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Outcomes after cancer diagnosis and treatment are often observed at dis-
crete times via doctor-patient encounters or specialized diagnostic examina-
tions. Despite their ubiquity as endpoints in cancer studies, such outcomes
pose challenges for analysis. In particular, comparisons between studies or
patient populations with different surveillance schema may be confounded by
differences in visit frequencies. We present a statistical framework based on
multistate and hidden Markov models that represents events on a continuous
time scale given data with discrete observation times. To demonstrate this
framework, we consider the problem of comparing risks of prostate cancer
progression across multiple active surveillance cohorts with different surveil-
lance frequencies. We show that the different surveillance schedules partially
explain observed differences in the progression risks between cohorts. Our
application permits the conclusion that differences in underlying cancer pro-
gression risks across cohorts persist after accounting for different surveillance
frequencies.

1. Introduction. Many outcomes after cancer diagnosis and treatment are ob-
served at discrete times via doctor-patient encounters or specialized diagnostic ex-
aminations [Sridhara, Mandrekar and Dodd (2013)]. For example, prostate cancer
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progression following primary surgery is typically asymptomatic and is identi-
fied by a high or rising prostate-specific antigen (PSA) level on follow-up testing
[Stephenson et al. (2006)]. Similarly, breast cancer recurrence after an initial di-
agnosis of in-situ disease is generally identified by surveillance mammography
screening [Narod and Rakovitch (2014)]. A surveillance-dependent random vari-
able is a continuous-time failure outcome that is detected by exams or biomarker
measurements that occur at discrete times (e.g., patient visits). A key feature of
studies with surveillance-dependent outcomes is that the observed time of an event
is sensitive to the frequency of patient visits: patients with more frequent visits will
have an event detected earlier [Gignac et al. (2008), Zeng et al. (2015)]. Other dif-
ferences across surveillance studies include inconsistent definitions of failure and
variable frequencies of dropout, each of which may affect estimated risks of the
event.

In this article, we consider the problem of comparing risks of cancer progression
across multiple cohorts with different surveillance frequencies, where inconsis-
tent definitions of progression were involved and variable frequencies of dropout
were observed. We present a statistical framework based on multistate models
[Andersen and Keiding (2002)] that considers a standardized definition of can-
cer progression as an event that occurs on a continuous time scale and accounts for
dependent censoring due to the variable dropout.

Our application focuses on the setting of prostate cancer grade progression
among patients on active surveillance. In active surveillance studies, patients with
low-risk prostate cancer do not undergo active treatment at the time of diagnosis
but rather are assigned to a schedule of regular biopsies and PSA measurements to
monitor disease progression. Patients are generally referred to treatment if progres-
sion is detected, but they may also initiate treatment at any time for other reasons,
including rising PSA, fatigue with serial biopsies, or anxiety about forgoing treat-
ment [Penson (2012), Dall’Era (2015)].

Active surveillance is the preferred approach for managing newly diagnosed,
low-risk prostate cancer [Tosoian et al. (2016)]. However, there have been no ran-
domized trials comparing prostate cancer mortality or other long-term outcomes
under different active surveillance protocols. At present, information about ac-
tive surveillance outcomes is based on prospective cohorts with limited follow-
up. Among cohorts with the longest follow-up, reported risks of disease pro-
gression have been highly variable. However, it is unclear whether differences in
the reported risks are due to underlying differences in participant selection or to
differences in active surveillance implementation, including surveillance sched-
ules, definitions of progression, and rates of dropout to treatment without pro-
gression. Clarifying whether risks of progression observed across cohorts persist
after accounting for differences in implementation will provide valuable informa-
tion about the representativeness of individual cohorts and about uncertainty of
expected outcomes for newly diagnosed prostate cancer patients who are consid-
ering active surveillance.
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Most active surveillance cohorts define prostate cancer progression as an in-
crease in tumor grade or volume on biopsy. Grade refers to the degree of cellular
differentiation in the tumor, that is, the degree to which cancer cells resemble or-
dinary prostate cells. Prostate cancer grade is quantified by Gleason score, which
reflects the degree of differentiation of the majority of tissue and the rest of the
tissue in the tumor [Humphrey (2004)]. Gleason score is an established predictor
of progression risk in treated and untreated prostate cancer patients [Popiolek et al.
(2013)]. Low-grade cancer refers to Gleason score ≤ 6. In this article, we define
progression on active surveillance as an increase in Gleason score because this is
a common component of the definition of progression in all active surveillance co-
horts, whereas an increase in tumor volume is not consistently defined. Treatment
for reasons other than tumor upgrading is considered to be a competing risk in that
it prevents observing tumor upgrading in the absence of treatment.

We describe a method that accommodates differing biopsy frequencies across
active surveillance cohorts and produces comparable, continuous-time projections
of the risk of tumor upgrading in each cohort. In practice, the risks of upgrad-
ing and treatment are likely to be correlated: factors such as a rising PSA, which
may induce a decision to initiate treatment, may also be related to the risk of pro-
gression [Ross et al. (2010)]. Our method accommodates this by modeling both
the time to progression and the time to treatment as dependent on baseline PSA
level and PSA velocity. In addition, the method accommodates as a fixed input
the misclassification that occurs when biopsy grade is not an accurate reflection
of the true, underlying grade (i.e., the pathological grade that would be assessed
following surgery). Since biopsies only sample a limited portion of the prostate,
they may be subject to misrepresentation of the true tumor biology. It has been es-
timated that in active surveillance cohorts, high-grade cancers are misclassified as
low grade 10–50% of the time [Palisaar et al. (2012), Inoue et al. (2014), Pinsky,
Parnes and Ford (2008)]. Misclassification of a low-grade tumor as a high-grade
tumor may occur up to 15% of the time [Inoue et al. (2014)]. We present results
with and without misclassification of specified magnitudes.

Our approach considers serial biopsies to reflect discrete views of a continuous-
time stochastic process with a discrete state space corresponding to low-grade
(Gleason score ≤ 6) and high-grade (Gleason score ≥ 7) cancer while captur-
ing early treatment as a competing risk state. The underlying disease progres-
sion is modeled as occurring according to a latent continuous-time Markov chain
(CTMC), and we assume that the biopsies consist of discrete, possibly mis-
classified observations of the underlying process [Titman and Sharples (2010),
Lange and Minin (2013)]. Latent CTMCs offer much more flexibility than stan-
dard CTMCs, which, due to their tractability, are frequently used to characterize
discretely observed, multistate processes describing disease progression [Mandel
(2010), Jackson et al. (2003)]. Further, the likelihood of latent CTMC models is
analogous to a hidden Markov model likelihood, and therefore this framework nat-
urally is able to incorporate misclassified disease outcomes. We link risk of pro-
gression and competing treatment via baseline PSA and PSA velocity, enabling us
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to estimate the risk of upgrading in the absence of treatment. We use our model-
ing framework to analyze individual-level data from four of the largest and most
prominent North American active surveillance studies.

2. Methods.

2.1. Overview. In this section we describe the model framework that allows us
to compare the four active surveillance cohorts in terms of their continuous-time
underlying risks of progression. First we describe each of the active surveillance
datasets. Next we detail the latent CTMC model used to describe the underlying
upgrades: the competing risks structure for disease progression, the dependence of
the event times on the evolving PSA, the mechanism for incorporating misclassi-
fication error in the biopsy observations, and the likelihood function. Finally, we
describe a hypothesis test for comparing the risk of upgrading across cohorts.

2.2. Data sources. De-identified, individual-level datasets were obtained from
four active surveillance cohorts following institutional review board approval.

1. The Johns Hopkins University (JHU) dataset [Tosoian et al. (2015)] con-
sists of 913 men enrolled during 1994–2014. This study enrolled men with very
low risk prostate cancer (clinical stage T1c, PSA density ≤ 0.15 ng/ml, Gleason
score ≤ 6, ≤ 2 positive biopsy cores, and ≤50% involvement of any biopsy core
with cancer), as well as older men with low risk disease (clinical stage ≤ T2a,
PSA < 10 ng/ml, and Gleason score ≤ 6). Men were tracked with PSA tests every
six months and had annual biopsies. Treatment intervention was recommended for
disease reclassification, defined as any adverse grade or volume change detected
on biopsy.

2. The Canary Prostate Active Surveillance Study (PASS) dataset [Newcomb
et al. (2016)] consists of 1067 men enrolled during 2008–2013. Enrollment criteria
included prostate cancer with clinical stage ≤ T2 disease with no previous treat-
ment and either a 10-core biopsy within one year before enrollment or ≥2 biopsies
with ≥1 in the year before enrollment. Participants were followed with PSA mea-
surements every four months and had repeat biopsies 6–12, 24, 48, and 72 months
after enrollment. Treatment intervention was recommended if there was either an
increase in biopsy Gleason score or volume detected on biopsy (from <33% to
≥33% of cores positive for cancer).

3. The University of California San Francisco (UCSF) dataset [Welty et al.
(2015)] consists of 1319 men enrolled during 1990–2015. Although eligibility cri-
teria have evolved over time, the current criteria are PSA ≤ 10 ng/ml, clinical stage
≤ T2, biopsy Gleason score ≤ 6, ≤33% positive cores, and ≤50% tumor in any
single core. However, carefully selected cases who do not satisfy these criteria may
be enrolled. Surveillance biopsies are recommended within the first year and every
12–24 months thereafter, sampling at least 12 biopsy cores. The primary trigger
for treatment was biopsy grade reclassification.
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4. The University of Toronto (UT) dataset [Klotz et al. (2015)] consists of 1104
men enrolled during 1995–2015. During 1995–1999, the study was offered to all
low-risk men (Gleason score ≤ 6 and PSA ≤ 10 ng/ml) and to men >70 years
of age with PSA < 15 ng/ml or Gleason score ≤ 3 + 4. During 2000–2015,
the study also included men with favorable intermediate-risk disease (PSA ≤
20 ng/ml and/or Gleason score ≤ 3 + 4) with significant comorbidities and a life
expectancy < 10 years. PSA tests were performed every three months for two
years and then every six months in stable men. A confirmatory biopsy was per-
formed within 12 months of the initial biopsy and then every three–four years
until age 80. Treatment intervention was recommended if there was an upgrade in
histology on repeat biopsy or clinical progression between biopsies. Until 2009,
intervention was also recommended on the basis of having a PSA doubling time
<three years.

Records from each dataset included diagnosis years, patient ages, clinical and
pathologic information at diagnosis, dates and results of all surveillance tests, in-
cluding PSA values and biopsy results, dates and types of curative treatment, and
vital status. Patients diagnosed before 1995, older than 80 years at enrollment, or
with Gleason score ≥ 7 at diagnosis were excluded from the analysis in order to
create a more homogeneous population across the four cohorts.

To enforce consistency, we defined disease progression strictly in terms of grade
progression, that is, the first point at which a Gleason score ≥ 7 was reached. For
our analyses, we differentiate between the time of underlying upgrade (UGC) and
observed upgrade, where the former refers to the unobserved time when the cancer
progresses from Gleason score ≤ 6 to Gleason score ≥ 7 and the latter to the ob-
served time when grade is reclassified on biopsy. We refer to the Gleason score ≤ 6
as “low grade” and Gleason score ≥ 7 as “high grade.” We also define the event of
treatment without grade reclassification as the initiation of treatment in the absence
of an observed biopsy upgrade. Volume reclassification or patient choice may also
trigger treatment without observed upgrading. We refer to treatment without ob-
served upgrading as “competing treatment” since its initiation precludes observing
upgrading on active surveillance. One can view this competing treatment as a form
of dependent censoring that may be correlated with the time of underlying upgrade.

2.3. A model for continuous-time prostate cancer progression.

2.3.1. Model overview. Patients enter the active surveillance cohort just fol-
lowing diagnosis of low-grade disease. Their data consists of a follow-up sequence
of biopsy times and Gleason score results, a sequence of PSA test times and results,
and the time of competing treatment, if any (Figure 1A). The end of follow-up oc-
curs at the minimum of the time that the first biopsy detects high-grade cancer, the
time that competing treatment is initiated, or the time of the last PSA test in the
absence of either of these events. Let tk0 = 0 be the time of the original cancer
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FIG. 1. A. Sample trajectory for a patient who upgrades during the observation period. The biop-
sies detect the underlying process at discrete times, and the time of diagnosis occurs after the time
of underlying upgrade. B. Competing risks structure of the model describing cancer grade progres-
sion or competing treatment modeled as a standard CTMC, denoted M1. C. Latent continuous time
Markov chain (CTMC) structure with two low-grade cancer states that generates non-constant haz-
ard rates for transitions, denoted M2. D. Latent CTMC structure with three low-grade cancer states,
denoted M3.

diagnosis for patient k; tk1, . . . , tkn be the biopsy times; and ok1, . . . , okn be the
Gleason score results. Let t

psa
k1 , . . . , t

psa
km be the PSA test times and yk1, . . . , ykm be

the results (PSA values on the log-scale). Let hk be an indicator of whether the
final observation time corresponds to a biopsy (hk = 1 if yes and hk = 0 other-
wise). If hk = 0, let zk be the end of follow-up, which may be either the time of
competing treatment (in which case ck = 1) or the final PSA test (in which case
ck = 0).

These data are used to inform a model of continuous-time prostate cancer grade
progression involving three components.
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1. A random effects model captures log-PSA growth for subject k at time j ∈
{1,2, . . . ,m} as follows:

Ykj = γ0k + γ1kt
psa
kj + εkj ,

where (γ0k, γ1k) are normally distributed subject-level random effects and εkj is a
zero-mean, normally distributed, within-subject error term.

2. A competing risks model for underlying upgrading and competing treatment
based on a latent continuous-time Markov chain (CTMC), as described in Sec-
tion 2.3.2. Transition rates in the model depend on baseline age and PSA inter-
cepts and slopes estimated in advance of fitting the competing risks model. Times
of underlying upgrading and competing treatment are assumed to be conditionally
independent given baseline age and PSA intercept and slope.

3. A misclassification model governing imperfect sensitivity of biopsies to de-
tect high-grade disease, as described in Section 2.3.6.

2.3.2. A competing risks model for underlying upgrade. In the competing
risks model structure, individuals proceed from low-grade cancer to either high-
grade cancer or competing treatment. We can characterize the trajectory through
underlying disease states as a multistate process, W(t), with state space R =
{1,2,3}, where state 1 is the low-grade state, state 2 is the high-grade state, and
state 3 is the competing treatment state. At each biopsy, W(t) corresponds to the
true underlying state, so that W(tk0), . . . ,W(tkn) reflect discrete snapshots at times
tk0, . . . , tkn.

As a first pass, we might specify W(t) as the simplest of multistate models, a
time-homogeneous CTMC with state space R. The Markov property of this model
means that transitions between states at any given time depend only on the state
occupied at that time and not on the history of the process before that time. Time
homogeneity means that the probability of transitioning from state i to state j

between times s and s + t is the same as the probability of transitioning between
these states at times 0 and t . We specify a CTMC W(t) by a transition intensity
matrix � = {λij }, where λij refers to the instantaneous transition rate between state
i and j , and an initial distribution π that specifies the probability of occupying each
state at time 0.

Suppose that P(t) = {Pij (t)} is the matrix representing transition probabilities
between states i and j in the interval [s, s + t]. The transition probability matrices
between states are characterized by a matrix exponential of the intensity matrix �,

P(t) = exp(�t).

In general, the density of the time transition to state k at time s + t , given that the
process is in state i at time s, is:

fik(t) = ∑
j

Pij (t)λjk.
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Transition probabilities can be computed with standard methods [Moler and Loan
(2003)].

While standard CTMCs have appealing analytic tractability, they assume that
sojourn times (i.e., durations spent in a state before transitioning) are exponen-
tially distributed and that rates of transitioning between states are constant with
respect to sojourn duration. In our setting, this assumption is unrealistic. There-
fore, to enable more flexible sojourn time distributions, we assume that the disease
process W(t) is based on an underlying latent CTMC X(t) with state space S,
where multiple latent states in S may map to each observable disease state in R.
We do not assign biological meaning to the latent states in the model but simply
use them as a tool for more flexible sojourn time distributions.

In particular, the state space is S = {11, . . . ,1s1,2,3}, where s1 is the number of
latent low-grade states. The mapping of S into R is:

W(t) = 1 ⇔ X(t) ∈ {11, . . . ,1s1},
W(t) = 2 ⇔ X(t) = 2,

W(t) = 3 ⇔ X(t) = 3.

The latent CTMC sojourn time distribution in the low-grade cancer state
[W(t) = 1] can be thought of a as mixture of all of the possible paths out of that
state, which allows for more flexibility than exponential sojourn times.

2.3.3. Model selection. Figure 1A represents the structure of a standard con-
tinuous time Markov chain (s1 = 1), and Figures 1C and 1D depict the more flex-
ible latent structures that we consider for the prostate cancer progression model.
In general the coarseness of data provides practical limits on the number of latent
states it is advisable to fit, and we recommend people start with smaller models
and build up as the data permits, stopping when the model estimation is numeri-
cally unstable. For this setting, we considered standard CTMCs (s1 = 1) and latent
CTMCs with 2 (s1 = 2) and 3 low-grade states (s1 = 3), which we refer to as M1,
M2, and M3, respectively. We use the Bayesian information criterion (BIC) as
a means of choosing the number of latent states given its good performance in
choosing the number of components in latent models [Steele and Raftery (2010)].

2.3.4. Incorporation of patient covariates. We incorporate individual age and
PSA intercept and slope (γ0k, γ1k) as covariates into � = {λij }, the transition ma-
trix for the latent CTMC X(t) in the competing risk model. Including these co-
variates in the model induces a dependence between times of underlying upgrad-
ing and competing treatment. To do so, we relate log-rates to a linear predictor,
log(λ

(k)
ij ) = ζ T

ij v(k), where v(k) is the vector of covariates for patient k. We incor-
porate covariates in this way for each possible transition out of the low-grade state
to the high-grade state and to the competing treatment state, that is, for each λij

where i ∈ {11, . . . ,1s1} and j ∈ {2,3}.
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For parameter identifiability, we assume that the covariate effect for transi-
tions from low-grade to high-grade states is the same (i.e., for each λi,2 where
i ∈ {11, . . . ,1s1}) and similarly for the transition from low-grade to competing
treatment states (i.e., for each λi,3 where i ∈ {11, . . . ,1s1}). Note that unless W(t)

is a standard CTMC, this specification does not necessarily imply proportional
hazards [e.g., Marshall and Jones (1995)]. Therefore, rather than interpreting the
covariate parameter estimates directly, it is more revealing to visualize covariate
effects on the risk of underlying upgrading.

2.3.5. Projecting the cumulative distribution of underlying upgrade times in ab-
sence of competing treatment. Assuming that underlying upgrade and competing
treatment are conditionally independent given patient covariates, we can project
the distribution of time to underlying upgrade in absence of treatment by eliminat-
ing competing treatment in the transition intensity matrix. This involves creating a
new transition matrix �̃ = {λ̃ij }, which is identical to � except that transition rates
to the competing treatment state λi3, where i ∈ {11, . . . ,1s1}, are set to zero. The
distribution function for underlying upgrade in the absence of competing treat-
ment, starting from the first low-grade state, is thus provided by the row of the
transition probability matrix

P̃(t) = exp(�̃t)

corresponding to the transition between state 11 and state 2.

2.3.6. Biopsy misclassification. An emission matrix E = {e(i, j)} character-
izes the relationship between the observed biopsy Gleason score and the underly-
ing state X(t) and has entries e(i, j) = P(Ot = j | X(t) = i). If there is no biopsy
misclassification, the emission matrix simply maps the state space of W(t) to the
state space of X(t). Otherwise, the emission matrix describes the probability of the
observed biopsy outcomes given the underlying states in W(t), assuming that the
observed biopsies are conditionally independent given the values of the underlying
state at each observation time. The emission matrix is given by

E =

1 2 3⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

p 1 − p 0 11
...

...
...

...

p 1 − p 0 1s1

1 − q q 0 2
0 0 1 3

where q is biopsy sensitivity (i.e., the probability of observing upgrading if under-
lying upgrading has occurred) and p is the biopsy specificity (i.e., the probability
of not observing upgrading if no upgrading has occurred). In practice it is challeng-
ing to estimate biopsy misclassification jointly with the transition rate parameters
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in a competing risks multistate process without some observations corresponding
to a gold standard [Inoue et al. (2014)]. To investigate the impact of biopsy mis-
classification, we perform analyses assuming no biopsy misclassification error and
compare results when biopsy sensitivity is 60%, 75%, and 90%, and biopsy speci-
ficity is 95%, 90%, and 85%, which encompass the range presented in the literature
[Inoue et al. (2014)].

2.3.7. Initial state distribution. The initial state distribution π with entries
πj = P(X(t0) = j) represents the probabilities of underlying states at diagno-
sis. In our dataset, the first biopsy occurs ≥6 months after diagnosis, so this initial
state distribution is an extrapolation. If we assume there is no biopsy misclassi-
fication, then biopsy Gleason score at diagnosis correctly identifies all patients
with low-grade disease. Per the assumptions of the Coxian sojourn time distribu-
tion [Cumani (1982)], individuals with low grade disease initially occupy the first
latent state: π11 = 1. If we allow biopsy misclassification, we assume that individ-
uals start either in state 11 or in state 2, and all other initial probabilities are zero.
In this case, the initial distribution is estimated from a logistic regression model
that depends on patient age and PSA intercept (γ0k):

log
π2

π11

= β1 + β2γ0k + β3agek.

2.3.8. Likelihood of the observed data. Suppressing the individual subscripts,
a patient’s observed data vector is o = (o1, . . . , on, h, c, z), reflecting the observed
biopsy results, an indicator for whether his final observation was a biopsy, an indi-
cator for whether he initiated competing treatment, and the end of follow-up (see
Section 2.3.1). His underlying disease states corresponding to his status at the en-
try into active surveillance at diagnosis and each of the follow-up biopsy times
is (x0, . . . , xn). If there were no latent states or misclassification error, the likeli-
hood would be a product of conditional probabilities of the observed data at each
time, given the previous observed data. In a general case, where we assume a la-
tent CTMC model, or a model with misclassification error, we need to marginalize
(sum) the product of conditional probabilities across the hidden states to obtain
the likelihood of the observed states. In this sense it resembles a hidden Markov
model which marginalizes the joint probability of the underlying disease states
(x0, . . . , xn) and the observed data at the corresponding times across (x0, . . . , xn):

P(o) = ∑
x0

∑
x1

· · ·∑
xn

πi

n−1∏
i=0

Pxixi+1(ti+1 − ti)

n∏
i=1

e(xi, oi)

×
([

fxn3(z − tn)
]c[∑

j �=3

Pxnj (z − tn)

]1−c)1−h

.

(1)

Here fxn3(z − tn) is the density function for competing treatment at time z given
underlying grade at the final biopsy, and

∑
j �=3 Pxnj (z − tn) is the probability of

not initiating competing treatment at time z.
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2.3.9. Parameter estimation and software implementation. We obtain the
maximum likelihood estimates for model parameters θ = (π ,�) using an
expectation-maximization (EM) algorithm that uses quantities from the Baum–
Welch algorithm for obtaining estimates for a discrete-time hidden Markov model
[Baum et al. (1970)]. The algorithm is described in Lange and Minin (2013)
and is recapped in Supplement A [Lange (2018)]. The algorithm is implemented
using our R package, cthmm, available at http://r-forge.r-project.org/projects/
multistate/. To obtain variance estimates for the model parameters, we use nu-
merical estimation of the observed Fisher information matrix using the R package
“NumDeriv” [Gilbert and Varadhan (2012)].

2.4. Comparisons across cohorts. Our primary goal is to compare rates of
underlying upgrading across active surveillance cohorts. To do so, we first com-
bine data from the cohorts and parameterize the rates of underlying upgrade and
competing treatment using a dummy variable for cohort as a covariate. Given es-
timated cohort effects, we use Wald tests to evaluate the statistical significance of
differences in rates of underlying upgrading across cohorts.

3. Results.

3.1. Cohort summary and empirical outcomes. After exclusions, the sample
consists of 699, 613, 764, and 421 patients from JHU, PASS, UCSF, and UT, re-
spectively. Distributions of baseline characteristics, surveillance biopsy and PSA
test frequencies, and outcomes across the cohorts are shown in Supplement B, Ta-
ble 1 [Lange (2018)]. JHU had the most frequent biopsies (median of 1 per 0.9
years) and UT the least frequent biopsies (median of 1 per 3.8 years); both PASS
and UCSF had a median of 1 per 1.8 years.

Figure 2 shows the empirical cumulative incidence curves of observed upgrad-
ing and competing treatments across cohorts, each derived using the other event
as a competing risk. Figure 2A shows that the PASS and UCSF cohorts had the
highest empirical cumulative incidence of observed upgrading, while JHU had the
lowest. The 10-year empirical cumulative incidence in PASS and UCSF was 59%,
in JHU was 27%, and in UT was 45%. Figure 2B shows that JHU had the high-
est risk of competing treatment (10-year empirical cumulative incidence is 27%),
possibly due to the relatively high incidence of volume-only progression in this co-
hort, which accounts for about half the cases reclassified, whereas the other cohorts
had similar, lower risks of competing treatment (10-year empirical cumulative in-
cidences ranged from 9–12%).

Based on the PSA growth models, median PSA velocity was similar across the
cohorts, with 1% annual increase (IQR −3%, 6%) for JHU, 4% (IQR −3%, 11%)
for PASS, 4% (IQR −1%, 10%) for UCSF, and 5% (IQR −2%, 11%) for UT.

3.2. Models of continuous-time prostate cancer progression.

3.2.1. No biopsy misclassification. Table 1 presents the results of fitting stan-
dard and latent CTMC models to each cohort. When no biopsy misclassification

http://r-forge.r-project.org/projects/multistate/
http://r-forge.r-project.org/projects/multistate/
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FIG. 2. A. Empirical cumulative incidence of observed upgrading in the presence of competing
treatment. B. Empirical cumulative incidence of competing treatment in the presence of observed
upgrading.

was assumed, PASS, UCSF, and UT all achieved the best fit (according to the BIC)
under model M2 (s1 = 2); JHU achieved the best fit under model M3 (s1 = 3). Pa-
rameter estimates are presented in Supplement C, Table 1 [Lange (2018)]. Using
best fitting models for each cohort, Figure 3 presents the predicted cumulative
probability of continuous-time underlying upgrading in the absence of competing
treatment in each cohort based on averaging individual-level results. Naive Kaplan

TABLE 1
Model selection assuming no biopsy misclassification. Abbreviations: BIC = Bayesian Information
Criterion; M1, M2, M3 refer to standard CTMC and models with 2 and 3 latent states, respectively

Cohort No. patients Latent CTMC model No. params Log likelihood BIC

JHU 699 M1 8 −1086.4 2195.6
M2 11 −1069.6 2170.5
M3 14 −1055.8 2151.4

PASS 613 M1 8 −688.1 1398.5
M2 11 −677.1 1384.9
M3 14 −674.8 1388.6

UCSF 764 M1 8 −1149.4 2321.8
M2 11 −1122.0 2275.7
M3 14 −1122.0 2284.4

UT 421 M1 8 −495.3 1011.6
M2 11 −480.4 989.7
M3 14 −479.2 995.1
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FIG. 3. Comparison of observed upgrading (solid Kaplan–Meier curves) and underlying upgrad-
ing (dashed continuous-time model predictions) in the absence of competing treatments assuming no
biopsy misclassification.

Meier (KM) based estimates of cumulative distribution functions are included for
comparison purposes. In general, the KM curves are shifted right relative to the
continuous-time predictions, consistent with the expectation that underlying up-
grading precedes observed upgrading. The magnitude of this shift depends on the
biopsy frequency, with more frequent biopsies yielding a smaller shift.

Comparing underlying upgrading in the absence of competing treatment across
cohorts indicates that JHU has a markedly lower rate than the other three cohorts.
We estimate that 33% of patients in JHU had an underlying upgrade within 10
years, but this probability is 65–73% in the other cohorts. This difference is highly
significant (p < 0.001 from Wald test for any differences across cohorts based on
the model fit to combined cohort data), as are pairwise differences between JHU
and the other cohorts (all p < 0.001). Pairwise differences between PASS, UCSF,
and UT are also significant, even after Bonferroni correction for multiple compar-
isons, except for the difference between PASS and UT (p = 0.31). These obser-
vations differ considerably from the impression given by the empirical curves. In
contrast, a naive cohort comparison based on a Cox regression (which ignores both
the differences in surveillance frequency and dependent competing risks) suggests
that UT has a significantly lower hazard of upgrading relative to PASS (hazard ra-
tio = 0.61, p < 0.001). All other pairwise comparisons are also significant, except
for PASS and UCSF (hazard ratio = 1.17, p = 0.08).

3.2.2. Allowing for biopsy misclassification. We first examined how biopsy
sensitivity affects estimated probabilities of underlying upgrade, assuming biop-
sies ere 60%, 75%, and 90% sensitive and 100% specific. The BIC-selected latent
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structures were the same as for the models fit assuming no misclassification error.
With imperfect biopsy sensitivity, some patients may have had high-grade disease
that was not detected at the time of diagnosis. We fit these models (1) assuming
all patients had low-grade disease at entry and (2) allowing a non-zero probability
of high-grade disease at entry. In the standard CTMC model, allowing a non-zero
probability of high-grade disease at entry substantially improved the fit. However,
in the latent CTMC models, allowing a non-zero probability of high-grade disease
at entry did not improve fit. These results are shown in Supplement D, Tables 1–4
[Lange (2018)], where the maximum likelihood values are virtually identical for
the latent CTMC models with zero and non-zero probabilities of high-grade dis-
ease at entry. Moreover the MLEs for this probability are zero. As discussed in
Bladt and Sorensen (2005), the CTMCs under discrete observations may have
MLEs that fall on the boundary of the parameter space or may not exist if the
observations are not sufficiently frequent. Thus it is likely that the latent CTMCs
did not have sufficient data to estimate the probability of high-grade disease at
enrollment. To understand this issue further, we plotted the estimated cumulative
probability of underlying upgrading assuming a 60% biopsy sensitivity under a
model with one and under a model with two or three low-grade states (Supple-
ment E, Figure 1 [Lange (2018)]). The figure shows that there is little difference
between the two model projections after the median time of first active surveil-
lance biopsy in each cohort, suggesting that the latent CTMC model can explain
the observed data equally well with or without a non-zero probability of high-grade
disease at enrollment.

Figure 4 presents underlying upgrading incidence for selected biopsy sensitiv-
ity rates (and 100% specificity), averaged across the individuals in each cohort.
In general, when biopsies are less sensitive, the predicted underlying upgrade oc-
curs sooner. This is because lower biopsy sensitivity implies a lower detection of
the underlying condition so that the true frequency of the underlying condition
must be higher than that observed. The impact of different biopsy sensitivities on
the estimated probability of high-grade disease was more pronounced at earlier
biopsies.The impact of biopsy sensitivity also varied across cohorts, with JHU ex-
hibiting the smallest impact and UT the largest, consistent with the ordering of
biopsy frequency across cohorts. Even assuming a relatively low biopsy sensitiv-
ity, in JHU less than 10% were estimated to have true high grade disease one year
after they entered the cohort, in contrast to the other cohorts where 20–45% were
estimated to have true high grade disease at the same time.

Figure 5 presents underlying upgrading incidence for selected biopsy specificity
rates (and 100% sensitivity), averaged across the individuals in each cohort. In
general, lower specificity implies a higher detection of underlying upgrading (more
false positives) so that the true frequency of underlying upgrading must be lower
than that observed. In JHU, under 90% and 85% biopsy specificity, the incidence of
true underlying upgrade is estimated to be 0% across the follow-up period. Under
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FIG. 4. Underlying upgrading under varying fixed levels of biopsy sensitivity, assuming 100%
specificity, averaged across individuals in the cohort. Vertical lines show the median time of the
first active surveillance biopsy in each cohort.

a yearly schedule a 10% or higher false positive rate on each biopsy is substantial
enough to account for all of the observed biopsy upgrades in this cohort.

Finally, we estimated the probability of underlying upgrade in each cohort as-
suming 60% biopsy sensitivity and 85% specificity [Inoue et al. (2014)]. Results
of these analyses are shown in Figure 6 along with naive KM based estimates of
biopsy upgrades. Notably, JHU is still substantially lower than the other cohorts,
which are relatively concordant.

4. Discussion. The problem of comparing results from multiple studies in
which observation schedules differ has been referred to as a “twenty first cen-
tury Tower of Babel” since studies with different surveillance schema are very
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FIG. 5. Underlying upgrading under varying fixed levels of biopsy specificity, assuming 100% sen-
sitivity, averaged across individuals in the cohort. Vertical lines show the median time of the first
active surveillance biopsy in each cohort.

difficult to compare [Gignac et al. (2008)]. In the case of active surveillance for
low-risk prostate cancer, a number of studies have reported disease progression
risks for different cohorts with different definitions of progression and different
biopsy schedules [Tosoian et al. (2016)]. To adequately compare the reported re-
sults, it is necessary to derive estimates under a consistent definition of progression
and on a time scale that is the same for all studies. The latent CTMC multistate
modeling approach presented here does exactly this, allowing us to characterize
the risk of underlying upgrade, an outcome that means the same thing across stud-
ies. The method represents a novel alternative to a more standard meta-analysis of
the empirical time to biopsy upgrade. The results are a proof-of-principle that the
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FIG. 6. Comparison of observed upgrading (solid Kaplan–Meier curves) and underlying upgrad-
ing (dashed continuous-time model predictions) in the absence of competing treatments assuming
biopsies are 60% sensitive and 85% specific at detecting upgraded disease.

underlying, continuous-time patterns of biopsy upgrade across cohorts are not the
same as the ones suggested by the empirical results.

Our results have implications for both clinical practice and policy development
because they mandate caution when basing clinical predictions and/or recommen-
dations on any single study. It appears that even when studies are made comparable
in terms of outcomes and time scales, they do not always concur. The lower risk
of underlying upgrade among JHU participants may be due to the fact that they
were also selected on the basis of low PSA density (i.e., PSA level relative to
prostate volume) and tended to have low volumes of cancer in their biopsy spec-
imens. UCSF did not have a PSA density threshold for entry and included some
cases with relatively high-volume disease in terms of the percent of biopsy cores
with cancer. Thus, differences in inclusion criteria not captured in the available
data could explain the persistent differences across studies.

A feature of the latent CTMC modeling approach is that it accommodates
biopsy misclassification. We examine the impact of selected biopsy sensitivities
and specificities on our results rather than simultaneously estimating these param-
eters since they are not identifiable without a gold standard result [Inoue et al.
(2014)]. Our results demonstrate that the estimated rates of underlying upgrading
can depend on biopsy accuracy. We found that assuming a low biopsy sensitiv-
ity was most compatible with the conclusion that a high fraction of patients have
misclassified high-grade disease at the first active surveillance biopsy, but there is
little change in underlying grade over time. In contrast, if we assume a high biopsy
sensitivity, we estimate a low fraction of patients with high-grade disease at the
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first active surveillance biopsy and a faster rate of grade progression over time.
Additionally, lower specificity (i.e., a higher false positive rate), leads to lower
estimated rates of grade progression. Data sets that include surgical grade results
will provide a gold standard and enable estimation of sensitivity and specificity in
surveillance cohorts, which should provide better information on the true rates of
grade progression over time.

By decoupling the underlying process of disease progression from the observed
outcomes, our model accommodates both the biological process of underlying up-
grading and the biopsy misclassification that contributes to the observed risk of
upgrading. This property of our model contrasts with a recent study [Coley et al.
(2016)] that effectively assumes non-changing underlying grade and imputes this
grade on the basis of a Bayesian predictive model based on the subset of patients
who went on to have surgery. Like Coley et al. (2016) our modeling approach also
has the potential for use as a dynamic prediction tool; given accumulated observed
data, one can calculate the underlying probability of having high-grade disease at
a particular time and then predict state transitions beyond that time.

While our method provides novel insights, it is subject to some limitations. We
assume that the events of treatment and underlying upgrade are correlated only
via patient age and PSA intercept and slope. Failure to account for other factors
associated with both events may lead to bias in estimates of the upgrading distribu-
tion in absence of competing treatment [Huang and Wolfe (2002)]. In particular, if
we are ignoring factors that are positively correlated with upgrading and entering
competing treatment, then our method would underestimate the upgrading risks,
since men with higher treatment rates would enter competing treatment before
their upgrading event was observed. Furthermore, rather than using joint model-
ing we incorporate PSA via a two-step approach: first estimating random effects
and then using them as covariates in our disease progression model. This method
may under-represent uncertainty and lead to some bias in projections of underlying
upgrade, but has been used by others with latent CTMC models [Donnelly et al.
(2017)]. Another implicit assumption is that individuals who undergo treatment
without upgrading do not have an undetected grade progression before treatment.
While this is not an issue for patients treated due to increases in tumor volume on
their final biopsy, it could be relevant for cases treated between scheduled biopsies.
Failure to account for progression in these patients could lead to an underestimate
of the risk of underlying upgrade. A further limitation is that we were not able
to estimate the misclassification probabilities jointly with the disease upgrading
rates. Estimation of misclassification rates jointly with other parameters has been
successful in other uses of the latent CTMC model under panel observation, albeit
with substantially lower rates of misclassification than are likely in the prostate
cancer biopsy setting [Titman and Sharples (2010)]. Despite this limitation, be-
ing able to project results under different misclassification probabilities clearly
provides useful information and highlights the importance of this information in
interpreting empirical results from active surveillance studies.
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Finally, we do not consider the possibility of informative observation times,
which could be a feature of studies with a more relaxed biopsy protocol, such as
UT. In a discretely observed multistate model, observation times are ignorable if
they correspond to visits that are scheduled in advance, including those based on
a patient’s prior history of observed data [Grüger, Kay and Schumacher (1991)].
However, if visits are patient-initiated and depend on the underlying disease sta-
tus, visit times are non-ignorable. Our prior simulation work has shown that when
observations are more frequent if patients are in diseased states, ignoring infor-
mative visit times will lead to overestimates of the rates of transitioning between
healthy and diseased states [Lange et al. (2015)]. In the active surveillance setting,
it is unlikely that patients are symptomatic even if they do upgrade. Adherence or
lack of adherence to protocol biopsies may be related to the prior history of biopsy
and PSA results, but it is unlikely to additionally depend on the underlying grade.
In future work, it may be worth investigating whether allowing for informative
visit times changes our conclusions about times of upgrading, perhaps using the
expansion of the model we previously developed [Lange et al. (2015)].

We note that others have developed methods that could be applied in the analy-
sis of active surveillance data. Most relevantly, Mao, Lin and Zeng (2017) recently
extended the nonparametric current status data methods [Hudgens, Satten and
Longini (2001)] for an arbitrary sequence of examination times and time varying
external covariates. In addition, Rouanet et al. (2016) provided a latent class model
approach for longitudinal data and interval censored competing events. However,
neither of these methods incorporates misclassification error as an input parameter.

More broadly, there are other statistical methods that can be used to model dis-
cretely observed continuous-time multistate processes with non-constant hazard
functions for transitions between states. Semi-Markov multistate models represent
one such approach, but options for these models are limited by the structure of
the model and completeness of the observations. Data that are interval censored
permit semi-Markov models that can be estimated via either parametric [Foucher
et al. (2007)] or nonparametric [Frydman and Szarek (2009)] means. Panel data,
for which both transition times and states are unknown in the inter-observation in-
terval, present more difficulties since calculating transition probabilities requires
integrating over all possible trajectories connecting states i and j on a given time
interval. In particular, semi-Markov models for panel data for a general multistate
model with reversible transitions are only feasible if one assumes that some of the
transitions are Markov [Kang and Lagakos (2007)] or that the trajectories follow
the most parsimonious path between observed states [Aralis (2016)]. In contrast,
the latent CTMC modeling approach has no trouble computing transition proba-
bilities in a wide variety of models, given that it is based on an underlying stan-
dard CTMC model. Ultimately, the latent CTMC approach offers both flexibility
in terms of sojourn times and broad applicability to a variety of settings, including
but not limited to the active surveillance context.
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In conclusion, our harnessing of the latent CTMC approach allows us to com-
pare cohorts with diverse surveillance schema. The power of our approach is that it
enables us to coherently use discretely observed data to investigate an underlying
process that occurs in continuous time. This has widespread application in cancer
research, including the study of disease recurrence following primary treatment.
Using this approach, we find that perceptions of cross-cohort differences may be
revealed to be artifactual, and real differences in the underlying disease progres-
sion process may be different from those assessed on the basis of empirical data.

SUPPLEMENTARY MATERIAL

Supplement A: Maximum likelihood estimation (DOI: 10.1214/17-
AOAS1130SUPPA; .pdf). Description of the expectation-maximization algorithm
used to estimate model parameters.

Supplement B: Sample description (DOI: 10.1214/17-AOAS1130SUPPB;
.pdf). Description of the four active surveillance cohorts after exclusions.

Supplement C: Parameter estimates (DOI: 10.1214/17-AOAS1130SUPPC;
.pdf). Model parameter estimates assuming 100% biopsy sensitivity and speci-
ficity.

Supplement D: Model selection (DOI: 10.1214/17-AOAS1130SUPPD; .pdf).
BIC model selection for the four active surveillance cohorts, assuming 60%, 75%,
and 90% sensitivity and 100% specifcity.

Supplement E: Additional figures (DOI: 10.1214/17-AOAS1130SUPPE;
.pdf). Sensitivity analysis for estimates of upgrading probabilities.
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