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A MULTI-STATE CONDITIONAL LOGISTIC REGRESSION MODEL
FOR THE ANALYSIS OF ANIMAL MOVEMENT1

BY AURÉLIEN NICOSIA, THIERRY DUCHESNE, LOUIS-PAUL RIVEST AND

DANIEL FORTIN

Université Laval

A multi-state version of an animal movement analysis method based on
conditional logistic regression, called Step Selection Function (SSF), is pro-
posed. In ecology SSF is developed from a comparison between the observed
location of an animal and randomly sampled locations at each time step. In-
terpretation of the parameters in the multi-state model and the impact of dif-
ferent sampling schemes for the random locations are discussed. We prove the
relationship between the new model, called HMM-SSF, and a random walk
model on the plane. This relationship allows one to use both movement char-
acteristics and local discrete choice behaviors when identifying the model’s
hidden states. The new HMM-SSF is used to model the movement behav-
ior of GPS-collared bison in Prince Albert National Park, Canada, where it
successfully teases apart areas used to forage and to travel. The analysis thus
provides valuable insights into how bison adjust their movement to habitat
features, thereby revealing spatial determinants of functional connectivity in
heterogeneous landscapes.

1. Introduction. In animal ecology, being able to understand and model the
movement of animals is fundamental [Nathan et al. (2008)]. For example, ani-
mal behaviorists want to see to what extent animals have preferred movement di-
rections or are attracted toward several environmental targets, such as food-rich
patches and previously visited locations (spatial memory effect) [Latombe et al.
(2014)]. The development of Global Positioning System (GPS) technology per-
mits the collection of a large amount of data on animal movement. This can be
combined to data available from Geographic Information Systems (GIS) to inves-
tigate how the environment influences animal displacement. To achieve this goal,
robust statistical techniques and flexible animal movement models are required.

Discrete time models for animal movement are actively being developed and
investigated [Holyoak et al. (2008)]. Because displacement in discrete time can
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be characterized by the distance and the direction between two consecutive local-
izations, circular-linear processes can be used to model movement in 2D. A basic
model is the biased correlated random walk [BCRW, Turchin (1998)]; it predicts
the next motion angle as a compromise between the current one (often called direc-
tional persistence) and the direction toward a specific target (also called directional
bias). This type of model handles environmental targets through their directions.
Unfortunately, it cannot account for the impact of local pixel characteristics on the
selection process. This can be done using Step Selection Function (SFF), intro-
duced by Fortin et al. (2005). The SSF is a discrete choice model that compares
the local characteristics of pixels selected by the animal at each time step (cases)
to control pixels that could have been visited given the animal’s previous position.
Duchesne, Fortin and Rivest (2015) formally prove that the parameters of a BCRW
can be estimated within a SSF. This is used in Avgar et al. (2016) to propose an
integrated Step Selection Analysis (i-SSA) to estimate the parameters of a BCRW
and of the local selection probabilities in a single analysis.

Often, animal movement involves multiple states or behaviors [Fryxell et al.
(2008)]. For instance, Langrock et al. (2012) identified two states, “exploratory”
and “encamped,” in their analysis of bison movement. The former state is char-
acterized by long traveled distances and turning angles between two consecutive
locations that tend to be concentrated around zero, while the latter is character-
ized by short distances and nearly uniformly distributed turning angles. Multiple
movement behaviors can be accounted for through hidden states. Baum and Petrie
(1966) give a general presentation of these models and Morales et al. (2004),
Jonsen, Flemming and Myers (2005), Holzmann et al. (2006), Langrock et al.
(2012) and, more recently, Nicosia et al. (2017a) use hidden state models to ana-
lyze angular-distance data on animal movement.

The main contribution of this paper is, in Section 2, to propose a multi-state
SSF, called HMM-SSF for hidden Markov model step selection function, han-
dling both animal movement and local habitat selection. Section 2 also discusses
parameter interpretation in a multi-state context and the sampling of control lo-
cations. In Section 3, we prove that the proposed HMM-SSF model can be used
to fit the multi-state random walk model of Nicosia et al. (2017a); this theoreti-
cal result is validated using a simulation study and the analysis of a real data set.
Section 4 identifies two states in the analysis of the movement trajectory of bison
in Prince Albert National Park, Canada, using an HMM-SSF; both movement and
local habitat selection parameters vary between states.

2. Multi-state Step Selection Function.

2.1. Single-state Step Selection Function. Let us suppose that we follow an
animal equipped with a GPS collar which provides the animal’s location at regular
time intervals t = 1, . . . , T , for example, every 1 hour. The data are combined with
information on the animal’s habitat in a Geographic Information System (GIS).
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Step Selection Functions [SSF, Fortin et al. (2005)], specify how the animal uses
its habitat by modeling the discrete choices that it makes at each time step. At a
given time step, an SSF compares the characteristics of the location (and of the
trajectory leading to this location) visited by the animal with J control steps to
other locations that the animal could have visited at that time given the previous
step. This comparison uses GIS data, an r × 1 vector x0t , for the observed location
and the corresponding vectors xj t , j = 1, . . . , J for the J control locations.

Steps can be characterized by features encountered on the way (e.g., road, pro-
portion of forest cover), at the step’s end (e.g., land covers, elevation), bearing
directions of habitat features at relatively far distances (e.g., road, canopy gap),
and speed [e.g., Fortin et al. (2005), Vanak et al. (2013), Basille et al. (2015)].
The wish of an animal to go to a specific location, for example, a target meadow,
can be entered in the model as an explanatory variable equal to the cosine of the
difference between the direction to the next location and the direction to the target
[Duchesne, Fortin and Rivest (2015)]. A directional persistence, that is, the wish
of an animal to move forward, can be included in the analysis through the cosine
of the difference between the motion angles of current and previous steps.

The data for an SSF analysis is {[x0t ,x1t , . . . ,xJ t ] : t = 1, . . . , T }. It is analyzed
using a conditional logistic regression model for a matched case-control design
[Lemeshow and Hosmer (2000), Chapter 7]. It is also equivalent to the multinomial
logit discrete choice model [Train (2003), Chapter 3]. Thus, at time step t , the
probability that the animal chooses the location with step characteristics x0t , rather
than one of the J control locations with respective step characteristics xj t , j =
1, . . . , J , is

(2.1) pt = exp(x�
0tβ)∑J

j=0 exp(x�
j tβ)

,

where β is a r × 1 vector of unknown selection parameters. Following Lemeshow
and Hosmer (2000), β is easily estimated by maximizing the conditional logistic
regression likelihood given by

(2.2) L(β) =
T∏

t=1

exp(x�
0tβ)∑J

j=0 exp(x�
j tβ)

.

To discuss the interpretation of β , we first consider a simple model with a single
dichotomous explanatory variable x identifying a particular type of habitat repre-
senting 100 × H% of the study area. In a null model, with β = 0, the probability
of selecting the habitat at a time step is H . When β �= 0 this probability becomes
eβH/(1 + eβH), which is larger than H if β > 0; see the Appendix of Dancose,
Fortin and Courbin (2010) for more details. With a continuous explanatory vari-
able, the same interpretation holds. Suppose that a variable x, available at each
location of the map, is distributed as a stationary random field with marginal den-
sity f (x). If β = 0, then the density of x for the selected locations is f (x). When
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β �= 0, this density is proportional to eβxf (x); this gives a weighted distribution
[see Patil (2005)]. If β > 0, then the animal tends to select locations with higher
values of x more often than would be expected with a purely random selection. As
a matter of fact, the value of β is actually the log of the odds that the animal will
choose a location with a value of the explanatory variable equal to x + 1 divided
by the odds of choosing a location with a value of the explanatory variable equal
to x.

When the x variable is the cosine of the difference between the angles of the
direction of a potential target and the current motion angle, then a positive value
of β means that the target is attractive (steps in its direction are selected more
often). More details on this latter interpretation may be found in Duchesne, Fortin
and Rivest (2015), who actually show that an SSF with such cosine explanatory
variables and uniform sampling of the control locations can be used to estimate the
parameters of a Biased Correlated Random Walk model [BCRW, Turchin (1998)].

2.2. Extension to multi-state SSF. Often the animals exhibit more than a
single-step selection behavior [Fryxell et al. (2008)]. Such a change in behavior
can be explained by a hidden state model [Frühwirth-Schnatter (2013)] with a
different SSF in each state. We propose to model this phenomenon with an HMM-
SSF that uses a hidden Markov process {St , t = 1, . . . , T }, where St represents the
state (behavior) of the animal at time step t , to account for the changes between
states. Let β(k), k = 1, . . . ,K , denote the selection coefficients of the SSF when
the animal is in state k. Following the reasoning of Nicosia et al. (2017a), the
likelihood function of this multi-state SSF model is

(2.3) L =
T∏

t=1

K∑
k=1

(
p

(k)
t · P(

St = k|Fo
t−1

))
,

where

(2.4) p
(k)
t = exp(x�

0tβ
(k))∑J

j=0 exp(x�
j tβ

(k))
,

and Fo
t denotes the observed data history up to time t , which consists of the ob-

served data [x0�,x1�, . . . ,xJ�] for � = 1, . . . , t . Figure 1 presents the dependence
structure of the proposed model.

Hidden state: −→ St−1 −→ St −→
↓ ↓

Observed choice p
(k)
t−1 p

(k)
t

↘ ↑ ↘ ↑
Information: Fo

t−2 Fo
t−1

FIG. 1. Dependence structure of the proposed model.
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The probability P(St = k|Fo
t−1) in (2.3) is called the “predictive” probability

and depends on unknown parameters q1, q2, . . .. It can be efficiently computed
using a filtering-smoothing algorithm (see Appendix B for more details) when
{St } is modeled as a Markov chain.

Inference about the parameters β(k), k = 1, . . . ,K , and q1, q2, . . . is based
on the maximized log-likelihood �(θ) = lnL(θ), where θ = (β, q1, q2, . . .) and
β = (β(1), . . . , β(K)). When {St } is modeled as a Markov chain, we can use the
EM algorithm and the filtering-smoothing algorithm to implement the inference,
and standard errors are estimated by computing the Hessian of the observed log-
likelihood function; we denote θ̂MLE, the parameter estimate thereby obtained.
Details of the procedure are given in Appendix A. To reach the global maximum
of the observed likelihood function, we use the short-run long-run EM algorithm
strategy; see Appendix C.

2.2.1. Interpretation of the parameters. The interpretation of a parameter β(k)

of an HMM-SSF is almost the same as that of β in a single-state SSF, except that
it is conditional on the state in which the animal is. A non-null β for a variable
x means that the distribution of x constructed with the locations chosen by the
animal differs from the stationary distribution of x, f (x) over the study area. For
instance, if we have two states (k = 1,2) and we have a coefficient β(1) > 0 for
x in state 1 and a coefficient β(2) < 0 for x in state 2, then this means that, when
the animal is in state 1, it tends to select locations, with distribution proportional
to eβ(1)xf (x) with high values of x more often, while in state 2 it tends to favor
locations, with distribution proportional to eβ(2)xf (x) with small values of x. The
value of β has the same log odds ratio interpretation within each state as in the
single-state SSF.

2.2.2. Sampling the control locations. This section discusses the sampling of
the control locations. At time t the animal is at a location Pt ∈ R2 and at time
t + 1 it will be at location Pt+1. The control locations for Pt+1 are defined as a di-
rection and a distance from Pt . Following Duchesne, Fortin and Rivest (2015), we
select the control directions uniformly on [0,2π [. Forester, Im and Rathouz (2009)
argue that the method used to select the control distances influences the parame-
ter estimates in a standard, single-state, SSF. They emphasized that the range of
the control distances needs to cover all the distances that the animal may possibly
travel.

Let {(φjt , hjt ) : j = 1, . . . , J }, where φjt ∈ [0,2π [ is an angle and hjt > 0
is a distance, with the polar coordinates (with Pt as origin) of the J control lo-
cations matched with Pt+1, and (φ0t , h0t ) the polar coordinates of Pt+1. As dis-
cussed above, φjt is sampled uniformly over [0,2π [. The distances can be sampled
uniformly over [0,M], where M is large enough for [0,M] to cover all possible
observed distances. Let Dk , k = 1, . . . ,K , denote the support of the traveled dis-
tances in state k. Forester, Im and Rathouz (2009) have shown that, in a single-state
model, if the support of the control distances (i.e., [0,M]) does not include the
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support D1 of the traveled distances, then we induce a bias in the estimation of the
parameters β(1). This statement also applies to a multi-state model, and therefore
[0,M] needs to cover

⋃
k Dk .

Another way to sample the control distances is through a parametric distribu-
tion, such as a gamma distribution. This latter sampling procedure is discussed
by Forester, Im and Rathouz (2009) for a single-state SSF. We implement it in a
HMM-SSF setting in the next section.

3. Multi-state SSF model with distances and angles.

3.1. Relationship with a random walk model. In this section we investigate
whether the multi-state random walk model introduced by Nicosia et al. (2017a)
can be fitted using a multi-state SSF. Our goal is to generalize the findings of
Duchesne, Fortin and Rivest (2015) to a complex multi-state SSF involving state
dependent distributions for distances. This highlights that the parameters of a spe-
cific multi-state SSF with covariates as (3.3) can be interpreted as those of a multi-
state random walk model.

To see this, we let both models depend on the directions from Pt−1 to Pt , φ0,t−1,
and from Pt to p potential targets in the landscape (e.g., the closest meadow, a
canopy gap or the closest forest), denoted by the angles θit , i = 1, . . . , p. Figure 2
gives the notation with p = 2 targets.

Knowing that the animal is in state k, the distribution of the direction φ0t at time
t , observed when traveling from Pt to Pt+1, depends on the vector

(3.1) V(k)
t = κ

(k)
0

(
cos(φ0,t−1)

sin(φ0,t−1)

)
+

p∑
i=1

κ
(k)
i

(
cos(θit )

sin(θit )

)
, t = 1, . . . , T ,

Pt−1
•

Pt

•

φ0,t−1

h0,t−1

Target 1

θ1t

θ2t

Target 2

Pt+1
•

φ0t

h0t

FIG. 2. Notation of random walk model with p = 2 targets.
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where (κ
(k)
0 , . . . , κ

(k)
p ), k = 1, . . . ,K , are unknown parameters depending on the

state k. The direction φ0t is assumed to have a von Mises distribution [see Mardia
and Jupp (1999)] that depends on state k. The mean direction is the direction of
V(k)

t and the concentration parameter is the length of V(k)
t , which correspond to

the consensus model proposed by Rivest et al. (2016).
The traveled distances for the random walk model in state k are assumed to

follow a distribution with density from the following exponential family [see
Lehmann and Casella (2003), Section 1.5]:

(3.2) gk

(
d;η(k)) = b(d) exp

{
η(k)�T (d) − A

(
η(k))}, d > 0, k = 1, . . . ,K.

In (3.2) η(k) ∈ Rm is the vector of natural parameters, T is a Rm-valued vector of
sufficient statistics, b is a positive function, and A is a R-valued function called
the log-partition function.

An SSF that is equivalent to the random walk model specified by (3.1) and
(3.2) has covariates that depend on the sufficient statistic {T (hjt )} in (3.2) and
the cosines of the differences between φjt and the directions to potential targets,
(cos(φjt − φ0,t−1), cos(φjt − θ1t ), . . . , cos(φjt − θpt ))

�. Thus the vector of ex-
planatory variables for the SSF is

(3.3) xit = (
T (hit ), cos(φit − φ0,t−1), cos(φit − θ1t ), . . . , cos(φit − θpt )

)�
.

With this specification of xit , one has β(k) = (η(k), κ
(k)
0 , κ

(k)
1 , . . . , κ

(k)
p )� and the

function b in (3.2) appears in the SSF model as the offset log(b). The numerator
of p

(k)
t in (2.4) becomes

(3.4) ex�
0t β

(k)+lnb(h0t ) = b(h0t )e
η(k)T (h0t ) × eκ

(k)
0 cos(φ0t−φ0,t−1)+∑p

i=1 κ
(k)
i cos(φ0t−θit ),

which is the product of two terms, one for the distances and one for the directions.
Note that (3.4) is the numerator of the time t contribution to the conditional like-
lihood function for a given state of the multi-state random walk model of Nicosia
et al. (2017a).

The denominator of p
(k)
t is proportional to J−1 ∑J

j=0 exp(x�
j tβ

(k) + logb(hjt )).
The limit of this denominator as J goes to infinity depends on the way in which
the controls have been selected. As mentioned in Section 2.2.2, the control angles
{φjt } are drawn using a uniform distribution over [0,2π [. One can sample the
control distances uniformly in [0,M], with a large M value as recommended in
Section 2.2.2. With these methods for selecting the controls, the denominator is
approximatively equal to the denominator of the time t contribution to conditional
likelihood for a given state of the multi-state random walk model of Nicosia et al.
(2017a). Details are given in Supplementary Material B [Nicosia et al. (2017c)]

Let us now suppose that the control distances are sampled from (3.2) with
parameters η̃. Note that because the states are unobserved, the distribution from
which the control locations are sampled cannot depend on the state, and hence η̃
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is constant over k. In this case the offset does not appear anymore in p
(k)
t , as it

is included in the density of the control distances that are sampled according to
(3.2). The offset is needed only when the distances are sampled uniformly. Using
the weak law of large numbers, the denominator of p

(k)
t is then approximatively

equal to a tilted version of the denominator of the time t contribution to conditional
likelihood for a given state of the multi-state random walk model of Nicosia et al.
(2017a). Thus, in (3.2), the parameter η(k) is replaced by η(k) + η̃. Hence, if η̂

(k)
SSF

is the SSF estimator for η(k), then the corresponding random walk model estimator
is

(3.5) η̂(k) = η̂
(k)
SSF + η̃.

A detailed proof is provided in Supplementary Material B [Nicosia et al. (2017c)].
We have established that the multi-state random walk model is a special case of
the multi-state SSF since any multi-state random walk model can be fitted by a
multi-state SSF. Note, however, that every multi-state SSF cannot be fitted using
a multi-state random walk model, as a random walk model cannot account for the
local features of the pixels selected.

3.2. Simulation studies. In Section 3.1 we established the relationship be-
tween the HMM-SSF and the multi-state random walk model when J , the number
of control locations sampled, is large using the law of large numbers. We now
investigate whether this relationship holds for a finite value of J under both the
uniform and the parametric sampling schemes for the control distances. We also
assess the adequacy of the equation (3.5) for the estimators of the distance param-
eters when control distances are sampled from a parametric model. We follow the
simulation studies of Nicosia et al. (2017a) that investigated the statistical proper-
ties of a general random walk model. We intend to demonstrate that if we simulate
a trajectory from the general multi-state random walk model, then we can estimate
its parameters using the multi-state SSF model proposed in Section 2.

We simulated the movement of one animal in the plane. The simulation proce-
dure includes one target and it was placed at the center of the map, and the covari-
ate θt represents the direction from the animal at position Pt to this target at time
step t . The simulation scenario consisted in repeating the following steps N = 500
times: (i) a time-homogeneous two-state Markov chain S0:T with transition matrix
P is generated; (ii) at time 0, the animal is placed at a random position close to
the southwest corner of the map; (iii) at each time step t , t = 1,2, . . . , the location
of the animal is obtained by simulating a direction φt0 and a distance ht0 from the
proposed general random walk model of Section 3.1 with φ0t generated according
to a consensus von Mises model with parameters κ

(k)
0 , κ

(k)
1 , k = 1,2 and explana-

tory angles φ0,t−1 and θt , and h0t is simulated from a gamma distribution with
shape parameter λ

(k)
1 and rate parameter 1/λ

(k)
2 ; (iv) the simulation stops when the

animal is within 30 distance units from the target. The gamma distribution belongs
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TABLE 1
Parameters for the simulation scenario

P = ( 1−q1 q1
q2 1−q2

) ( 0.9 0.1
0.2 0.8

)
κ

(1)
0 = β

(1)
3 20

κ
(1)
1 = β

(1)
4 15

λ
(1)
1 − 1 = β

(1)
1 4

1/λ
(1)
2 = β

(1)
2 10/7

κ
(2)
0 = β

(2)
3 10

κ
(2)
1 = β

(2)
4 −2

λ
(2)
1 − 1 = β

(2)
1 0

1/λ
(2)
2 = β

(2)
2 2

to the exponential family (3.2) with sufficient statistics T (d) = (log(d),−d) and
a vector of natural parameters η(k) = (λ

(k)
1 − 1,1/λ

(k)
2 )� since its density can be

written as

f
(
d;λ(k)

1 , λ
(k)
2

) = exp

{(
log(d) −d

)(
λ

(k)
1 − 1
1/λ

(k)
2

)
− A

(
λ

(k)
1 , λ

(k)
2

)}
,

where A(λ
(k)
1 , λ

(k)
2 ) = log(
(λ

(k)
1 )) + λ

(k)
1 log(λ

(k)
2 ).

The values of the parameters used in the simulations are given in Table 1. The
scenario is one where the animal shows high directional persistence and high at-
traction to the target when in state 1, and high directional persistence and a mod-
erate repulsion from the target in state 2, with q1 the switch probability P(St =
2|St−1 = 1), while q2 is associated with the reverse switch P(St = 1|St−1 = 2).

Once an animal’s trajectory has been simulated, two sets of J = 500 con-
trol locations for each visited location are sampled. In the first one, the control
distances are sampled uniformly over [0,15], where M = 15 is large enough
to cover the supports of the gamma distributions in the two states up to their
99.9th percentiles. In the second set, the control distances are sampled from (3.2)
with parameter η̃ = (0,1), which actually corresponds to the exponential distri-
bution with rate 1. The correspondence equation (3.5) for the SSF estimators

(
̂
η

(k)
1,SSF ,

̂
η

(k)
2,SSF ) = (

̂
(λ

(k)
1,SSF − 1),

̂
1/λ

(k)
2,SSF ) and the parameters of model (3.2) are

η̂
(k)
1 = ̂

η
(k)
1,SSF , k = 1,2,

η̂
(k)
2 = ̂

η
(k)
2,SSF + 1, k = 1,2.
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When sampling control distances with a unit exponential distribution, the co-
variates (3.3) are

xit = (
log(hit ),−hit , cos(φit − φ0,t−1), cos(φit − θt )

)�
,

and the offset is logb(h0t ) = log 1 = 0. With this definition of xit , the parameters
of the SSF are (β

(k)
1 , β

(k)
2 , β

(k)
3 , β

(k)
4 ) = (λ

(k)
1 − 1,1/λ

(k)
2 , κ

(k)
0 , κ

(k)
1 ) for k = 1,2.

To evaluate the sampling properties of the HMM-SSF estimators, the following
statistical indicators were calculated:

b(β̂) = 1

500

500∑
i=1

(
β̂(i) − β

)
,(3.6)

Sd(β̂) =
√√√√ 1

499

500∑
i=1

(
β̂(i) − β̄

)2
,(3.7)

where β is a true parameter presented in Table 1, β̂(i) the parameter estimate in
the ith simulation and β̄ the mean of the estimates over the 500 simulations. Equa-
tion (3.6) gives the bias of the estimator, and (3.7) its standard deviation. When
the control distances are generated from the unit exponential, the conversion of
SSF estimates into estimates of the gamma distributions for the traveled distances
used (3.5) with η̃ = (0,1). Maximum likelihood estimators of the parameters listed
in Table 1 were also calculated using the algorithm in Nicosia et al. (2017a). As
these estimators were unbiased, Table 2 only reports their standard errors calcu-
lated using (3.7). This is useful to evaluate the loss of information associated with
an estimation through a HMM-SSF.

Table 2 shows that the HMM-SSF recovers well the parameters of the random
walk model when J = 500 under the two sampling schemes for the distances.
Indeed, the standard errors are comparable to those obtained when fitting the model
by maximum likelihood using the algorithm in Nicosia et al. (2017a). The biases
are important when J = 20, especially for the distance parameters β1 and β2,
in both states. This was expected since the relationship between HMM-SSF and
random walk model estimators was established using the law of large numbers,
which fails to hold when only J = 20 control locations are used.

An additional simulation study was carried out to investigate the impact of J ,
the number of control locations, and M , the radius of the circle used to draw the
control distances, on the sampling properties of the SSF estimators. Nine scenarios,
obtained by crossing three values of J and three values of M , were investigated.
The three values of M were set equal to q0.6, q0.8 and q0.99, respectively, the 60%,
the 80% and the 99% percentile of the gamma distribution used to generate the
distances in the traveling state (state 1). The results are presented in Table 3.

An additional illustration of the relationship between the two methods, either
HMM-SSF or maximum likelihood, when fitting a multi-state random walk model
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TABLE 2
Result of the N = 500 simulations with J = 20,500. The bias b(β̂) is presented together with

standard deviation, Sd(β̂), between parentheses

Parameters

Multi-state SSF estimation

Multi-state random

walk model Sd(β̂)

Uniform sampling Parametric (3.2) sampling
True
parameter J = 20 J = 500 J = 20 J = 500

q1 0.0194 −0.015 (0.03) −0.000 (0.02) 0.013 (0.02) 0.002 (0.02)

q2 0.0323 −0.028 (0.03) 0.002 (0.03) −0.010 (0.04) 0.007 (0.03)

β
(1)
3 1.7449 2.160 (3.19) 0.177 (1.70) 1.682 (5.47) 0.305 (1.73)

β
(1)
4 1.3679 2.291 (2.67) 0.212 (1.33) 0.644 (4.83) 0.212 (1.29)

β
(1)
1 0.4419 0.031 (0.98) 0.055 (0.43) −1.691 (2.13) 0.045 (0.47)

β
(1)
2 0.0808 −0.008 (0.27) 0.014 (0.13) −2.701 (0.77) 0.007 (0.15)

β
(2)
3 1.2740 1.575 (2.53) 0.341 (1.27) 0.385 (1.66) 0.258 (1.11)

β
(2)
4 0.5531 0.688 (1.16) −0.050 (0.58) −0.244 (0.87) −0.072 (0.49)

β
(2)
1 0.1044 −0.485 (0.35) −0.006 (0.12) −0.148 (0.23) 0.010 (0.10)

β
(2)
2 0.0638 −1.046 (0.53) −0.040 (0.32) −2.346 (0.80) 0.062 (0.29)

is presented in Supplementary Material A [Nicosia et al. (2017b)] where a random
walk model is fitted to data on bison movement and nearly identical estimates are
obtained with the two estimation methods.

3.3. State identification. In this section, we investigate whether the underlying
state St can be identified using estimates of the smooth probabilities P(St = k|Fo

T ),
t = 1, . . . , T , k = 1, . . . ,K , calculated in Appendix B.

The HMM-SSF was fitted to 25 simulated trajectories from the model with pa-
rameters given in Table 1 and the smooth probability estimates of being in state
1 were obtained for each step. Table 4 compares the true states and the predicted
state when a step is predicted to be in state 1 when its smooth probability estimate
is larger than 0.75

Table 4 shows that the smooth probabilities provide an accurate predictor of the
true state since the error rate is less than 7%. The same message is conveyed by
the ROC curve presented in Figure 3 since the area under the curve is 0.98.

4. Multi-state SSF model with animal movement and resource selection.
Latombe et al. (2014) showed how a single-state SSF can integrate both move-
ment (angles and distances) and resource selection. Avgar et al. (2016) further
studied the properties of the approach; they emphasized that an integrated analysis
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TABLE 3
Result of the N = 500 simulations with J = 20,100 and 500 and M as

the 0.6, 0.8 and 0.99 maximum quantiles of both traveled distances
distributions. The bias b(β̂) and standard deviation Sd(β̂) between

parentheses are presented

J = 20 J = 100 J = 500

M M = q0.6 M = q0.6 M = q0.6

q1 0.019 (0.25) 0.007 (0.02) −0.012 (0.02)

q2 −0.004 (0.04) 0.015 (0.03) 0.012 (0.03)

β
(1)
3 0.038 (2.80) 0.578 (2.17) 0.570 (1.85)

β
(1)
4 0.480 (2.43) 0.493 (1.81) 0.229 (1.53)

β
(1)
1 −4.615 (0.24) −5.526 (0.14) −4.811 (0.09)

β
(1)
2 −2.765 (0.16) −2.954 (0.11) −3.362 (0.14)

β
(2)
3 0.516 (1.81) 0.228 (1.46) 0.219 (1.34)

β
(2)
4 −0.331 (0.87) −0.171 (0.65) 0.052 (0.66)

β
(2)
1 0.0184 (0.24) 0.034 (0.15) 0.015 (0.11)

β
(2)
2 0.077 (0.56) 0.034 (0.38) −0.120 (0.33)

M M = q0.8 M = q0.8 M = q0.8

q1 0.014 (0.02) 0.097 (0.02) 0.009 (0.02)

q2 −0.011 (0.03) −0.017 (0.03) −0.021 (0.03)

β
(1)
3 0.509 (2.53) 0.108 (1.99) −0.073 (2.02)

β
(1)
4 0.185 (2.12) 0.079 (1.60) 0.094 (1.61)

β
(1)
1 −4.049 (0.33) −4.011 (0.22) −4.202 (0.16)

β
(1)
2 −1.967 (0.14) −2.002 (0.11) −2.152 (0.12)

β
(2)
3 0.798 (2.25) 0.215 (1.47) 0.217 (1.33)

β
(2)
4 −0.157 (0.97) −0.121 (0.66) −0.128 (0.63)

β
(2)
1 −0.112 (0.26) −0.004 (0.15) −0.001 (0.12)

β
(2)
2 0.318 (0.57) −0.048 (0.38) −0.077 (0.37)

M M = q0.99 M = q0.99 M = q0.99

q1 −0.015 (0.03) −0.0111 (0.02) −0.000 (0.02)

q2 −0.028 (0.03) 0.0032 (0.04) 0.002 (0.03)

β
(1)
3 2.160 (3.19) 0.3611 (2.10) 0.177 (1.70)

β
(1)
4 2.291 (2.67) 0.3018 (1.70) 0.212 (1.33)

β
(1)
1 0.031 (0.98) −0.3679 (0.56) 0.055 (0.43)

β
(1)
2 −0.008 (0.27) −0.1376 (−0.17) 0.014 (0.13)

β
(2)
3 1.575 (2.53) 0.4311 (1.43) 0.341 (1.27)

β
(2)
4 0.688 (1.16) 0.0776 (0.73) −0.050 (0.58)

β
(2)
1 −0.485 (0.35) 0.0306 (0.16) −0.006 (0.12)

β
(2)
2 −1.046 (0.53) −0.0724 (0.73) −0.040 (0.32)
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TABLE 4
Cross-classification table of the true known

states and of the smooth probability estimates,
calculated with a threshold of 0.75 for 25

trajectories

True state 1 2

Predicted state = 1 0.75 6362 308
Predicted state = 2 0.75 351 2979

for both movement and local pixel selection was feasible through an SSF. When a
large number of control locations are sampled, we have shown that the multi-state
random walk model can be fitted through an HMM-SSF. Thus the proposed model
can be viewed as a multi-state version of the integrated Step Selection Analysis of
Avgar et al. (2016). In this section we analyze the trajectory of an individual bison
from November 2013 to April 2014 (T = 3073 hourly steps) in Prince Albert Na-
tional Park, Saskatchewan, Canada. We show that two states can be distinguished
and that the movement and selection parameters can vary between states. Figure 4
depicts this trajectory.

During the winter season the bison tends to select more locations among mead-
ows, water, roads or deciduous stands [Dancose, Fortin and Guo (2011)]. We can

FIG. 3. ROC curve for the association between an indicator variable taking the value 1 when
the animal is in state 1 and the smooth probability estimates for being in state 1 calculated in the
HMM-SSF.
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FIG. 4. Trajectory of a radio-collared bison from November 2013 to April 2014 in Prince Albert
National Park. The green point (marked 1) is the departure and the yellow one (marked 2) the end.
The landcover type “Reference” denotes the reference landscape type which mainly consists of a
mixture of deciduous and conifer forests.

therefore treat all other types of landscape as the baseline landscape level and fit
the model with the following linear predictor:

x�
j tβ

(k) = β
(k)
cos.persis cos(φjt − φ0,t−1)

+ β
(k)
dist.neg(−hjt ) + β

(k)
dist.log log(hjt )

+ β
(k)
waterzjt,water + β

(k)
deczjt,dec

+ β
(k)
meadowzjt,meadow + β

(k)
roadzjt,road, k = 1,2,

(4.1)

j = 0, . . . , J , where the explanatory variable zjt,∗ is the indicator that the location
j at time step t is of type *, with * denoting one of the four types of landscapes;
for example, zjt,water = 1 if the j th sampled location at time step t is in the water
and 0 otherwise. The K = 2 states were validated by exploratory analyses similar
to those presented by Nicosia et al. (2017a). Table 5 presents the estimates of the
parameters defined in (4.1) along with their standard errors obtained when fitting
the proposed SSF model with J = 500 uniformly sampled control locations. M

was chosen to be the 99%-percentile of the observed distances, and the control
distances were drawn from the uniform distribution over [0,M].

As was the case in Section 3.1, the first state (k = 1) corresponds to an
encamped state, while the second state (k = 2) corresponds to an exploratory
state, that is, a traveling mode with a moderate significant directional persistence



MULTI-STATE LOGISTIC REGRESSION MODEL FOR ANIMAL MOVEMENT 1551

TABLE 5
Estimated parameters of the multi-state SSF model with J = 500

uniformly control locations. The estimated parameters are
presented and the standard errors are given between parentheses

Parameter State 1: Encamped State 2: Exploratory

q 0.247 (0.02) 0.161 (0.01)

βcos.persis −0.550 (0.05) 0.315 (0.05)

βdist.neg 7.746 (0.57) 0.285 (0.02)

βdist.log 0.475 (0.07) −0.138 (0.04)

βwater −0.132 (0.30) −1.212 (0.37)

βdec 0.057 (0.10) −0.504 (0.10)

βmeadow 0.412 (0.09) 1.670 (0.09)

βroad −0.247 (1.49) 1.533 (0.39)

(β̂(2)
cos.persis = 0.31, s.e. = 0.05) and a larger average speed (β̂

(2)
dist.log +1)/β̂

(2)
dist.neg ≈

3 km per hour. In the encamped regime, the animal is almost stationary, moving by
about 0.19 km per hour. The directional persistence parameter β̂

(1)
cos.persis is strongly

negative and significant, which means that the bison tends to move back and forth.
In this general model the states are also related to the type of habitat. In the en-
camped state (k = 1), the bison prefers meadows, whereas in the exploratory state
(k = 2), it selectively travels in meadows or roads while avoiding water and decid-
uous stands.

Table 5 presents the parameter estimates of the Markov chain model that gov-
erns the transitions between states. The stationary distribution of this fitted Markov
chain gives a probability of being in state 2 of q̂1/(q̂2 + q̂1) = 0.6053, suggest-
ing that the bison was in the traveling regime about 1860 out of T = 3073 steps.
The model can be used to “predict” the state of the bison at time step t us-
ing the smooth probabilities P(Stk = 1|Fo

T ; θ̂MLE), t = 1, . . . , T , k = 1,2, cal-
culated in the filtering-smoothing part of the E-step of the EM algorithm. These
predictions are depicted in Figure 5 with a color gradient from red [state 1,
P(St1 = 1|Fo

T ; θ̂MLE) = 1] to blue [state 2, P(St2 = 1|Fo
T ; θ̂MLE) = 1].

The R code for fitting the proposed model is available in Supplementary Mate-
rial C [Nicosia et al. (2017d)] while the bison data is in Supplementary Material D
[Nicosia et al. (2017e)]

5. Conclusion. This paper proposes a new multi-state version of the SSF
model, the HMM-SSF, to describe the movement of an animal. It improves on
classical multi-state random walk models by letting two important features of the
movement evolve according to multiple behaviors: a global movement strategy and
a local discrete habitat selection. The multi-state random walk model only con-
sidered the former. As such, the proposal generalizes the single-state integrated
analysis proposed by Avgar et al. (2016) and used recently in Prokopenko, Boyce
and Avgar (2016). By using recent techniques for the implementation of the EM
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FIG. 5. Estimated smooth probability for the trajectory of the bison in the landscape presented in
Figure 4.

algorithm in complex settings, we provide new statistical tools to fit a HMM-SSF
and to identify the hidden behaviors of the animals.

We have proven that the multi-state random walk model of Nicosia et al. (2017a)
can be fitted using the proposed HMM-SSF. The HMM-SSF allows to include ex-
planatory variables that are more general than angles and distances, such as the
type of land cover, in the analysis, thereby increasing the power of the method to
characterize hidden states. When applied to the analysis of bison movement, the
model successfully identified (1) foraging areas and (2) preferred trajectories when
the bison moved between foraging areas. First, the strong selection for meadows in
the encamped mode is consistent with bison spending more time where forage is
most abundant. Indeed, bison consume grasses and sedges (plants) that are at least
three times more abundant in meadows than forest stands [Fortin (2007)]. Sec-
ond, the association between the exploratory mode and habitat features provides
valuable information on landscape connectivity. Landscape connectivity involves
structural and functional components; structural connectivity depends on the phys-
ical arrangement of habitat patches, such as their Euclidean distance [Tischendorf
and Fahrig (2000), Kindlmann and Burel (2008)], whereas functional connectivity
accounts for the movements within the patch network [Dancose, Fortin and Guo
(2011), Courbin et al. (2014)]. The exploratory mode model reveals that landscape
functional connectivity for bison largely depends on their selective use of roads
and meadows for travel, as well as their avoidance of water and deciduous forests
relative to mixed and conifer forests. Our study thus demonstrates that a HMM-
SSF can provide a mechanistic understanding of animal distribution dynamics in
heterogeneous landscapes.

In our application, a land animal is followed using the GPS collar technol-
ogy, which is relatively accurate when compared to other satellite telemetry, such
as Argos archival data loggers that are used to track animal movements in envi-
ronments like marine systems [Patterson et al. (2008), Albertsen et al. (2015)].
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Measurement error is therefore not an issue in the present example, but adding
measurement error in the model could be an interesting future development of our
method. About measurement, another interesting extension would be to consider
irregular space time measures. This point seems difficult since it is not included
in the classical theory of HMM. There are other possibilities of extension of the
methods presented here. Because animals tend to exhibit heterogeneity in their
movement behavior, it would be interesting to carry out the combined analysis of
the movement of many individuals using a model featuring random effects. The
approach based on combining individual models proposed by Murtaugh (2007)
could be considered in the meantime. Defining a multi-state model based on a
more complex hidden process could also be potentially interesting, for instance,
when trying to model the behavior of an animal over a long period of time [e.g.,
more than one “biological season”; see Basille et al. (2012)], where the time ho-
mogeneity assumption becomes questionable.

APPENDIX A: NUMERICAL IMPLEMENTATION OF MAXIMUM
LIKELIHOOD ESTIMATION

NOTATION.

• Sk,t is an indicator equal to 1 if St = k, that is, if the animal is in state k at time
step t

• πhk is the transition probability from state h to k.

The EM algorithm is generally used for the maximization of likelihood func-
tions when data are missing or unobserved. The EM algorithm only requires eval-
uation of the complete data log-likelihood function whose derivation follows that
in Section 3.1 of Nicosia et al. (2017a):

log Lcomplete
(
θ
) =

T∑
t=1

K∑
h=1

K∑
k=1

Sh,t−1Sk,t logπhk +
T∑

t=1

K∑
k=1

Sk,t logp
(k)
t .

The EM algorithm consists of iterating an expectation (E) and a maximization (M)
step. Let us denote by θ̂ s the value of the estimate of θ after the sth iteration of the
algorithm. Then the (s + 1)th iteration of the algorithm starts with one application
of the E-step, which evaluates the expectation of log Lcomplete with respect to the
conditional distribution of the missing values given the observed data, as follows:

Q(θ |θ̂ s) = ES0:T
[
log Lcomplete

(
θ
)|Fo

T , θ̂ s

]
=

T∑
t=1

K∑
h=1

K∑
k=1

E
(
Sh,t−1Sk,t |Fo

T , θ̂ s

)
logπhk

+
T∑

t=1

K∑
k=1

E
(
Sk,t |Fo

T , θ̂ s

)
logp

(k)
t .
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Then the value of θ̂ s+1 is calculated in the M-step as the value of θ that maximizes
Q(θ |θ̂ s).

E step. The function Q(·|θ̂ s) involves two conditional expectations, E(Sk,t |
Fo

T , θ̂ s) and E(Sh,t−1Sk,t |Fo
T , θ̂ s). These can be efficiently computed by a

forward-backward (filtering-smoothing) algorithm for Markov chains; see Ap-
pendix B. The filtering-smoothing algorithm starts from the initial time t = 0 and
computes the “filtering” probabilities P(St |Fo

t ) by using predictive probabilities
P(St |Fo

t−1) (going forward in time). The last filtering probability P(ST |Fo
T ) is then

used to compute the “smoothing” probabilities P(St |Fo
T ) using Bayes’ theorem

(going backward in time). Details of this implementation of the E-step in a context
of the random walk model are given in the Appendix of Nicosia et al. (2017a).

M step. For the M-step, we see that Q(θ |θ̂ s) is a sum of two functions that
depend on different sets of parameters and can thus be maximized separately:

• When the latent states follow a Markov process, there is a closed-form expres-
sion for the maximizer of the hidden process part,

π̂
(s+1)
hk =

∑T
t=1 E(Sh,t−1Sk,t |Fo

T , θ̂ s)∑T
t=1 E(Sh,t−1|Fo

T , θ̂ s)
, h, k = 1, . . . ,K.

• Since p
(k)
t has a conditional logistic regression form, the log-likelihood for the

observed choice can be maximized with respect to β(k) using a weighted max-
imum likelihood procedure [e.g., the function coxph with weigths in the
survival R package; see Therneau (2015)].

Sampling distributions. Quantities that are usually required for inference
such as the value of the maximized log-likelihood for the observed data or an es-
timation of the variance matrix of θ̂MLE are not directly computed when using the
EM-algorithm. The filtering-smoothing algorithm is used to evaluate the observed
data likelihood (2.3). Moreover, at each time t , one can evaluate the probability that
the animal is in state k using the value of E(Sk,t |Fo

T ) in the “smoothing” part of the
filtering-smoothing algorithm. Because we are able to compute log L(θ̂MLE), we
can numerically approximate the negative of its Hessian matrix, whose inverse, de-
noted v, is the usual estimate of the variance matrix of the maximum likelihood es-
timators. A numerical approximation of the Hessian matrix is available under most
software implementations of the Broyden–Fletcher–Goldfarb–Shanno (BFGS) al-
gorithm [Avriel (2003)]; in the data analysis section we use the one provided in
the R function optim.

APPENDIX B: FILTERING-SMOOTHING ALGORITHM

• Sk,t is an indicator equal to 1 if St = k, that is, if the animal is in state k at time
step t .
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In the E-step of the (s + 1)th iteration of the EM algorithm, we have to compute
two posterior expectations involving the hidden Sk,t , k = 1, . . . ,K , t = 0, . . . , T ,
conditionally on the observed data Fo

T :

E
(
Sk,t |Fo

T , θ̂ s

) = P
(
Sk,t = 1|Fo

T , θ̂ s

)
,(B.1)

E
(
Sh,t−1Sk,t |Fo

T , θ̂ s

) = P
(
Sh,t−1 = 1|Sk,t = 1,Fo

T , θ̂ s

)
P

(
Sk,t = 1|Fo

T , θ̂ s

)
,(B.2)

where θ̂ s is the maximized vector of parameters after the sth step of the EM al-
gorithm. The first probability on the RHS of (B.2) can be computed with Bayes’
theorem because, as we can see from Figure 1, St−1 is independent of the observed
data from time t to T (i.e., {Fo

t+s}s≥0 \Fo
t−1) given St and Fo

t−1:

P
(
Sh,t−1 = 1|Sk,t = 1,Fo

T , θ̂ s

)
= π̂

(s)
hk P(Sh,t−1 = 1|Fo

t−1, θ̂ s)∑K
j=1 π̂

(s)
jk P(Sj,t−1 = 1|Fo

t−1, θ̂ s)
, k = 1, . . . ,K, t = 0, . . . , T .

Finally, to compute the remaining conditional probabilities in the posterior expec-
tations (B.1) and (B.2), we adapt the filtering-smoothing algorithm of Frühwirth-
Schnatter (2013).

FILTERING-SMOOTHING ALGORITHM TO IMPLEMENT THE E-STEP OF THE (s +
1)TH ITERATION OF THE EM ALGORITHM

Filter Compute P(Sl,t = 1|Fo
t , θ̂ s) for every l = 1, . . . ,K :

P
(
Sl,t = 1|Fo

t , θ̂ s

) = p
(l)
t P(Sl,t = 1|Fo

t−1, θ̂ s)∑K
k=1 p

(k)
t P(Sk,t = 1|Fo

t−1, θ̂ s)
,

where P(Sl,1 = 1|Fo
0 , θ̂ s) = ∑K

k=1 π̂
(s)
kl (π0)k and

P
(
Sl,t = 1|Fo

t−1, θ̂ s

) =
K∑

k=1

π̂
(s)
kl P

(
Sk,t−1 = 1|Fo

t−1, θ̂ s

)
for t = 2, . . . , T .

Smooth Compute P(Sl,t = 1|Fo
T , θ̂ s) for every l = 1, . . . ,K :

S-step 1 For t = T , set P(Sl,T = 1|Fo
T , θ̂ s), the conditional probability com-

puted at the last filtering step.
S-step 2 Recursion: For t = T − 1, . . . ,0, compute

P
(
Sl,t = 1|Fo

T , θ̂ s

) =
K∑

k=1

π̂
(s)
lk P(Sl,t = 1|Fo

t , θ̂ s)P(Sk,t+1 = 1|Fo
T , θ̂ s)∑K

j=1 π̂
(s)
jk P(Sj,t = 1|Fo

t , θ̂ s)
.
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APPENDIX C: NUMERICAL DETAILS

Finding the global maximum of the likelihood function. Due to the com-
plexity of the model, the EM algorithm may converge to local or spurious maxima
of the likelihood function. To deal with this, we run the EM algorithm with many
random starting values for a few iterations and check for spurious and local solu-
tions. We then choose the parameter values that yield the highest likelihood as the
starting point of a new EM algorithm that we run until convergence. This strategy
of combining short- and long-run EM algorithms to avoid possible local and spu-
rious maxima is known as the 1em-EM algorithm [Biernacki, Celeux and Govaert
(2003)]. To obtain an estimate of the variance matrix of the maximum likelihood
estimator, we run one iteration of the quasi-Newton algorithm to obtain the value
of the inverse of the Hessian matrix of the observed log-likelihood function eval-
uated at the maximum likelihood estimates. Here is an algorithmic description of
this procedure.

FINDING THE GLOBAL MAXIMUM OF THE OBSERVED LOG-LIKELIHOOD FUNC-
TION

Preliminary step:

• Let θ1, . . . , θN be N random initial starting values. (In our application of this
method, we chose N = 10.)

• For i = 1, . . . ,N , run the EM algorithm until the first of (i) 50 iterations or
(ii) the greatest relative difference in parameter value between successive itera-
tions is less than 1%. Denote the estimators obtained at the end of this step θ̂ i ,
i = 1, . . . ,N .

Avoid spurious maxima:

• For each θ̂ i , i = 1, . . . ,N , compute the stationary distribution of the Markov
chain, ν̂

(i)
k , k = 1, . . . ,K .

• Only keep the {θ̂ i , i ∈ I } such that

min
k=1,...,K

ν̂
(i)
k > ε and max

j=1,...,p;k=1,...,K

∣∣β(k)(i)
j

∣∣ < M.

(In our application of this method, we chose ε = 0.001 and M = 100.)

Avoid local maxima:

• Put θ0 = arg maxi∈I L(θ̂ i ).

Long-run EM algorithm:

• Start the EM algorithm at θ0 and run it until the first of (i) 10 000 iterations or (ii)
the greatest relative difference in parameter value between successive iterations
is less than 10−8.
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Quasi-Newton iteration:

• Run one iteration of the quasi-Newton algorithm with the output of the long-
run EM algorithm as initial value to get the final global maximum likelihood
estimators of the model parameters and an estimation of their variance matrix.

A note on the initial distribution (π0)k , k = 1, . . . ,K . Calculation of either
the observed or complete data likelihood involves the initial distribution of the
Markov chain, (π0)k , k = 1, . . . ,K . We have decided to fit the model twice. For
the first fit we use (π0)k = 1/K , k = 1, . . . ,K , the uniform distribution over the K

states. Then we fit the model again, but this time with (π0)k = ν̂k , the stationary
distribution of the chain computed from the first model fit.

A note on the identifiability of the model up to state label switching. We
can easily see that the value of the likelihood function remains the same if we rela-
bel the states. We therefore define the states at the end of each M-step as follows:
we give label i to the state with the ith smallest β̂

(k)
0 .
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SUPPLEMENTARY MATERIAL

A: Relationship between methods when applied to bison trajectory (DOI:
10.1214/17-AOAS1045SUPPA; .pdf). Comparison of the multi-state SSF and ran-
dom walk models using real bison movement data.

B: Proofs of the relationship between the proposed multi-state SSF model
and the multi-state random walk model (DOI: 10.1214/17-AOAS1045SUPPB;
.pdf). Theoretical proofs that the multi-state random walk model can be fitted using
the proposed multi-state SSF model.

C: R code (DOI: 10.1214/17-AOAS1045SUPPC; .zip). R code to fit the pro-
posed HMM-SSF and the multi-state random walk model.

D: Bison data set (DOI: 10.1214/17-AOAS1045SUPPD; .zip). Data of the bi-
son trajectory and its habitat attributes used in Section 4.
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