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Abstract. We study the optimal discretization error of stochastic integrals, driven by a multidimensional continuous Brownian
semimartingale. In this setting we establish a pathwise lower bound for the renormalized quadratic variation of the error and we
provide a sequence of discretization stopping times, which is asymptotically optimal. The latter is defined as hitting times of
random ellipsoids by the semimartingale at hand. In comparison with previous available results, we allow a quite large class of
semimartingales (relaxing in particular the non degeneracy conditions usually requested) and we prove that the asymptotic lower
bound is attainable.

Résumé. Nous étudions l’erreur de discrétisation optimale d’intégrale stochastique, dirigée par une semimartingale brownienne
continue multidimensionnelle. Dans ce cadre, nous déterminons une borne inférieure trajectorielle pour la variation quadratique
de l’erreur renormalisée et nous fournissons une suite de temps d’arrêt de discrétisation, suite qui est asymptotiquement optimale.
Cette dernière est définie explicitement à partir des temps d’atteinte d’ellipsoïdes aléatoires par la semimartingale sous-jacente. En
comparaison avec les précédents résultats, nous considérons une très grande classe de semimartingales (relâchant en particulier les
conditions de non dégénérescence qui étaient habituellement requises) et nous prouvons que la borne inférieure asymptotique est
atteignable.
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1. Introduction

Statement of the problem

In this work we consider the problem of finding a finite sequence of optimal stopping times T n = {0 = τn
0 < τn

1 <

· · · < τn
Nn

T
= T } which minimizes the renormalized quadratic variation of the discretization error of the stochastic

integral

Zn
s =

∫ s

0
v(t, St ) · dSt −

∑
τn
i−1<s

v
(
τn
i−1, Sτn

i−1

) · (Sτn
i ∧s − Sτn

i−1
), (1.1)

where S is a d-dimensional continuous Brownian semimartingale and v(t, x) is a R
d -valued continuous function.

Here T ∈ (0,+∞) is fixed. The number of stopping times Nn
T is allowed to be random.
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The almost sure minimization of Zn
T is hopeless since after suitable renormalization and under some mild assump-

tions on the model, Zn
T weakly converges to a mixture of Gaussian random variables (see [11,14,17]). Alternatively

we aim at minimizing a.s. the product

Nn
T

〈
Zn
〉
T
. (1.2)

The choice of this minimization criterion is inspired by the fact that in many particular cases with deterministic
discretization times, we have E(〈Zn〉T ) ∼ Const/Nn

T as Nn
T → +∞. For example, in the one-dimensional Brownian

motion case with v(t, x) = x the value of E(〈Zn〉T ) for the regular mesh of size n may be calculated exactly and is
equal to 1

2n
. For more general S and v satisfying fractional regularity conditions [5], the error E(〈Zn〉T ) is still of

magnitude Cst/n by appropriately choosing n deterministic times on [0, T ].

Background results

The problem of optimizing the discretization times was initially considered in a different framework: simulation of
diffusion processes. In [10] the authors study the optimal discretization times for the simulation of a one-dimensional
diffusion X via the Euler/Milshtein schemes, where the discretization times adapt to the local properties of every
single trajectory. They consider three different schemes and analyze their L2 errors (in time and ω):

(a) A simplified Adaptive scheme X̂∗∗
h , for which the sequence of discretization times (τi)1≤i≤ν is such that each τi is

a measurable function of the previously simulated values of the Brownian motions Wτ1, . . . ,Wτi−1 , and Euler and
Milshtein schemes with two appropriate time scales are combined to approximate X. This method is of varying
cardinality since the number ν of times is random. Observe that (τi)i are stopping times but they belong to the
subclass of strongly predictable times (see [11, Chapter 14]), along which moments of martingale increments are
easier to compute.

(b) An Adaptive scheme X̂∗
h with discretization times of fixed cardinality. To control the number of times, a first

monitoring of an approximation of X is considered in order to decide where to refine the discretization whilst
maintaining a given number of time points. Therefore, the discretization times are somehow anticipative and they
are not stopping times.

(c) An Adaptive scheme X̂h with path-independent step-size Control, as a variant of X̂∗
h where the monitoring is made

in mean and not on the specific path X to simulate.

In [10, Theorem 1], the authors prove the asymptotic superiority of X̂∗∗
h over the two other schemes and [10, The-

orem 2] states the asymptotic optimality of each scheme within its own class. For the latter optimality result, the
criterion used for the optimization is the renormalized L2-error. Despite the similarities between our current work
and theirs, there are significant differences that we shall stress. First, we consider discretization of stochastic inte-
grals and not of diffusion processes, therefore the objectives are quite different. Second, we study the case of general
multi-dimensional continuous Brownian semimartingale whereas [10] handles the case of diffusion in d = 1 and [16,
Chapter III] deals with d ≥ 1 under commutative noise assumption. Third, we allow optimization over a quite large
class of stopping times, see examples of Remark 1 illustrating this fact.

Besides, the study of minimization problems for stochastic integral discretization has been initiated by [4] in di-
mension d = 1, but instead of (1.2) the author considers a criterion in expectation for both terms, i.e. E(Nn

T )E(〈Zn〉T ).
However, if n → +∞ denotes an asymptotic parameter (defined later), observe that

lim inf
n→+∞E

(
Nn

T

)
E
(〈
Zn
〉
T

) ≥
Cauchy–Schwarz ineq.

lim inf
n→+∞

[
E

(√
Nn

T

〈
Zn
〉
T

)]2
(1.3)

≥
Fatou lemma

[
E

(√
lim inf
n→+∞Nn

T

〈
Zn
〉
T

)]2
. (1.4)

Since the solution to the problem of a.s. minimizing (1.2) exists (see Theorem 5.1) and is such that Nn
T and 〈Zn〉T

are asymptotically proportional (see the limits (5.14) and (5.15)), the above inequalities can be turned into equalities
(with a little of technical work) and therefore, we get for free a solution to minimizing asymptotically E(Nn

T )E(〈Zn〉T ),
however with substantially more information.
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The pathwise minimization of (1.2) has been addressed in a multi-dimensional setting d ≥ 1, in [6]: the authors
assume that S is a local martingale and the lower bound is achieved under stringent conditions of v (essentially its
Jacobian matrix Dxv is invertible). These assumptions are restrictive and we aim at relaxing the hypotheses and
strengthening the optimality results. This requires to develop new arguments presented in this work.

As an extra motivation for this theoretical study, we refer to the recent work of Hairer et al. [9], which highlights
that discretization schemes for stochastic differential equations using deterministic grid may surprisingly converge
very slowly in L2-norm. Actually any slow rate is possible [12]. These amazing results give a strong incentive for
studying discretization problems with stochastic grids and pathwise criterion. Applications of the current results to
pathwise-optimal discretization of SDEs are left to future research.

Our contributions

In the current work, we prove optimality results in a much larger setting than previously afforded in the literature.

• First, we allow S to be a general Brownian semimartingale S = A+M , while in [6] S is essentially a local Brownian
martingale (A = 0,M = ∫ ·

0 σs dBs ). Actually, considering the existence of the finite variation term A modifies a
priori significantly the definition of admissible discretization strategies (see the definition (Aosc.

S ) later) and restricts
the set of available tools to analyze them. Our first contribution is to establish that admissible strategies for the
semimartingale S and for its local martingale part M are the same: see Theorem 3.4. This is a non-trivial result.
This allows to transfer a priori estimates available in the martingale case (Lemmas 3.2 and 3.3) to our extended
setting, this is instrumental for the subsequent analysis.

• Second, the martingale part of S can be degenerate in our setting, whereas a stronger a.s. ellipticity (on σ ) is
considered in [6]. This allows to consider partially degenerate models like

St =
(

S̃t ,

∫ t

0
S̃s ds

)
or other SDEs with vanishing diffusion coefficient (see Section 5.3 for examples). Also Dxv(t, St ) may be not
invertible in our work. This second set of improvements requires a quite delicate analysis, which constitutes the
core of this work. Actually the possible degeneracy lets us lose some continuity property (in particular because we
need to consider the inverse σ−1) and some convergence properties. To overcome these issues, we assume that in
a sense, σt and Dxv(t, St ) are not zero simultaneously: for a precise statement, see Assumption (HC) or a weaker
Assumption (H�). These are quite mild conditions.

The ability to treat the non-elliptic case is fundamental for applications as well:

(a) Regarding financial applications, see for example [3,6], minimizing 〈Zn〉T is related to better hedge market
risks. In that context, the treatment of degenerate case appears to be important. Though the covariance matrix
of a group of asset returns is usually non-degenerate, it may have some very small eigenvalues [2]. The reason is
that typically a large portfolio of financial assets is driven by a smaller number of significant factors, while the
other degrees of freedom represent low-variance noise. Thus the inversion of the covariance matrix is often seen
as undesirable by practitioners, if no robustness analysis is provided. Our study of the degenerate case justifies
in a way the robustness of the optimal discretization algorithm when the diffusion coefficient is degenerate or
close to being degenerate.

(b) Some important examples of diffusion models with degenerate diffusion coefficient come as well from random
mechanics, see [13] for an overview. Typically, a body is modeled by its position X and its velocity V : it is
subjected to random forces, so that due to the second Newton law of motion, its dynamics writes{
Xt = X0 + ∫ t

0 Vs ds,

Vt = V0 + ∫ t

0 φ(Xs,Vs)ds + ∫ t

0 ψ(Xs,Vs)dWs.
(1.5)

In [15], these equations describe the response of structural systems subjected to severe environmental loads (like
earthquakes, strong winds, recurrent waves. . . ). The authors study examples like seismic-excited ten-storey
building (see [15, Section 5]) where they propose to optimally control the structure by activating tendons,
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in order to compensate external forces. They derive a continuous-time optimal control, but in practice, only
discrete-time controls can be applied. Our study gives a theoretical framework to determine when to apply the
controls in order to minimize the deviation from optimally-controlled building.

In [18], the author studies the approximation of stochastic Hamiltonian systems of the form (1.5). The author
emphasizes the technical difficulty of the analysis coming from the polynomial growth of the coefficients and
the degeneracy of the infinitesimal generators. In our context of optimal discretization problem, our a.s. analysis
allows for arbitrary growth conditions on the coefficients.

• Third, we provide a strategy T n attaining the lower bound, while in [6], only a μ-optimal strategy (with μ small) is
designed. Informally, the natural candidate for optimality is a sequence of hitting times by S of random ellipsoids
which characteristics depend on Dxv and S. However, in general and in particular because of the degenerate setting
on σt and Dxv(t, St ), this strategy is not admissible (ellipsoids may be flat or infinite). Alternatively, we prove that
a suitable perturbation makes the strategy admissible, without altering its asymptotic optimality.

Our main result (Theorem 5.1) states that an optimal strategy is of the form{
τn

0 := 0,

τ n
i := inf{t > τn

i−1 : (St − Sτn
i−1

)T�
(n)

τn
i−1

(St − Sτn
i−1

) ≥ ε̃n} ∧ T ,

for a sequence ε̃n → 0, where �
(n)
t is a suitable perturbation of �t := (σ

†
t )TXtσ

†
t (where M† is the pseudo-inverse

matrix of M), and Xt is the symmetric non-negative definite matrix solution to the equation

2 Tr(Xt )Xt + 4X2
t = σ T

t

(
Dxv(t, St )

)T
σtσ

T
t Dxv(t, St )σt .

Additionally the asymptotic lower bound to (1.2) is (
∫ T

0 Tr(Xt )dt)2.

Organisation of the paper

In Section 2, we define the model and the admissible strategies under study. In Section 3, we state and establish
crucial properties of admissible strategies. The minimization of (1.2) is studied in Section 4, and designing an optimal
strategy is made in Section 5. We also present a few examples and a numerical experiment in Section 5.3. Technical
results are postponed to the Appendix.

Notation used throughout this work

• We denote by x · y the scalar product between two vectors x and y and by |x| = (x · x)
1
2 the Euclidean norm of x.

The induced norm of a m × d -matrix is denoted by |A| := supx∈Rd :|x|=1 |Ax|.
• The transposition of a matrix A is denoted by AT; we denote by Tr(A) the trace of a square matrix A; Idd stands

for the identity matrix of size d .
• Sd(R),Sd+(R) and Sd++(R) are respectively the sets of symmetric, symmetric non-negative definite and symmetric

positive-definite d × d matrices with real coefficients.
• For A ∈ Sd(R) we denote �(A) = (λ1(A), . . . , λd(A)) the eigenvalues of A placed in decreasing order, we set

λmin(A) := λd(A) and λmax(A) := λ1(A).
• We denote by Diag(a1, . . . , ad) the square matrix of size d with diagonal entries a1, . . . , ad .
• For the partial derivatives of a function f (t, x) we write

Dtf (t, x) = ∂f

∂t
(t, x), Dxi

f (t, x) = ∂f

∂xi

(t, x), D2
xixj

f (t, x) = ∂2f

∂xi ∂xj

(t, x).

• For a R
d -valued semimartingale S we denote 〈S〉t its matrix of cross-variations (〈Si, Sj 〉t )1≤i,j≤d .

• We sometimes write ft for f (t, St ) where S is a semimartingale and f is some function.
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• For a given sequence of stopping times T n, the last stopping time before t ≤ T is defined by φ(t) = max{τn
j :

τn
j < t}. We omit to indicate the dependence on n. Furthermore for a process (ft )0≤t≤T we write �ft := ft −fφ(t−).

Besides we set �t := t − φ(t−) and �τn
i := τn

i − τn
i−1.

• C0 stands for a a.s. finite non-negative random variable, which may change from line to line.

2. Model and strategies

2.1. Probabilistic model: Assumptions

Let T > 0 and let (
,F, (Ft )0≤t≤T ,P) be a filtered probability space supporting a d-dimensional Brownian motion
B = (Bi)1≤i≤d defined on [0, T ], where (Ft )0≤t≤T is the P-augmented natural filtration of B and F =FT . Let

(α, θσ ) ∈
(

1

2
,1

]
× (0,1] (2.1)

be some regularity parameters and let (St )0≤t≤T be a d-dimensional continuous semimartingale of the form

St = At + Mt, 0 ≤ t ≤ T , (2.2)

where the processes A and M satisfy the following hypotheses.

(HA) The process A is continuous, adapted and of finite variation, and satisfies

|At − As | ≤ C0|t − s|α, ∀s, t ∈ [0, T ] a.s. (HA)

(HM ) The process M is a continuous local martingale of the form

Mt =
∫ t

0
σs dBs, 0 ≤ t ≤ T , (HM )

where σ is a continuous adapted d × d-matrix valued process, such that the value σt is a.s. non-zero for any
t ∈ [0, T ], and

|σt − σs | ≤ C0|t − s|θσ /2, ∀s, t ∈ [0, T ] a.s.

Furthermore, we assume that the function v, involved in (1.1), is a C1,2([0, T ) × R
d) function with values in R

d .
For applications like in [6], we shall allow its derivatives in uniform norm (in space) to explode as t → T , whilst
remaining bounded a.s. in an infinitesimal tube centered at (t, St )0≤t<T . This is stated precisely in what follows.

(Hv) Let D ∈ {Dxj
,D2

xj xk
,Dt : 1 ≤ j, k ≤ d}, then

P

(
lim
δ→0

sup
0≤t<T

sup
|x−St |≤δ

∣∣Dv(t, x)
∣∣< +∞

)
= 1. (Hv)

2.2. Class T adm. of admissible sequences of strategies

Now we define the class of strategies under consideration. As the optimality in our problem is achieved asymptotically
as a parameter n → +∞, a strategy is naturally indexed by n ∈N: a strategy is a finite sequence of increasing stopping
times

T n := {τn
0 = 0 < · · · < τn

i < · · · < τn
Nn

T
= T

}
, with Nn

T < +∞ a.s.

We now define the appropriate asymptotic framework. Let (εn)n∈N be a sequence of positive deterministic real num-
bers such that∑

n≥0

ε2
n < +∞.
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In the following, all convergences are taken as n → +∞. The above summability enables to derive a.s. convergence
results: alternatively, had we assumed only εn → 0, using a subsequence-based argument (see [7, Section 2.2]) we
would get convergences in probability.

On the one hand the parameter εn controls the oscillations of S between two successive stopping times in T n.

(Aosc.
S ) The following non-negative random variable is a.s. finite:

sup
n≥0

(
ε−2
n sup

1≤i≤Nn
T

sup
t∈(τn

i−1,τ
n
i ]

|St − Sτn
i−1

|2
)

< +∞.

Here the lower argument in the assumption (Aosc.· ) refers explicitly to the process at hand. On the other hand ε
−2ρN
n

(for some ρN ≥ 1) upper bounds up to a constant the number of stopping times in the strategy T n.

(AN ) The following non-negative random variable is a.s. finite:

sup
n≥0

(
ε2ρN
n Nn

T

)
< +∞.

In the above, ρN is a given parameter satisfying

1 ≤ ρN <

(
1 + θσ

2

)
∧ 4

3
∧
(

1

2
+ α

)
, (2.3)

where (α, θσ ) are given in (2.1).

Definition 1. A sequence of strategies T := {T n : n ≥ 0} is admissible for the process S and the parameters (εn)n∈N
and ρN if it fulfills the hypotheses (Aosc.

S ) and (AN ). The set of admissible sequences is denoted by T adm.
S .

The larger ρN , the wider the class of strategies under consideration.

Remark 1. The notion of admissible sequence is quite general, in particular, it includes the following two wide
families of random grids.

(i) Let ρ ∈ (0,1) and let (εn)n≥0 be a deterministic sequence such that
∑

n≥0 ε2
n < +∞. Consider T = {T n}n≥0

where each T n = (τn
i )0≤i≤Nn

T
is a sequence of stopping times (with Nn

T possibly random) and such that

C−1ε
2

(1−ρ)
n ≤ min

1≤i≤Nn
T

�τn
i ≤ max

1≤i≤Nn
T

�τn
i ≤ Cε

2
(1−ρ)
n , n ≥ 0, a.s.,

for an a.s. finite positive random variable C > 0. This example contains in particular the sequences of determin-
istic grids for which the time steps are controlled from below and from above (like those of [10] used for building
X̂∗∗

h mentioned in introduction), and for which the step size tends to zero fast enough.

Let us check (Aosc.
S )and (AN ). First, note that S is a.s. Hölder continuous on [0, T ] with exponent 1−ρ

2 : this is a
consequence of (HA) for the finite-variation component A and of [1, Theorem 5.1] for the martingale component
M under the assumption (HM ). Therefore, a.s. for each n ≥ 0

sup
1≤i≤Nn

T

sup
t∈[τn

i−1,τ
n
i ]

|St − Sτn
i−1

| ≤ CS

[
max

1≤i≤Nn
T

�τn
i

] 1−ρ
2 ≤ CSC

1−ρ
2 εn.

Furthermore,

Nn
T ≤ T

min1≤i≤Nn
T

�τn
i

≤ T Cε
− 2

(1−ρ)
n

so that (AN ) is verified with 2ρN = 2(1 − ρ) provided that we take ρ small enough to satisfy the upper bound
(2.3). Thus the sequence of strategies T is admissible for (εn)n≥0 and ρN given above.
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(ii) Consider a sequence of adapted random processes {Dn
t : 0 ≤ t ≤ T } where each Dn

t is an open set such that

B(0,C1εn) ⊂ Dn
t ⊂ B(0,C2εn)

for some a.s. finite positive random variables C1,C2, here B(0, r) denotes the ball centered at 0 with radius r .
Here again the deterministic sequence (εn)n≥0 is such that

∑
n≥0 ε2

n < +∞. Define the sequence of strategies
T = {T n}n≥0 with T n = (τn

i )0≤i≤Nn
T

as follows: τn
0 = 0 and for i ≥ 1

τn
i = inf

{
t > τn

i−1 : (St − Sτn
i−1

) /∈ Dn
τn
i−1

}∧ T .

In other words, we consider exit times of random sets of size εn. The assumption (Aosc.
S ) follows from the

definition of T n:

sup
1≤i≤Nn

T

sup
t∈[τn

i−1,τ
n
i ]

|St − Sτn
i−1

| ≤ C2εn.

Further to check (AN ), we write (using Proposition 3.8)

C2
1ε2

nN
n
T ≤ C2

1ε2
n +

∑
τn
i−1<T

|�Sτn
i
|2 →

n→+∞ Tr
(〈S〉T

)
< +∞ a.s.

This proves the admissibility of T . A particular case is the ellipsoid exit times, see [6, Proposition 2.4].

3. General results for admissible strategies

This section gathers preliminary results, needed to establish the subsequent main results. In Section 3.1, we recall
without proof some estimates about the mesh size sup1≤i≤Nn

T
�τn

i of the time grid T n simultaneously for any n,

as well as bounds on (local) martingales depending on n. This is preparatory for Section 3.2 where we establish an
important result: in our setting, admissible sequences of strategies for S and M are the same. Last in Section 3.3, we
establish the a.s. convergence of weighted quadratic variations under some mild assumptions, which are crucial to
derive our new optimality results.

3.1. Control of �τn and martingale increments

We start from a simple and efficient criterion for a.s. convergence of continuous local martingales.

Lemma 3.1 ([6, Corollary 2.1]). Let p > 0, and let {(Kn
t )0≤t≤T : n ≥ 0} be a sequence of continuous scalar local

martingales vanishing at zero. Then∑
n≥0

〈
Kn
〉p/2
T

< +∞ a.s. ⇐⇒
∑
n≥0

sup
0≤t≤T

∣∣Kn
t

∣∣p < +∞ a.s.

The useful application is the sense ⇒: by controlling the summability of quadratic variations, we obtain the non
trivial a.s. convergence of sup0≤t≤T |Kn

t | to 0. This kind of reasoning is used in this work.
The next two lemmas yield controls of �τi and of martingales increments for an admissible sequence of strategies.

In view of the Brownian motion scaling property one might guess that an admissible sequence of strategies T = {T n :
n ≥ 0} yields stopping times increments of magnitude roughly equal to ε2

n. More generally, we can study in a similar
way the increments of martingales. Here we give a rigorous statement of these heuristics.

Lemma 3.2 ([6, Corollary 2.2]). Assume (HM ) and let T = {T n : n ≥ 0} be a sequence of strategies. Let ρ > 0, then
the following hold:
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(i) Assume T satisfies (Aosc.
M ), then

sup
n≥0

(
ερ−1
n sup

1≤i≤Nn
T

�τn
i

)
< +∞ a.s.

(ii) Assume T satisfies (Aosc.
M )-(AN ), then

sup
n≥0

(
ερ−2
n sup

1≤i≤Nn
T

�τn
i

)
< +∞ a.s.

Lemma 3.3 ([6, Corollary 2.3]). Assume (HM ). Let ((Kn
t )0≤t≤T )n≥0 be a sequence of Rd -valued continuous local

martingales such that 〈Kn〉t = ∫ t

0 κn
r dr for a measurable adapted κn satisfying the following inequality: there exist a

non-negative a.s. finite random variable Cκ and a deterministic parameter θ ≥ 0 such that

0 ≤ ∣∣κn
r

∣∣≤ Cκ

(|�Mr |2θ + |�r |θ
)
, ∀0 ≤ r < T ,∀n ≥ 0, a.s.

Finally, let ρ > 0, then the following assertions hold.

(i) Assume T satisfies (Aosc.
M ), then

sup
n≥0

(
ε
ρ−(1+θ)/2
n sup

1≤i≤Nn
T

sup
τn
i−1≤t≤τn

i

∣∣�Kn
t

∣∣)< +∞ a.s.

(ii) Assume T satisfies (Aosc.
M )–(AN ), then

sup
n≥0

(
ερ−(1+θ)
n sup

1≤i≤Nn
T

sup
τn
i−1≤t≤τn

i

∣∣�Kn
t

∣∣)< +∞ a.s.

3.2. The admissible sequences of strategies for S and M coincide

We now aim at proving the following Theorem.

Theorem 3.4. Let S be a semimartingale of the form (2.2) and satisfying (HA)–(HM ). Then a sequence of strategies
T = {Tn : n ≥ 0} is admissible for S if and only it is admissible for M with the same parameter ρN : in other words, if
T satisfies (AN ),

(Aosc.
M ) ⇔ (Aosc.

S ).

Rephrased differently, defining admissible sequence of strategies based on the martingale M is robust to perturba-
tion by adding to M a finite variation process A, satisfying α-Hölder regularity with α > 1/2.

Proof. For convenience in the proof, we adopt the short notation∣∣�τn
∣∣∞ := sup

1≤i≤Nn
T

�τn
i , |�U |∞ := sup

1≤i≤Nn
T

sup
τn
i−1≤t≤τn

i

|�Ut |,

for any process U .
Proof of ⇒. Suppose first that T = {Tn : n ≥ 0} is admissible for S. Let us prove that it is admissible for M , i.e. the

assumption (Aosc.
M ) is satisfied. We proceed in several steps.

� Step 1. Preliminary bound. From |Mt − Ms | ≤ |St − Ss | + |At − As | and (HA), we get

|�M|∞ ≤ |�S|∞ + C0
∣∣�τn

∣∣α∞ ≤ C0
(
εn + ∣∣�τn

∣∣α∞). (3.1)
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Using Itô’s formula and (HM ), we obtain that for any 0 ≤ s < t ≤ T

0 ≤ t − s ≤ C−1
E

∫ t

s

Tr
(
σrσ

T
r

)
dr = C−1

E

d∑
j=1

(〈
Sj
〉
t
− 〈Sj

〉
s

)
(3.2)

= C−1
E

d∑
j=1

((
S

j
t − S

j
s

)2 − 2
∫ t

s

(
S

j
r − S

j
s

)
dS

j
r

)
, (3.3)

where CE := inft∈[0,T ] Tr(σtσ
T
t ) > 0 a.s. Hence

�t ≤ C−1
E

(
C0ε

2
n + 2

d∑
j=1

∣∣∣∣∫ t

φ(t)

�S
j
r dA

j
r

∣∣∣∣+ 2
d∑

j=1

∣∣∣∣∫ t

φ(t)

�S
j
r dM

j
r

∣∣∣∣
)

. (3.4)

Using that A is of finite variation and (Aosc.
S ), we get the crude estimate

d∑
j=1

∣∣∣∣∫ t

φ(t)

�S
j
r dA

j
r

∣∣∣∣≤ C0εn. (3.5)

Now consider the local martingale K
n,j
t = ε

2
p

−1
n (

∫ t

0 �S
j
r dM

j
r ) for some p > 0. We have

∑
n≥0

〈
Kn,j

〉 p
2
T =

∑
n≥0

ε
2−p
n

(∫ T

0

∣∣�S
j
r

∣∣2 d
〈
Mj
〉
r

) p
2 ≤ C0

∑
n≥0

ε2
n < +∞ a.s.,

which by Lemma 3.1 implies that
∑

n≥0 sup0≤t≤T |Kn,j
t |p < +∞ a.s., and thus supn≥0 sup0≤t≤T |Kn,j

t | < +∞ a.s.
This reads

sup
0≤t≤T

∣∣∣∣∫ t

0
�S

j
r dM

j
r

∣∣∣∣≤ C0ε
1− 2

p
n = C0ε

1−δ
n , (3.6)

where δ = 2/p is an arbitrary positive number. Plugging this and (3.5) into (3.4) yields∣∣�τn
∣∣∞ ≤ C0

(
ε2
n + εn + ε1−δ

n

)≤ C0ε
1−δ
n . (3.7)

The above is analogous to Lemma 3.2(i) but under the assumption (Aosc.
S ). Combined with (3.1), we then deduce

|�M|∞ ≤ C0ε
α(1−δ)
n (3.8)

for any given δ ∈ (0,1).
� Step 2. We prove the following lemma, which gives the basis for a continuation argument (Step 3): once we have

estimated |�M|∞ with some order w.r.t. εn, we obtain automatically a slightly better order, up to reaching the order
1, as required by (Aosc.

M ).

Lemma 3.5. Suppose that for some β > 0

sup
n≥0

(
ε−β
n sup

1≤i≤Nn
T

sup
t∈(τn

i−1,τ
n
i ]

|�Mt |2
)

< +∞ a.s. (3.9)

Then for any ρ > 0

sup
n≥0

(
ε−(β−ρ)
n sup

1≤i≤Nn
T

sup
t∈(τn

i−1,τ
n
i ]

d∑
j=1

�
〈
Mj
〉
t

)
< +∞ a.s.
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Proof. Let p > 0. Consider the following two sequences of processes:

Un
t = ε

2−βp+2ρN
n

∑
τn
i−1<t

∣∣∣∣∣
d∑

j=1

�
〈
Mj
〉
τn
i ∧t

∣∣∣∣∣
p

,

V n
t = ε

2−βp+2ρN
n

∑
τn
i−1<t

sup
s∈(τn

i−1,τ
n
i ∧t]

|�Ms |2p.

We aim at proving that
∑

n≥0 Un
T < +∞ a.s. using Lemma A.1 in Appendix. First,

∑
n≥0 V n

T converges a.s.: indeed
using (AN ) and (3.9) we obtain∑

n≥0

V n
T ≤ C0

∑
n≥0

ε
2−βp+2ρN
n Nn

T sup
1≤i≤Nn

T

sup
s∈(τn

i−1,τ
n
i ]

|�Ms |2p ≤ C0

∑
n≥0

ε2
n < +∞.

Second observe that for any n, t �→ V n
t is a.s. non-decreasing. Last it remains to verify the relation of domination of

Lemma A.1(iii). Let k ∈ N, let θk be defined as in the quoted lemma. On the set {τn
i−1 < t ∧ θk} from a conditional

version of the multidimensional BDG inequality we have

E

(∣∣∣∣∣
d∑

j=1

�
〈
Mj
〉
τn
i ∧t∧θk

∣∣∣∣∣
p∣∣∣Fτn

i−1

)
≤ cpE

(
sup

τn
i−1<s≤τn

i ∧t∧θk

|�Ms |2p
∣∣Fτn

i−1

)
.

Then it follows that

E
(
Un

t∧θk

)= ε
2−βp+2ρN
n

+∞∑
i=1

E

(
1τn

i−1<t∧θk
E

(∣∣∣∣∣
d∑

j=1

�
〈
Mj
〉
τn
i ∧t∧θk

∣∣∣∣∣
p∣∣∣Fτn

i−1

))

≤ cpE
(
V n

t∧θk

)
.

Hence by Lemma A.1, we obtain that
∑

n≥0 Un
T converges a.s. and thus supn≥0 Un

T < +∞ a.s.

Now write ε
2−βp+2ρN
n sup1≤i≤Nn

T
supt∈(τn

i−1,τ
n
i ] |
∑d

j=1 �〈Mj 〉t |p ≤ Un
T , which implies

sup
n≥0

(
ε
(2+2ρN )/p−β
n sup

1≤i≤Nn
T

sup
t∈(τn

i−1,τ
n
i ]

∣∣∣∣∣
d∑

j=1

�
〈
Mj
〉
t

∣∣∣∣∣
)

< +∞ a.s.

To conclude, choose p = 2+2ρN

ρ
to get the desired result. �

� Step 3. Continuation scheme. Take δ > 0, as in (3.8), set d0 = α(1 − δ) and ρ0 = (2α−1)d0
2α

> 0. Consider the
sequence (dm)m≥0 given by dm+1 = 2αdm − αρ0 for m ≥ 0. Assume for a while that

dm+1 − dm ≥ αρ0, (3.10)

and let us show by induction that, for any m ≥ 0,

|�M|∞ ≤ C0ε
min(dm,1)
n . (3.11)

The case m = 0 stems directly from (3.8). Now suppose that (3.11) holds for m. If dm ≥ 1, since dm+1 ≥ dm owing to
(3.10), (3.11) is valid for m + 1. If dm < 1, then we have |�M|∞ ≤ C0ε

dm
n and using Lemma 3.5 we obtain∣∣∣∣∣

d∑
j=1

�
〈
Mj
〉∣∣∣∣∣

∞
≤ C0ε

2dm−ρ0
n .
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Consequently (3.2) gives |�τn|∞ ≤ C0ε
2dm−ρ0
n which, combined with (3.1), yields

|�M|∞ ≤ C0ε
min(1,α(2dm−ρ0))
n .

This finishes the proof of (3.11) for m+ 1. It remains to show (3.10) by induction. For m = 0 we get d1 = 2αd0 −αρ0
and thus

d1 − d0 = (2α − 1)d0 − (2α − 1)d0

2
= (2α − 1)d0

2
= αρ0.

Suppose that (3.10) is true for all m < k and let us extend to m = k. We write

dm+1 − dm = (2α − 1)dm − (2α − 1)d0

2
≥ (2α − 1)d0 − (2α − 1)d0

2
= αρ0,

using that dm ≥ d0 by the induction assumption. We are done.
� Step 4. Conclusion. In view of (3.10), (dm)m≥0 becomes larger than 1 for some m, for which (3.11) simply writes

|�M|∞ ≤ C0εn. (Aosc.
M ) is proved.

Proof of ⇐. Now suppose that the sequence T is admissible for M . Let us prove the admissibility of T for the
process S. Again it is enough to verify the assumption (Aosc.

S ). Similarly to the decomposition (3.1), we have

|�S|∞ ≤ |�M|∞ + |�A|∞ ≤ C0
(
εn + ∣∣�τn

∣∣α∞).
From Lemma 3.2(ii), for any γ > 0, we have |�τn|∞ ≤ C0ε

2−γ
n a.s. Since α > 1/2, we can choose γ such that

(2 − γ )α > 1 and for such γ we deduce |�S|∞ ≤ C0(εn + ε
(2−γ )α
n ) ≤ C0εn. The proof is complete. �

Remark 2.

• Theorem 3.4 implies that if a sequence of strategies fulfills (AN ), we do not need to emphasize anymore the
dependence of the assumption (Aosc.· ) on a particular process M or S; in that case, we will write simply (Aosc.) and
will refer to admissible sequence of strategies T adm. := T adm.

M = T adm.
S .

• In addition, we can use all the results for admissible sequences of strategies based on the local martingale M

and (Aosc.
M ) (as those from [6]): in particular, for any admissible sequences of strategies (for M or S), we have

sup1≤i≤Nn
T

|�τn
i | ≤ C0ε

2−γ
n for any γ > 0.

A direct consequence of Lemma 3.2(ii), (HA) and Theorem 3.4 is the following.

Corollary 3.6. Let S be a semimartingale of the form (2.2) and satisfying (HA)–(HM ). If T ∈ T adm., then for any
ρ > 0,

sup
1≤i≤Nn

T

sup
τn
i−1≤t≤τn

i

|�At | ≤ C0ε
2α−ρ
n .

3.3. Convergence results for quadratic variation

We first recall a convergence result about weighted discrete quadratic M-variations corresponding to T = {T n, n ≥ 0}.

Proposition 3.7 ([6, Proposition 2.3]). Assume (HM ) and let T be a sequence of strategies satisfying (Aosc.
M ). Let

(Ht )0≤t<T be a continuous adapted d × d-matrix process such that supt∈[0,T ) |Ht | < +∞ a.s., and let (Kt )0≤t≤T be

a R
d -valued continuous local martingale such that 〈K〉t = ∫ t

0 κr dr with supt∈[0,T ] |κt | < +∞ a.s. Then

∑
τn
i−1<T

�KT
τn
i
Hτn

i−1
�Kτn

i

a.s.→
∫ T

0
Tr
(
Ht d〈K〉t

)
.
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We now establish an extension to the semimartingale S.

Proposition 3.8. Let S be a semimartingale of the form (2.2) and satisfying (HA)–(HM ), and let T be a sequence of
strategies satisfying (Aosc.

S ). Let (Ht )0≤t<T be as in Proposition 3.7. Then

∑
τn
i−1<T

�ST
τn
i
Hτn

i−1
�Sτn

i

a.s.→
∫ T

0
Tr
(
Ht d〈M〉t

)
.

Proof. From Itô’s lemma, the difference between the above left hand side and the right one is equal to∫ T

0
�ST

t

(
Hϕ(t) + H T

ϕ(t)

)
dSt +

∫ T

0
Tr
([Hϕ(t) − Ht ]d〈M〉t

)
. (3.12)

Due to (HM ), the second term is bounded by C0
∫ T

0 |Hϕ(t) −Ht |dt : it converges to 0 by an application of the dominated
convergence theorem. Indeed, H is continuous and bounded on [0, T ) and the mesh size goes to 0 under (Aosc.

S )
(see (3.7) which is established under (Aosc.

S ) and without using (AN )). Next, decompose the first term of (3.12) into
stochastic integrals w.r.t. A and M . On the one hand, A is of finite variation, thus∣∣∣∣∫ T

0
�ST

t

(
Hϕ(t) + H T

ϕ(t)

)
dAt

∣∣∣∣≤ C0 sup
1≤i≤Nn

T

sup
τn
i−1≤t≤τn

i

|�St | sup
t∈[0,T )

|Ht | a.s.→ 0 (3.13)

in view of (Aosc.
S ). On the other hand,

∫ T

0 �ST
t (Hϕ(t) + H T

ϕ(t))dMt
a.s.→ 0 by proceeding very similarly to the proof of

(3.6). �

In the next theorems we identify an important admissible sequence of strategies, namely hitting times by S of ran-
dom ellipsoids parametrized by a matrix process (Ht )0≤t<T (or a perturbation of it). This extends [6, Proposition 2.4]
to hitting times of S and to possibly degenerate H . This more general construction of ellipsoids is a significant im-
provement, and crucial for the subsequent optimality results.

Theorem 3.9. Let S be a semimartingale of the form (2.2) and satisfying (HA)–(HM ), and let (Ht )0≤t<T be a con-
tinuous adapted symmetric non-negative definite d × d matrix process, such that a.s.

0 < inf
0≤t<T

λmin(Ht ) ≤ sup
0≤t<T

λmax(Ht ) < +∞.

The strategy T n given by{
τn

0 := 0,

τ n
i := inf{t > τn

i−1 : (St − Sτn
i−1

)THτn
i−1

(St − Sτn
i−1

) ≥ ε2
n} ∧ T ,

defines a admissible sequence of strategies.

The proof is given later. The condition sup0≤t<T λmax(Ht ) < +∞ ensures that none of the corresponding ellipsoids
Et := {xTHtx ≤ c} with c > 0 are flat in some directions, it allows to derive a bound on the number of hitting times
Nn

T as in (AN ). The non-degeneracy condition λmin(Ht ) > 0 (i.e. Et is bounded) is important to control the increments
�S as in (Aosc.

S ). Without this latter condition, we need to perturb the above sequence of strategies. To this purpose,
let χ(·) be a smooth function such that

1(−∞,1/2] ≤ χ(·) ≤ 1(−∞,1], (3.14)

and for μ > 0 set χμ(x) = χ(x/μ).
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Theorem 3.10. Let S be a semimartingale of the form (2.2) and satisfying (HA)–(HM ). Assume that ρN defined in
(2.3) is such that ρN > 1, and let δ ∈ (0,2(ρN − 1)]. Let (Ht )0≤t<T be an adapted symmetric non-negative definite
d × d matrix process, such that

(i) there exists a random variable CH , positive and finite a.s., such that

λmax(Ht ) ≤ CH , ∀t ∈ [0, T ), a.s.

(notice that H is not necessarily continuous).

Define a sequence of processes H(n) by

H
(n)
t = Ht + εδ

nχεδ
n

(
λmin(Ht )

)
Idd .

Then the strategy T n defined by{
τn

0 := 0,

τ n
i := inf{t > τn

i−1 : (St − Sτn
i−1

)TH
(n)

τn
i−1

(St − Sτn
i−1

) ≥ ε2+δ
n } ∧ T ,

(3.15)

forms a sequence T = {T n : n ≥ 0} satisfying the assumption (Aosc.
S ). If in addition the following convergence

holds

(ii)

∑
τn
i−1<T

�ST
τn
i
Hτn

i−1
�Sτn

i

a.s.→
∫ T

0
Tr
(
Ht d〈M〉t

)
,

then the sequence T satisfies also the assumption (AN ), that is T ∈ T adm..

Proof of Theorem 3.10. First let us prove that Tn is a.s. of finite size for any n ∈ N. The definition of H
(n)
t implies

that

λmax
(
H

(n)
t

)≤ CH + sup
n≥0

εδ
n < +∞, ∀t ∈ [0, T ) a.s.

Define the event N n := {ω : Nn
T (ω) = +∞}. For ω ∈ N n the infinite sequence (τn

i (ω)) is increasing and bounded,
thus converges. Hence on N n ∩ ES , with

ES = {(St )t∈[0,T ] is continuous and CH < +∞},
we have

0 < ε2+δ
n = (Sτn

i
− Sτn

i−1
)TH

(n)

τn
i−1

(Sτn
i

− Sτn
i−1

)

≤
(
CH + sup

n≥0
εδ
n

)
|Sτn

i
− Sτn

i−1
|2 i→+∞−−−−→ 0,

which is impossible. Hence P(N n ∩ ES) = 0, but P(ES) = 1 thus P(N n) = 0.
Next we show that T satisfies (Aosc.

S ). From the definition of H
(n)
t it is straightforward that

λmin
(
H

(n)
t

)≥ εδ
n

2
, ∀t ∈ [0, T ).
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Thus

ε−2
n sup

1≤i≤Nn
T

sup
τn
i−1≤t≤τn

i

|�St |2

≤
(

inf
t∈[0,T )

λmin
(
H

(n)
t

))−1
ε−2
n sup

1≤i≤Nn
T

sup
τn
i−1≤t≤τn

i

(
�ST

t H
(n)

τn
i−1

�St

)≤ 2ε−δ
n ε−2

n ε2+δ
n = 2,

which validates the assumption (Aosc.
S ).

Finally assume that in addition (ii) holds and let us show that the sequence of strategies T satisfies the assumption
(AN ). Writing Nn

T = 1 +∑1≤i≤Nn
T −1 1 and using 2 + δ ≤ 2ρN , we observe that (for n large enough so that εn ≤ 1)

ε2ρN
n Nn

T ≤ ε2+δ
n Nn

T ≤ ε2+δ
n +

∑
τn
i <T

�ST
τn
i
Hτn

i−1
�Sτn

i
+
∑

τn
i <T

�ST
τn
i

(
H

(n)

τn
i−1

− Hτn
i−1

)
�Sτn

i
. (3.16)

Now by (ii) we have

∑
τn
i <T

�ST
τn
i
Hτn

i−1
�Sτn

i

a.s.→
∫ T

0
Tr
(
Ht d〈M〉t

) a.s.
< +∞

(the contribution i = Nn
T does not change the convergence). Besides from the definition of H(n) we get∣∣∣∣ ∑

τn
i <T

�ST
τn
i

(
H

(n)

τn
i−1

− Hτn
i−1

)
�Sτn

i

∣∣∣∣≤ εδ
n

∑
τn
i <T

|�Sτn
i
|2 a.s.→ 0, (3.17)

using δ > 0 and Proposition 3.8 (valid since (Aosc.
S ) is in force now). We have proved that the r.h.s. of (3.16) converges

a.s. to a finite random variable, which completes the verification of the assumption (AN ). �

Proof of Theorem 3.9. This is an adaptation of the previous proof. First, with the same arguments we prove that Tn

is a.s. of finite size for any n ∈ N. Second, the verification of (Aosc.
S ) stems from

ε−2
n sup

1≤i≤Nn
T

sup
τn
i−1≤t≤τn

i

|�St |2 ≤
(

inf
t∈[0,T )

λmin(Ht )
)−1

.

Third, for n large enough so that εn ≤ 1, we write

ε2ρN
n Nn

T ≤ ε2
nN

n
T ≤ ε2

n +
∑

τn
i <T

�ST
τn
i
Hτn

i−1
�Sτn

i

and we conclude to (AN ) using Proposition 3.8 and the continuity and boundedness of H . �

4. Asymptotic lower bound on the discretization error

Let S be a semimartingale of the form (2.2) and let v be the function appearing in the discretization error (1.1), and
satisfying (Hv). The main result of the section is Theorem 4.2: this is an extension to the semimartingale case of the
asymptotic lower bound on the discretization error, proved in [6, Theorem 3.1] in the martingale case.

The discretization error Zn defined in (1.1) can be decomposed into a martingale part and a finite variation
part:

Zn
s =

∫ s

0

(
v(t, St ) − v

(
φ(t), Sφ(t)

)) · dMt +
∫ s

0

(
v(t, St ) − v

(
φ(t), Sφ(t)

)) · dAt .
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The analysis is partially derived from a smart representation of 〈Zn〉T as a sum of squared random variables and an
adequate application of Cauchy–Schwarz inequality. The derivation of such a representation is based on applying the
Itô formula to a suitable function and identifying the bounded variation term. While it is straightforward in dimension
one, a multidimensional version of this result requires to solve the following matrix equation.

Lemma 4.1. Let c be a d × d-matrix with real-valued entries. Then the equation

2 Tr(x)x + 4x2 = ccT (4.1)

admits exactly one solution x(c) ∈ Sd+(R). Moreover, the mapping c �→ x(c) is continuous.

The proof of the above lemma directly follows from [6, Lemma 3.1] applied for (ccT)1/2 (i.e. the symmetric non-
negative definite square root of ccT). Now we state the main result.

Theorem 4.2 (Lower bound). Assume (HA), (HM ), (Hv) and let T be an admissible sequence of strategies (satisfying
(AN ) and (Aosc.)). Let X be the continuous adapted symmetric non-negative definite matrix process solution of (4.1)
with c = σ T(Dxv)Tσ , i.e.

Xt := x
(
σ T

t (Dxvt )
Tσt

)
, for 0 ≤ t < T . (4.2)

Then we have

lim inf
n→+∞Nn

T

〈
Zn
〉
T

≥
(∫ T

0
Tr(Xt )dt

)2

a.s.

Proof. The martingale part of the discretization error can be written∫ s

0

(
v(t, St ) − v

(
φ(t), Sφ(t)

)) · dMt =:
∫ s

0
(Dxvφ(t)�St )dMt + Rn

s . (4.3)

Therefore the quadratic variation of Zn is given by

〈
Zn
〉
T

=
∫ T

0
�ST

t (Dxvφ(t))
T d〈M〉tDxvφ(t)�St + en

1,T

=
∫ T

0
�MT

t (Dxvφ(t))
T d〈M〉tDxvφ(t)�Mt + en

1,T + en
0,T , (4.4)

where

en
0,T :=

∫ T

0
�AT

t (Dxvφ(t))
T d〈M〉tDxvφ(t)(�St + �Mt),

en
1,T := 〈Rn

〉
T

+ 2

〈∫
0
(Dxvφ(t)�Mt) · dMt,R

n

〉
T

.

Now in the first contribution of 〈Zn〉T in (4.4), we seek an expression involving only the Brownian motion B and
not the local martingale M : hence we replace �Mt by σφ(t)�Bt and d〈M〉t by σφ(t)σ

T
φ(t) dt , which leads to

〈
Zn
〉
T

=
∫ T

0
�BT

t

(
σ T

φ(t)(Dxvφ(t))
Tσφ(t)σ

T
φ(t)Dxvφ(t)σφ(t)

)
�Bt dt + en

0,T + en
1,T + en

2,T ,
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where

en
2,T :=

∫ T

0
�MT

t (Dxvφ(t))
T�
(
σtσ

T
t

)
Dxvφ(t)�Mt dt

+
∫ T

0
(�Mt + σφ(t)�Bt )

T(Dxvφ(t))
Tσφ(t)σ

T
φ(t)Dxvφ(t)(�Mt − σφ(t)�Bt )dt.

Denote Ct = σ T
t (Dxvt )

Tσt . We seek a smart representation of the main term of 〈Zn〉T in the form∑
τn
i−1<T

(
�BT

τn
i
Xτn

i−1
�Bτn

i

)2
, (4.5)

where X is a suitable measurable adapted symmetric d × d-matrix process. For such a process X, the Itô formula on
each interval [τn

i−1, τ
n
i ] yields

∑
τn
i−1<T

(
�BT

τn
i
Xτn

i−1
�Bτn

i

)2 =
∫ T

0
�BT

t

(
2 Tr(Xφ(t))Xφ(t) + 4X2

φ(t)

)
�Bt dt

+ 4
∫ T

0
�BT

t Xφ(t)�Bt�BT
t Xφ(t) dBt .

Now take X as stated in the theorem. Clearly Xt ∈ Sd+(R) owing to Lemma 4.1. The continuity of the mapping
c �→ x(c) also ensures that X is continuous and adapted, as σ T(Dxv)Tσ is. Then a simplified representation of 〈Zn〉T
readily follows:〈

Zn
〉
T

=
∑

τn
i−1<T

(
�BT

τn
i
Xτn

i−1
�Bτn

i

)2 + en
0,T + en

1,T + en
2,T + en

3,T , (4.6)

where

en
3,T := −4

∫ T

0
�BT

t Xφ(t)�Bt�BT
t Xφ(t) dBt .

Using Cauchy–Schwarz inequality and Xt ∈ Sd+(R), we obtain

Nn
T

∑
τn
i−1<T

(
�BT

τn
i
Xτn

i−1
�Bτn

i

)2 ≥
( ∑

τn
i−1<T

�BT
τn
i
Xτn

i−1
�Bτn

i

)2

.

The process Xt is a.s. continuous on [0, T ), with supt∈[0,T ) |Xt | < +∞ a.s., and thus the assumptions of Proposi-
tion 3.7 are satisfied for (H,K) = (X,B). Therefore∑

τn
i <T

�BT
τn
i
Xτn

i−1
�Bτn

i

a.s.→
∫ T

0
Tr(Xt )dt .

To summarize we have obtained that

lim inf
n→+∞

(
Nn

T

〈
Zn
〉
T

− Nn
T

(
en

0,T + en
1,T + en

2,T + en
3,T

))≥ (∫ T

0
Tr(Xt )dt

)2

a.s.

To complete the proof, it is enough to show that Nn
T (en

0,T + en
1,T + en

2,T + en
3,T )

a.s.→ 0. In view of the assumption (AN )
it is sufficient to prove that

ε−2ρN
n en

i,T

a.s.→ 0 for i = 0,1,2,3. (4.7)
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Contribution en
0,T . Owing to Corollary 3.6, we obtain immediately that

∣∣en
0,T

∣∣≤ C0

∫ T

0
|�At |

(|�St | + |�Mt |
)

dt ≤ C0ε
1+2α−ρ
n ,

for any ρ > 0, which implies ε
−2ρN
n en

0,T → 0 since ρN < 1
2 + α.

Contribution en
1,T . To handle it, we need the following lemma; its proof follows that of [6, Lemma 3.2], with minor

adaptations (see Appendix A.1).

Lemma 4.3. Under the assumptions (HA), (HM ), (Hv), (Aosc.) and (AN ), we have ε
2−4ρN
n 〈Rn〉T a.s.→ 0, where Rn is

defined in (4.3).

Now to show that ε
−2ρN
n en

1,T → 0, use the above lemma and (Aosc.
M ) to get

ε−2ρN
n

∣∣en
1,T

∣∣≤ ε−2ρN
n

(〈
Rn
〉
T

)+ 2C0εn

(〈
Rn
〉
T

)1/2 = o
(
ε2ρN−2
n

)+ o(1)
a.s.→ 0.

Contributions en
2,T and en

3,T . The proof is similar to that of [6, Theorem 3.1], we skip the details. �

5. Optimal strategy

5.1. Preliminaries, pseudo-inverses

Now our main purpose is to provide, in notation of Theorem 4.2, an optimal discretization strategy, i.e. an admissible
strategy T for which

lim
n→+∞Nn

T

〈
Zn
〉
T

=
(∫ T

0
Tr(Xt )dt

)2

a.s.

Notice that an existence result is proved in [6, Theorem 3.3], only under the conditions that σ is invertible, that
v(t, x) = ∇xu(t, x) with

inf
0≤t<T

λmin
(
D2

xxu(t, St )
)
> 0 a.s.

and that A = 0 (martingale case). Our aim here is to relax these three conditions, and to extend the ideas of this
aforementioned theorem to our general setting.

Actually, the main difficulty comes from the possible degeneracy of σ . First recall the definition and some proper-
ties of pseudo-inverse matrix (a.k.a. Moore–Penrose generalized inverse).

Definition 2 (Pseudo-inverse of a matrix). Let M be a real-valued d × d-matrix. Consider the singular value de-
composition of M

M = U

(
D 0
0 0

)
V T,

where U,V are both orthogonal matrices, and D is a diagonal matrix containing the (positive) singular values of M
on its diagonal. Then the pseudo-inverse of M is the d × d- matrix defined as

M† = V

(
D−1 0

0 0

)
UT.

We recall the following well-known properties, which can be easily checked from Definition 2:{
MM†M =M, M†MM† =M†,

the matrices MM† and M†M are symmetric.
(5.1)
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5.2. Main result

We wish to design optimal stopping times in terms of the process S to allow better tractability. Inspired by [6], a good
candidate is then the sequence {T n : n ≥ 0} where T n is defined as:{

τn
0 := 0,

τ n
i := inf{t > τn

i−1 : (St − Sτn
i−1

)T�τn
i−1

(St − Sτn
i−1

) ≥ ε2
n} ∧ T ,

(5.2)

where �t := (σ−1
t )TXtσ

−1
t with X given by (4.2).

Such a sequence turns out to be optimal when S is a martingale and under some additional assumptions (see [6,
Theorem 3.3]). The problems with this definition can arise if σt is not invertible, or if �t is degenerate for some values
of t (then we have difficulties to verify (Aosc.)). To overcome these problems we use σ

†
t instead of σ−1

t . Furthermore
we take �

(n)
t equal to a small perturbation of �t depending on εn, such that �

(n)
t is always non-degenerate.

We need one additional assumption.

(H�) Let (Xt )0≤t<T be defined in (4.2) and consider the Sd+(R)-valued process defined by

�t := (σ †
t

)T
Xtσ

†
t , ∀t ∈ [0, T ). (H�)

There exists a non-negative random variable c(5.3), finite a.s., such that

0 ≤ Tr(�t ) ≤ c(5.3), ∀t ∈ [0, T ), a.s. (5.3)

Note that σ † may be discontinuous, so � may be too. Recall (see (3.14)) that χ(·) stands for a continuous function
such that 1(−∞,1/2] ≤ χ(·) ≤ 1(−∞,1], and for μ > 0, we set χμ(x) = χ(x/μ). Now we state the precise definition of
an optimal sequence of strategies.

Theorem 5.1 (Optimal strategy). Assume that (HA), (HM ), (Hv), (H�) are in force. Let ρN satisfy (2.3) with ρN > 1,
and let δ ∈ (0,2(ρN − 1)]. For each n ∈N, define the process (�

(n)
t : t < T ) by

�
(n)
t = �t + εδ

nχεδ
n

(
λmin(�t )

)
Idd ,

where � is given in (H�), and define the strategy T n
εδ
n

by

{
τn

0 := 0,

τ n
i := inf{t > τn

i−1 : (St − Sτn
i−1

)T�
(n)

τn
i−1

(St − Sτn
i−1

) ≥ ε2+δ
n } ∧ T .

(5.4)

Then the sequence of strategies T = {T n
εδ
n
: n ≥ 0} is admissible for the parameter ρN (in the sense of Definition 1 and

Theorem 3.4) and is asymptotically optimal, i.e.

lim
n→+∞Nn

T

〈
Zn
〉
T

=
(∫ T

0
Tr(Xt )dt

)2

a.s.

To conclude this subsection, we provide a condition simpler than (H�), the proof is postponed to the end of this
section.

Proposition 5.2. Assume that (HA), (HM ), (Hv) are in force, and assume that v ∈ C1,2([0, T ] × R
d) so that Dxvt

and Xt can be defined continuously up to t = T . If the matrix

Ct := σ T
t (Dxvt )

Tσt �= 0, (HC)

for all t ∈ [0, T ] a.s., then (H�) holds.
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5.3. Examples

5.3.1. About the assumptions (H�) and (HC)
Recall that under our assumptions, X is a.s. uniformly bounded on [0, T ). Thus in order to satisfy (H�), it is enough
to have σ † a.s. uniformly bounded on [0, T ). We provide a (non-exhaustive) list of such examples.

(a) σt is invertible for any t a.s.: then σ
†
t = σ−1

t is clearly bounded on [0, T ].
(b) We can also afford degenerate cases: for instance if σt is constant in time (but possibly with rank(σt ) < d), then

σ
†
t is also constant in time (and thus bounded).

(c) The previous principle can be generalized to the time-dependent case σt = (�t 0
0 0

)
where �t is a square matrix,

a.s. invertible at any time: indeed σ
†
t = (�−1

t 0
0 0

)
is bounded on [0, T ].

Now, we argue that checking (HC) may be sometimes much simpler than the verification of (H�). Let us give a
non-trivial example where σ † is not continuous a.s. For the ith component of S, take a squared δi -dimensional radial
Ornstein-Uhlenbeck process with parameter −λi , which is the strong solution to

Si
t = Si

0 +
∫ t

0

(
δi − λiS

i
s

)
ds + 2

∫ t

0

√
Si

s dBi
s,

where Si
0 > 0, δi ≥ 0, λi ∈ R (see [8]). The matrix σt is diagonal and its ith element is equal to 2

√
Si

t . It is easy to

check that (HA) and (HM ) hold (in particular σt �= 0 for all t a.s.). The pseudo-inverse σ
†
t is diagonal with ith element

equal to [2
√

Si
t ]−11Si

t >0. Assume now that one of the δi is strictly smaller than 2: then the associated component Si

has a positive probability to hit 0 before T . As a consequence, with positive probability, σ † is unbounded on [0, T ]
and it is not clear anymore to check directly (H�). Alternatively, assume (again to simplify) that Dxvt ∈ Sd++(R).
Then Ct �= 0: indeed, Ct ∈ Sd+(R) and Tr(Ct ) = Tr(Dxvtσtσ

T
t ) > 0 since σtσ

T
t �= 0 and Dxvt is invertible.

5.3.2. A numerical example
We consider a two-dimensional example, defined by

St =
(

B1
t + 0.3B2

t∫ t

0 B1
s ds

)
.

It corresponds to a constant (degenerate) matrix

σt =
(

1 0.3
0 0

)
.

For the function v we take

v(t, x) =
(

cos(3x1)

cos(3x2)

)
,

and we set T = 1. According to the previous paragraph, (H�) is satisfied and an optimal sequence of strategies is
given by Theorem 5.1. To assess the efficiency of an arbitrary admissible sequence of strategies we set

αn := Nn
T 〈Zn〉T

(
∫ T

0 Tr(Xt )dt)2
and βn :=

√
Nn

T Zn
T∫ T

0 Tr(Xt )dt
.

From Theorem 4.2 we must have lim infn→+∞ αn ≥ 1 a.s., while for the optimal sequence the equality holds. The
normalized error βn is also important in practice, however we cannot in general asymptotically control a.s. this quan-
tity. But it is easy to believe that the values of βn are smaller for strategies where the corresponding values of αn are
smaller, at least in mean. We will illustrate this heuristics in the following.
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Fig. 1. The values αn,opt and αn,det with respect to Nn
T

.

To simulate the process S on [0,1] we use a thin uniform time mesh with n̄ = 10,000 points. The same mesh is
later used to calculate the true value of the stochastic integral and the optimal lower bound equal to (

∫ T

0 Tr(Xt )dt)2.
The hitting times are calculated as well on this mesh. Using this thin grid induces a discrete-time sampling error but
by taking n̄ quite large as we do, we guess that this error can be neglected in our subsequent results.

We simulate 25 trajectories of the process S on [0,1]. Further we test the optimal discretization strategy and the
regular deterministic discretization on these trajectories, for different discretization parameters εn.

(a) To test the performance of the optimal discretization we take 5 different values of εn, namely 0.2, 0.14, 0.1, 0.07,
0.05, and apply the strategy given in Theorem 5.1.

(b) Further we test the performance of the deterministic discretization strategy with Nn
T equidistant times, for Nn

T =
20,40,80,160,320 (the values of Nn

T are empirically chosen as approximately equal to the average number of
discretization times in the optimal algorithm for the values of εn given above).

We denote (αn,opt, βn,opt) and (αn,det, βn,det) the pairs (αn,βn) respectively for the optimal and the regular determin-
istic strategy.

Regarding further details of implementation, we refer to [6, Proof of Lemma 3.1] for the detailed construction of the
solution to the matrix equation (4.1). For the computation of the pseudo-inverse matrix in (H�), this is straightforward
since σt is constant. For the perturbation procedure appearing in (5.4), we take δ = 0.6 ≤ 2(ρN − 1) < 2

3 and the
function χ(x) = sin(π(x ∨ 1/2) ∧ 1).

Figure 1 shows the values of αn,opt and αn,det with respect to the number of the discretization times Nn
T for the

optimal and the regular discretization in all the tests belonging to 5 different groups. We observe that the values
αn,opt become less and less dispersed and converges to 1 as Nn

T increases (εn → 0), which confirms the theoretical
results. In particular, from Nn

T = 80 the quality of the algorithm is already good and it largely outperforms the regular
discretization.

Figure 2 illustrates the pairs (αn,βn) for the same 25 simulations, where εn = 0.05 was used for the optimal
discretization and Nn

T = 320 was used for the regular deterministic strategy (i.e. the last group of the tests). As
expected from Theorems 4.2 and 5.1, we observe the inequality αn,opt < αn,det and the limit αn,opt ≈ 1. More-
over, the inequality |βn,opt| < |βn,det| holds as well for 21 of the 25 simulations. The empirical variances of the
values of βn,opt and βn,det are equal to 1.07 and 3.52 respectively, which is nearly the same ratio as for the cor-
responding values of αn: this observation is coherent with the possible property of Central Limit Theorem for βn,
where the limiting distribution would be a mixture of Gaussian distributions with variance roughly equal to αn.
This latter property is just a conjecture which is delicate to prove and left for further research. Anyway, this ob-
servation confirms that the almost sure minimization of the limit of αn helps to reduce the variance of βn as ex-
pected.
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Fig. 2. The pairs (αn,det, βn,det) and (αn,opt, βn,opt) are represented by crosses and points respectively.

5.4. Proof of Theorem 5.1

The proof is divided into several steps. Assumptions of Theorem 5.1 are in force in all this subsection.

5.4.1. Step 1: A reverse relation between X and �

Proposition 5.3. The following equality holds

Xt = (σt )
T�tσt , ∀t ∈ [0, T ) a.s. (5.5)

Proof. We are going to establish the above relation for any given t , with probability 1: however, the reader can check
that the negligible set can be the same for all t (as for the definitions of σ,X,�) because the arguments used are of
deterministic nature.

If σt is invertible, σ
†
t = σ−1

t and obviously Xt = (σt )
T�tσt in view of the definition (H�).

Now assume that rank(σt ) < d . By (5.1) we have

σtσ
†
t σt = σt (5.6)

and the matrix σ
†
t σt is symmetric. We choose an orthonormal basis (ei)1≤i≤d under which the matrix σ

†
t σt is diagonal,

i.e.

σ
†
t σt =

⎛⎜⎜⎜⎝
α1 0 . . . 0
0 α2 . . . 0
...

...
. . .

...

0 0 . . . αd

⎞⎟⎟⎟⎠
for some α1, . . . , αd . If σ 1

t , . . . , σ d
t are the column vectors of σt (in the basis (ei)1≤i≤d ), then from (5.6) we get(

α1σ
1
t , . . . , αdσ d

t

)= (σ 1
t , . . . , σ d

t

)
. (5.7)

For any 1 ≤ i ≤ d if σ i
t �= 0 then we must have αi = 1. On the other hand k := rank(σ

†
t σt ) ≤ rank(σt ) < d . Hence by

permuting the basis elements and using (5.6) we can write σ
†
t σt and σt in the form:

σ
†
t σt =

(
Idk 0
0 0

)
, σt =

⎛⎜⎜⎜⎜⎝
σ 1

1,t . . . σ k
1,t 0 . . . 0

σ 1
2,t . . . σ k

2,t 0 . . . 0
... · · · ...

... · · · ...

σ t
d,t . . . σ k

d,t 0 . . . 0

⎞⎟⎟⎟⎟⎠ . (5.8)
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We want to show that Xt = (σt )
T�tσt which by the definition of �t is equivalent to

Xt = (σ †
t σt

)T
Xt

(
σ

†
t σt

)= (σ †
t σt

)
Xt

(
σ

†
t σt

)
. (5.9)

In view of (5.8) and since X is symmetric non-negative definite, the equality (5.9) is equivalent to the following system
of equations:

eT
i Xtei = 0 for i = k + 1, . . . , d, (5.10)

where (ei) are the vectors of the basis. We now prove (5.10). Let i ∈ {k + 1, . . . , d}. From the definition of Xt we get

2 Tr(Xt )Xt + 4X2
t = σ T

t C̃t σt , (5.11)

where C̃t = (Dxvt )
Tσtσ

T
t Dxvt . From (5.8) it is clear that σtei = 0, thus Equation (5.11) yields

2 Tr(Xt )e
T
i Xtei + 4eT

i X2
t ei = 0.

Both Xt and X2
t are in Sd+(R), thus both above terms are non-negative, therefore they are equal to 0. Either Tr(Xt ) = 0

(implying Xt = 0 and (5.10)), or Tr(Xt ) > 0 and eT
i Xtei = 0. In any case, (5.10) holds and we are done. �

5.4.2. Step 2: Verification of (Aosc.
S )

The stopping times (5.4) define a sequence of strategies satisfying (Aosc.
S ): this is a consequence of Theorem 3.10(i)

with H = �. Indeed the existence of the finite random variable CH stems from (5.3).

5.4.3. Step 3: Verification of (AN )
We aim at showing

Proposition 5.4. We have the following convergence∑
τn
i−1<T

�ST
τn
i
�τn

i−1
�Sτn

i

a.s.→
∫ T

0
Tr
(
�t d〈M〉t

)= ∫ T

0
Tr(Xt )dt.

Then, in view of Theorem 3.10(ii), we conclude that the sequence of strategies T = {T n
εδ
n
: n ≥ 0} satisfies (AN ).

Combined with Step 2, we have proved that this is an admissible sequence.
Observe that the above result is not a particular case of Proposition (3.8) since we do not know if � is continuous in

time (it is likely not for degenerate σ ). To handle this difficulty, we are going to leverage the reverse relation between
X and � (Step 1), and the continuity of X.

Proof of Proposition 5.4. By Itô’s lemma like for (3.12) and using that � is symmetric, we obtain∑
τn
i−1<T

�ST
τn
i
�τn

i−1
�Sτn

i
= 2

∫ T

0
�ST

t �φ(t) dSt +
∫ T

0
Tr
(
�φ(t) d〈M〉t

)
. (5.12)

Then ∫ T

0
Tr
(
�φ(t) d〈M〉t

)= ∫ T

0
Tr
(
σ T

t �φ(t)σt

)
dt

=
∫ T

0
Tr
(
σ T

φ(t)�φ(t)σφ(t)

)
dt +

∫ T

0
Tr
(
(σt − σφ(t))

T�φ(t)(σt + σφ(t))
)

dt .

Observe that the first term on the r.h.s. above is equal to
∫ T

0 Tr(Xφ(t))dt owing to Proposition 5.3: since X is a.s.

bounded continuous and the time step goes to 0 (see (3.7) valid under (Aosc.
S )), we easily obtain

∫ T

0 Tr(Xφ(t))dt
a.s.→∫ T

0 Tr(Xt )dt .
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The second term tends to 0 a.s. thanks to the continuity of σ and the uniform bound (5.3) on �. We have proved∫ T

0
Tr
(
�φ(t) d〈M〉t

) a.s.→
∫ T

0
Tr(Xt )dt .

To complete the proof, in view of (5.12) it remains to show that∫ T

0
�ST

t �φ(t) dSt
a.s.→ 0.

The a.s.-convergence to 0 of the contribution
∫ T

0 �ST
t �φ(t) dAt is proved as for (3.13), using (Aosc.

S ) and (H�). The

second contribution Kn
T := ∫ T

0 �ST
t �φ(t) dMt is a local martingale, which bracket is bounded by ε2

n up to a random
finite constant (use again (Aosc.

S ) and (H�)). Consequently, an application of Lemma 3.1 with p = 2, ensures that

Kn
T

a.s.→ 0. We are done. �

5.4.4. Final step: Completion of proof of Theorem 5.1
So far, we have showed that the strategy T = {T (n)

εδ
n

: n ≥ 0} is admissible. We now prove that

lim
n→+∞Nn

T

〈
Zn
〉
T

=
(∫ T

0
Tr(Xt )dt

)2

a.s.

First, proceeding as (3.16), we write that ε2+δ
n Nn

T equals

ε2+δ
n +

∑
τn
i <T

�ST
τn
i
�τn

i−1
�Sτn

i
+
∑

τn
i <T

�ST
τn
i

(
�

(n)

τn
i−1

− �τn
i−1

)
�Sτn

i
. (5.13)

The first term converges to 0, as well as the last term (proceeding as for (3.17)), while the second one converges a.s.
to
∫ T

0 Tr(�t d〈M〉t ) (Proposition 5.4). To summarize, we have justified

lim
n→+∞ ε2+δ

n Nn
T =

∫ T

0
Tr
(
�t d〈M〉t

)= ∫ T

0
Tr(Xt )dt a.s. (5.14)

Thus it remains to show that

lim
n→+∞ ε−(2+δ)

n

〈
Zn
〉
T

=
∫ T

0
Tr(Xt )dt a.s. (5.15)

Starting from (4.6), write 〈Zn〉T in the form〈
Zn
〉
T

=
∑

τn
i−1<T

(
�ST

τn
i
�

(n)

τn
i−1

�Sτn
i

)2 + en
0,T + en

1,T + en
2,T + en

3,T + en
4,T + en

5,T ,

where en
0,T , en

1,T , en
2,T , en

3,T are defined as in the proof of Theorem 4.2 and the other terms are defined as follows:

en
4,T :=

∑
τn
i−1<T

(
�BT

τn
i
Xτn

i−1
�Bτn

i

)2 −
∑

τn
i−1<T

(
�ST

τn
i
�τn

i−1
�Sτn

i

)2
,

en
5,T :=

∑
τn
i−1<T

(
�ST

τn
i
�τn

i−1
�Sτn

i

)2 −
∑

τn
i−1<T

(
�ST

τn
i
�

(n)

τn
i−1

�Sτn
i

)2
.
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First notice that for each i ≤ Nn
T − 1 we have �ST

τn
i
�

(n)

τn
i−1

�Sτn
i

= ε2+δ
n , thus

ε−(2+δ)
n

∑
τn
i−1<T

(
�ST

τn
i
�

(n)

τn
i−1

�Sτn
i

)2
=
∑

τn
i <T

�ST
τn
i
�

(n)

τn
i−1

�Sτn
i

+ ε−(2+δ)
n

(
�ST

T �
(n)

τn
Nn

T
−1

�ST

)2
a.s.→
∫ T

0
Tr
(
�t d〈M〉t

)= ∫ T

0
Tr(Xt )dt,

where the last convergence is derived similarly to that of (5.13).
Moreover, from (4.7) in the proof of Theorem 4.2, we already have (for εn small enough so that εn ≤ 1 and since

2 + δ ≤ 2ρN )

ε−(2+δ)
n en

i,T ≤ ε−2ρN
n en

i,T

a.s.→ 0 a.s. for i = 0,1,2,3.

To complete the proof of Theorem 5.1, it remains only to prove that

ε−(2+δ)
n en

i,T

a.s.→ 0 a.s. for i = 4,5.

We start with en
5,T :

∣∣ε−(2+δ)
n en

5,T

∣∣≤ ∑
τn
i−1<T

(
�ST

τn
i
�τn

i−1
�Sτn

i
+ �ST

τn
i
�

(n)

τn
i−1

�Sτn
i

)
× ∣∣�ST

τn
i
�τn

i−1
�Sτn

i
− �ST

τn
i
�

(n)

τn
i−1

�Sτn
i

∣∣ε−(2+δ)
n

≤
∑

τn
i−1<T

εδ
nχεδ

n

(
λmin(�τn

i−1
)
)|�Sτn

i
|2∣∣2ε−2−δ

n �ST
τn
i
�

(n)

τn
i−1

�Sτn
i

∣∣
≤ 2εδ

n

∑
τn
i−1<T

|�Sτn
i
|2 a.s.→ 0

thanks to Proposition 3.8.
Finally, we analyse en

4,T . From its definition, Proposition 5.3 and (H�), we get∣∣ε−(2+δ)
n en

4,T

∣∣
≤ ε−(2+δ)

n

∑
τn
i−1<T

∣∣�BT
τn
i
Xτn

i−1
�Bτn

i
− �ST

τn
i
�τn

i−1
�Sτn

i

∣∣(�BT
τn
i
Xτn

i−1
�Bτn

i
+ �ST

τn
i
�τn

i−1
�Sτn

i

)

≤ ε−(2+δ)
n c(5.3) sup

1≤i≤Nn
T

sup
t∈(τn

i−1,τ
n
i ]

|�St + σφ(t)�Bt |
∣∣∣∣∫ t

φ(t)

�σs dBs + �At

∣∣∣∣
× (�BT

τn
i
Xτn

i−1
�Bτn

i
+ �ST

τn
i
�τn

i−1
�Sτn

i

)
. (5.16)

Now we apply twice Lemma 3.3(ii), first taking θ = 0 and second taking θ = θσ : it readily follows that for any given
ρ > 0, we have a.s. for any n ∈N

sup
1≤i≤Nn

T

sup
t∈(τn

i−1,τ
n
i ]
(|�Mt | + |σφ(t)�Bt |

)≤ C0ε
1−ρ
n , (5.17)



1580 E. Gobet and U. Stazhynski

sup
1≤i≤Nn

T

sup
t∈(τn

i−1,τ
n
i ]

∣∣∣∣∫ t

φ(t)

�σs dBs

∣∣∣∣≤ C0ε
1+θσ −ρ
n . (5.18)

Moreover by Corollary 3.6 we have

sup
1≤i≤Nn

T

sup
t∈(τn

i−1,τ
n
i ]

|�At | ≤ C0ε
2α−ρ
n .

The last factor in the r.h.s. of (5.16) converges a.s. to a finite random variable (Propositions 3.7 and 5.4). Combining
this with the above estimates, the inequality (5.16) becomes∣∣ε−(2+δ)

n en
4,T

∣∣≤ C0ε
−2−δ
n ε1−ρ

n

(
ε1+θσ −ρ
n + ε2α−ρ

n

)
.

It is now easy to see that, since we have chosen δ < θσ and δ < 2α − 1, we can take ρ small enough so that
ε
−(2+δ)
n en

4,T → 0. The proof is finished.

5.5. Proof of Proposition 5.2

Consider the equation solved by Xt (see (4.1) and (4.2)), and multiply it by σ
†
t from the right and by (σ

†
t )T from the

left: it gives

2 Tr(Xt )
(
σ

†
t

)T
Xtσ

†
t + 4

(
σ

†
t

)T
X2

t σ
†
t = (σtσ

†
t

)T
C̃t

(
σtσ

†
t

)
where C̃t = (Dxvt )

Tσtσ
T
t Dxvt . Take the trace, use that (σ

†
t )TX2

t σ
†
t ∈ Sd+(R), in order to obtain

2 Tr(Xt )Tr(�t ) ≤ Tr
((

σtσ
†
t

)T
C̃t

(
σtσ

†
t

))
.

Recall the inequality Tr(SS ′) ≤ Tr(S)Tr(S ′) for any non-negative definite symmetric matrices S and S ′. Thus,
Tr((σtσ

†
t )TC̃t (σtσ

†
t )) ≤ d2 Tr(C̃t ) where we have used the easy inequality Tr(σtσ

†
t ) ≤ d . Note that the above inequal-

ities are of deterministic nature and therefore they hold for any t with probability 1 (the full set is the one allowing to
define X,�,σ, C̃). Invoking (HM ) and (Hv) to control C̃, we deduce that there exists a non-negative random variable
c̃, finite a.s., such that

Tr(Xt )Tr(�t ) ≤ c̃, ∀t ∈ [0, T ] a.s. (5.19)

Owing to the condition (HC), Xt �= 0 for any t ∈ [0, T ] a.s., and by continuity of Xt , we get that inft∈[0,T ] Tr(Xt ) > 0
a.s. and we conclude to (H�) thanks to (5.19).

Appendix

A.1. Proof of the Lemma 4.3

In view of (Hv) there exists 
D with P(
D) = 1 such that for every ω ∈ 
D there is δ(ω) > 0 such that, for any
A ∈ {Dxj

,D2
xj xk

,Dt : 1 ≤ j, k ≤ d},

sup
0≤t<T

sup
|x−St (ω)|≤δ(ω)

∣∣Av(t, x)
∣∣< +∞.

Since sup1≤i≤Nn
T

�τn
i

a.s.→ 0 and S is continuous on [0, T ], there exists a set 
C of full measure such that, for every
ω ∈ 
C , for n large enough we have

sup
0≤s,t≤T ,|t−s|≤sup1≤i≤Nn

T
�τn

i

∣∣St (ω) − Ss(ω)
∣∣≤ δ(ω).
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Hence for ω ∈ 
C ∩ 
D , for n large enough, by a Taylor formula we obtain (the dependence on ω is further omitted,
we assume ω ∈ 
C ∩ 
D)

sup
t∈(τn

i−1,τ
n
i ]

∣∣v(t, St ) − v
(
τn
i−1, Sτn

i−1

)− Dxv
(
τn
i−1, Sτn

i−1

)∣∣≤ C0

(
�τn

i + sup
t∈(τn

i−1,τ
n
i ]

|�St |2
)
.

Plugging this estimate into 〈Rn〉T we obtain that a.s., for n large enough,

ε2−4ρN
n

〈
Rn
〉
T

≤ C0ε
2−4ρN
n

∑
τn
i−1<T

((
�τn

i

)3 + �τn
i sup

τn
i−1≤t≤τn

i

|�St |4
)
.

We deduce that ε
2−4ρN
n 〈Rn〉T a.s.→ 0 since

• for any ρ > 0, ε
2−4ρN
n

∑
τn
i−1<T (�τn

i )3 ≤ ε
2−4ρN
n Nn

T sup1≤i≤NT
(�τn

i )3 ≤ C0ε
8−6ρN−ρ
n by using Lemma 3.2(ii),

thus it converges to 0 since ρN < 4/3,
• ε

2−4ρN
n

∑
τn
i−1<T �τn

i supτn
i−1≤t≤τn

i
|�St |4 ≤ C0ε

6−4ρN
n T → 0 a.s.

We are done.

A.2. Almost sure convergence using domination in expectation

The next result allows to prove the a.s. convergence of a dominated process U using that of a dominating process V ,
the domination relation being in expectation. Its use is crucial in our analysis.

Lemma A.1 ([6, Lemma 2.2]). Let C+
0 be the set of non-negative continuous adapted processes, vanishing at t = 0.

Let (Un)n≥0 and (V n)n≥0 be two sequences of processes in C+
0 . Assume that

(i) t �→ V n
t is a non-decreasing function on [0, T ], a.s.;

(ii) the series
∑

n≥0 V n
T converges a.s.;

(iii) there is a constant c ≥ 0 such that, for every n ∈N, k ∈N and t ∈ [0, T ], we have

E
[
Un

t∧θk

]≤ cE
[
V n

t∧θk

]
with the stopping time θk := inf{s ∈ [0, T ] : V̄s ≥ k}2 setting V̄t =∑n≥0 V n

t .

Then for any t ∈ [0, T ], the series
∑

n≥0 Un
t converges a.s. As a consequence, Un

t

a.s.→ 0.
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