
= 0.

Hence, there exists a subsequence (not relabeled) which converges P-a.s., that is,
P-a.s.,

lim
n→∞ sup

t∈[0,T ]
∥∥(u+(t)− 2n

)±∥∥
L1
x
= 0.

Consequently, [17], Lemma 17, applies and yields the convergence

u+(t + ε) → u+(t) in L1(TN ) as ε → 0.

The same arguments show that u− constructed in Theorem 4.3 is P-a.s. left con-
tinuous in L1(TN). Finally, the fact that u+(t) = u−(t) for all t ∈ [0, T ] can be
proved as in [19], Corollary 12. �
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4.2.3. The proof of existence.

THEOREM 4.9. Let u0 ∈ Lr(�;L1(TN)) for some r > 1 and assume (2.5).
There exists a kinetic solution u to (1.1) such that u ∈ C([0, T ];L1(TN)), P-a.s.
and for all p,q ∈ [1,∞) there exists a constant C > 0 such that

E ess sup
t∈[0,T ]

∥∥u(t)∥∥pqLp ≤ C
(
1 +E‖u0‖pqLp

)
.

PROOF. Step 1: According to [16], Section 4, there exists a unique kinetic so-
lution uκ,τ to (4.3) with uniform Lp-bounds by [16], Theorem 5.2. The construc-
tion of a kinetic solution (uκ,mκ) to (1.1) with A replaced by Aκ then follows
along the same lines as [32], Section 4.3, Section 4.5, where we refer for the de-
tails. In this case, the parabolic dissipation defines a nonnegative measure nκ1 given
in [16], Definition 2.2.

Step 2: First, we observe that the assumption (2.3) is satisfied uniformly in κ .
Indeed, let

Lκ(iu, in, ξ) := i
(
u+ b(ξ) · n)+ n∗Aκ(ξ)n.

Then, for some constant C > 0,{
ξ ∈R; ∣∣Lκ(iu, in, ξ)

∣∣≤ δ
}⊂ {

ξ ∈R; ∣∣L(iu, in, ξ)
∣∣≤ Cδ

}
which implies for all φ ∈ C∞

c (R)

ω
φ
Lκ (J ; δ) ≤ ω

φ
L(J ;Cδ) �φ

(
δ

J β

)α
∀δ > 0,∀J � 1.

Moreover, Lκ
ξ (iu, in, ξ) = Lξ (iu, in, ξ), and thus

sup
u∈R,n∈ZN

|n|∼J

sup
ξ∈suppη

∣∣Lκ
ξ (iu, in, ξ)

∣∣≤ sup
u∈R,n∈ZN

|n|∼J

sup
ξ∈suppη

∣∣Lξ (iu, in, ξ)
∣∣�φ J β.

Consequently, Theorem 3.1 applies and we obtain, with (uκ)φ := ∫
R χuκφ dξ ,(

E

∫ T

0

∥∥(uκ)φ(t)∥∥rWs,r
x

dt
)1/r

�φ

∥∥uκ0∥∥1/2
L1
ω,x

+ ∥∥uκ∥∥1/2
L1
ω,t,x

+ sup
0≤t≤T

∥∥uκ(t)∥∥L1
ω,x

+ ∥∥mκ1suppφ
∥∥
L1
ωMt,x,ξ

+ 1

for some r > 1 and s > 0. In view of Proposition 4.4 and Lemma 4.5, the right-
hand side can be further estimated uniformly in κ as follows:(

E

∫ T

0

∥∥(uκ)φ(t)∥∥rWs,r
x

dt
)1/r

�φ ‖u0‖L1
ω,x

+ 1.(4.11)
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Step 3: We next prove that (uκ) is Cauchy in L1(� × [0, T ],P,dP ⊗
dt;L1(TN)). This is based on computations similar to Section 4.1. Accordingly,
let (�ε), (ψδ) and (K�) be as in Section 4.1 and let us use the same integral con-
vention.

For any two approximate solutions uκ1 , uκ2 , we have

E

∫
TN

(
uκ1(t)− uκ2(t)

)+ dx

= E

∫
TN

∫
R
f κ1(x, t, ξ)f̄ κ2(x, t, ξ)dξ dx

= E

∫
f κ1(x, t, ξ)f̄ κ2(y, t, ζ )K�(η)�ε(x − y)ψδ(η − ζ )ψδ(η − ξ)

+ ηt (κ1, κ2, ε, δ, �),

(4.12)

where ε, δ and � are chosen arbitrarily and their value will be fixed later. The idea
now is to show that the mollification error ηt (κ1, κ2, ε, δ, �) can be made arbitrar-
ily small uniformly in κ1, κ2, which will rely on the equi-integrability estimate,
Proposition 4.7, as well as (4.11) based on the averaging lemma, Theorem 3.1, the
a priori Lp-estimates, Proposition 4.4 and the bound for the kinetic measure from
Lemma 4.5. Indeed, we write

ηt (κ1, κ2, ε, δ, �)

= E

∫
TN

∫
R
f κ1(x, t, η)f̄ κ2(x, t, η)dη dx

−E

∫
f κ1(x, t, ξ)f̄ κ2(y, t, ζ )K�(η)�ε(x − y)ψδ(η − ζ )ψδ(η − ξ)

= E

∫
TN

∫
R
f κ1(x, t, η)f̄ κ2(x, t, η)

(
1 −K�(η)

)
dη dx

+
(
E

∫
TN

∫
R
f κ1(x, t, η)f̄ κ2(x, t, η)K�(η)dη dx

−E

∫
(TN)2

∫
R
f κ1(x, t, η)f̄ κ2(y, t, η)K�(η)�ε(x − y)dη dx dy

)
+
(
E

∫
(TN)2

∫
R
f κ1(x, t, η)f̄ κ2(y, t, η)K�(η)�ε(x − y)dη dx dy

−E

∫
(TN)2

∫
R2

f κ1(x, t, η)f̄ κ2(y, t, ζ )K�(η)�ε(x − y)ψδ(η − ζ )

)
+
(
E

∫
(TN)2

∫
R2

f κ1(x, t, η)f̄ κ2(y, t, ζ )K�(η)�ε(x − y)ψδ(η − ζ )

−E

∫
f κ1(x, t, ξ)f̄ κ2(y, t, ζ )K�(η)�ε(x − y)ψδ(η − ξ)ψδ(η − ζ )

)
= H1 + H2 + H3 + H4
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and estimate each of the error terms on the right-hand side separately using the
above mentioned results. First,

|H1| ≤ E

∫
TN

1uκ1 (t,x)>uκ2 (t,x)

∫ uκ1 (t,x)

uκ2 (t,x)
1|η|≥2� dη dx

≤ E

∫
TN

(
uκ1(t, x)− 2�

)+ dx

+E

∫
TN

(−2� − uκ2(t, x)
)+ dx.

Now we observe that the result of Proposition 4.7 holds true for the approximate
solutions uκ1 , uκ2 uniformly in κ1, κ2. Consequently, |H1| ≤ δ(�), where δ(�) was
defined in Proposition 4.7, and lim�→∞ sup0≤t≤T |H1| = 0 uniformly in κ1, κ2,
ε, δ. Second, in order to estimate

|H2| =
∣∣∣∣E∫

(TN)2
�ε(x − y)

∫
R
K�(η)1uκ1 (t,x)>η[1uκ2 (t,x)≤η − 1uκ2 (t,y)≤η]

∣∣∣∣,
we write∣∣∣∣∫

R
K�(η)1uκ1 (x)>η[1uκ2 (x)≤η − 1uκ2 (y)≤η]dη

∣∣∣∣
=
∫
R
K�(η)1uκ1 (t,x)>η[1η∈[uκ2 (x),uκ2 (y)) + 1η∈[uκ2 (y),uκ2 (x))]dη

≤ 1uκ2 (x)<uκ2 (y)

∫
R
K�(η)

[
χuκ2 (x)(η)− χuκ2 (y)(η)

]
dη

+ 1uκ2 (y)<uκ2 (x)

∫
R
K�(η)

[
χuκ2 (y)(η)− χuκ2 (x)(η)

]
dη.

Thus, using (4.11)

|H2| ≤ E

∫
(TN)2

�ε(x − y)
∣∣(uκ2

)K�(t, x)− (
uκ2
)K�(t, y)

∣∣dx dy ≤ C�ε
s.

Hence, for all � ∈ N, limε→0
∫ T

0 |H2|dt = 0 uniformly in κ1, κ2, δ. Third,

|H3| =
∣∣∣∣E∫

(TN)2
�ε(x − y)

∫
R
K�(η)1uκ1 (t,x)>η

×
∫
R
ψδ(η − ζ )[1uκ1 (t,y)≤η − 1uκ1 (t,y)≤ζ ]

∣∣∣∣
≤ 1

2
E

∫
(TN)2

�ε(x − y)

∫ min{uκ1 (t,x),uκ1 (t,y)+δ}
uκ1 (t,y)

dη dx dy

+ 1

2
E

∫
(TN)2

�ε(x − y)

∫ min{uκ1 (t,x),uκ1 (t,y)}
uκ1 (t,y)−δ

dη dx dy ≤ Cδ
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hence limδ→0 sup0≤t≤T |H3| = 0 uniformly in κ1, κ2, ε, �. And finally

|H4| =
∣∣∣∣E∫ �ε(x − y)1uκ2 (t,y)≤ζK�(η)ψδ(η − ζ )

× [1uκ1 (t,x)>η − 1uκ1 (t,x)>ξ ]ψδ(η − ξ)

∣∣∣∣
≤ E

∫
(TN)2

�ε(x − y)

∫
R2

1uκ2 (t,y)≤ζψδ(η − ζ )

∫ η+δ

η
1η<uκ1 (t,x)≤ξψδ(η − ξ)

+E

∫
(TN)2

�ε(x − y)

∫
R2

1uκ2 (t,y)≤ζψδ(η − ζ )

×
∫ η

η−δ
1ξ<uκ1 (t,x)≤ηψδ(η − ξ)

≤ E

∫
(TN)2

�ε(x − y)

∫ ∞
uκ2 (t,y)

∫ uκ1 (t,x)

uκ1 (t,x)−δ
ψδ(η − ζ )dζ dη dx dy

+E

∫
(TN)2

�ε(x − y)

∫ ∞
uκ2 (t,y)

∫ uκ1 (t,x)+δ

uκ1 (t,x)
ψδ(η − ζ )dζ dη dx dy ≤ δ

and, therefore, limδ→0 sup0≤t≤T |H4| = 0 uniformly in κ1, κ2, ε, �. Heading back
to (4.12) and using the same calculations as in Proposition 4.2, we deduce that

E

∫
TN

(
uκ1(t)− uκ2(t)

)+ dx ≤ ηt (κ1, κ2, ε, δ, �)+ η0(κ1, κ2, ε, δ, �)

+ I + J + J# + K +L(δ, �),

where, with δ(�) as in Proposition 4.7,

lim
�→∞ sup

0≤t≤T

L(δ, �) = lim
�→∞ δ(�) = 0 uniformly in κ1, κ2, ε, δ.

The terms I, J, K are defined and can be dealt with exactly as in Proposition 4.2
and Theorem 4.3. The term J# is defined as

J# = (κ1 + κ2)E

∫ t

0

∫
f κ1 f̄ κ2�x�ε(x − y)K�(η)ψδ(η − ξ)ψδ(η − ζ )

−E

∫ t

0

∫
�ε(x − y)K�(η)ψδ(η − ξ)ψδ(η − ζ )dνκ1

x,s(ξ)dnκ2
2 (y, s, ζ )

−E

∫ t

0

∫
�ε(x − y)K�(η)ψδ(η − ξ)ψδ(η − ζ )dνκ2

y,s(ζ )dnκ1
2 (x, s, ξ),

where we used the notation ν
κ1
x,s(ξ) = δuκ1 (s,x)(ξ) and similarly for νκ2

y,s(ζ ). Thus,

J# = (κ1 + κ2)

×E

∫ t

0

∫
(TN)2

∫
R
�ε(x − y)K�(η)ψδ

(
η − uκ1

)
ψδ

(
η − uκ2

)∇xu
κ1 · ∇yu

κ2
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− κ1E

∫ t

0

∫
(TN)2

∫
R
�ε(x − y)K�(η)ψδ

(
η − uκ1

)
ψδ

(
η − uκ2

)∣∣∇xu
κ1
∣∣2

− κ2E

∫ t

0

∫
(TN)2

∫
R
�ε(x − y)K�(η)ψδ

(
η − uκ1

)
ψδ

(
η − uκ2

)∣∣∇yu
κ2
∣∣2

≤ (
√
κ1 − √

κ2)
2

×E

∫ t

0

∫
(TN)2

∫
R
�ε(x − y)K�(η)ψδ

(
η − uκ1

)
ψδ

(
η − uκ2

)∇xu
κ1 · ∇yu

κ2

≤ (
√
κ1 − √

κ2)
2E

∫ t

0

∫
f κ1 f̄ κ2K�(η)ψδ(η − ξ)ψδ(η − ζ )

∣∣�x�ε(x − y)
∣∣

≤ C(
√
κ1 − √

κ2)
2ε−22�,

where we proceeded as for I in the last step. Consequently, we see that

E

∫ T

0

∫
TN

(
uκ1(t)− uκ2(t)

)+ dx dt

�T δ(�)

+C�ε
s + δ + ε−1δ2�

∥∥b′∥∥
L∞(−2�−δ,2�+δ)t + δ2γ ε−2‖σ‖Cγ ([−�−δ,�+δ])

+ δ−1ε2 + δ + (κ1 + κ2)ε
−22�.

Therefore, given ϑ > 0 one can fix � sufficiently large so that the first term on
the right-hand side is estimated by ϑ/3, then fix ε and δ small enough so that the
second and third line is also estimated by ϑ/3 and then find ι > 0 such that the
third line is estimated by ϑ/3 for any κ1, κ2 < ι. Thus, we have shown that the set
of approximate solutions (uκ) is Cauchy in L1(� × [0, T ],P,dP⊗ dt;L1(TN)),
as κ → 0. Hence there exists u ∈ L1(�× [0, T ],P,dP⊗ dt;L1(TN)) such that

(4.13) uκ → u in L1(�× [0, T ],P,dP⊗ dt;L1(TN )).
Step 4: Since u0 ∈ Lr(�;L1(TN)) for some r > 1, we can choose (uκ0) uni-

formly bounded in Lr(�;L1(TN)). By Lemma 4.5, we obtain that, for each k > 0,

(4.14) sup
κ

E
∣∣mκ(Bk)

∣∣r ≤ Ck,

where Bk := [0, T ] ×TN × [−k, k]. Consequently, the sequence (mκ) is bounded
in Lr(�;M(Bk)). Following the same arguments as [17], proof of Theorem 20,
we extract a subsequence (not relabeled) and a random Borel measure m on
[0, T ] ×TN ×R such that mκ ⇀∗ m weakly∗ in Lr(�;M(Bk)) for every k ∈ N.

Since the estimates derived in Proposition 4.7 are uniform with respect to κ , the
limit m satisfies Definition 2.1(ii). We further note that m satisfies Definition 2.1(i),
since this property is stable with respect to weak limits. Hence, m is a kinetic
measure.
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We next check that (u,m) is a kinetic solution to (1.1) in the sense of Defini-
tion 2.2. Let φ ∈ C∞

c (R) be nonnegative and denote by � a function satisfying
�′′ = φ and � ≥ 0. Then, similar to (4.5), we obtain

E

∫
[0,T ]×TN×R

φ(ξ)dmκ(t, x, ξ)

≤ 1

2
E

∫ T

0

∫
TN

G2(x,uκ(t, x))φ(uκ(t, x))dx dt +E

∫
TN

�
(
uκ0(x)

)
dx.

Hence, due to (2.5) and since

E

∫
[0,T ]×TN×R

φ(ξ)dnκ1(t, x, ξ)

= E

∫ T

0

∫
TN

∣∣∣∣div
∫ uκ

0

√
φ(ζ )

[√
κ Id+σ(ζ )

]
dζ
∣∣∣∣2 dx dt,

we obtain that

E

∫ T

0

∫
TN

∣∣∣∣div
∫ uκ

0

√
φ(ζ )

[√
κ Id+σ(ζ )

]
dζ
∣∣∣∣2 dx dt

≤ C
(
T ,‖φ‖L∞, suppφ,E‖u0‖L1

x

)
.

(4.15)

From the strong convergence (4.13) and the fact that
√
φσ ∈ Cc(R), we conclude

using integration by parts, for all η ∈ L2(0, T ;C1(TN)), ψ ∈ L∞(�),

Eψ

∫ T

0

∫
TN

(
div
∫ uκ

0

√
φ(ζ )

[√
κ Id+σ(ζ )

]
dζ
)
η(t, x)dx dt

→ Eψ

∫ T

0

∫
TN

(
div
∫ u

0

√
φ(ζ )σ (ζ )dζ

)
η(t, x)dx dt,

and, therefore, using (4.15),

(4.16) div
∫ uκ

0

√
φ(ζ )

[√
κ Id+σ(ζ )

]
dζ ⇀ div

∫ u

0

√
φ(ζ )σ (ζ )dζ

in L2(�× [0, T ] ×TN). Hence, Definition 2.2(i) is satisfied.
Concerning the chain rule formula (2.7), we observe that the corresponding

version holds true for all uκ , since uκ is a kinetic solution, that is, for any φ1, φ2 ∈
Cc(R), φ1, φ2 ≥ 0,

div
∫ uκ

0
φ1(ζ )φ2(ζ )

[√
κ Id+σ(ζ )

]
dζ

= φ1
(
uκ
)

div
∫ uκ

0
φ2(ζ )

[√
κ Id+σ(ζ )

]
dζ

(4.17)

holds true as an equality in L2(�×[0, T ]×TN). Due to (4.16), we can pass to the
limit on the left-hand side and, making use of the strong-weak convergence, also
on the right-hand side of (4.17). In conclusion, Definition 2.2(ii) holds.
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Let now φ ∈ C∞
c (R), φ ≥ 0, and let nφ be defined as in Definition 2.2(iii).

Since uκ is a kinetic solution, (uκ,mκ) satisfy (2.9) with the corresponding diffu-
sion matrix Aκ . Passing to the limit κ → 0 yields (2.9) for (u,m) with the orig-
inal diffusion matrix A. It remains to prove that, for all ϕ ∈ C∞

c ([0, T ] × TN),
ϕ ≥ 0, m(ϕφ) ≥ nφ(ϕ) P-a.s. Since each mκ can be decomposed into the sum of
the parabolic dissipation measure nκ1 and the corresponding (nonnegative) entropy
dissipation measure nκ2 , that is, mκ = nκ1 + nκ2 , from (4.14) it follows that

sup
κ

E
∣∣nκ1(Bk)

∣∣r ≤ Ck.

By the same argument as above, we extract a subsequence (not relabeled) and a
random measure o1 such that nκ1 ⇀∗ o1 weakly∗ in Lr(�;M(Bk)) for all k ∈ N.
Since mκ ≥ nκ1 P-a.s., we have m ≥ o1, P-a.s. Moreover, since by sequentially
weak lower semicontinuity of the norm, it follows for all ϕ ∈ L∞([0, T ] × TN),
ψ ∈ L∞(�), P-a.s.,

Eψnφ
(
ϕ2)

= Eψ

∫ T

0

∫
TN

∣∣∣∣div
∫ u

0

√
φ(ζ )σ (ζ )dζ

∣∣∣∣2ϕ2(t, x)dx dt

≤ lim inf
κ→0

Eψ

∫ T

0

∫
TN

∣∣∣∣div
∫ uκ

0

√
φ(ζ )

[√
κ Id+σ(ζ )

]
dζ
∣∣∣∣2ϕ2(t, x)dx dt

= Eψo1
(
φϕ2)

and thus, nφ given by (2.8) satisfies nφ(·) ≤ o1(φ·), P-a.s., which completes the
proof. �

APPENDIX: MULTIPLIER LEMMAS

We state a result concerning Fourier multipliers used in Section 3. For the proof,
we refer the reader to [51], namely to Lemma 2.2 and the discussion at the end of
the proof of averaging Lemma 2.1.

LEMMA A.1 (Multiplier lemma). Let m(u,n, ξ) = i(u+ b(ξ) · n)+ n∗A(ξ)n

and let ψ be a bump function. For each ξ ∈ R and δ > 0, let

�(u,n; δ) :=
{
ξ ∈ R; m(u,n, ξ)

δ
∈ suppψ

}
.

Consider the velocity-averaged multiplier operator

Mψf (t, x) :=
∫
R
Mψf (t, x, ξ)dξ =

∫
R
F−1
tx ψ

(
m(u,n, ξ)

δ

)
Ftxf (u,n, ξ)dξ,
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then for every p ∈ [1,2] we have the estimate

‖Mψf ‖Lp
t,x

≤ C sup
u,n

∣∣�(u,n; δ)∣∣1/p′‖f ‖Lp
t,x,ξ

.

Moreover, for every pair (ε, qε) satisfying

N

q ′
ε

< ε < 1 < qε <
N

N − ε
,

where q ′
ε is the conjugate exponent to qε , it holds true that

‖Mψf ‖
L1
t W

−ε,qε
x

≤ C‖f ‖Mt,x,ξ .
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