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Conducting vaccine efficacy trials during outbreaks of emerging patho-
gens poses particular challenges. The “Ebola ça suffit” trial in Guinea used
a novel ring vaccination cluster randomized design to target populations at
highest risk of infection. Another key feature of the trial was the use of a de-
layed vaccination arm as a comparator, in which clusters were randomized to
immediate vaccination or vaccination 21 days later. This approach, chosen to
improve ethical acceptability of the trial, complicates the statistical analysis
as participants in the comparison arm are eventually protected by vaccine.
Furthermore, for infectious diseases, we observe time of illness onset and not
time of infection, and we may not know the time required for the vaccinee
to develop a protective immune response. As a result, including events ob-
served shortly after vaccination may bias the per protocol estimate of vaccine
efficacy. We provide a framework for approximating the bias and power of
any given analysis period as functions of the background infection hazard
rate, disease incubation period, and vaccine immune response. We use this
framework to provide recommendations for designing standard vaccine effi-
cacy trials and trials with a delayed vaccination comparator. Briefly, narrower
analysis periods within the correct window can minimize or eliminate bias but
may suffer from reduced power. Designs should be reasonably robust to mis-
specification of the incubation period and time to develop a vaccine immune
response.

1. Background. Evaluating the efficacy of a vaccine candidate during a pub-
lic health emergency brings unique challenges. Trials in resource-limited settings
may face severe logistical constraints; transmission can be highly localized and
hard to predict; furthermore, the ethics of a trial in the face of an emergency are
complex. Innovative designs can address some of these challenges. During the
2013–2016 West African Ebola epidemic, the “Ebola ça suffit” ring vaccination
trial in Guinea randomized clusters of contacts and contacts of contacts of con-
firmed Ebola virus disease cases to immediate or delayed (after 21 days) vaccina-
tion [Ebola ça Suffit Ring Vaccination Trial Consortium (2015)]. The trial used the
delayed vaccination arm as a comparator to estimate vaccine efficacy (VE).
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When analyzing data from a vaccine trial with or without a delayed vaccination
arm, infection times are unknown and only illness (symptom) onset times are ob-
servable. The time between infection and illness onset, known as the incubation
period, is an unobserved random variable. Furthermore, there is a delay between
vaccination and the development of a robust immune response which we refer to
as the vaccine ramp-up period. As a result, individuals with illness onsets occur-
ring shortly after vaccination were likely infected prior to vaccination (incubating
cases) and/or were infected when the immune response had not developed. Includ-
ing these cases in the per protocol analysis can bias the estimated VE toward the
null [Horne, Lachenbruch and Goldenthal (2001)]; we refer to the biased expec-
tation of VE as apparent VE. In response, the analysis period for vaccine trials
often starts after some delay greater than the maximum incubation period plus the
maximum vaccine ramp-up period. For example, the per protocol analysis of the
RTS,S malaria vaccine was restricted to cases occurring 14 or more days after
the third dose [RTSS Clinical Trials Partnership (2015)]. Unfortunately, this ap-
proach can negatively impact power. In the RV144 HIV vaccine efficacy trial, the
per protocol analysis (seronegative at 26-week visit and followed protocol) did not
achieve statistical significance because it excluded about 25% of study participants
and 31% of infections, whereas the modified intent to treat analysis (seronegative
at baseline visit) was significant at the 0.05 level [Gilbert et al. (2011)]. No for-
mal guidance exists on how to identify the optimal analysis period for vaccine
trials.

A second key design issue is that the comparator arm may receive delayed vac-
cination for ethical reasons, as was used in the “Ebola ça suffit” trial [Henao-
Restrepo et al. (2015)]. This has a few benefits, including that all trial participants
receive the vaccine while they are still at risk. Participants may also be more likely
to consent if they are offered delayed vaccination as compared to placebo or vac-
cination for a different disease. Finally, trial partners may be more likely to ap-
prove a protocol with this component. The use of delayed vaccination necessarily
decreases study power as it restricts the period when the comparator arm is unpro-
tected by vaccine, and thus VE is estimable. This reduction in power as compared
to a standard parallel design is well recognized for stepped wedge trials, in which
all clusters start in the control arm and then receive the intervention in a random-
ized order [Hussey and Hughes (2007), Bellan et al. (2015)]. Delayed vaccination
is related to this approach, and it can be viewed as a one-way crossover trial. As
the use of a delayed vaccination comparator arm outside of stepped wedge trials is
novel, we provide guidance on how to select this vaccination delay. Furthermore,
we make recommendations on how to conduct the analysis in the presence of a
delayed vaccination arm, including when to start including cases in the primary
analysis and, importantly, when to stop including cases.

In this paper, we describe a model for the hazard rates of illness onset times
in a vaccine trial with and without delayed vaccination. We present closed-form
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approximations for apparent VE and power to detect a significant vaccine effect
for any given analysis period. We describe a framework for selecting the optimal
analysis period start in terms of maximizing power and minimizing bias in tri-
als with a placebo or unrelated vaccine control arm. Next, we consider trials using
delayed vaccination and provide recommendations on selecting this delay and con-
ducting the analysis. We describe the principles in the context of the Guinea Ebola
vaccine trial.

2. Description of the model. We describe a model for the observable illness
onset hazard rate as a function of the unobservable infection hazard rate, time-
dependent vaccine protection, and disease incubation period. The background in-
fection hazard rate, defined as the rate at which a susceptible unvaccinated person
becomes infected, is a time-dependent function λW(w) of infection times W = w.
In the absence of vaccination, the actual infection hazard rate is equal to the back-
ground infection hazard rate. After vaccination, as the immune response develops,
we assume that the background infection hazard rate is multiplicatively reduced
due to the protective effect of the vaccine; this multiplicative reduction, referred
to as leaky or partial vaccine protection, is in contrast to “all-or-none” protection
in which a proportion of vaccinees are assumed to be completely protected and
the rest are susceptible [Halloran et al. (1991)]. True vaccine efficacy VE0 for a
leaky vaccine is defined as one minus the infection hazard ratio for a maximally
protected, vaccinated individual as compared to a susceptible, unvaccinated indi-
vidual; this quantity is referred to the vaccine efficacy for susceptibility, and it
measures protection against infection [Halloran, Longini and Struchiner (2010)].
VE0 is the estimand of interest in vaccine efficacy trials. In vaccine trials, unless
participants are tested for asymptomatic infection, we observe vaccine efficacy
for preventing symptomatic disease rather than infection; VE0 is then defined as
one minus the illness onset hazard ratio for a maximally protected individual ver-
sus a susceptible unvaccinated individual. Vaccine efficacy for susceptibility and
vaccine efficacy for preventing disease have slightly different definitions, but for
simplicity we use them interchangeably in this paper; if vaccine does not alter the
probability that an infection will yield symptomatic disease, the two quantities are
equal.

A vaccinated individual is maximally protected after a “vaccine ramp-up” with
duration R days. During the ramp-up period, the infection hazard rate in vaccinees
is assumed to be linearly decreasing, though this could be readily modified. In
equation (1), β(w|sj ,VE0,R) describes the multiplicative reduction in infection
hazard rate at infection time w in Arm j vaccinated on day sj ; it equals 1 before
the individual is vaccinated, indicating no change in infection hazard rate, and
equals 1−VE0 after the ramp-up period R, indicating that the vaccine is maximally
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protective:

(1) β(w|sj ,VE0,R) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, w < sj ,

1 − VE0

R
(w − sj ), sj ≤ w < sj + R,

1 − VE0, w ≥ sj + R.

In a standard vaccine trial, the intervention arm (Arm 1) is vaccinated on day
s1 = 0, and the comparator arm (Arm 0) is never vaccinated, s0 = ∞. In a trial
with a delayed vaccination arm, the immediate arm (Arm 1) is vaccinated on day
s1 = 0, and the delayed arm (Arm 0) is vaccinated on day s0 = b where b is the
vaccination delay. Where trial participants are vaccinated on different days (e.g.,
stepped rollout as in ring vaccination), the time scale might be standardized so that
day 0 is the date of randomization. In a ring vaccination trial, for example, the
background infection hazard rate can be interpreted as the infection hazard rate
in a population with a recent case that triggered the definition of a ring, assuming
that the process of contact tracing and enrollment into the trial will have a similar
impact on the infection hazard rate across rings.

Given infection at time W = w, the incubation period for an infected individual
is a nonnegative random variable U = u that follows some continuous distribu-
tion with probability distribution function fU(·), cumulative distribution function
FU(·), median u0.50, 90th percentile u0.90, and 99.9th percentile u0.999. Examples
of distributions are U ∼ Unif(0,10) or U ∼ Gamma(shape = 6, scale = 1). Illness
onset time is thus a random variable T = t , where an individual develops illness at
time t = w + u. We assume that t is observable for any individual, though u and
w are not. There could be exceptions, such as a known point exposure, but we do
not consider these here.

We let X be the set of parameters comprised of VE0, R, FU(·), and λW(·) that
characterize the vaccine and the disease. Integrating over all possible combinations
of infection times and incubation periods as given by X, the illness onset hazard
rate λT (t |sj ,X) at a particular time t for an individual vaccinated on day sj has
the following form:

(2) λT (t |sj ,X) =
∫ ∞
u=0

λW(t − u)β(t − u|sj ,VE0,R)fU(u)du.

The illness onset hazard rate simplifies nicely in a few settings. When the back-
ground infection hazard rate is constant [λW(w) = λW ∀w] and there is no ramp-
up period (R = 0), the illness onset hazard rate at time t in Arm 1 is as follows
[derivation in Dean, Halloran and Longini (2018)]:

(3) λT (t |s1,X) = λW

[
1 − VE0FU(t − s1)

]
.

In the general setting, the apparent VE at time t , denoted VET (t), is equal to
one minus the expected illness onset hazard ratio, written below:

(4) VET (t |s1, s0,X) = 1 − λT (t |s1,X)

λT (t |s0,X)
.
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Apparent VE reflects the observable multiplicative difference in illness onset
hazard rate at a given time t , noting that at many times this will not equal our
estimand of interest VE0. For example, immediately after vaccination, the illness
onset hazard rate in Arm 1 will not yet be reduced relative to Arm 0 because
vaccine protection has not developed. We define bias as the difference between the
apparent VE at any time t and the true vaccine efficacy VE0.

3. Illness onset hazard rates and apparent VE. We use the equations in
Section 2 to model hypothetical vaccine trials. For all figures in this manuscript,
unless otherwise noted, we assume a scenario modeled after Ebola virus disease
where the disease incubation period is gamma distributed with a mean of 6 days
and scale parameter of 1. The vaccine is fast-acting with a linear four-day vac-
cine ramp-up period (R = 4) before maximal VE of VE0 = 90% is achieved. We
assume a low event rate, and consider scenarios with a decreasing background
infection hazard rate as disease containment procedures are implemented in the
population.

The solid lines in Figure 1 depict the illness onset hazard rates in each arm,
λT (t |s1,X) and λT (t |s0,X), and apparent VE, VET (t), as determined by equa-
tions (2) and (4), respectively, and the dashed lines depict the comparable infection
hazard rates. Arm 0 is never vaccinated, and the background infection hazard rate
is constant and low (λW = 0.001, resulting in an Arm 0 attack rate ≈3% over 30
days). In Panel A, we see that the infection hazard rate in Arm 1 drops sharply after
vaccination on day s1 = 0 until minimizing on day R; the drop is then reflected in
the illness onset hazard rate with a delay attributable to the incubation period. In

FIG. 1. Arm 1 vaccinated on day s1 = 0; Arm 0 never vaccinated (b = ∞). Constant background
infection hazard rate λW = 0.001. For this and all following figures, left shaded regions identify key
time intervals in Arm 1, from darkest to lightest, (i) s1 to s1 + R, (ii) to s1 + R + u0.50, (iii) to
s1 + R + u0.90, and (iv) to s1 + R + u0.999. (A) Solid line indicates the illness onset hazard rate
in Arm 1 as a function of time, λT (t |s1,X); dashed line indicates the infection onset hazard rate
in Arm 1. (B) Solid line indicates the illness onset hazard rate in Arm 0 as a function of time,
λT (t |s0,X); dashed line indicates the infection onset hazard rate in Arm 0. (C) Apparent VE (1 −
illness onset hazard ratio) as a function of time; dashed line (1 − infection hazard ratio); horizontal
dotted line indicates VE0 = 90%.
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FIG. 2. Arm 1 vaccinated on day s1 = 0; Arm 0 vaccinated on day s1 = 21 (b = 21). Constant
background infection hazard rate λW = 0.001. For this and all following figures, right shaded regions
identify key time intervals in Arm 0, from darkest to lightest, (i) s0 to s0 + R, (ii) to s0 + R + u0.50,
(iii) to s0 + R + u0.90, and (iv) to s0 + R + u0.999. (A) Solid line indicates the illness onset hazard
rate in Arm 1 as a function of time, λT (t |s1,X); dashed line indicates the infection onset hazard
rate in Arm 1. (B) Solid line indicates the illness onset hazard rate in Arm 0 as a function of time,
λT (t |s0,X); dashed line indicates the infection onset hazard rate in Arm 1. (C) Apparent VE (1 −
illness onset hazard ratio) as a function of time; dashed line (1 − infection hazard ratio); horizontal
dotted line indicates VE0 = 90%.

Panel C, the dashed line indicating one minus the infection hazard ratio increases
from 0 to VE0 = 90% by day R, but apparent VE increases are slower to stabilize.
Here, stabilization begins shortly before R + u0.999.

Figure 2 shares the same structure as Figure 1 but the comparator arm is vac-
cinated after 21 days (b = 21). The illness onset hazard rate in Arm 0 resembles
that of Arm 1 shifted by b days. Apparent VE briefly maximizes at VE0 = 90%
but returns to 0 shortly after delayed vaccination. Panel C suggests that there is a
limited time window in which VE0 is estimable without bias; at illness onset times
before and after this window, apparent VE can be highly attenuated compared to
VE0.

4. Trial analysis framework. As demonstrated in Section 3, apparent VE
can very different from VE0 at particular illness onset times, especially when de-
layed vaccination is used. A key design choice is then which illness onset times
should contribute to the primary analysis. A commonly used approach is to apply
hard cutpoints to create an analysis period in which illness onsets occurring before
the starting cutpoint are excluded, and observations occurring after the ending cut-
point are censored. Though statistically more refined approaches are available, this
simple approach may be preferred by regulators. We use d to denote the analysis
period start, which is the earliest illness onset day, relative to the date of random-
ization, included in the primary analysis, and we use c to denote the length of the
analysis period in days. The analysis period is identical in both trial arms to main-
tain comparability; a different analysis period for each arm could induce additional
bias [Camacho et al. (2015)].



336 N. E. DEAN, M. E. HALLORAN AND I. M. LONGINI

Cox proportional hazards or a piecewise exponential model fit with a log-linear
approach can be used to estimate vaccine efficacy if the data are expressed in time-
to-event format with times shifted to subtract the analysis period start d to prevent
immortal time before d . These models allow for flexibility in the background in-
fection hazard rate and can accommodate additional covariates (e.g., risk factors
for infection). Clustering, if a cluster randomized trial design is used, can be mod-
eled with a shared frailty term.

4.1. Bias approximation. In the Cox and piecewise exponential models, ill-
ness onset hazard rates λT (t |s1,X) and λT (t |s0,X) can be time-dependent as long
as the hazards are proportional (constant hazard ratio). From Section 3, we see
that apparent VE is actually time-varying (“time varying effect”). When we as-
sume proportional hazards but proportional hazards are violated, we estimate an
average regression effect [Xu and O’Quigley (2000)]. As no closed-form formula
is available for the Cox model, we approximate the apparent VE for a given anal-
ysis period, VED(d, c|s1, s0,X), from the ratio of the average illness onset hazard
rates observed in [d, d + c) [see equation (5)]:

(5) VED(d, c|s1, s0,X) = 1 −
1
c

∫ d+c
t=d λT (t |s1,X) dt

1
c

∫ d+c
t=d λT (t |s0,X) dt

.

4.2. Power approximation. The power for comparing survival curves under
Cox proportional hazards can be approximated by the power of the log rank test
statistic to test H0 : VE0 	= 0% [Rosner (2010), Chapter 14, page 784]. To estimate
power for a given analysis period, B(d, c|s1, s0,X), in equation (6) we adapt the
standard formula, replacing the true VE, VE0, with the apparent VE, VED(d, c),
and calculating the expected number of events (illness onsets) using the illness
onset hazard rates:

(6) B(d, c|s1, s0,X) = �

[√
m(d, c|s1, s0,X)|VED(d, c|s1, s0,X)|

2 − VED(d, c|s1, s0,X)
− 1.96

]
,

where m(d, c|s1, s0,X) is the expected total number of illness onsets during the
analysis period, calculated as np1 + np0 where n is the sample size per arm and
pj [in equation (7)] is the probability that a participant does not have an illness
onset occurring before time d but has an illness onset during the analysis period
[d, d + c) in arm j . We refer to the estimated power calculated using apparent
VE as apparent power. Though a time-dependent background infection hazard rate
could be used, in practice, one would likely assume a constant rate:

(7) pj = exp
{
−

∫ d

t=0
λT (t |sj ,X) dt

}[
1 − exp

{
−

∫ d+c

t=d
λT (t |sj ,X) dt

}]
.

Equation (6) can be adapted to test VE0 > 30% or some other pre-specified
lower bound. Results are presented for individually randomized trials, but this can
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be modified for cluster randomized designs by solving equation (6) for the effective
sample size n and then multiplying the effective sample size by the trial design
effect. The design effect is frequently approximated as 1 + (m − 1)ρ where ρ is
the intracluster correlation coefficient and m is the per-cluster sample size [Ridout,
Demétrio and Firth (1999)].

4.3. Simulations. We evaluate the performance of these two approximations
using a simulation approach in R [R Core Team (2015)] using the survival package
[Therneau (2015)]. Starting 40 days before Arm 1 is vaccinated, a random sample
of n = 1000 infection times per arm are independently drawn from a piecewise ex-
ponential distribution, with hazard rate equal to the background infection hazard
rate (λW = 0.001 or λW = 0.01) or multiplicatively reduced by VE0 (0%, 50%, or
90%) once an individual is vaccinated (R = 0). Incubation periods are then drawn
from a gamma distribution and added to infection times to obtain illness onset
times. Illness onset times prior to d are excluded, and times after d + c are cen-
sored. A Cox proportional hazards model is fit to the event times, with a single
binary predictor for trial arm and rescaled so that d is time 0. We retain the p-value
and VE as 1 minus the estimated hazard ratio, and repeat this process 25,000 times
per scenario. Average simulated VE and power for an α = 0.05 test are compared
to the values predicted by our closed-form approximations.

Results are summarized in Table 1, and we see that approximated VE generally
agrees with the simulated average VE within a few percent, though our approxi-
mation slightly overestimates apparent VE. The bias approximation performs best
when the background infection hazard rate λW(·) is highest and/or the sample size
per arm n is largest. The approximation does not consider censoring due to losses
to follow-up during the trial period; if censoring rates are high, there may be a
larger discrepancy between approximated and simulated VE [Xu and O’Quigley
(2000)].

For the power approximation, generally there is good agreement (∼2% absolute
difference) between simulated and approximated power, though the approximation
tends to slightly overestimate power, consistent with overestimating apparent VE.
The approximation performs poorly when the expected number of events in Arm 1,
intervention arm, is small, for example, less than 5, and can perform poorly when
the sample size is small, for example, n = 500, as can be noted in further simula-
tion results provided in the Supplementary Materials, Dean, Halloran and Longini
(2018).

5. Results.

5.1. Trials with an unvaccinated control arm. After establishing methods for
approximating the apparent VE and power for a given trial design, we investigate
how to select the analysis period start d and length c in the simple setting of a
vaccine trial in which Arm 0 is never vaccinated with the candidate vaccine. We
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TABLE 1
Assessment of bias and power approximations. Sample size n = 1000 per arm. Two constant

infection hazard rates λW are considered: (1) λW = 0.001, yielding a 3% attack rate in Arm 0, and
(2) λW = 0.01, yielding a 30% attack rate in Arm 0. Incubation period has mean of 6 days (scale

parameter = 1). No ramp-up period is included (R = 0). No delayed vaccination in Arm 0 (b = ∞).
Analysis window of c = 30 days starting at either d = 0,6 or 12. 25,000 simulations run for each

scenario. ∗Power approximation function returns 0.025 assuming other rejection region negligible;
we multiply by two. #Expected number of events in Arm 1 is less than 5

Apparent VE Apparent power
Infection

hazard rate d Simulated Approximated Simulated Approximated

VE0 = 0% λW = 0.001 0 −0.038 0 0.047 0.050∗
6 −0.039 0 0.048 0.050∗

12 −0.039 0 0.048 0.050∗
λW = 0.01 0 −0.006 0 0.049 0.050∗

6 −0.006 0 0.049 0.050∗
12 −0.007 0 0.049 0.050∗

VE0 = 50% λW = 0.001 0 0.376 0.400 0.380 0.399
6 0.464 0.484 0.545 0.562

12 0.480 0.499 0.578 0.593

λW = 0.01 0 0.387 0.400 0.990 0.997
6 0.479 0.484 1.000 1.000

12 0.496 0.499 1.000 1.000

VE0 = 90% λW = 0.001 0 0.708 0.720 0.937 0.928
6 0.866 0.871 0.974# 0.993

12 0.895 0.899 0.943# 0.996

λW = 0.01 0 0.707 0.720 1.000 1.000
6 0.869 0.871 1.000 1.000

12 0.898 0.899 1.000 1.000

consider varying the analysis period start d while fixing the analysis period end at
50 days, which could occur if the budget only supports follow-up for a fixed time
from randomization, and there is incentive to maximize the use of this follow-
up time. In Panel A of Figure 3, recalling that R = 4 days, we see that d below
R + u0.90 is associated with bias because it includes a period when the vaccine
has not yet reached maximal protection and apparent VE is biased (see Figure 1).
Interestingly, in Panel B, the power maximizes at an analysis period start d for
which there is some bias in the apparent VE. This is an example of a bias-variance
tradeoff, with an earlier start d capturing more events during the period of partial
efficacy, thereby increasing power while slightly biasing apparent VE. This trade-
off is especially notable when power is limited because of an early analysis period
end or a background infection hazard that is decreasing over time.
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FIG. 3. Arm 1 vaccinated on day s1 = 0; Arm 0 never vaccinated (b = ∞). Constant background
infection hazard rate λW = 0.001. Sample size n = 500 per arm. (Setting as in Figure 1.) Analysis
period [d,50) with length c = 50 −d ; a range of d values are considered. (A) Apparent VE to assess
bias, where the horizontal dotted line indicates VE0 = 90%. (B) Apparent power.

We assess the impact of other key factors, including the incubation period dis-
tribution, the ramp-up period, VE0, and the background infection hazard rate. We
summarize the results here and in Table 2. Figures for a wide range of scenarios
are provided in the Supplementary Materials, Dean, Halloran and Longini (2018).

Longer incubation periods and ramp-up periods shift the optimal d but the same
general relationships persist. Illness onsets following long incubation periods are
most likely to contribute to bias, but the probability of these types of incubation
periods is reflected in the distribution’s quantiles, u0.90 and u0.999. In this scenario,
to minimize bias, an appropriate starting point for the delay could be R + u0.90
or R + u0.999. For longer ramp-up periods, the power tends to maximize at earlier
values of d when the ramp-up period is longer because there is a longer period of
partial efficacy. If there is little protective effect until the end of the ramp-up period
(e.g., ramp-up is not linear), we will need to select a later d because an earlier d

might be prone to more bias (vaccinated group looks similar to unvaccinated group
for longer). Conversely, fast-acting vaccines require an earlier d . In an extreme
situation, a vaccine with post-exposure prophylactic effects will require the earliest
d because vaccinees may be protected from disease even if already infected.

We also consider varying VE0, observing a change in power as expected, but
only a minimal impact on bias. As VE0 increases, the optimal d for minimizing
bias increases very slightly. This can be explained because when VE0 is highest,
the apparent VE experiences the greatest change from 0; thus, including a period of
partial efficacy when the vaccine is highly effective can induce the largest absolute
bias. The effect of varying the background infection hazard rate λW(w) is also
minimal. In the constant hazard setting, there is no change in bias, though the
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mean squared error decreases as the event rate increases. The effect of event rate
on power is as expected, with greater power at the higher event rate, but the location
of the optimal value of d is fairly constant.

Given the above results, it is clear that choosing a later analysis period start, d , is
preferable for minimizing bias between the apparent VE and true VE0. A safe and
commonly used option is to select d equal to R+u0.999, the maximum ramp-up pe-
riod plus the maximum incubation period, though using the 90th or 95th percentile
of the incubation period distribution can also give good results. Nonetheless, our
results suggest that if the goal is to maximize power, there are many settings where
we may prefer an earlier value of d . Capturing cases during this period of partial
vaccine efficacy may provide critical additional events, especially important if the
background infection hazard rate is low and/or decreasing. Similarly, an earlier d

may allow for a wider analysis period c, further increasing the expected number of
events.

5.2. Trials with a delayed vaccination arm. Next, we consider delayed vacci-
nation of the comparator arm, Arm 0. Using the framework described above, we
investigate how to select an appropriate trial design, defined as the vaccination de-
lay b, the analysis start period d , and the analysis period length c. The choice of d

follows many of the same principles described in Section 5.1 and should be based
on the expected ramp-up and incubation periods and background infection hazard
rate, but the trial results are more sensitive to the choice of c when delayed vac-
cination is used. Issues of power are especially critical because cases must occur
during the narrow window before the delayed arm is protected.

A natural starting point is to consider analysis periods that have length equal
to the vaccination delay (c = b). This approach has a nice symmetry because the
cutoff (d) applied to the immediate arm parallels the cutoff (b + d) applied to the
delayed arm. In practice, if c = b, there is no value of d such that apparent VED

is unbiased because any analysis period captures either unprotected immediate
vaccinees or protected delayed vaccinees. For example, in Figure 2, there is no
consecutive 21 day period during which apparent VET is unbiased, so an average
over this period will also be biased, as shown in Panel A of Figure 4. Alternative
approaches using c < b could minimize bias, but the c = b approach tends to have
higher power; nonetheless, power can be highly sensitive to the choice of d , with a
narrow maximum and steep decline on either side, leaving little tolerance for error
in pre-specification of the analysis period. Power can be increased by increasing
the sample size [see Figure S15 in Supplementary Materials, Dean, Halloran and
Longini (2018)]. These results suggest that, if the primary goal is to reduce bias,
we should decouple the vaccination delay b and the analysis period length c.

A natural way to decrease bias without negatively impacting power is to increase
the length of the vaccination delay b. In Figure 5, we increase the vaccination
delay to b = 35 days while maintaining an analysis period of length c = 21. By
increasing the vaccination delay, there is a longer period of time in which Arm 1
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FIG. 4. Arm 1 vaccinated on day s1 = 0; Arm 0 vaccinated on day s1 = 21 (b = 21). Constant
background infection hazard rate λW = 0.001. Sample size n = 500 per arm. (Setting as in Figure 2.)
Analysis period [d, d + 21) with length c = 21; a range of d values are considered. (A) Apparent VE
to assess bias, where the horizontal dotted line indicates VE0 = 90%. (B) Apparent power.

is protected and Arm 0 is not protected. Thus, there is more observation time in
which the apparent VET (t) is equal to the true VE0 (Panel C). As a result, we note
that it is possible to identify a 21-day analysis period in which there is little to no
bias (Panel D), and bias and power are less sensitive to the choice of d (Panels
D and E). This stable region occurs roughly for d values between R + u0.90 to
R + u0.999. This has the advantage that you have more tolerance for error when
pre-specifying the delay. As described above, a more powerful approach would
be to then similarly increase the length of the analysis period c; this induces bias,
though less bias than when b = 21 because VET (t) = VE0 for a larger proportion
of the analysis period.

We assess the impact of other key factors, including the incubation period distri-
bution, the ramp-up period, VE0, and the background infection hazard rate. Figures
for a wide range of scenarios are provided in the Supplementary Materials, Dean,
Halloran and Longini (2018). In Figure 6, we consider the impact of the underly-
ing vaccine efficacy VE0. The optimal value d is similar across all levels of VE0,
though it is slightly later when VE0 is highest. This occurs because high VE0 re-
quires the largest change in illness onset hazard ratio, meaning that the period of
partial efficacy can induce the most bias in apparent VE. It is also noteworthy that
when VE0 = 100%, larger values of d do not induce bias in apparent VE as no
additional cases are observed in the immediately vaccinated arm.

In general, if bias is the primary concern, we suggest selecting a large b and
c < b. Furthermore, we do not recommend counting events past b + R + u0.50, or,
more stringently, b+u0.50. In some settings, regulators may question counting any
events in Arm 0 following delayed vaccination; thus the analysis period end can
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FIG. 5. Arm 1 vaccinated on day s1 = 0; Arm 0 vaccinated on day s1 = 35 (b = 35). Constant
background infection hazard rate λW = 0.001. Sample size n = 500 per arm. (A) Solid line indicates
the illness onset hazard rate in Arm 1 as a function of time, λT (t |s1,X); dashed line indicates the
infection onset hazard rate in Arm 1. (B) Solid line indicates the illness onset hazard rate in Arm 0
as a function of time, λT (t |s0,X); dashed line indicates the infection onset hazard rate in Arm 1.
(C) Apparent VE (1 − illness onset hazard ratio) as a function of time; dashed line (1 − infection
hazard ratio); horizontal dotted line indicates VE0 = 90%. (D) Apparent VE to assess bias with
analysis period [d, d + 21) with length c = 21; a range of d values are considered. (E) Apparent
power.

be set at b. Selecting d = R + u0.90 should reasonably minimize bias, though d =
R + u0.999 could be selected as a more stringent option. Note that power may be
severely impacted if the most stringent options are applied. If maximizing power
is the primary concern, selecting c = b is recommended to capture the greatest
number of events, and d = R + u0.50 is proposed as a starting value.

5.3. General recommendations. We provide qualitative trends, but we recom-
mend that investigators prepare their own setting-specific plots. Particularly in the
context of emerging infectious diseases, the disease and/or vaccine may not be well
characterized when the trial protocol is developed. We want the success of the trial
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FIG. 6. Arm 1 vaccinated on day s1 = 0; Arm 0 never vaccinated (b = ∞). Constant background
infection hazard rate λW = 0.001. Sample size n = 500 per arm. From darkest to lightest, includes
VE0 = 10%, 30%, 50%, 70%, 90%, and 100%, as indicated by horizontal dotted lines. Analysis
period [d, d + 21) with length c = 21; a range of d values are considered. (A) Apparent VE to assess
bias. (B) Apparent power.

to be reasonably robust to the selected analysis period. They should first define
ranges of reasonable values for (1) background infection hazard rate, (2) disease
incubation period distribution, (3) time for full vaccine immune response to de-
velop, and (4) predicted VE0. Starting with the most likely values for each of the
above and an arbitrary sample size, the investigator can construct bias and power
plots. From these plots, they should first identify potential trial designs, [d, d + c),
with minimal bias. Investigators may then modify the sample size until accept-
able power is achieved. Investigators should avoid trial designs for which the bias
and/or power have narrow peaks at certain values of d , and recall that sometimes
these are not the same values for bias and for power. Finally, the initial assumptions
should be modified to cover the range of reasonable values above, ensuring that the
trial design is reasonable for all combinations within these ranges; the trial design
and/or sample size may need to be modified such that it is robust to assumption
misspecification.

Trials with a vaccination delay will need to further consider the choice of de-
lay b. Qualitative recommendations are provided in Table 2. In general, smaller
values of b may be more ethically advantageous, but these values will lead to
higher bias and lower power.

6. Ebola vaccine trial example. The interim analysis of the “Ebola ça suffit”
ring vaccination trial in Guinea provides a real application of the principles de-
scribed above [Henao-Restrepo et al. (2015)]. In this trial, a delayed vaccination
arm was used with vaccination occurring 21 days after randomization as compared
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TABLE 2
Recommended trial design modifications, where d is the start of the analysis period, c is the length

of the analysis period, b is the vaccination delay, and n is the sample size per arm

Scenario Suggested approach(es)

Long vaccine ramp-up period ↑ d, ↑ b

Long disease incubation period ↑ d, ↑ b

Higher variability in incubation period ↑ b

Low background infection hazard rate ↑ c, ↑ b, ↑ n

Decreasing background infection hazard rate ↓ d

Minimize bias ↑ b, c < b

Maximize power ↑ b, c = b, ↑ n

to an arm vaccinated immediately after randomization. The analysis period start
was set at d = 10 days, excluding cases with illness onset between 0 and 9 days
after randomization from the per protocol analysis. As no cases were observed in
vaccinees in either arm more than 6 days after vaccination, the estimated VE was
100% (95% CI: 75.1, 100%). In fact, the estimated VE is largely insensitive to the
choice of d , remaining 100% for any d after the last case in an immediately vacci-
nated individual, as indicated in Figure 6. Similarly, the estimated VE is insensitive
to the analysis period end, which occurs only when the vaccine is so efficacious
that no further cases accumulate in the immediately vaccinated arm; thus, the esti-
mated VE is 100% regardless of when the analysis is stopped. A final analysis of
the trial was conducted including additional participants, and the same key results
were observed [Henao-Restrepo et al. (2017)]. As this paper demonstrates, a risk
of delayed vaccination designs is bias toward the null; with VE of 100%, this type
of bias was not observed in the trial. The power, on the other hand, is sensitive
to the choice of d , with earlier values of d yielding greater power because more
events in the delayed arm are retained.

7. Discussion. In this paper, we present a framework for selecting the anal-
ysis period for vaccine efficacy trials. This framework accounts for the facts that
only illness (symptom) onset times are observed, and illness onsets shortly after
vaccination may reflect infections before vaccination or before the immune sys-
tem developed protection. A sensitive baseline test, if available, can help identify
infections occurring prior to vaccination, but it cannot identify infections occur-
ring before the immune response has developed. The per protocol analysis seeks
to exclude these early cases, along with participants who do not follow trial pro-
tocol, to achieve an unbiased estimate of vaccine efficacy. An unbiased estimate
of vaccine efficacy is critical for deciding whether the vaccine product should be
licensed. Delayed vaccination trials may return an attenuated vaccine efficacy es-
timate. We provide closed-form approximations for predicting the bias and power
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for a given analysis period, and we describe the bias/variance tradeoff associated
with counting these early cases.

Delayed vaccination can be used as a comparator arm in settings where placebo
or vaccination for an unrelated disease is not considered ethically acceptable. The
design also gives more participants access to vaccine, potentially averting addi-
tional cases and enhancing disease control efforts if the vaccine is efficacious. This
approach may be preferred for diseases with high case fatality rates, such as Ebola
virus disease. Using a delayed vaccination comparator necessarily decreases study
power as it limits the time when the two arms can be meaningfully contrasted for
estimation of vaccine efficacy. Once delayed vaccination participants are protected
by vaccine, the analysis must stop because no appropriate control remains; this can
complicate how cases occurring later in the trial are interpreted. Other challenges
of the approach include that blinding may be difficult to achieve. If availability of
vaccine is a limiting factor, it is noteworthy that delayed vaccination trials require
more doses as participants in both arms are vaccinated. Finally, if the vaccine can-
didate requires multiple doses or takes a long time to develop efficacy, the delay
would need to be very long to achieve the desired power, thereby reducing the
ethical advantage of the approach.

The framework we provide is intended to support those designing vaccine ef-
ficacy trials in calculating sample size, power, and pre-specifying the appropriate
analysis period. As for any sample size/power calculation, this approach requires
a number of assumptions for which limited information may be available. The
closed-form approximations had small discrepancies from simulation results, es-
pecially when the sample size was small (<500 per arm). The underlying model
assumes independence and does not reflect the complicated nature of infectious
disease dynamics, including indirect vaccine effectiveness. In individually ran-
domized trials, indirect vaccine effects should similarly affect both arms and would
not bias the results, but indirect effects would likely be differential across arms
in cluster randomized trials. The impact of heavy censoring is also not captured,
which may induce further bias. We suggest using the closed-form approximations
to narrow down the space of trial designs while planning and using more realistic
simulations as a confirmatory step. Other limitations include that the ramp-up pe-
riod is assumed fixed and everyone is assumed to be vaccinated on the same day;
these could be readily modified by converting these constants to random variables.

Immunological data from early phase trials can be used to support the design
of a vaccine efficacy trial. If these data are rapidly accumulating, as in an emer-
gency setting, and are not available at the time the protocol is written, the statistical
analysis plan could include a clause allowing flexibility in the specification of d

pending external data. Alternatively, a different value of d could be pre-specified
as a secondary analysis. More sophisticated approaches could be used than apply-
ing hard cutpoints for the analysis period, though typically simpler approaches are
preferred for clinical trial primary endpoints. The incubation and immune ramp-up
periods could be explicitly included in the likelihood; if this lag is known, it can
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be used to construct optimal weights [Zucker and Lakatos (1990)]. Furthermore,
we always recommend reporting survival (or cumulative incidence) curves so that
any evidence of an early harmful effect is not missed [Hernán (2013)].

Moving forward, the international community has recognized the need for spe-
cific guidance on how to design vaccine trials in emergency settings [Kieny and
Salama (2017)]. For emerging pathogens with high case fatality rates, delayed
vaccination may be a desirable strategy when evaluating vaccine candidates. This
guidance is intended to support those implementing this approach.

Acknowledgments. The authors are grateful to the World Health Organiza-
tion, Ana Maria Henao-Restrepo and the “Ebola ça Suffit” trial consortium.

SUPPLEMENTARY MATERIAL

Supplement to “Design of vaccine trials during outbreaks with and without
a delayed vaccination comparator” (DOI: 10.1214/17-AOAS1095SUPP; .zip).
The supplementary materials contains additional plots and tables under a range of
scenarios. Supporting R code is also provided to produce estimates and plots.
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