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INDISTINGUISHABILITY OF THE COMPONENTS OF
RANDOM SPANNING FORESTS1

BY ÁDÁM TIMÁR

Hungarian Academy of Sciences

We prove that the infinite components of the Free Uniform Spanning For-
est (FUSF) of a Cayley graph are indistinguishable by any invariant property,
given that the forest is different from its wired counterpart. Similar result is
obtained for the Free Minimal Spanning Forest (FMSF). We also show that
with the above assumptions there can only be 0, 1 or infinitely many compo-
nents, which solves the problem for the FUSF of Caylay graphs completely.
These answer questions by Benjamini, Lyons, Peres and Schramm for Cay-
ley graphs, which have been open up to now. Our methods apply to a more
general class of percolations, those satisfying “weak insertion tolerance”, and
work beyond Cayley graphs, in the more general setting of unimodular ran-
dom graphs.

1. Introduction. We prove indistinguishability and 1-infinity laws for the
components (clusters) of random spanning forests of Cayley graphs, given that
the forest has a property that we call weak insertion tolerance (see Definition 1),
and it has a tree with infinitely many ends. The perhaps most important examples
of random forests that satisfy weak insertion tolerance are the Free and the Wired
Uniform Spanning Forest (FUSF and WUSF) and the Free and the Wired Minimal
Spanning Forest (FMSF and WMSF); see Definitions 2, 3. The importance and
some main properties of the uniform and minimal spanning forests are explained
in [8].

Say that a graph G is quasitransitive, if its group of automorphisms has finitely
many orbits on G. Say that G is unimodular, if for any two vertices x, y ∈ V (G) on
the same orbit, |Sx(y)| = |Sy(x)|, where Sx is the set of all automorphisms fixing
x, and Sx(y) is the orbit of y by Sx . In particular, every Cayley graph is transitive
and unimodular; see [8] for more details.

In particular, the following theorems are proved.

THEOREM 1.1. Suppose that the FUSF and WUSF are different for some uni-
modular quasitransitive graph G. Then the following hold:
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1. The FUSF has either 1 or infinitely many components.
2. Every component of the FUSF has infinitely many ends.
3. More generally, no two components of the FUSF can be distinguished by any

invariantly defined property.

The condition FUSF �= WUSF is equivalent to that there exist nonconstant har-
monic Dirichlet functions on G, or, in different terms, that the first L2 Betti number
is nonzero. This was shown by Benjamini, Lyons, Peres and Schramm; see [4].

THEOREM 1.2. Suppose that the FMSF and WMSF are different for some
unimodular quasitransitive graph G. Then the following hold:

1. The FMSF has either 1 or infinitely many components.
2. Every component of the FMSF has infinitely many ends.
3. More generally, no two components of the FMSF can be distinguished by

any invariantly defined property.

The condition FMSF �= WMSF is equivalent to pc < pu, as shown by Lyons,
Peres and Schramm. Here, pc and pu are respectively the critical probability and
uniqueness critical probability for Bernoulli percolation on G. The condition pc <

pu is conjecturally equivalent to G being nonamenable, and is known to hold for
some Cayley graph of every nonamenable group; see [9] for more details.

All the results of this paper, including Theorems 1.1 and 1.2, remain valid if
G is a unimodular random graph. See [1] for the definition of this notion, which
includes all unimodular quasitransitive graphs (or more generally, invariant ran-
dom subgraphs of a unimodular quasitransitive graph). We present the proofs for
unimodular quasitransitive graphs because this setting is more widely known. Re-
mark 4.4 describes the extra details needed for the proofs to be applied to a uni-
modular random G.

The above theorems follow from Lemma 1.3, Corollary 1.5 and Theorem 3.3
(Part 1), Theorem 3.1 (Part 2), Theorem 4.3 (Part 3). One needs that the uniform
and the minimal spanning forests are ergodic, which were proved in [4] and [9],
respectively. What needs to be further added is that FUSF �= WUSF implies that
some tree of FUSF has infinitely many ends; and similarly for the minimal span-
ning forest. For the uniform spanning forest this is true by Proposition 10.11 in [4]
and for the minimal spanning forest this is part (e) of Proposition 3.5 in [9].

Theorems 1.1 and 1.2 resolve questions asked by Benjamini, Lyons, Peres and
Schramm [4] and by Lyons, Peres and Schramm [9]. Part 1 in Theorem 1.1 answers
Question 15.6 in [4], Part 2 answers Question 15.8 for the case when the transitive
graph is unimodular, while Part 3 confirms Conjecture 15.9 in the same paper for
the case of FUSF when FUSF �= WUSF. Part 2 of Theorem 1.2 was Question 6.7
in [9] and was answered in [13] using a different method as here. Parts 1 and 3
answer Question 6.10 and Conjecture 6.11, respectively, for the case of FMSF
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when FMSF �= WMSF. Chifan and Ioana ([5], Corollary 9) proved that there are
at most countably many types of indistinguishability for the components, using
operator algebraic techniques and the result of [13] that the number of ends is the
same in every component. The conjecture on the indistinguishability of FMSF-
clusters was restated by Gaboriau and Lyons in [6], because in case of a positive
answer (as provided by Theorem 1.2), the FMSF can serve as the treeable ergodic
subrelation in their construction (Proposition 13 of [6]) for some Cayley graph of
the given group. After finishing the first draft of this manuscript, we learned that
Hutchcroft and Nachmias gave an independent proof, about the same time, to the
results of Theorem 1.1, for transitive unimodular graphs [7]. Their paper further
shows the same conclusions for the WUSF.

Let G be the underlying unimodular quasitransitive graph (such as a Cayley
graph), with vertex set V (G) = V and edge set E(G) = E. Denote by d the (max-
imal) degree in G. Let dist(u, v) be the distance between u and v in G, where
u, v ∈ V ∪ E. Denote by B(x, r) the ball of radius r around x in G, that is, the
set of points at distance at most r from x and all the edges induced by them. Use
notation B�(x, r) for the ball of radius r around x in some given subgraph � of G.
Denote the edge-boundary of an induced subgraph H ⊂ G by ∂H : this is the set
of edges with one endpoint in H and the other endpoint outside of it. Given some
percolation (random subgraph) ω on G, the component of a given vertex x will
be denoted by Cx . (We hide the dependence of Cx on ω for the ease of notation.)
Given e ∈ E, f ∈ E ∪ {∅} and a configuration ω ∈ 2E , let π

f
e ω := ω ∪ e \ f . For

an event A, let π
f
e A := {ω ∪ e \ f : ω ∈ A}. Denote the complement of a set A

within some superset (clear from the context) by Ac. We will use P for different
probability measures in the paper, but its meaning will be always clear from the
context. We will use E for the expectation of P.

A percolation is called insertion tolerant (see [10]), if one can insert a fixed edge
to each configuration of a given event A and obtain an event of positive probability
after the insertion, provided that the original event had positive probability. The
key property needed for our proofs is a weak form of insertion tolerance, as given
in the next definition. Informally, this is the following modification of the “usual”
notion of insertion tolerance. First, one may assume that the event A is such that
the endpoints of the edge e are in distinct components on A. (This is not a real
constraint, since in applications one usually wants to insert e if it is between two
components.) Then we can insert e to the configurations in A, but at the cost of
possibly deleting another edge f . Furthermore, this f can be chosen for any fixed
r ≥ 0 to be at distance greater than r from e, and it can be chosen so that it is in
the component of a previously fixed endpoint x of e.

DEFINITION 1 (Weak insertion tolerance, WIT). Let F be a random forest of
a unimodular quasitransitive graph G. Suppose that for any {x, y} = e ∈ E(G), r

nonnegative integer and configuration ω such that x and y are in different com-
ponents, there exists an f = f (ω, e, x, r) ∈ E(G) ∪ {∅} such that the following



2224 Á. TIMÁR

properties hold. Fixing e, x, r and looking at f as a function of ω, it is measur-
able. If A is such that P(A) > 0 and for almost every configuration in A, Cx �= Cy ,

then P(π
f
e A) > 0. Furthermore, if f �= ∅ then f is in Cx ∩B(x, r)c almost surely.

Then we say that F is weakly insertion tolerant (WIT).

Suppose that G is an infinite graph and Gn ⊂ G is an exhausting sequence of
connected finite graphs. Let Ĝn be obtained from Gn by adding an extra vertex zn

to it, and replacing every edge of the form {x, y} ∈ E(G), x ∈ V (Gn), y /∈ V (Gn),
by a copy of the edge {x, zn}.

DEFINITION 2 (Uniform Spanning Forest). Let G be an infinite graph and
Gn ⊂ G be an exhausting sequence of connected finite induced subgraphs. Let Tn

be a uniformly chosen spanning tree of Gn, and T̂n be a uniformly chosen spanning
tree of Ĝn. Pemantle showed that the weak limits of Tn and of T̂n exists [12]. The
first one is called the Free Uniform Spanning Forest (FUSF) of G; the second one
is called the Wired Uniform Spanning Forest (WUSF) of G.

DEFINITION 3 (Minimal Spanning Forest). Let G be an infinite graph and
λ be an i.i.d. labelling of its edges by Lebesgue[0,1] labels. Delete each edge
from G if its label is maximal in some (finite) cycle of G, and call the remaining
almost sure random forest Ffree(λ), the Free Minimal Spanning Forest (FMSF) of
G. Alternatively, delete each edge from G if its label is maximal in some cycle
or biinfinite path of G, and call the remaining random forest Fwired(λ), the Wired
Minimal Spanning Forest (WMSF) of G.

We mention that the WMSF and FMSF can equivalently be defined using an
exhausting sequence of finite graphs; see [9] for the details.

LEMMA 1.3. The Free Uniform Spanning Forest and the Wired Uniform
Spanning Forest are weakly insertion tolerant. Moreover, there exists a uniform
δ(r) such that for any A, e, P(π

f
e A) > δ(r)P(A). Here, f is defined as in Defini-

tion 1.

For a transitive graph G and p ∈ [0,1], denote by θ(p,G) the probability that
o is in an infinite component of Bernoulli(p) edge percolation, where o ∈ V (G)

is some fixed vertex. Whether θ(pc,G) = 0, is a central open problem, known to
be true when G is nonamenable unimodular [3]. This, together with the fact that
FMSF �=WMSF can only happen when G is nonamenable [9], implies the corollary
of Lemma 1.4 below.

LEMMA 1.4. Let G be unimodular and quasitransitive, such that θ(pc,G) =
0. The Free Minimal Spanning Forest and the Wired Minimal Spanning Forest are
weakly insertion tolerant.
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COROLLARY 1.5. Let G be unimodular and quasitransitive. Suppose FMSF �=
WMSF. Then the FMSF and the WMSF are weakly insertion tolerant.

A standard tool in the study of percolations on transitive unimodular graphs
(such as Cayley graphs) is the so-called Mass Transport Principle (MTP). In brief,
it says that if x sends mass φ(ω,x, y) to y and this mass transport function is
diagonally invariant, then the expected total mass E

∑
y φ(ω,x, y) sent out by x

is the same as the expected total mass E
∑

y φ(ω,y, x) received by x. The most
typical use of the MTP is that there is no way to assign some vertex to each vertex
in an invariant way such that some vertex is assigned to infinitely many other
vertices with positive probability; see Section 8.1 in [8] for more details and the
history of the MTP.

2. Uniform and Minimal Spanning Forests are WIT. The perhaps most im-
portant examples of weakly insertion tolerant forests are the Uniform and the Min-
imal Spanning Forests. For the latter case, we are only able to prove WIT if we
assume θ(pc,G) = 0, although a weaker version of WIT holds in full generality,
namely, if we do not require f (ω, e, x, r) to be in Cx . See Remark 2.2 for an ex-
planation of what benefits and losses there would have been of such an alternative
definition of WIT.

First, we give some intuitive reasoning about what makes the statements be true
for the USF and the MSF.

In case of the USF, the proof is based on the following observation. Suppose
that G is not infinite, just a large finite graph, and that we consider its uniform
spanning tree T . Let e be an edge, P a simple path between its endpoints. Suppose
that P exits the ball of radius r around e, and let f be an edge of P outside
of this ball. Let A be an event such that e /∈ T and P ⊂ T on A. Then π

f
e A =

{ω ∪ {e} \ {f } : ω ∈ A} has the same probability as A, using the uniformity of T .
The same phenomenon extends to the infinite graph.

For the MSF, we refer to a simple lemma from [9], which says that by changing
the label of one edge, at most this edge and another one changes status (see our
Proposition 2.1). It is not surprising that by changing the label of an edge e to
a value very close to 0, e will become part of the forest, that is, we are able to
insert e. By the quoted lemma, when doing this change, at most one other edge
“drops out” of the forest. This is almost the f that we need in the definition of WIT.
However, to ensure that f is also r-far from e, we have to work more, and possibly
modify the labels of several edges. This can be thought of as a chain of edges that
are forced to remain in the forest, so that the “final” and only f that drops out
of the forest is far enough from e. The changes of labels mentioned above, can
be performed in such a way that probablilities are distorted by at most a positive
constant factor, so the condition on positive probabilities (in the definition of WIT)
will be satisfied. There are some further technical difficulties that complicate the
proof, but this is the main idea behind it.
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PROOF OF LEMMA 1.3. Fix e = {x, y}. Denote a random forest on G by F .
First, consider the case of FUSF.

Fix r . Let Gj be an exhaustion of G by finite graphs. Let Tj be a uniformly
chosen random spanning tree of Gj . We may assume that every Gj contains the
ball B(x, r + 1) of radius r around x. Denote the path from x to y in Tj by Pj . Let
Dj := {x and y are in different components of {B(x, r + 1) ∩ Tj }}, and let D :=
{x and y are in different components of {B(x, r +1)∩F }}. By the convergence of
Tj to F , P(Dj ) converges to P(D).

Recall that one can define a metric on (rooted equivalence classes of) rooted
graphs, where the distance between rooted graphs (�1, o1) and (�2, o2) is 1/r

if r is the maximal integer such that the r-neighborhoods of o1 in �1 and o2 in
�2 are rooted isomorphic. This metric defines a Polish space. By the Skorokhod
representation theorem, the weak convergence of Tj to F implies the existence of
a coupling between (Tn)n and F such that Tn converges to F a.s. Conditioned on
Dj , Pj ∩ ∂B(x, r + 1) �= ∅. Let fj be the first edge of ∂B(x, r + 1) when going
along Pj starting from x. Since Tj converges to F , its restriction to B(x, r + 1)

also converges to that of F a.s. In particular, fj has a limit as j → ∞. Let f be the
random edge given by this limiting distribution. Note that f ∈ Cx ∩ ∂B(x, r + 1).

Now assume that F is given by the FUSF. Under the map φj : Tj 
→ Tj ∪
e \ fj , every configuration has at most |∂B(x, r + 1)| preimages [at most one
for each potential fj ∈ ∂B(x, r + 1)]. It follows that for any event Aj ⊂ Dj ,
P(φj (Aj )) ≥ |∂B(x, r + 1)|−1P(Aj ). For any A ⊂ D, one can choose an ap-

proximating sequence Aj → A, Aj ⊂ Dj . Hence P(π
f
e A) = limj P(φj (Aj )) ≥

|∂B(x, r + 1)|−1 limj P(Aj ) = |∂B(x, r + 1)|−1P(A). This completes the proof
for FUSF.

A similar argument works for the WUSF with Gj replaced by Ĝj . �

Given a labelling λ : E(G) → [0,1] and e ∈ E(G), define Zλ(e) = Z(e) =
infC sup{λ(e′) : e′ ∈ C \ {e}}, where the infimum is over all cycles C in G that
contain e. Depending on the context, by a cycle we may mean only finite cycles
(in case of the FMSF) or finite cycles and biinfinite paths (in case of WMSF). If
the infimum of the sup is attained in the definition of Z(e), denote the edge e′ by
φ(e,λ) [then λ(φ(e,λ)) = Z(e)], otherwise let φ(e,λ) =∅.

In the edge labellings considered, we always assume that all labels are different.
This holds with probability 1 when the labels are i.i.d. Lebesgue[0,1]. For the
proof of Lemma 1.4, we will need the following observation.

PROPOSITION 2.1. Let e ∈ E(G), λ : E(G) → [0,1] be a labelling and λ′ be
another labelling that agrees with λ for every edge other than e:

1. Suppose that e ∈ E(G) is in Ffree(λ). If λ′(e) < Zλ(e), then Ffree(λ) =
Ffree(λ

′). If λ′(e) > Zλ(e), then Ffree(λ
′) = {φ(e,λ)} ∪ Ffree(λ) \ {e} if φ(e,λ) �=

∅, otherwise Ffree(λ
′) = Ffree(λ) \ {e}.
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2. Suppose that e ∈ E(G) is not in Ffree(λ). If λ′(e) > Zλ(e), then Ffree(λ) =
Ffree(λ

′). If λ′(e) < Zλ(e) Ffree(λ
′) = {e} ∪ Ffree(λ) \ {φ(e,λ)}.

Statements similar to (1) and (2) hold with Ffree replaced by Fwired above (with Zλ

changed to the wired version).

PROOF. The proposition follows from the proof of Lemma 3.15 in [9]. There
it is shown that λ|E\{e} determines F(λ)|E\{e,φ(e,λ)} [note φ(e,λ) is determined
by λ|E\{e}], and that one has either e ∈ F(λ), φ(e,λ) /∈ F(λ) [iff λ(e) < Z(e) =
λ(φ(e,λ)) or if φ(e,λ) =∅], or e /∈ F(λ), φ(e,λ) ∈ F(λ) [iff λ(e) > λ(φ(e, λ))].
These imply the claim. �

PROOF OF LEMMA 1.4. First, we show the claim for the WMSF. In [9], it is
proved that in case of θ(pC,G) = 0, every component of the WMSF has one end.
(In general, WMSF components can have at most two ends.)

Let λ be the random labelling and the corresponding spanning forest be F(λ) =
Fwired(λ). Given e ∈ E(G), we will use C(e) for the set of all cycles containing e,
where cycles are understood to be finite cycles or biinfinite paths in the rest of this
proof. Fix e, r and A as in Definition 1. We may assume that A is a F−1(WMSF)-
measurable set of labellings, one that arises as the preimage of some measurable set
of forests; in particular, if λ ∈ A and F(λ) = F(λ′) then λ′ ∈ A. Recall the notation
of f (ω, e, x, r), and note that ω here stands for a realization F(λ); condition on
A, that is, suppose that λ ∈ A.

To prove the claim, for any labelling λ we will define a labelling λ′ whose
properties are explained next. We will have F(λ) = F(λ′). If we change λ′(e) to
a λ′′(e) < Zλ′(e) leaving all other labels unchanged, then Proposition 2.1 applies,
and hence F(λ′′) = F(λ′)∪e\φ(e,λ′). Now, φ(e,λ′) will satisfy the requirements
for f (F(λ′), e, x, r): if φ(e,λ′) �= ∅, then its distance from x is at least r , and it
is in Cx . Furthermore, the map λ 
→ λ′ will be measurable and it will take sets of
positive probability to sets of positive probability. This will prove the lemma.

Let Z1(e) := Z(e) and f1(λ) = f1 := φ(e,λ). Let i ∈ Z
+, i ≥ 2, and suppose

that Z1(e), . . . ,Zi(e) and f1, . . . , fi have been defined and that i < k, where k

is to be determined later. Then define Zi+1(e) := infC∈C(e) sup{λ(e′) : e′ ∈ C \
{e, f1, . . . , fi}} and let fi+1(λ) = fi+1 be the edge where this inf sup is attained,
if there is any, otherwise let fi+1 := ∅.

Let k be the smallest number such that fk /∈ Cy ∪ (B(x, r) ∩ Cx) (including
the case when fk = ∅). If such a k does not exist, define k to be infinity. The set
Cy ∪ (B(x, r)∩ Cx) does not contain any element of C(e) as a subset, thus the sup
in the definition of Zi(e) is always taken over some nonempty set as long as i ≤ k,
i ∈ N.

Suppose first that k is finite. Define the following labelling λ′ from λ:

(i) λ′(fi) := λ(fi)Zk(e) for all i < k,
(ii) leave all other labels unchanged.
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Call the above relabelling operation Rel, that is, Rel(λ) = λ′. We will show that
λ′ satisfies the properties that we proposed above.

By the choice of k, in (i) we only decrease labels of edges in F(λ), hence the
minimal spanning forest is not changed by these changes of labels, using Propo-
sition 2.1. It is easy to check that the map Rel is measurable. We show that Rel
takes A to a set of positive probability. There exist a k′ ∈ Z

+ and h1, . . . , hk′−1 in
E(G) such that on A, k = k′, fi = hi for every i ∈ {1, . . . , k′ − 1} with positive
probability (this is because there are countably many choices for the collection
of hi). Fix such h1, . . . , hk′−1 ∈ E(G), and call this subevent of A as A1. (Note
that k′, hi, . . . , hk′−1 are not dependent on λ. In fact, we introduce them in order
to have a fixed set of edges instead of the random one.) Using the dual defini-
tion of Z(e) and φ(e,λ) (see Lemma 3.2 in [9]), applied to G \ {h1, . . . , hi−1},
there exists a finite minimal cut 
i ⊂ E(G) such that e ∈ 
i , fi is minimal in

i \ {e,h1, . . . , hi−1}, and Zi(e) = sup
 min{λ(f ) : f ∈ 
 \ {e,h1, . . . , hi−1}} is
attained for 
 = 
i and f = hi . (In the supremum, 
 is ranging over all finite
minimal cuts containing e.)

For ε > 0, define A2(ε) to be the subevent of A1 such that the following prop-
erties hold:

• ming,h∈∪
i,g �=h{|λ(g) − λ(h)|} > ε,
• for every hi , and every h ∈ E(G) such that φ(h,λ) = hi or φ(hi, λ) = h, we

have |λ(hi) − λ(h)| > ε,
• Zk′(e) > ε.

Such an ε > 0 exists with P(A2(ε)) > 0 because letting ε → 0, A2(ε) tends to
A1 a.s. (Note that in the second bullet point, the set of h’s satisfying the require-
ment is a.s. finite, by the MTP.) Fix such an ε and the corresponding A2 = A2(ε).
Suppose that λ0 is an arbitrary labelling that agrees with λ ∈ A2 outside of
{h1, . . . , hk′−1} =: H and such that for every i we have 0 < λ0(hi) − λ(hi) < ε.
Then F(λ0) = F(λ), and fi(λ0) = hi for every i, for the following reason. [The
first fact will imply that λ0 ∈ A; the second will imply that Zk′(λ0) = Zk′(λ).] The
only places where λ0 and λ differ are in H = {h1, . . . , hk′−1}, and the label of each
element of H is larger by λ0 than by λ. Consider the series of labellings λi from λ

to λ0 such that λi agrees with λ0 on {h1, . . . , hi} and with λ elsewhere. Then any
two consecutive elements of this series only differ in the label of an edge hi , which
gets increased by < ε. The second bullet point above shows that the new label of hi

hence will not exceed λ(φ(hi, λ)) = Zλ(hi), therefore, the forest is unchanged, by
Proposition 2.1. Hence F(λ0) = F(λ). To see the other claim, for any two edges
in

⋃
j 
j , the order of the labels of these two edges is the same in λ and λ0, by the

first bullet point. Therefore, fi is still minimal in 
i . On the other hand, the min
of labels [as in the dual definition of Zi(e)] is still maximized by the cutset 
i ,
because we increased the max label of 
i when going from λ to λ0 (and no other
cutset can “take over”, because of our observation that the ordering on

⋃

i given

by the labels is the same by λ and by λ0). To summarize, conditioned on λ ∈ A2, an
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increase of λ on the elements of H arbitrarily by at most ε will result in a labelling
λ0 that gives rise to the same WMSF as λ, and furthermore, still satisfies fi = hi ,
and in particular, Zk′(λ0) = Zk′(λ). Hence the λ0 are in A on one hand, and the
set of Zk′(e) over the λ0’s is the same as the set over the λ ∈ A2. Now, let λ− be
a random labelling of E(G) \ H by i.i.d. [0,1] labels, and say that λ− extends if
there is an element in A2 whose restriction to E(G) \ H is λ−. Then

P(A) ≥ P
(
λ− extends

)
εk′−1,

by Fubini’s theorem and our observation above on the λ0’s. Similarly [and recall-
ing that Zk′(e) is a function of the labelling, which we hid in notation],

P
(
Rel(A)

) ≥ P
(
λ− extends

)(
ε inf

λ∈A2
Zk′(e)

)k′−1 ≥ P
(
λ− extends

)
ε2k′−2.

Using Fubini’s theorem again, we have P(λ− extends) ≥ P(A2) > 0, and the claim
follows: Rel takes F−1(WMSF)-measurable sets A of positive probability to sets
of positive probability.

Recalling the notation Rel(λ) = λ′, we claim that

(2.1) φ
(
e, λ′) = fk.

Suppose to the contrary that it is not true, and suppose first that fk �= ∅. Then there
is some cycle C such that the supremum of λ′ on C \ {e} is less than λ′(fk). Since
λ|C\{e,f1,...,fk−1} = λ′|C\{e,f1,...,fk−1}, we have

λ(fk) = λ′(fk) > sup
{
λ′(h) : h ∈ C \ {e}}

= max
(
sup

{
λ(h) : h ∈ C \ {e, f1, . . . , fk−1}}, λ′(f1), . . . , λ

′(fk−1)
)

≥ sup
{
λ(h) : h ∈ C \ {e, f1, . . . , fk−1}},

contradicting the choice of fk . For fk =∅, the same argument works, using Zk(e)

and Z(e) instead of λ′(fk) and λ(fk). So, in fact φ(e,λ′) = fk .
Now, φ(e,λ′) = fk implies fk ∈ Cx ∪Cy , for the following reason. Otherwise, if

we decrease the label of e in λ′ (as in the definition of λ′′ above), so that e becomes
part of the forest [λ′′(e) < Zk(e)], the edge φ(e,λ′) = fk that drops out of the
forest is outside of Cx ∪Cy ∪{e}. Then Cx ∪Cy ∪{e} is one of the new components,
with two ends. “Decreasing the label of e” could be done in a measurable way so
that this happens with positive probability, a contradiction. We conclude using the
definition of k that if k is finite then φ(e,λ′) = fk is in (Cy ∪ (B(x, r) ∩ Cx))

c ∩
(Cx ∪ Cy) = Cx ∩ B(x, r)c, as we wanted.

Finally, suppose that k is infinity. Then for some K > 0 we have fi ∈ Cy for
every i > K .

For α ∈ [0,1], define Gα = Gα(λ) = {e′ ∈ E(G) : λ(e′) ≤ α}. Let i ≥ 1 be ar-
bitrary. Let Oi ∈ C(e) be a cycle such that fi is maximal in Oi \ {e, f1, . . . , fi−1}.
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By definition of fi , there exists such a cycle. It has the property that Oi \
{e, f1, . . . , fi−1} ⊂ Gλ(fi) a.s. It follows from the choice of Oi (and Oi−1) that

λ(fi) = max
{
λ(f ) : f ∈ Oi \ {e, f1, . . . , fi−1}}

= inf
C∈C(e)

sup
{
λ
(
e′) : e′ ∈ C \ {e, f1, . . . , fi−1}}

≤ sup
{
λ(f ) : f ∈ Oi−1 \ {e, f1, . . . , fi−1}} < λ(fi−1).

(2.2)

Note that for the first inequality we need that Oi−1 \{e, f1, . . . , fi−1} �=∅, but this
is guaranteed by the fact that f1, . . . , fi−1 ∈ Cx ∪Cy and that |Oi−1 \ (Cx ∪Cy)| ≥
2 or Oi−1 is infinite. We obtained that λ is monotone decreasing on the sequence
fi . By this monotonicity, if a cycle in Gλ(fj ) ∪ {e, f1, . . . , fj−1} contains e and
fj , then it also contains f1, . . . , fj−1. Otherwise, if O is such a cycle and i < j

is the smallest index with fi /∈ O , then sup{λ(h) : h ∈ O \ {e, f1, . . . , fi−1}} ≤
sup{λ(h) : h ∈ Gλ(fj ) ∪ {fi+1, . . . , fj−1}} < λ(fi), which would contradict the
choice of the fi .

Next, we show that all the fi (i > K) are on the infinite ray from y in Cy .
Proving by contradiction, suppose that this is not the case, and let h > K be an
index such that fh is not on the infinite ray from y in Cy . Define a labelling λ′
as in (i) and (ii) above, with h playing the role of k. This relabelling operation
preserves positive measure and produces a labelling λ′ that generates the same
WMSF as λ. Furthermore, as in (2.1) with k replaced by h, φ(e,λ′) = fh. But
then fh is necessarily on the infinite ray from y in Cy . Otherwise, if we insert e

and delete fh from the configuration, the new configuration would still contain the
infinite ray from y in Cy and the infinite ray from x in Cx [where by Cx and Cy

here we mean components of WMSF(λ′)], that is, we would obtain a tree with at
least two ends, which is a contradiction. Therefore, all the fi (i > K) are on the
infinite ray from y in Cy .

For any j , λ(fj ) is greater than the max in
⋃

i>j Oi \ {e, f1, . . . , fj }, by (2.2).
The set

⋃
i>j Oi \ {e, f1, . . . , fj } has an infinite component, because

⋃
i>j Oi is

infinite and connected. We conclude that λ(fj ) > pc.
In the definition of the fi we are having an inf sup, which, if attained, has to

be attained in a simple cycle Ci (meaning that Ci is connected and every vertex
of it has degree 2). Therefore, we may assume that every Oi is a simple cycle.
Take a subsequential limit of the Oi , call the resulting biinfinite path B . For every
p > pc, every component of the WMSF intersects the cluster Gp(λ) in an infinite
component (Lemma 3.11 in [9]). This implies

limλ(fi) = pc,

using again that the trees of the WMSF are 1-ended and that all the fi (i > K) are
on an infinite ray within one of these trees (Cy). All the fi are on one side of e in B

for i > K , hence there is an infinite path P ⊂ B such that P ∩ {e, f1, f2, . . .} =∅.
Take an arbitrary edge g ∈ P . If λ(g) > pc, then if i is large enough then we
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have λ(fi) < λ(g). By definition of B , if i is large enough, then further Oi con-
tains g. But this contradicts the choice of fi , because then λ(fi) is not maximal in
Oi \ {e, f1, . . . , fi−1}. We conclude that every g ∈ P has λ(g) ≤ pc, contradicting
θ(pc) = 0. This final contradiction shows that k cannot be infinite, and the proof
is complete.

The case of FMSF follows from the previous proof: note that we constructed λ′
by lowering the labels of some edges in Fwired(λ) ⊂ Ffree(λ). Hence Fwired(λ

′) =
Fwired(λ) ⊂ Ffree(λ) = Ffree(λ

′). When reducing the label of e in λ′ [below
ZFree(e) := infC sup{λ(e′) : e′ ∈ C \ {e}}, C finite cycle containing e], then e be-
comes part of the forest, and either no edge drops out of it, or the edge that drops
out is φ(e,λ′). Now φ(e,λ′) satisfies the requirements for f (F(λ′), e, x, r), be-
cause it did satisfy it for the WMSF. The fact that it is in Cx ∩ B(x, r)c, where Cx

is the WMSF component of x, implies that it is also in the FMSF component of x.
�

REMARK 2.2. In the definition of WIT, the requirement that f ∈ Cx is needed
only for the proof of Theorems 3.1 and 3.3. Theorem 4.3 is true without this as-
sumption, if we know that the conclusion of Theorem 3.1 holds. Along the lines
of the above proof, one could show that WMSF and FMSF are weakly insertion
tolerant without the assumption θ(pc,G) = 0, if we had chosen the less restrictive
form of weak insertion tolerance, where f (ω, e, x, r) need not be in Cx .

3. Number of components, number of ends.

THEOREM 3.1. Let G be a unimodular quasitransitive graph, and F an er-
godic random spanning forest of G. If F satisfies weak insertion tolerance and
one of its components has infinitely many ends, then every component has infinitely
many ends.

PROOF. Suppose by contradiction that there is also some component with
finitely many ends. Then there is a vertex x, edge e = {x, y} and event A0 with
P(A0) > 0 such that conditioned on A0, x is in a component C with infinitely
many ends, and y is in a different component C′ with finitely many ends. To see
this, note that with probability 1 there exist adjacent components such that one
of them has infinitely many ends and the other one has finitely many ends. Then
for some fixed edge e, there is a positive probability that e connects two such
components—otherwise, summing up over the countably many edges, we would
get an event of 0 probability, contradicting the previous sentence. A similar argu-
ment will be used later several times without explicit mention. Namely, if there
exists an edge of a certain property with positive probability, then there exists a
fixed edge e that has this property with positive probability.

Choose r > 0 such that C \ B(x, r) has at least 3 infinite components with
probability at least P(A0)/2. Such an r exists by the assumption on C. Let A be
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the subevent of A0 that C \B(x, r) has at least 3 infinite components. In particular,
P(A) ≥ P(A0)/2 > 0. Now consider f = f (ω, e, x, r) as in the definition of weak
insertion tolerance and take π

f
e A. Then for every ω ∈ A, the component of x in

ω ∪ {e} \ {f } ∈ π
f
e A contains C′, e and at least 2 ends from C. In particular, it

has an isolated end (in C′), which is impossible by a standard MTP argument (see
Proposition 3.9 in [10]). By WIT, P(π

f
e A) > 0, giving a contradiction. �

The next lemma summarizes some well-known claims that we will need later.
All our applications of this lemma will be for the component of the “root” at some
random invariant subforest of a quasitransitive graph G. By a root, we mean a ran-
domly chosen vertex o of G that makes (G,o) a unimodular random graph. More
precisely, if t1, . . . , tm is a set of representatives from the classes of transitivity of
V (G), then the root is ti with probability p(ti), where p is the probability mass
function that satisfies p(ti)/p(tj ) = |Stabti (tj )/|Stabtj (ti)|. (This is understood
up to rooted isomorphisms, therefore, the choice of the ti does not matter.) See [1],
especially Theorem 3.1, for more details.

LEMMA 3.2. Let (T , o) be an ergodic unimodular random tree. Then the fol-
lowing hold with probability 1:

(i) If T has infinitely many ends, then it is transient.
(ii) If the expected degree of o is strictly greater than 2, then T has infinitely

many ends. Conversely, if T has infinitely many ends, then the expected degree of
o is greater than 2.

(iii) If T has infinitely many ends, then it has exponential growth.
(iv) If T has infinitely many ends, then for any finite subset S of edges and

vertices every infinite component of T \ S has infinitely many ends.

PROOF. An argument similar to the proof of Proposition 3.11 in [10] shows
(i). Part (ii) follows from Theorem 6.2 in [1]. For (iii), one has to use the fact
that the existence of infinitely many ends implies pc < 1 (see Lemma 6.12 in [1]).
Hence gr ≥ br = p−1

c > 1, where br is the branching number, gr is the lower expo-
nential growth rate and pc is the critical percolation probability (see Sections 1.5
and 3.3 in [8] for the equality and inequality, which hold for arbitrary trees). Part
(iv) is true because otherwise there would be an isolated end in Co. This is impos-
sible; see, for example, Proposition 6.10 in [1]. �

THEOREM 3.3. Let G be a unimodular quasitransitive graph. Suppose that
F is an ergodic random spanning forest of G that satisfies weak insertion toler-
ance and one of its components has infinitely many ends. Then it either has one
component, or it has infinitely many components.
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We mention that the proof of the same fact for Bernoulli percolation cannot be
generalized to our setting directly. In case of Bernoulli percolation, one assumes,
proving by contradiction, that there are k components, 1 < k < ∞. Then one in-
serts an edge, to derive that the probabilities of having k components or having
k − 1 components are both positive. This contradicts ergodicity. In our case, when
we apply weak insertion tolerance, even though we reduce the number of compo-
nents when inserting an edge e, we increase it when deleting edge f . Hence there
is no direct contradiction to the fact that the number of components is a constant
a.s.

PROOF. We will prove by contradiction. Suppose that there are more than one,
but finitely many components.

The proof will loosely follow the method in [14], with insertion tolerance re-
placed by weak insertion tolerance. Some arguments become simpler because the
components are trees and also because of the assumption that there are only finitely
many components. We say that two components C and C′ touch each other at x if
there is an edge {x, y} ∈ E, {x, y} /∈ F , with x ∈ C and y ∈ C′.

There exist distinct components C and C′ such that C has infinitely many ends,
and further, C and C′ touch each other at infinitely many places (because the
outer boundary of a cluster C is infinite, and there are finitely many neighbor-
ing components). Choose C and C′ with these properties uniformly at random,
from the finitely many possible pairs. Hence there exist adjacent vertices x and y

and an event A0 such that P(A0) > 0, and such that conditioned on A0, Cx = C,
Cy = C′. (In particular, Cx has infinitely many ends, and it touches Cy at infinitely
many places on A0.) Fix such vertices x and y, let e = {x, y} (∈ E), and con-
dition on A0. Let the set of such touching points be T = {v ∈ C : there is a u ∈
C′ such that {v,u} ∈ E(G)}. For any v ∈ C and infinite component C− of C \ v,
C− has infinitely many ends [by (iv) of Lemma 3.2] and C− ∩ T �= ∅. (This lat-
ter can be shown by a standard mass transport argument. To sketch it: one could
assign to each point of C the element of T that is closest to it in C. If the claim
were not true, there would be a point that is assigned to infinitely many points of
C− with positive probability, which is impossible.)

Fix r > 0 such that given A0, Cx \B(x, r) has at least 3 infinite components with
probability at least 1/2. (Such an r exists because Cx has infinitely many ends on
A0.) Let A be the subevent of A0 when this holds. We have P(A) ≥ P(A0)/2 > 0.
Note that on A, x ∈ T (because this holds on A0 already).

Let us sketch the rest of the proof before going into the details. We will define
the following mass transport. For each v, w in the same F -component such that v

and w are adjacent in G, take the minimal path Pv,w within the F -component be-
tween them. For each such pair v, w, let v send mass i−2 to the vertex of Pv,w that
has distance i from v in Pv,w . Then the expected mass sent out is at most dπ2/6,
where d is the maximum degree in G. However, the expected mass received is
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infinite, because of the way we constructed Cx on π
f
e A, with an exponentially

growing set of touching pairs.
Now we give the detailed proof. Let P(C,C′) ⊂ T be the set of all v in T

with C \ B(v, r) having at least 3 infinite components. For the x and r that we
fixed above, x ∈ P(C,C′) conditioned on A. Thus P(C,C′) �= ∅ with positive
probability, and hence by ergodicity and the mass transport principle, P(C,C′) is
infinite a.s. Condition on A and let C1, . . . ,Cm be the infinite components of C \
B(x, r) (m ≥ 3). We will show that P(C,C′) ∩ Ci has exponential growth within
Ci for every i. Define T (C,C′) as the minimal subtree of C that contains every
vertex of P(C,C′). In other words, T (C,C′) is the union of all simple paths with
both endpoints in P(C,C′). The graph C \T (C,C′) only has finite components, as
can be easily seen by a mass transport argument. [Otherwise, let each vertex send
mass 1 to a uniformly chosen element of P(C,C′) that is closest to it. . . ] Hence
T (C,C′) ∩ Ci is a (unimodular) tree with infinitely many ends (using the fact that
Ci has infinitely many ends), thus the growth of T (C,C′) is in fact exponential
[Lemma 3.2(iii)]. Define the subtree T
(C,C′) of T (C,C′) as the union of all
minimal paths between two points of P(C,C ′) such that the path has length at
most 
. The tree T
(C,C′) converges to T (C,C ′), and so does the expected degree
within it. By (ii) in Lemma 3.2, the expected degree in T (C,C′) is greater than 2.
Hence it is greater than 2 in T
(C,C′) as well for large enough 
. It follows that
some component of T
(C,C′) has exponential growth for 
 large enough, using
again Lemma 3.2. Consequently, conditioned on A, for large enough 
 and some
c > 1, the inequality |BT
(C,C′)(x, r) ∩ Ci ∩ P(C,C′)| ≥ cr is satisfied for each r

large enough. Thus |BT (C,C′)(x, r) ∩ Ci ∩ P(C,C′)| ≥ cr also holds.
Consider the infinite components C1, . . . ,Cm of C \ B(x, r). Conditioned on

A, we have m ≥ 3. On the other hand, we have seen that for each Ci , the set
P(C,C′) ∩ Ci has exponential growth in C. All but at most one of C1, . . . ,Cm

are in the same component of π
f
e ω as x (ω ∈ A). We may assume that C1 is the

exceptional one (if any).
Define the following mass transport. For every v adjacent to some w in G,

choose the minimal path in C between v and w if v,w ∈ C, and let v send mass
i−2 to the ith vertex on this path. The expected mass sent out is finite, because v has
a bounded number of neighbors. To compute the expected mass received, note that
on π

f
e A, x will receive mass i−2 from every vertex of SCx (x, i)∩Cx ∩ (P (C,C′)\

C1). Because of the exponential growth of P(C,C′) in Ci , the expected mass
received is hence infinite. This contradiction completes the proof. �

REMARK 3.4. One is tempted to think that the above arguments may work
to show (similar to [14]) that there are no infinitely touching clusters when the
percolation is weakly insertion tolerant and each component has infinitely many
ends. However, this claim is not true: consider FUSF on the free product of Z5 and
Z, and use the result of [2] that any two of the infinitely many FUSF-clusters in Z

5
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touch each other at infinitely many places, and the fact that FUSF(Z5 ∗ Z)|Z5 has
the same distribution as FUSF(Z5). Weak insertion tolerance is not enough in this
setting to make the argument of [14] work, because deleting f may make a part of
the cluster “fall off” that contains all the touching points T .

4. Indistinguishability of clusters. In this section, we will prove the indis-
tinguishability of clusters. By this, we mean that for any invariant measurable
A ⊂ 2E(G), a.s. either every infinite component belongs to A or none of them.
When an invariant measurable A ⊂ 2E(G) is given, we will refer to A and to Ac

as a type. If Co ∈ A, we say that A is the type of Co or (with a slight abuse of
terminology) that A is the type of o; similarly for Ac.

The following lemmas will be needed for the proof. The first one was shown
in [10] for unimodular transitive graphs, and generalized for unimodular random
graphs in Theorem 4.1 of [1]. The version that we are stating for unimodular quasi-
transitive graphs is essentially Theorem 3.1 in [11]. Delayed simple random walk
on a transitive graph G is defined as follows. At each time, the walker chooses one
of its G-neighbors uniformly at random, and takes a step to this neighbor if and
only if they are neighbors in the percolation, too; see [1] for the more formal and
more general definition. Informally speaking, the next lemma says that an invariant
percolation process looks the same from a “fixed” vertex as from the vertex where
a delayed simple random walker is after one step within the cluster starting from
the fixed vertex. (Here, the “fixed” vertex is in fact fixed in the transitive case,
and randomly chosen from the representatives of the finitely many orbits in the
quasi-tranistive case, so that the resulting rooted graph is unimodular.)

LEMMA 4.1. Let G be a quasitransitive unimodular graph, and o be a ran-
dom root so that (G,o) is a unimodular random graph. Consider an invariant
edge-percolation process on G. Let P̂ be the joint distribution of ω and the two-
sided delayed simple random walk on Co started from the (random) root o. Then
the restriction of P̂ to the Aut(G)-invariant σ -field is stationary. More precisely,
P̂(A) = P̂(SA), where S is the shift operator by the random walk step, and A is
any Aut(G)-invariant subset of V Z × 2E .

DEFINITION 4 (Pivotal pairs). Let r ≥ 0 be an integer, e, f ∈ E, and let A be
a type. Say that (e, f ), is an r-pivotal pair, if f = f (ω, e, x, r) for an endpoint x

of e (as in the definition of WIT), and if the type of at least one of the endpoints
of e is different in π

f
e ω than in ω (meaning that it changes from type A to ¬A

or vice versa). Define z(e, f ) = x if the type of x is different in π
f
e ω than in ω,

otherwise define z(e, f ) = y (where y is the other endpoint of e). If (e, f ) is an
r-pivotal pair for some r , then we call (e, f ) pivotal.

Note that x can be recovered from f because f is in Cx , so z(e, f ) is in fact
determined by e and f if (e, f ) is an r-pivotal pair.
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DEFINITION 5. For each edge {x, y} = e ∈ E, r > 0, f = f (ω, e, x, r), define
a measure Pe,x,r = Pe on Ae := {ω : Cx �= Cy} as Pe(A) := P(π

f
e A) for A ⊂ Ae

arbitrary measurable. By weak insertion tolerance, the restriction of P to Ae is
absolutely continuous with respect to Pe. Let �e,x,r (ω) = dP

dPe
(ω) be the Radon–

Nikodym derivative of P with respect to Pe on Ae.

The next lemma slightly extends similar claims in [10].

LEMMA 4.2. Let F be some invariant ergodic random forest of G. Suppose
that there exists a type A such that a.s. some cluster belongs to A and some other
belongs to Ac (i.e., suppose that indistinguishability fails). Suppose that F is
weakly insertion tolerant and it has a component with infinitely many ends a.s.
Then there are numbers δ > 0, r ≥ 0, pA > 0 such that with probability at least
pA, the following event Piv(e, x,A, δ) holds:

• there exists an edge e with an endpoint x such that the pair (e, f ) is pivotal with
f = f (ω, e, x, r),

• �e,x,r (ω) < δ−1,
• delayed simple random walk (W(1),W(2), . . .) started from W(0) = z(e, f )

avoids the endpoints of e and f .

PROOF. There is a cluster with infinitely many ends, hence by Theorem 3.1,
all clusters have infinitely many ends. By the assumption, with positive proba-
bility Cx ∈ A, and Cy ∈ Ac for some e = {x, y} ∈ E. Fix such an x, y, e, and
call the event just described as A. Let Ar,δ ⊂ A be the event that the follow-
ing hold: �e,x,r (ω) < δ−1, Cx \ B(x, r) has at least 3 infinite components and
Cy \ B(x, r) has at least 3 infinite components. If r is large enough and δ > 0
is small enough, then P(Ar,δ) ≥ P(A)/2. Condition on Ar,δ . Both Cx and Cy are
transient by Lemma 3.2. Consequently, any f = {u, v} ∈ Cx with dist(x, f ) ≥ r

is such that Cx \ {u, v} has an infinite and transient component, and similarly for
Cy \ {u, v}. Hence the last statement of the lemma holds with positive probability.
What remains is to prove that (e, f (ω, e, x, r)) is a pivotal pair.

Let C′
x be the component of x in π

f
e ω, and Cy the component of y in ω. Let

B ∈ {A,Ac} be the type of C′
x . Since Cy ∩ C′

x and Cx ∩ C′
x(�= ∅) are contained

in clusters of different types in ω, either the type of the points in Cx ∩ C′
x changed

(from A to Ac if B = Ac), or the type of the points in Cy ∩ C′
x changed (from

Ac to A if B = A) when going from ω to ω′. If the former happens with positive
probability, the proof is completed with z(e, f ) = x, otherwise with z(e, f ) = y.

�

THEOREM 4.3. Let G be a unimodular quasitransitive graph. Let F be an
invariant ergodic random forest that is weakly insertion tolerant, and such that
some cluster has infinitely many ends. Then for every invariant measurable A ⊂
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2E(G), either every infinite component belongs to A a.s., or none of them. In other
words, infinite clusters are indistinguishable.

Similar to Lemma 4.2, our proof will follow that of Theorem 3.3 in [10], with
some significant modifications. Let us mention the most important difference here.
The starting idea of that proof is that the existence of pivotal edges (in that setup
meaning edges that connect clusters of different types) implies that by the insertion
of one of them, the type of an infinite cluster changes. Hence the type of a cluster
depends on the status of each of these single edges. Such edges exist arbitrarily far
from the “root” o of the cluster. This makes it impossible to determine the type of
the cluster of a vertex o from a large enough neighborhood up to arbitrary preci-
sion, giving a contradiction. One difficulty in this sketch is that the pivotal edges
are random (dependent on the configuration), hence one cannot directly apply the
insertion tolerance property to bound the probabilities after insertion. This is over-
come by the use of a random walk to choose the pivotal edge, at arbitrary distance,
in such a way that by inserting that edge, the probability will be distorted up to
some uniform factor, regardless of its distance from the root. In our setup, when
only weak insertion tolerance is assumed, a further difficulty is that an edge f is
removed while an edge e is inserted. This may not be sufficient to guarantee that
the type of o changes. However, by proper conditioning and choosing e and f far
enough from each other (i.e., r large enough, as in the proof of Lemma 4.2), one
can guarantee that infinitely many vertices change their type, including o, without
distorting the probability of the event too much.

PROOF. Fix a type A and an r ≥ 0, δ > 0, pA > 0 such that Lemma 4.2 holds
with Cz(e,f ) ∈ A. Fix some vertex o. Define Ao as the event that Co is of type A.

Given e = {x, y} ∈ E, f ∈ E and w ∈ {x, y}, let Pf
e,x be the event that (e, f ) is r-

pivotal with f = f (ω, e,w, r) and z(e, f ) = x, �e,x,r (ω) < δ−1, Cx ∈ A. [Note
that w can be recovered from f , because f is in the component of w, so there
is no information lost in the notation Pf

e,x . Let us point at the little unpleasant
technicality here, why we need to distinguish x and w: w ∈ {x, y} is the vertex
whose component in ω contains f , and x is the vertex whose component changes
type if we insert e and delete f . We also make the remark that �e,x,r (ω) is defined
whenever (e, f ) is pivotal.] For an arbitrary ε > 0, let A′

o(ε) = A′
o be some fixed

event that depends on only finitely many edges and satisfies P(Ao�A′
o) < ε. Fix

R = R(ε) such that A′
o only depends on edges in B(o,R).

Let {μx : x ∈ V (G)} be a collection of probability measures on E(G) × E(G)

that is equivariant under the automorphisms of G, and that μx(e, f ) > 0 for every
e, f ∈ E(G). Such a measure exists for the following reason. Fix an origin o in
one of the (finitely many) orbits of the automorphism group of G on V (G). Let μ

be an arbitrary probability measure on the set of ordered pairs of edges (e, f ) ∈
E(G)×E(G) such that 0 < μ(e,f ) = μ(γ e, γf ) for every automorphism γ of G
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that fixes o. Since the orbit of (e, f ) is finite by all such γ ’s, there exists such a μ.
Then for every point of x of the orbit of o we can define μx(e, f ) = μ(γxe, γxf ),
where γx is any automorphism that takes the origin to x. It is easy to check that
μx does not depend on the choice of γx , hence it is well defined. Doing the above
construction as o ranges through a (finite) transversal of the orbits, we define μx

for every x ∈ V (G) as claimed.
Let o be a random root of G with distribution that makes (G,o) unimodu-

lar. (If G is transitive, we can make o to be a fixed vertex.) Let ω ∈ F , and
Wω = (Wω(j))∞j=−∞ be the biinfinite 2-sided delayed random walk on Co with
Wω(0) = o. Define (en, fn) to be a pair of edges chosen according to distri-
bution μWω(n), and let wn be a uniformly chosen endpoint of en. Let W+

ω =
(Wω(j), ej , fj ,wj )

∞
j=−∞ be the random walk path together with the choices we

make on the way. Denote by � = � × E(G) × E(G) × V (G) (where � is the set
of all biinfinite paths started from o) the space where all possible W+

ω are located.
Given some ω, where � is the space of subgraphs of G, we denote the probability
measure on � as defined above by P̂o

ω = P̂ω. Let P̂o = P̂ be the joint distribution
of the random forest and the W+

ω . So P̂ is defined on the space � × � . For an
event F ⊂ �, we will also use notation F for F × � ⊂ � × � , and similarly for
events in � .

For fixed edges e, f ∈ E, e = {x, y}, and fixed ω, denote by En
x,e,f (ω) the event

that en = e, fn = f , Wω(n) = x, and that Wω(j) is not an endpoint of e or f

whenever −∞ < j < n. Observe that the En
x,e,f (ω) are pairwise disjoint as n

varies. We denote by En
x,e,f the union of all the En

x,e,f (ω) over ω ∈ �. We men-
tion (though we will only use this fact later) that En

x,e,f has positive probability for
certain pairs (e, f ) and n by Lemma 4.2, with the last bullet point in the lemma
applied to (W(−1),W(−2), . . .). For a fixed ω ∈ � and fixed e, f ∈ E, the prob-
abilities P̂ω(En

x,e,f (ω)) and P̂
π

f
e ω

(En
x,e,f (π

f
e ω)) are the same. For any n ≥ 0 and

measurable B ⊂ Pf
e,x such that P(B) > 0 and P(π

f
e B) > 0, we deduce the follow-

ing equality:

P̂
(
En

x,e,f ∩ πf
e B

) =
∫
B

P̂
π

f
e ω

(
En

x,e,f

(
πf

e ω
))

dPe

=
∫
B

P̂ω

(
En

x,e,f (ω)
)
dPe

=
∫
B

P̂ω

(
En

x,e,f (ω)
)
�e,x,r (ω)−1 dP.

(Recall Pe from Definition 5.) Apply the previous equality to B = A′
o ∩ Pf

e,x

if P(B) > 0 [which implies P(π
f
e B) > 0 by the definition of Pf

e,x ]. Using that
�e,x,r (ω) < δ−1 on Pf

e,x we obtain

(4.1) P̂
(
En

x,e,f ∩ πf
e

(
A′

o ∩Pf
e,x

)) ≥ δP̂
(
En

x,e,f ∩A′
o ∩Pf

e,x

)
.
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The inequality is trivially true if B = A′
o ∩ Pf

e,x has probability 0, so it holds in
general (for any triple e, f , x).

Note that if (ω,W+
ω ) ∈ En

x,e,f ∩ Pf
e,x , then CW(n) = Co and the components of

o and W(n) also coincide in π
f
e ω. We have obtained in (4.1) that by opening e and

closing f we distort the probability of our event by at most a factor of δ, where
“our event” is, vaguely speaking, the event that the random walk on Co hits the
endpoint x of e in the nth step, (e, f ) is pivotal, and by changing the status of e

and f , the type of x (and hence the type of o) will change. This suggests that the
status of e and f has a high impact on the type of o on this event. In what follows,
we will apply this observation to all possible pivotal pairs (e, f ), and use the fact
that the random walk hits infinitely many of them eventually. If n is large enough,
both e and f are outside of the cylinder that determines A′

o, leading to a conclusion
that the type of o is not determined by A′

o up to a small error, a contradiction. We
make this argument precise in the rest of the proof.

For e /∈ B(o,R), f /∈ B(o,R), if (ω,W+
ω ) ∈ En

x,e,f ∩ Pf
e,x , then π

f
e ω /∈ AW(n)

(by definition of Pf
e,x ), and thus π

f
e ω /∈ Ao. Consequently, for such e and f ,

Ao ∩ π
f
e (A′

o ∩ Pf
e,x) ∩ En

x,e,f = ∅ up to measure 0. On the other hand, for

e /∈ B(o,R), f /∈ B(o,R), we have A′
o ⊃ π

f
e (A′

o ∩ Pf
e,x) ∩ En

x,e,f , because A′
o

is determined by the edges in B(o,R). These observations show that A′
o \ Ao ⊃⋃

e/∈B(o,R),f /∈B(o,R),e={x,y} π
f
e (A′

o ∩ Pf
e,x) ∩ En

x,e,f , up to measure 0. This implies
the first inequality below, while the second one is by (4.1):

P
(
A′

o \Ao

) ≥ P̂
( ⋃

e/∈B(o,R),f /∈B(o,R),e={x,y}
πf

e

(
A′

o ∩ En
x,e,f ∩Pf

e,x

))

= ∑
e/∈B(o,R),f /∈B(o,R),e={x,y}

P̂
(
πf

e

(
A′

o ∩ En
x,e,f ∩Pf

e,x

))

≥ δ
∑

e/∈B(o,R),f /∈B(o,R),e={x,y}
P̂

(
A′

o ∩ En
x,e,f ∩Pf

e,x

)

≥ −δε + δ
∑

e/∈B(o,R),f /∈B(o,R),e={x,y}
P̂

(
Ao ∩ En

x,e,f ∩Pf
e,x

)
,

for every n ≥ 0. We may assume δ < 1. This implies right away the following
inequalities for n ≥ 0:

2ε ≥ ε + P
(
A′

o \Ao

) ≥ δ
∑

e/∈B(o,R),f /∈B(o,R),e={x,y}
P̂

(
Ao ∩ En

x,e,f ∩Pf
e,x

)
.

By choosing n large enough, the right-hand side is arbitrarily close to
δ

∑
e,f ∈E,e={x,y} P̂(Ao ∩ En

x,e,f ∩Pf
e,x), using that Co is infinite. So fix n(ε) such
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that ∣∣∣∣δ
∑

e,f ∈E,e={x,y}
P̂

(
Ao ∩ En

x,e,f ∩Pf
e,x

)

− δ
∑

e/∈B(o,R),f /∈B(o,R),e={x,y}
P̂

(
Ao ∩ En

x,e,f ∩Pf
e,x

)∣∣∣∣ < ε

holds for every n ≥ n(ε). Then for n ≥ n(ε), we have

3ε ≥ δ
∑

e,f ∈E,e={x,y}
P̂

(
Ao ∩ En

x,e,f ∩Pf
e,x

)

= δ
∑

e,f ∈E,e={x,y}
P̂

(
Ao ∩ E0

x,e,f ∩Pf
e,x

)
.

Here, the last equation holds because
∑

e,f ∈E,e={x,y} P̂(Ao ∩ En
x,e,f ∩ Pf

e,x) is

the same as
∑

e,f ∈E,e={x,y} P̂(AW(n) ∩ En
x,e,f ∩ Pf

e,x), and the latter is equal to∑
e,f ∈E,e={x,y} P̂(Ao ∩E0

x,e,f ∩Pf
e,x) by stationarity, given in Lemma 4.1. The dis-

joint union
⋃

e,f ∈E,e={x,y}Ao ∩E0
x,e,f ∩Pf

e,x is contained in Piv(e, x,A, δ), whose
probability is above some uniform positive constant for every ε by Lemma 4.2.
Letting ε tend to zero, we arrive to a contradiction. �

EXAMPLE 4.1. The next example shows that the condition that F has a tree
with infinitely many ends cannot be removed with all other conditions unchanged,
that is, there exists a weakly insertion tolerant random forest F with all compo-
nents infinite, but such that its components can be distinguished. We first present
an example when G is quasitransitive, then sketch an example with G transitive.
Let G′ := Z

5 and F ′ be the WUSF (= FUSF) on G′. Let G be the quasitransi-
tive graph as follows. For each v ∈ V (G′), define two new vertices v′ and v′′, and
let V (G) = ⋃

v∈V (G′){v, v′, v′′}. Add all edges {v, v′}, {v, v′′}, {v′, v′′} besides the
edges of G′ [so E(G) = ⋃

v∈V (G′){{v, v′}, {v, v′′}, {v′, v′′}} ∪ E(G′)]. Define F
from F ′ by first taking F ′ on E(G′) ⊂ E(G). For each cluster C of F ′, flip a coin.
If it comes up head, for each v ∈ C add one of the pairs {v, v′}, {v, v′′} or {v, v′},
{v′, v′′} or {v, v′′}, {v′′, v′} to the edge set of F , and decide which one to add uni-
formly, and independently over the v. If the coin came up tail, then do the same
thing, but now the probability of adding edge {v, v′}, {v, v′′} is 1/2, while the prob-
abilities for adding edges {v, v′}, {v′, v′′} or edges {v, v′′}, {v′′, v′} are 1/4. This
way we defined an invariant spanning forest F on G. Clusters containing trees
of F ′ where the coin tosses came up head are distinguishable from those where
it came up tail, from the densities of the 2-paths and “cherries” hanging off the
vertices in V (G′). On the other hand, using the fact that the components of F ′ are
one-ended and that the WUSF is weakly insertion tolerant, one can check that F
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is also weakly insertion tolerant. (Note however that if we applied the same con-
struction for an F ′ where every cluster has infinitely many ends, then the resulting
F would not be weakly insertion tolerant.)

To have a transitive example, we will use G = Z
5 �K4, that is, the Cartesian

product of Z5 and the complete graph K4 on vertex set {v1, v2, v3, v4}. Start with
the USF F ′ on Z

5 as before, and for each edge {x, y} ∈ F ′, choose one of the
four edges {(x, vi), (y, vi)} uniformly at random and independently. Let the chosen
edges be part of the forest F . For each component of F ′, flip a coin. For each vertex
x ∈ Z

5, we will add a random spanning subgraph of x × K4 to F . The spanning
subgraph will be chosen to be a uniform spanning path with probability p and a
uniform spanning star with probability 1 − p, where p = 1/2 if the coin flip for
the cluster of x came up heads, and p = 1/3 if it came up tail.

REMARK 4.4. All results in the paper are valid in the more general setting
when G is a unimodular random network. More precisely, let (G,o) be an ergodic
unimodular random network, as defined in [1]. The definitions of the uniform and
minimal spanning forests can be extended to this setting; see Section 7 of [1]. The
definition of weak insertion tolerance has to be modified by requiring the proper-
ties in Definition 1 to hold for every edge e of almost every (G,o). Expectation in
the proofs is understood jointly with respect to the distribution of the unimodular
random graph and the random forest. To apply the proof of Theorem 3.3 directly,
one needs to have finite expected degree for (G,o). However, by using cutoff (ap-
plying mass transport only when the vertex has a degree below some properly
chosen bound), one can extend the proof to an arbitrary unimodular graph.

Acknowledgements. I am indebted to Russ Lyons and Gábor Pete for several
useful discussions and for their comments on the manuscript. I am very grateful to
an anonymous referee for a thorough reading and significant improvement of the
paper.
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