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A LIOUVILLE THEOREM FOR ELLIPTIC SYSTEMS WITH
DEGENERATE ERGODIC COEFFICIENTS

BY PETER BELLA∗,1, BENJAMIN FEHRMAN†,2 AND FELIX OTTO†

Universität Leipzig∗ and Max Planck Institute for Mathematics in the Sciences†

We study the behavior of second-order degenerate elliptic systems in di-
vergence form with random coefficients which are stationary and ergodic.
Assuming moment bounds like Chiarini and Deuschel (2014) on the coeffi-
cient field a and its inverse, we prove an intrinsic large-scale C1,α-regularity
estimate for a-harmonic functions and obtain a first-order Liouville theorem
for a-harmonic functions.

1. Introduction and the main results. We study the behavior of second order
nonuniformly elliptic equations, and more generally systems of equations, with
random coefficients. The random coefficient fields a are assumed to be stationary,
meaning that the joint probability distribution of a and a(· + x) are the same, and
ergodic, meaning that every translation invariant random variable is almost surely
constant. Furthermore, as in the framework of Chiarini and Deuschel [12], rather
than assuming the field is uniformly elliptic we assume only moment bounds from
above and below.

More precisely, if 〈·〉 denotes the expectation with respect to the probability
measure on the space of coefficient fields, which will be denoted �, we define the
scalar random variables 0 < λ,μ < ∞ via

(1) λ := inf
ξ∈Rd

ξ · aξ

|ξ |2 and μ := sup
ξ∈Rd

|aξ |2
ξ · aξ

,

where in the scalar symmetric case λ−1 = |a−1| and μ = |a| are the spectral norms
of a and its inverse. Our assumption is that

(2)
〈
μp〉 1

p + 〈
λ−q 〉 1

q =: K < ∞ where
1

p
+ 1

q
<

2

d
.

Here d ≥ 2 denotes the dimension. Notice that (2) coincides with the integrability
condition considered in [12].
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We require this condition most essentially in two steps of the proof. First, the
strict inequality appearing in (2) is used in the foremost stochastic element of the
argument, and guarantees the compactness of a certain Sobolev embedding which
is used in Lemma 2 to establish the sublinearity of the large-scale averages of the
corrector and flux correction, which are defined in (3), (4), and (5). The determin-
istic elements of the argument, namely the Caccioppoli inequality (Lemma 3) and
the large-scale C1,α-regularity (Theorem 2), require only 1/p + 1/q ≤ 2/d .

The primary result of this paper is a first-order Liouville theorem for degenerate
coefficient fields satisfying (2). This means that for 〈·〉-a.e. environment a, every
subquadratically-growing a-harmonic function u on the whole space belongs to
the (d + 1)-dimensional space of a-affine functions. Namely, the space spanned
by functions of the form c + ξ · x + φξ where, for every ξ ∈ R

d , the corrector φξ

denotes the whole-space solution

(3) −∇ · a(ξ + ∇φξ ) = 0,

whose gradient ∇φξ is stationary, by which we understand ∇φξ (a;x + z) =
∇φξ (a(· + z);x) for any shift vector z ∈ R

d , has vanishing average 〈∇φξ 〉 = 0,

and finite 2q
q+1 -moment 〈|∇φξ |

2q
q+1 〉. The following theorem summarizes the result.

THEOREM 1. Let 〈·〉 be stationary and ergodic, and assume it satisfies (2).
Then 〈·〉-a.e. coefficient field a ∈ � has the following Liouville property: if u is an
a-harmonic function in the whole space, that is, it solves −∇ ·a∇u = 0 in R

d with
d ≥ 2, and in addition u is subquadratic in the sense that, for some α < 1,

lim
R→∞R−(1+α)

( 
BR

|u| 2p
p−1

)p−1
2p = 0,

then there necessarily exists c ∈ R and ξ ∈ R
d for which u(x) = c + ξ · x + φξ (x).

We remark that, although the perspective of this paper is primarily analytic,
Theorem 1 has implications concerning the underlying stochastic process {Xt =
(X1,t , . . . ,Xd,t )}t≥0 on R

d associated to the generator

La := ∇ · a∇.

Namely, it is a new and immediate consequence of the theorem that, for 〈·〉-a.e.
a and for each i ∈ {1, . . . , d}, solutions to equation (3) are unique up to an addi-
tive constant. It therefore follows that, for 〈·〉-a.e. a, there exists a unique (up to
the addition of a constant vector) function φ = (φ1, . . . , φd) on R

d for which the
process

Mt = Xt + φ(Xt)

is a Martingale on R
d with respect to the quenched measure associated to the

generator La . The sublinearity of the corrector proven in Lemma 2 below then
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suggests, at least formally, that the laws of the rescaled processes εXt/ε2 are con-
verging like those of the rescaled Martingales εMt/ε2 , where the limit of the latter
may be understood using standard Martingale convergence theorems. See [12],
Section 4, for a complete and rigorous discussion of these ideas in the scalar case.

Theorem 1 amounts to an extension of the first-order Liouville property for uni-
formly elliptic coefficient fields obtained by Gloria, Neukamm, and the third au-
thor ([21], Corollary 1) to the case of degenerate environments satisfying (2). For
this, like in [21], we will also need, for each i ∈ {1, . . . , d}, the skew-symmetric
matrix field σi , which can be viewed as a vector potential for the harmonic coordi-
nates and provides the correction of the ith component of the flux

qi := a(∇φi + ei),

by satisfying the equation

(4) qi − 〈qi〉 =: ∇ · σi.

Here the divergence of a tensor field is defined as

(∇ · σi)j :=
d∑

k=1

∂kσijk.

The linearity of the equation allows for the consideration of only the fluxes corre-
sponding to the canonical basis {ei}i∈{1,...,d}, where

〈qi〉 = 〈
a(∇φi + ei)

〉 =: ahomei

defines the constant, possibly nonsymmetric, homogenized coefficients ahom. The
uniform ellipticity of ahom was established in [12], Proposition 4.1.

In the setting of uniformly elliptic random coefficient fields the vector corrector
σ was introduced and constructed in [21], Lemma 1. Since the definition of σi is
underdetermined, taking motivation from the analogous periodic framework, they
made the specific choice of gauge

(5) −
σijk = ∂jqik − ∂kqij .

A principle difference between the degenerate and uniformly elliptic cases is that,
in the latter the fluxes qi belong to L2(�), and therefore so too do the gradients
∇σijk ∈ L2(�), whereas in the degenerate setting this is no longer true. In fact,

Hölder’s inequality and the moment bound (2) imply only that qi ∈ L
2p

p+1 (�). To
see this, observe that definition (1) and condition (2) imply that aei ∈ Lp(�) ⊂
L

2p
p+1 (�), and definition (1) combined with Hölder’s inequality in the form

〈|a∇φi |
2p

p+1
〉p+1

2p ≤ 〈
μ

p
p+1 (∇φi · a∇φi)

p
p+1

〉p+1
2p ≤ 〈

μp〉 1
2p

〈
(∇φi · a∇φi)

〉 1
2

guarantee that a∇φi ∈ L
2p

p+1 (�). For this reason, it is necessary to replace the
L2-theory for the construction of σ used in [21], Lemma 1, with an approximation
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argument and a Calderón–Zygmund estimate to first construct the stationary, mean

zero gradients of σ in L
2p

p+1 (�), and thereby define the generally nonstationary flux
corrections uniquely up to an additive random constant.

The properties of the correctors and flux corrections are summarized by the
following lemma, where we remark that the construction of the scalar corrector
φ in the degenerate ergodic setting under the weaker assumptions p = q = 1 has
been carried out in [12], Section 4. Loosely speaking, and for the construction
of both the corrector and the flux corrections, the definitions (3), (4) and (5) are
lifted to the probability space in order to construct their gradients as stationary and
mean-zero random fields with finite moments determined by (2).

LEMMA 1. Let 〈·〉 be stationary and ergodic, and let (2) be satisfied.
Then there exist C = C(d) > 0 and two random tensor fields {φi}i=1,...,d and
{σijk}i,j,k=1,...,d with the following properties: The gradient fields are stationary,
have bounded moments, and are of vanishing expectation:

(6)

d∑
i=1

〈∇φi · a∇φi〉 +
d∑

i=1

〈|∇φi |
2q

q+1
〉 q+1

2q +
d∑

i,j,k=1

〈|∇σijk|
2p

p+1
〉p+1

2p ≤ CK,

〈∇φi〉 = 〈∇σijk〉 = 0.

Moreover, the field σ is skew-symmetric in its last two indices, that is

σijk = −σikj .

Furthermore, for 〈·〉-a.e. a we have

qi = a(∇φi + ei) = ahomei + ∇ · σi.

Finally, the homogenized coefficient field ahom is uniformly elliptic in the sense
that, for each ξ ∈ R

d ,
1

K
|ξ |2 ≤ ξ · ahomξ and |ahomξ | ≤ K|ξ |.

Furthermore, owing to the fact that the gradients of the corrector φ and flux-
correction σ have zero average, the ergodicity of the coefficient field guarantees
by standard arguments that their large-scale averages are sublinear in the sense of
the following lemma.

LEMMA 2. Let 〈·〉 be stationary and ergodic, and let (2) be satisfied. Then, the
large-scale averages of the random tensor fields {φi}i=1,...,d and {σijk}i,j,k=1,...,d

are sublinear in the sense that, for 〈·〉-a.e. a,

lim
R→∞

1

R

( 
BR

∣∣∣∣φ −
 

BR

φ

∣∣∣∣
2p

p−1
)p−1

2p = 0,

lim
R→∞

1

R

( 
BR

∣∣∣∣σ −
 

BR

σ

∣∣∣∣
2q

q−1
) q−1

2q = 0.
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We remark that an alternate construction of the flux correction is presented in
the Appendix, and an ingredient of this argument requires a small modification
of Lemma 1. Indeed, the proof of sublinearity follows from the integrability of
the gradient fields ∇φ and ∇σ and does not use any properties of the underlying
equation.

The large-scale C1,α-regularity first obtained in [21] asserts that whenever u

is an a-harmonic function, then its deviation from the space of a-harmonic affine
functions, as defined for each r > 0 by the excess

Exc(r) = inf
ξ∈Rd

 
Br

(∇u − (ξ + ∇φξ )
) · a(∇u − (ξ + ∇φξ )

)
,

decays, for any α ∈ (0,1) and for all sufficiently large radii r < R depending on
α, as a power law

Exc(r) ≤ C(r/R)2α Exc(R).

The proof is purely deterministic and is based on estimating the homogenization
error determined by an a-harmonic function u and an ahom-harmonic function v,
as defined by

u − (v + φi∂iv),

for φi the first-order corrector defined in (3) corresponding to the ith standard
basis vector. An essential observation of [21] was that the homogenization error
satisfied a divergence-form equation with right-hand side in divergence-form. We
use this fact to estimate its energy in the intrinsic L2(a)-norm, where the regularity
of the ahom-harmonic function v plays an essential role, and to ultimately prove the
excess decay and large-scale C1,α-regularity.

In this setting, the construction of the appropriate ahom-harmonic function v dif-
fers considerably from the uniformly elliptic case. To estimate the homogenization
error on the ball BR , the idea is to exploit the best integrability of the coefficient
field by separating

(7) the “Dirichlet case” q ≥ p and the “Neumann case” p ≥ q,

where in the Dirichlet case, we define v via the boundary condition

v = uε on ∂BR,

and, in the Neumann case, we impose

ν · ahom∇v = (ν · a∇u)ε on ∂BR,

where the subscript ε denotes a smoothing by convolution on the boundary of the
ball. Then, like in [21], the energy of the corresponding homogenization error is
controlled by introducing a cutoff η vanishing near the boundary and estimating
the intrinsic energy of the quantity

u − (v + ηφi∂iv),
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where it will be necessary to use the aforementioned divergence-form equation sat-
isfied by the homogenization error, as modified by the introduction of the cutoff,
and to control the subsequent boundary terms arising from the case distinction (7).
The result is summarized by the following deterministic theorem, where the con-
stants C0 and C1 depend upon K from (2) through the ellipticity of ahom appearing
in Lemma 1.

THEOREM 2. Let the Hölder exponent α ∈ (0,1) and 
 > 0 be given. Then
there exist constants C0,C1 = C0,C1(d,α,K,
) with the following property:

If r < R are two radii such that for any ρ ∈ [r,R] we have

(8)
( 

Bρ

μp

) 1
p +

( 
Bρ

λ−q

) 1
q ≤ 
,

with the exponents p and q satisfying

(9)
1

p
+ 1

q
≤ 2

d
,

and

(10)

1

ρ

( 
Bρ

∣∣∣∣φ −
 

Bρ

φ

∣∣∣∣
2p

p−1
)p−1

2p ≤ 1

C0
,

1

ρ

( 
Bρ

∣∣∣∣σ −
 

Bρ

σ

∣∣∣∣
2q

q−1
) q−1

2q ≤ 1

C0
,

then any a-harmonic function u in BR , that is, weak solution of −∇ · a∇u = 0 in
BR , satisfies

Exc(r) ≤ C1

(
r

R

)2α

Exc(R),

where the excess

Exc(ρ) := inf
ξ∈Rd

 
Bρ

(∇u − (ξ + ∇φξ )
) · a(∇u − (ξ + ∇φξ )

)

measures in the L2(a)-sense deviations of u from the set of a-affine functions.

We remark that the assumptions of Theorem 2 will be satisfied for 〈·〉-a.e.
environment, provided the radius r is chosen sufficiently large. Indeed, for any
α ∈ (0,1) and any C0 > 0, the ergodic theorem asserts that for 〈·〉-a.e. envi-
ronment a there exists a random radius r1 = r1(a) such that (8) is achieved for


 = 2(〈μp〉 1
p + 〈λ−q〉 1

q ) whenever r ≥ r1 and Lemma 2 guarantees the existence
of r2 = r2(a) such that (10) is satisfied for every r ≥ r2.
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A version of the the Caccioppoli inequality adapted to the degenerate setting
will be used in the proofs of Theorems 1 and 2. In the uniformly elliptic case, the
statements may be used to bound the L2-norm of the gradient of an a-harmonic
function on ball by the L2-norm of the function itself on a somewhat larger ball.
A straightforward modification yields the analogous statement for elliptic systems
with nonsymmetric degenerate coefficients.

LEMMA 3. Suppose that u is an a-harmonic function in BR , and that for some
exponents p ∈ (1,∞), q ∈ [1,∞) we have

(11)
( 

BR

μp

) 1
p +

( 
BR

λ−q

) 1
q ≤ 
.

Then there exists C1,C2 = C1,C2(d) > 0 such that for any 0 < ρ < R
2 and any

c ∈ R,

(12)

( 
BR−ρ

|∇u| 2q
q+1

) q+1
q ≤ C1


 
BR−ρ

∇u · a∇u

≤ C2

2

ρ2

( 
BR\BR−ρ

|u − c| 2p
p−1

)p−1
p

.

Additionally, while the purpose of this paper is to establish the almost sure
large-scale C1,α-regularity of a-harmonic functions, as contained in Theorem 2,
and the corresponding almost sure Liouville property, as contained in Theorem 1,
we expect to obtain more quantitative information for ensembles 〈·〉 that satisfy a
stronger mixing condition and plan to make this the subject of future work. For
instance, by assuming the ensemble satisfies a logarithmic Sobolev inequality of
the type used in [21], Theorem 1, we expect to obtain similar stretched exponential
moments as [21], Theorem 1, for the minimal radius r∗ defined, for simplicity in
the case p = q , for C0 > 0 as defined in Theorem 2, by

r∗ = inf
{
r ≥ 1

∣∣∣ for all R ≥ r,

( 
BR

∣∣∣∣(φ, σ ) −
 

BR

(φ,σ )

∣∣∣∣
2p

p−1
) 2p

p−1 ≤ 1

C0

}
,

which effectively defines the initial scale on which the C1,α-regularity of Theo-
rem 2 begins to take effect. Furthermore, again assuming a logarithmic Sobolev
inequality, it should be possible to obtain a quantitative two-scale expansion for a-
harmonic functions like [21], Corollary 3. Lastly, following the methods of Fischer
and the last author [18], we expect to obtain the existence of higher-order correc-
tors for degenerate ensembles and corresponding higher-order Liouville statements
under a mild quantification of the ergodicity; see [18], Theorem 3, Corollary 4.

In the uniformly elliptic framework, the Caccioppoli inequality (12) can be
viewed as a version of a reversed Poincaré inequality, meaning that we gain one
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derivative in the estimate at the expense of increasing the radius of the ball. With
the assumption of uniform ellipticity replaced by a weaker moment bound condi-
tion on a from below and above, one has to replace the integrability exponents in
(12) on both sides. Hence, in this case, one trades a derivative for a possible loss
in the integrability. While in Lemma 3 we did not assume condition (9), which
appeared in Theorem 2, it has a direct relation to (12). Indeed, if one uses Sobolev
embedding on the right-hand side of (12) to trade one derivative for better inte-
grability, it is exactly condition (9) which ensures that in the end we get the same
exponent as the one we started with on the left-hand side of (12). In the case of a
condition on p and q with strict inequality (2), the above combination of Cacciop-
poli and Sobolev inequalities gives a gain in the integrability—a fact that allowed
Chiarini and Deuschel [12] (see also [11]), in the case of a scalar equation, to
perform Moser iteration. The condition (2) first appeared in the paper by Andres,
Deuschel, and Slowik [2] (see also [3]), and was recently generalized to study
invariance principles for environments with time-dependent coefficients [1, 15].

First-order Liouville statements for a-harmonic functions are a compact way
to express regularity on large scales. In fact, an easy post-processing of the ex-
cess decay in Theorem 2 yields a large-scale C1,α-estimate for a-harmonic func-
tions, see [21], Corollary 2. We thus speak of a C1,α-Liouville property. A fur-
ther post-processing yields large-scale C1,α-Schauder estimates for the operator
−∇ · a∇; see, for instance, [19], Theorem 5.20. In the case of constant-coefficient
(and thus scale-invariant) equations, this relation between C1,α-Liouville princi-
ples and C2,α-Liouville principles on the one hand, namely that subcubic harmonic
functions must be quadratic harmonic polynomials, and a C1,α- or C2,α-Schauder
theory on the other hand is classical: An indirect argument by Simon [28] allows to
directly pass from the Liouville property to the corresponding Schauder estimate.

For a general nonconstant coefficient field a, we call Ck,α-Liouville property
the fact that the linear space of a-harmonic functions that grow at most of the
order |x|k+α (say, in an averaged sense as in Theorem 1) has the same dimension
as in the case of constant-coefficient equations (where it is spanned by all harmonic
polynomials of order at most k). Without further structural conditions, it is almost
folkloric knowledge that this equality already fails for k = 0 and any α > 0 even
in the case of uniformly elliptic coefficients (which may even be smooth [17],
Proposition 21). The work of Yau [30], drawing a connection to curvature of the
metric given by a, popularized the question of determining whether the dimensions
are asymptotically equal for k ↑ ∞, as shown by Colding and Minicozzi [13] and
Li [23] for uniformly elliptic equations.

In the case of uniformly elliptic periodic coefficient fields, the full hierarchy
of Liouville properties was established by Avellaneda and Lin [8], based on ear-
lier ideas developed by those authors on a large-scale regularity theory in Hölder
and Lp-spaces [6, 7] via a Campanato iteration, which is also used in Theorem 2.
Marahrens and the last author [24], Corollary 4, derived a C0,α-Liouville prop-
erty in the case of stationary random coefficient fields with integrable correlation
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tails (i.e., integrable in a sufficiently strong sense so as to allow for a Logarithmic
Sobolev Inequality). Benjamini, Duminil-Copin, Kozma, and Yadin [9] derived
a C0,α-Liouville property under the mere assumption of ergodicity. Their result
applies to degenerate coefficient fields for which sufficient a priori Green’s func-
tion estimates are available, and they also formulated the question of higher-order
Liouville properties in the random case [9], Theorems 4, 5.

Armstrong and Smart [5] adapted the approach of [7] to obtain a large-scale
C1,0-regularity theory in the case of uniformly elliptic coefficient fields with a
finite-range condition, which was a major step because it required a new quanti-
tative substitute for the compactness argument, and which was later extended by
Armstrong and Mourrat [4] to very general mixing conditions. Gloria, Neukamm
and the last author [21] derived the C1,α-Liouville property under the mere as-
sumption of ergodicity in the uniformly elliptic case; the main new ingredients be-
ing 1) the usage of an intrinsic excess decay, that is, measuring the energy distance
to the space of intrinsically affine functions (i.e., the harmonic coordinates) and
2) the construction of the vector potential σ (which allows to bring the residuum
in the two-scale expansion into divergence form). Fischer and the last author ex-
tended the uniformly elliptic version of Theorem 2 to the case of an excess of
order k under a mild quantification of the sublinear growth of the corrector in
[17] to obtain a full hierarchy of Liouville properties, and showed in [18] that the
quantified sublinear growth of the corrector is satisfied under a mild quantifica-
tion of ergodicity in a certain class of Gaussian environments. Additionally, there
has recently been a lot of activity aimed at understanding the space of harmonic
functions on infinite percolation clusters with specified polynomial growth. For in-
stance, Sapozhnikov [27] recently proved the finite-dimensionality of these spaces
for a large class of percolation models.

Finally, we believe these results are very likely extendable to the discrete case.
Indeed, Deuschel, Nguyen and Slowik [14] have established an invariance prin-
ciple for random walks in a degenerate environments under similar integrability
assumptions on the coefficient field, and the techniques of the present paper are
expected to be adaptable to their setting. To this end, we include two estimates
which we believe will be useful in adapting our arguments to their framework.

LEMMA 4. Let Q = [0,1]d and let wD and wN be solutions of the Dirichlet
and Neumann problems, respectively:

(13)

{−
wD = 0 in Qd,

wD = v on ∂Qd,
and

{−
wN = 0 in Qd,

∇normwN = v on ∂Qd,

where in the Neumann case we also assume
´
∂Qd

v dx = 0. Then for each 1 < p <

∞, there exists C = C(d,p) > 0 such that∥∥∇normwD

∥∥
Lp(∂Qd) ≤ C

∥∥∇ tanv
∥∥
Lp(∂Qd),∥∥∇ tanwN

∥∥
Lp(∂Qd) ≤ C‖v‖Lp(∂Qd).
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While the arguments of this paper do not rely upon this fact (since they use the
smooth domain B1 instead of the cube Qd ), we believe that our method, which
reduces the statement of Lemma 4 on the cube Qd to the analogous statement
for harmonic functions on slab domains of the form [0,1] × R

d−1 with periodic
boundary data, can be easily translated to the discrete setting.

Organization and notation. The remainder of the paper presents the proofs
of Theorem 1, Lemmas 1 and 2, Theorem 2 and Lemma 3 in the order of their
appearance in the Introduction. In addition, the Appendix contains an alternative
argument for the construction of the flux corrector σ in Lemma 1 as well as the
proof of Lemma 4. We remark that, in order to simplify the notation, the state-
ments and proofs are written for the nonsymmetric scalar setting. However, at the
cost of increasing some constants, all of the arguments carry through unchanged
for nonsymmetric systems. Throughout, � is used to denote a constant whose de-
pendencies are specified in every case by the statement of the respective lemma or
theorem.

2. The proof of Theorem 1. Suppose that u is an a-harmonic function on the
whole space, that is

−∇ · a∇u = 0 in R
d,

which is strictly subquadratic in the sense that, for some α < 1,

lim
r→∞ r−(1+α)

( 
Br

|u| 2p
p−1

)p−1
2p = 0.

For 〈·〉-a.e. a it follows from the ergodic theorem and the integrability assumption
(2) that there exists r1 = r1(a) such that, for all r ≥ r1,

( 
Br

μp

) 1
p +

( 
Br

λ−q

) 1
q ≤ 2

(〈
μp〉 1

p + 〈
λ−q 〉 1

q
) =: 
.

Let C0 = C0(d,α,K,
) be as in Theorem 2, and choose r2 = r2(a) ≥ r1 so that,
in view of Lemma 2, for all r ≥ r2,

1

r

( 
Br

∣∣∣∣φ −
 

Br

φ

∣∣∣∣
2p

p−1
)p−1

2p ≤ 1

C0
and

1

r

( 
Br

∣∣∣∣σ −
 

Br

σ

∣∣∣∣
2q

q−1
) q−1

2q ≤ 1

C0
.

In order to conclude, observe that Lemma 3 and the definition of the excess
imply by the choice of r1 that, for each r ≥ r1, for C1 = C1(d) > 0,

Exc(r) ≤
 

Br

∇u · a∇u ≤ C1


r2

( 
B2r

|u| 2p
p−1

)p−1
p

.
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This implies that, in view of Theorem 2 and the choice of r2, for every of r > ρ >

r2, for C2,C3 = C2,C3(d,α,K,
) > 0,

Exc(ρ) ≤ C2

(
ρ

r

)2α

Exc(r) ≤ C3ρ
2αr−(2+2α)

( 
B2r

|u| 2p
p−1

)p−1
p

.

Therefore, owing to the choice of α we have, for each ρ > r2,

Exc(ρ) ≤ C3ρ
2α lim sup

r→∞

(
r−(1+α)

( 
B2r

|u| 2p
p−1

)p−1
2p

)2
= 0.

By definition of Exc(ρ) this implies existence of ξ ∈ R
d and c ∈ R s.t. u(x) =

c + ξ · x + φξ (x) for a.e. x ∈ Bρ . Since the values ξ and c are independent of the
choice of ρ, we obtain the statement of the theorem.

3. Proof of Lemma 1. The construction of the corrector φ in the case of
degenerate and unbounded, stationary and ergodic coefficients was performed in
[12], Section 4.1.

For the construction of the flux corrector σ , we combine an approximation ar-
gument with a version of the existence result for σ from [21]. Given n ∈ N let us
consider the random variable qn := I (|qn| ≤ n)q . Here, I stands for the character-
istic (indicator) function. We will prove the existence of a random tensor field σn

which satisfies:

• ∇σn,ijk ∈ L2(�) is stationary, 〈∇σn,ijk〉 = 0, and σn is skew-symmetric in its
last two indices;

• for 〈·〉-a.e. a we have

(14) ∇ · σn,i = qn,i − 〈qn,i〉;
• for 〈·〉-a.e. a we have

(15) −
σn,ijk = ∂jqn,ik − ∂kqn,ij .

This fact follows from the argument of Gloria, Neukamm, and the third author [21],
Lemma 1; for the reader’s convenience we outline here an alternative approach
which follows the reasoning presented by the third author at the September, 2015
Oberwolfach workshop on stochastic homogenization.

Fix n > 0. The argument first constructs the gradient of the expected approxi-
mate flux correction σn = {σn,ijk}i,j,k=1,...,d by considering the single component
σn,i = {σn,ijk} for each i ∈ {1, . . . , d} separately. For this, the equation will be
lifted to the probability space, and phrased in terms of the “horizontal gradient”
with respect to shifts of the coefficient field.

Precisely, for each i ∈ {1, . . . , d}, the horizontal derivative of a random variable
ζ along the ith coordinate direction is defined by the infinitesimal generator of the
corresponding translation in the probability space, and is given by the limit

Diζ(a) := lim
h→0

ζ(a(· + hei)) − ζ(a)

h
.
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We remark that the operators Di are closed, and densely defined on L2(�). We
write D(Di) for their respective domains and define the Hilbert space

H1 =
d⋂

i=1

D(Di) ⊂ L2(�),

equipped with the inner product

(f, g)H1 := 〈fg〉 +
d∑

i=1

〈Dif Dig〉.

The space H1 will be used to lift the weak formulations of (14) and (15) to the
probability space and ultimately to construct the horizontal gradient of the approx-
imate flux correction.

Henceforth, we fix i ∈ {1, . . . , d} and n ≥ 0, and to simplify notation suppress
the dependence on both indices in the argument to follow. Consider the closed
subspace of L2(�) defined by

X = {{Sljk}l,j,k=1,...,d ∈ L2(
�;Rd3) | Sljk + Slkj = 0,

∂mSljk = ∂lSmjk and 〈Sijk〉 = 0
}
,

where for a random variable ζ and for every i ∈ {1, . . . , d}, the notation ∂iζ de-
notes the distributional derivative of ζ defined by

〈∂iζχ〉 = −〈ζDiχ〉 for every χ ∈ H1.

We observe that X is a Hilbert space with respect to the standard inner product on
L2(�;Rd3

) and that, formally, we expect the gradient {∂lσijk} to be an element of
X where Sljk := ∂lσijk .

Interpreting equation (15) on the space X, Riesz’ representation theorem and
the boundedness of q yield a unique element {Sljk} ∈ X satisfying

(16) 〈SjklSjkl〉 = −2〈qkSjjk〉 for every {Sljk}l,j,k=1,...,d ∈ X,

where we have employed Einstein’s summation convention and 〈·〉 denotes the
standard inner product on L2(�).

In order to verify (15), it is necessary to prove that, in the sense of distributions,
and again employing Einstein’s summation convention, for each j, k ∈ {1, . . . , d},
(17) −∂lSljk = ∂jqk − ∂kqj .

As mentioned above, for any skew-symmetric {ηjk}j,k=1,...,d ∈ H1 the corre-
sponding gradient satisfies {Dlηjk}l,j,k=1,...,d ∈ X. Therefore, for an arbitrary such
{ηjk}, equation (16) implies that

〈SljkDlηjk〉 = −2〈qkDjηjk〉 = −〈qkDjηjk〉 − 〈qjDkηkj 〉
= −〈qkDjηjk〉 + 〈qjDkηjk〉,
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which, since the skew-symmetric {ηjk}j,k=1,...,d was arbitrary and such functions
are dense in X, completes the proof of (17).

It remains to prove (14) which, when interpreted on the space X turns for each
j ∈ {1, . . . , d} into

(18) Skjk = qj − 〈qj 〉.
And for this, since 〈Sljk〉 = 0 for every l, k, j ∈ {1, . . . , d}, the ergodicity implies
that it is sufficient to prove that, in the sense of distributions,

(19) ∂l∂l(Skjk − qj ) = 0.

But this follows immediately from the properties of X and (17), which provide the
distributional equality

∂l∂lSkjk = ∂l∂kSljk = ∂k∂lSljk
(17)= ∂k∂kqj − ∂k∂jqk = ∂k∂kqj − ∂j ∂kqk = ∂l∂lqj ,

where the final inequality is obtained using the fact that q is divergence free. This
completes the argument for (19) and therefore (18) as well.

To conclude, recalling that i ∈ {1, . . . , d} was fixed throughout, the gradient is
defined for each l, j, k ∈ {1, . . . , d} as

∂lσn,ijk := Sljk,

which in turn defines each component of the flux correction σn,i and therefore
the flux correction σn itself uniquely up to a random but spatially constant, skew-
symmetric vector. This finishes the proof of the existence.

To complete the proof of the lemma, it suffices to prove the uniform in n es-

timates for the expectation 〈|∇σn,ijk|
2p

p+1 〉. The result then follows by taking the
limit n → ∞. More generally, given two random fields f ∈ L∞(�;Rd) and σ ,
such that 〈∇σ 〉 = 0, ∇σ ∈ L2(�) is stationary, σ is skew-symmetric, and σ and f

are related through

(20) −
σ = −∇ · f,

it is enough to show a Calderón–Zygmund-type estimate

(21)
〈|∇σ |r 〉 ≤ C(d, r)

〈|f |r 〉,
for general 1 < r < ∞.

For R,T > 0 we consider σT,R , an approximation of σ , defined as a unique
finite energy solution of

1

T
σT,R − 
σT,R = −∇ · (ηRf ),

where ηR is a radial cut-off function for {|x| < R} in {|x| < 2R}. The additional
term 1

T
σT,R is called massive term, and localizes (up to an exponentially decay)
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the spatial dependence of the solution on the right-hand side. In the physics com-
munity, the above equation is called a screened Poisson equation. By the standard
Calderón–Zygmund theory of singular integral operators, applied to the massive
Green’s function (in fact its second mixed derivative), we get an estimate, inde-
pendently of T :

(22)
ˆ
Rd

|∇σT,R|r ≤ C(d, r)

ˆ
Rd

|ηRf |r ≤ C(d, r)

ˆ
B2R

|f |r .

We fix T > 0, and for R′ ≥ R � √
T we consider the difference σT,R(x) −

σT,R′(x) for points x ∈ BR/2(0). From the pointwise estimates on the massive
Green’s function GT (see, e.g., [20], Section 2.3) of the form

∣∣∇GT (x, y)
∣∣ ≤ C

e
−c 1√

T
|x−y|

|x − y|d−1 ,

∣∣∇x∇yGT (x, y)
∣∣ ≤ C

e
−c 1√

T
|x−y|

|x − y|d ,

we get that for x ∈ BR/2(0)

(23)

R−1∣∣(σT,R − σT,R′)(x)
∣∣ + ∣∣∇(σT,R − σT,R′)(x)

∣∣
≤ C

√
T

R
e−cR/

√
T ‖f ‖L∞ ≤ Ce−cR/

√
T ‖f ‖L∞ .

In particular, in the limit R → ∞ we have that σT,R converges (pointwise) to σT ,
where σT is stationary and satisfies

1

T
σT − 
σT = −∇ · f.

Moreover, estimate (23) with σT,R′ replaced by σT (estimate (23) does not depend
on R′, and so we are allowed to perform the limit R′ → ∞) in particular impliesˆ

BR/2(0)

|∇σT,R − ∇σT |r ≤ CRde−crR/
√

T ‖f ‖r
L∞ .

We combine this estimate with (22) to arrive at 
BR/2(0)

|∇σT |r ≤ Ce−crR/
√

T ‖f ‖r
L∞ + C

 
B2R(0)

|f |r .

Then by the ergodic theorem, as R → ∞, the left-hand side converges to 〈|∇σT |r〉
while the right-hand side converges to 〈|f |r〉, that is, we obtain〈|∇σT |r 〉 ≤ C

〈|f |r 〉.
Finally, since the sequence ∇σT is bounded in Lr(�), we can send T → ∞ and
obtain in the limit ∇σ which satisfies (20) and (21).
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It remains to establish the ellipticity of the homogenized coefficient field ahom.
For the lower bound, we observe that for an arbitrary ξ ∈ R

d ,

ξ · ahomξ = 〈
ξ · a(∇φξ + ξ)

〉 = 〈
(∇φξ + ξ) · a(∇φξ + ξ)

〉
,

where the final equality follows from the definition of the corrector φξ . Therefore,
by the definition of λ in (2) we get

ξ · ahomξ ≥ 〈
λ|∇φξ + ξ |2〉 ≥ 〈

λ−1〉−1|ξ |2 ≥ 1

K
|ξ |2,

where the last but one inequality follows from Jensen’s inequality used for a jointly
convex function (f, g) �→ f 2/g with the choice (f, g) = (∇φξ + ξ, λ−1), and the
fact that 〈∇φξ 〉 = 0. For the upper bound, for an arbitrary ξ ∈ R

d , using the defi-
nition of μ from (2),

|ahomξ | = ∣∣〈a(∇φξ + ξ)
〉∣∣ ≤ 〈∣∣a(∇φξ + ξ)

∣∣〉 ≤ 〈
μ

1
2
(
(∇φξ + ξ) · a(∇φξ + ξ)

) 1
2
〉
.

Then, after an application of Hölder’s inequality, the definition of the corrector φξ

implies that

(24)
|ahomξ | ≤ 〈μ〉 1

2
〈
(∇φξ + ξ) · a(∇φξ + ξ)

〉 1
2

= 〈μ〉 1
2
〈
ξ · a(∇φξ + ξ)

〉 1
2 ≤ K

1
2 |ξ | 1

2 |ahomξ | 1
2 .

Dividing by |ahomξ | 1
2 yields the desired upper bound, and completes the proof.

4. Proof of Lemma 2. To prove the sublinearity of the correctors φ and σ we
will only use that their gradients are stationary fields with zero expectation and
that they have bounded 2q

q+1 and 2p
p+1 moments, respectively. Hence, we will only

show the argument for φ, the argument for σ being analogous (after swapping p

and q).
Concerning the corrector φ, it is our aim to prove that

(25) lim
R→∞

1

R

( 
BR

∣∣∣∣φ −
 

BR

φ

∣∣∣∣
2p

p−1
)p−1

2p = 0.

Our proof is a simplified version of the proof of a similar, seemingly slightly
stronger, property (see [12], Lemma 5.1):

(26) lim
R→∞

1

R

( 
BR

|φ| 2p
p−1

)p−1
2p = 0.

Before we prove (25), we point out that in fact it is equivalent (26). Indeed, assum-
ing (25) for any δ > 0 we find r0 > 0 such that for all R ≥ r0( 

BR

∣∣∣∣φ −
 

BR

φ

∣∣∣∣
2p

p−1
)p−1

2p ≤ δR,
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from where by the triangle inequality we get for any R ≥ r0 and R′ ∈ [R,2R]∣∣∣∣
 

BR

φ −
 

BR′
φ

∣∣∣∣ ≤
( 

BR

∣∣∣∣φ −
 

BR

φ

∣∣∣∣
2p

p−1
)p−1

2p +
( 

BR

∣∣∣∣φ −
 

BR′
φ

∣∣∣∣
2p

p−1
)p−1

2p

≤ CδR.

Hence by the dyadic argument we see that |ffl
Br0

φ − ffl
BR

φ| ≤ CδR, which implies

for R ≥ r0

1

R

( 
BR

|φ| 2p
p−1

)p−1
2p ≤ 1

R

( 
BR

∣∣∣∣φ −
 

BR

φ

∣∣∣∣
2p

p−1
)p−1

2p + Cδ + 1

R

∣∣∣∣
 

Br0

φ

∣∣∣∣,
from where we get that lim supR→∞ 1

R
(
ffl
BR

|φ| 2p
p−1 )

p−1
2p ≤ Cδ, and (26) immedi-

ately follows.
Let us now show the argument for (25), which is essentially an immediate con-

sequence of the ergodic theorem, the Sobolev/Rellich-Kondrachov embedding and
our assumption

(27)
1

p
+ 1

q
<

2

d
.

Fix i ∈ {1, . . . , d} and consider, for each ε ∈ (0,1), the rescaling φε
i (·) = εφi(

·
ε
).

Assumption (27) and the Sobolev embedding theorem imply that, for each ε ∈
(0,1),

(28)
(ˆ

B1

∣∣∣∣φε
i −

 
B1

φε
i

∣∣∣∣
2p

p−1
)p−1

2p

�
∥∥∇φε

i

∥∥
L

2q
q+1 (B1)

.

Since the estimates contained in (6) and the ergodic theorem coupled with the
stationarity and ergodicity of the environment imply that, for 〈·〉-a.e. a, the gradient

∇φε
i converges weakly to zero in L

2q
q+1 (B1), we have for the renormalizations(

φε
i −

 
B1

φε
i

)
⇀ 0 weakly in W

1,
2q

q+1 (B1).

To see this, observe that estimate (28) and the weak convergence of the gradi-

ents imply that the sequence {φε
i − ffl

B1
φε

i }ε∈(0,1) is bounded in W
1,

2q
q+1 (B1) since

2q
q+1 <

2p
p−1 . Therefore, after passing to a subsequence, the (φε

i − ffl
B1

φε
i ) con-

verge weakly to some f ∈ W
1,

2q
q+1 (B1) with average zero and vanishing gradient.

Hence, the subsequence converges weakly to zero and, owing to the uniqueness of
the limit, the convergence of the full sequence follows.

Finally, since the weak convergence and (28) imply that, for 〈·〉-a.e. environ-

ment, the sequence {(φε
i − ffl

B1
φε

i )}ε∈(0,1) is bounded in W
1,

2q
q+1 (B1), the compact-

ness of the embedding W
1,

2q
q+1 (B1) ↪→ L

2p
p−1 (B1), owing to the strict inequality in
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(27), implies for 〈·〉-a.e. a, the strong convergence

0 = lim
ε→0

(ˆ
B1

∣∣∣∣φε
i −

 
B1

φε
i

∣∣∣∣
2p

p−1
)p−1

2p = lim
R→0

1

R

( 
BR

∣∣∣∣φi −
 

BR

φi

∣∣∣∣
2p

p−1
)p−1

2p

.

This, since i ∈ {1, . . . , d} was arbitrary, completes the argument for φ.

5. Proof of Theorem 2. The strategy of the proof of the theorem is very sim-
ilar to the proof of [21], Lemma 2. The idea is to first show decay of excess for
one value θ0 of the ratio r/R, and then iterate this estimate to show excess decay
for all values r/R.

To show the decay for a fixed value of r/R, the idea is to estimate the ho-
mogenization error in BR determined by the difference between the a-harmonic
function u and a correction of an appropriately chosen ahom-harmonic function to
be denoted v. In the uniformly elliptic setting, following the arguments of [21],
the boundary values of the ahom-harmonic function can be chosen to coincide with
u on a sphere with generic radius close to R. In the nonuniformly elliptic case,
it is necessary, as explained in Step 2 of our arguments, to consider a v which
agrees on a generic sphere with uε in the “Dirichlet Case” q ≥ p and which satis-
fies ν · ahom∇v = (ν · a∇u)ε in the “Neumann Case” p ≥ q , where the subscript ε

denotes the convolution at scale ε with a smoothing kernel on the sphere.
The corresponding augmented homogenization error will be defined for an ap-

propriately chosen cutoff function η in BR as w := u − (1 + ηφi∂i)v. In Step 1,
as in [21], we derive the equation satisfied by w, and in Step 2 use this equation
to obtain energy estimates for the homogenization error, without the cutoff η, on
a smaller ball. The argument is concluded in Steps 3, 4 and 5, where the iterative
argument of [21] is used to obtain the statement on excess decay.

Step 1. Let u be an a-harmonic function in B1. In this step we consider the
augmented homogenization error

w := u − (1 + ηφi∂i)v,

defined by a smooth function η and an ahom-harmonic function v in B1. It will be
shown now that w solves the divergence-form equation

(29) −∇ · a∇w = ∇ · (
(1 − η)(a − ahom)∇v + (φia − σi)∇(η∂iv)

)
in B1,

where the crucial ingredient of the proof is the skew-symmetric flux correction σ .
We remark that the flux correction was used previously in the context of periodic
homogenization (see, e.g., [22]), and in stochastic homogenization it was intro-
duced only recently in [21], where (29) was first derived.

For the convenience of the reader, we repeat here the computation leading to
(29), and to keep the notation lean, in this and the following steps, we will without
loss of generality assume that the components of φ and σ have zero spatial average
on B1. Otherwise, for each i ∈ {1, . . . , d}, we would replace φi with (φi − ffl

B1
φi),

and similarly for σ .
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First, compute the gradient of w to find

∇w = ∇u − (∇v + η∂iv∇φi + φi∇(η∂iv)
)
,

then we use the a-harmonicity of u to obtain

−∇ · a∇w = ∇ · a∇v + ∇ · a(
η∂iv∇φi + φi∇(η∂iv)

)
.

Since

∇ · a(η∂iv∇φi) = ∇ · (
η∂iva(∇φi + ei)

) − ∇ · ηa∇v,

the vanishing divergence −∇ · a(∇φi + ei) = 0 implies that

−∇ · a∇w = ∇ · (1 − η)a∇v + ∇(η∂iv) · a(∇φi + ei) + ∇ · (
φia∇(η∂iv)

)
.

Then, after observing both that

ahomei · ∇(η∂iv) = ∇ · (η∂ivahomei) = ∇ · (ηahom∇v)

and, since −∇ · ahom∇v = 0, that

∇ · (ηahom∇v) = −∇ · (1 − η)∇v,

we have

−∇ · a∇w = ∇ · (
(1 − η)(a − ahom)∇v

)
+ ∇(η∂iv) · (

a(∇φi + ei) − ahomei

) + ∇ · (
φia∇(η∂iv)

)
.

The skew-symmetry of the flux correction σ now plays a role. Since

∇ · σi = qi = a(φi + ei) − ahomei,

we have, for an arbitrary test function ζ , the distributional identity

∇ζ · (∇ · σi) = ∂j ζ∂kσijk = ∂k(∂j ζσijk) = ∂k(σijk∂j ζ ) = −∇ · (σi∇ζ ),

from which (29) follows. This completes the proof of this step.
Step 2. The boundary conditions for v and the cutoff η are now specified in order

to use equation (29) to obtain an energy estimate for the homogenization error. We
remark that the arguments will be carried out for the unit ball B1, and the general
statement will be obtained by scaling. We assume that

(30)
(ˆ

B1

λ−q

) 1
q +

(ˆ
B1

μp

) 1
p ≤ 
 where

1

p
+ 1

q
≤ 2

d
,

with

(31) λ := inf
ξ∈Rd

aξ · ξ
|ξ |2 and μ := sup

ξ∈Rd

|aξ |2
aξ · ξ ,
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and consider an a-harmonic function u in B1, that is,

(32) −∇ · a∇u = 0 in B1.

We will construct an ahom-harmonic function v in B 1
2

satisfying

(33)
ˆ

B 1
2

∇v · ahom∇v � 


ˆ
B1

∇u · a∇u =: 
,

and for which the homogenization error w := u − (1 + φi∂i)v satisfiesˆ
B 1

4

∇w · a∇w � 
ε
1−( 1

2p
+ 1

2q
)(d−1)

+ 

ρ
min{p−1

2p
,
q−1
2q

} 1

ε
min{ q+1

q
,
p+1
p

}(d−1)

+ 


1

ρd+2

((ˆ
B1

|φ| 2p
p−1

)p−1
p +

(ˆ
B1

|σ | 2q
q−1

) q−1
q

)
,

(34)

for any fudge factors ε ∈ (0,1] and ρ ∈ (0, 1
8). We recall that � denotes a constant

depending only upon the dimension d and the constant K from (2) through the
ellipticity of the homogenized coefficients.

We begin now with the construction of v which will in fact be an ahom-harmonic
on a somewhat larger ball Br , for some suitably chosen radius r ∈ [1

2 ,1]:
(35) −∇ · ahom∇v = 0 on Br.

The idea is to distinguish the two cases

(36) the “Dirichlet case” q ≥ p and the “Neumann case” p ≥ q.

In the Dirichlet case, we define v via the Dirichlet boundary condition

(37) v = uε on ∂Br,

whereas in the Neumann case, we impose

(38) ν · ahom∇v = (ν · a∇u)ε −
 

Br

(ν · a∇u)ε on ∂Br.

Here the subscript ε stands for a convolution on ∂Br with scale ε > 0.
Since Hölder’s inequality, (30) and (31) imply

(ˆ
B1

|∇u| 2q
q+1

) q+1
2q +

(ˆ
B1

|a∇u| 2p
p+1

)p+1
2p

≤
((ˆ

B1

λ−q

) 1
2q +

(ˆ
B1

μp

) 1
2p

)(ˆ
B1

∇u · a∇u

) 1
2
� 


1
2 ,
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we can find a radius r ∈ [1
2 ,1] such that both the field and the current of u have the

same integrability on ∂Br as on B1, in the sense that

(39)
(ˆ

∂Br

|∇u| 2q
q+1

) q+1
2q +

(ˆ
∂Br

|a∇u| 2p
p+1

)p+1
2p

� 

1
2 .

Using that both estimates are preserved by convolution, it follows that(ˆ
∂Br

|∇ tanv| 2q
q+1

) q+1
2q

� 

1
2 in the Dirichlet case

and (ˆ
∂Br

|ν · ahom∇v| 2p
p+1

)p+1
2p

� 

1
2 in the Neumann case.

By constant-coefficient elliptic theory applied to the Dirichlet-to-Neumann opera-
tor (see, e.g. Fabes, Jodeit and Rivière [16], Theorem 2.4, Theorem 2.6, and Stein
[29], Chapter 7), see also the proof of Lemma 4 in the Appendix for the extension
of these results to the cube, this yields

(40)
(ˆ

∂Br

|∇v| 2q
q+1

) q+1
2q

� 

1
2 in the Dirichlet case

and

(41)
(ˆ

∂Br

|∇v| 2p
p+1

)p+1
2p

� 

1
2 in the Neumann case.

These estimates motivate the case distinction (36), which we now use to prove
(33). To simplify the notation, we assume without loss of generality that v has
zero average on ∂Br , and test (35) with v to obtainˆ

Br

∇v · ahom∇v =
ˆ

∂Br

v(ν · ahom∇v).

Using Hölder’s inequality, the Sobolev embedding theorem and assumption (2),
we have ˆ

Br

∇v · ahom∇v �
(ˆ

∂Br

|∇v| 2q
q+1

) q+1
2q

(ˆ
∂Br

|v| 2q
q−1

) q−1
2q

�
(ˆ

∂Br

|∇v| 2q
q+1

) q+1
2q

(ˆ
∂Br

|∇v| 2p
p+1

)p+1
2p

.

Therefore, in view of (40), (41) and the case distinction (36), we conclude that

(42)
ˆ

Br

∇v · ahom∇v � 
,

which implies (33) since r ∈ [1
2 ,1].
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We now specify precisely the cutoff function defining the augmented homog-
enization error. Let 0 < ρ < 1

8 to be fixed later and let 0 ≤ η ≤ 1 be a smooth
function satisfying

(43) η =
{

1 on Br−2ρ,

0 on Br \ Br−ρ,
with |∇η| � 1

ρ
.

The augmented homogenization error is then defined as

w = u − (1 + ηφi∂i)v,

and we recall from Step 1 [see (29)] the equation

−∇ · a∇w = −∇ · (
(1 − η)(ahom − a)∇v

) + ∇ · (
(φia − σi)∇(η∂iv)

)
in Br,

which requires both (32) and (35), and test this equation with w to obtain
ˆ

Br

∇w · a∇w =
ˆ

∂Br

(u − v)ν · (a∇u − ahom∇v)

+
ˆ

Br

(1 − η)∇w · (ahom − a)∇v

−
ˆ

Br

∇w · (φia − σi)∇(η∂iv).

Appealing to (31), we obtain by Young’s inequality
ˆ

Br

∇w · a∇w �
∣∣∣∣
ˆ

∂Br

(u − v)ν · (a∇u − ahom∇v)

∣∣∣∣
+
ˆ

Br

(1 − η)2
(
μ + 1

λ

)
|∇v|2

+
ˆ

Br

(
μφ2

i + 1

λ
|σi |2

)∣∣∇(η∂iv)
∣∣2.

Then, using the properties of the cutoff η from (43),
ˆ

Br

∇w · a∇w �
∣∣∣∣
ˆ

∂Br

(u − v)ν · (a∇u − ahom∇v)

∣∣∣∣
+
ˆ

Br\Br−2ρ

(
μ + 1

λ

)
|∇v|2

+
ˆ

B1

(
μ|φ|2 + 1

λ
|σ |2

)
sup
Br−ρ

(
|∇2v| + 1

ρ
|∇v|

)2
.
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In view of (30), this yields by Hölder’s inequalityˆ
Br

∇w · a∇w

�
∣∣∣∣
ˆ

∂Br

(u − v)ν · (a∇u − ahom∇v)

∣∣∣∣
(44)

+ 
ρ
min{p−1

2p
,
q−1
2q

}
(ˆ

Br

|∇v|max{ 4p
p−1 ,

4q
q−1 }

)min{p−1
2p

,
q−1
2q

}
(45)

+ 


((ˆ
B1

|φ| 2p
p−1

)p−1
p +

(ˆ
B1

|σ | 2q
q−1

) q−1
q

)
sup
Br−ρ

(
|∇2v| + 1

ρ
|∇v|

)2
.(46)

For the last term, we use multiple times the Caccioppoli inequality for uniformly
elliptic systems (see [19], Theorem 7.1), the uniform ellipticity of the homogenized
coefficient field, the Sobolev embedding theorem, and (35) to obtain

sup
Br−ρ

(
|∇2v| + 1

ρ
|∇v|

)2
� 1

ρd+2

ˆ
Br

∇v · ahom∇v,

where the full argument can be found in the proof of [21], Lemma 3. Therefore, in
view of (42), for both the Dirichlet and Neumann cases we have

(47) sup
Br−ρ

(
|∇2v| + 1

ρ
|∇v|

)2
� 1

ρd+2 
.

We now turn to the middle right-hand side term (45). It follows from the Lp-
theory for constant-coefficient elliptic systems (see [19], Theorem 7.1) and an ex-
plicit radial extension of the smooth boundary data uε into the ball Br that, in the
Dirichlet case,(ˆ

Br

|∇v|max{ 4p
p−1 ,

4q
q−1 }

)min{p−1
2p

,
q−1
2q

}

=
(ˆ

Br

|∇v| 4q
q−1

) q−1
2q

�
(ˆ

∂Br

∣∣∇ tanuε

∣∣ 4q
q−1

) q−1
2q

�
(
sup
∂Br

∣∣∇ tanuε

∣∣)2
.

We then use Hölder’s inequality and the definition of the convolution to obtain

sup
∂Br

∣∣∇ tanuε

∣∣ � 1

ε
q+1
2q

(d−1)

(ˆ
∂Br

|∇u| 2q
q+1

) q+1
2q

in the Dirichlet case,

so that together with (39) we obtain

(ˆ
Br

|∇v|max{ 4p
p−1 ,

4q
q−1 }

)min{p−1
2p

,
q−1
2q

}
� 1

ε
q+1
q

(d−1)

 in the Dirichlet case.
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The analogous estimates for the Neumann case yield, with help of (39),

(ˆ
Br

|∇v|max{ 4p
p−1 ,

4q
q−1 }

)min{p−1
2p

,
q−1
2q

}
=

(ˆ
Br

|∇v| 4p
p−1

)p−1
2p

� 1

ε
p+1
p

(d−1)

,

so that, in combination, both cases satisfy

(48)
(ˆ

Br

|∇v|max{ 4p
p−1 ,

4q
q−1 }

)min{p−1
2p

,
q−1
2q

}
� 1

ε
min{ q+1

q
,
p+1
p

}(d−1)

.

It remains to treat the boundary term (44). We first treat the Neumann case (38),
for which we may appeal to the symmetry of the convolution operator to write

ˆ
∂Br

(u − v)ν · (a∇u − ahom∇v) =
ˆ

∂Br

(
(u − v) − (u − v)ε

)
ν · a∇u,

so that we obtain by Hölder’s inequality together with (39)

(49)

∣∣∣∣
ˆ

∂Br

(u − v)ν · (a∇u − ahom∇v)

∣∣∣∣
� 


1
2

((ˆ
∂Br

|u − uε|
2p

p−1

)p−1
2p +

(ˆ
∂Br

|v − vε|
2p

p−1

)p−1
2p

)
.

We then interpolate between two estimates. First, we will use the convolution esti-
mate

(50)
(ˆ

∂Br

|u − uε|
2p

p−1

)p−1
2p

� ε

(ˆ
∂Br

∣∣∇ tanu
∣∣ 2p

p−1

)p−1
2p

,

which, for an arbitrary convolution kernel ρε = ε−(d−1)ρ(x
ε
) and function z, fol-

lows on the sphere in analogy with the Euclidean computation (the additional dif-
ficulties being solely notational)

(51)

(ˆ
Rd−1

|z − zε|
2p

p−1

)p−1
2p

=
(ˆ

Rd−1

∣∣∣∣
ˆ
Rd−1

ρ(x)
(
z(y + εx) − z(y)

)
dx

∣∣∣∣
2p

p−1
dy

)p−1
2p

≤ ε

ˆ 1

0

ˆ
Rd−1

(ˆ
Rd−1

ρ
2p

p−1 (x)|x| 2p
p−1

∣∣∇z(y + sεx)
∣∣ 2p

p−1 dy

)p−1
2p

dx ds

� ε

(ˆ
Rd−1

|∇z| 2p
p−1

)p−1
2p

,
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where the first inequality is obtained using the representation of the difference as
the integral of the gradient and Minkowski’s integral inequality, and the final con-
stant depends on the fixed convolution kernel ρ. Second, we will use the estimate

(ˆ
∂Br

|u − uε|
2p

p−1

)p−1
2p

≤
(ˆ

∂Br

∣∣∣∣u −
 

Br

u

∣∣∣∣
2p

p−1
)p−1

2p +
(ˆ

∂Br

∣∣∣∣uε −
 

Br

uε

∣∣∣∣
2p

p−1
)p−1

2p

�
(ˆ

∂Br

∣∣∇ tanu
∣∣s) 1

s

,

(52)

for 1
s

= p−1
2p

+ 1
d−1 , which follows from the triangle and Sobolev inequalities.

Then, by interpolating between (50) and (52), we obtain

(ˆ
∂Br

|u − uε|
2p

p−1

)p−1
2p

� ε
1−( 1

2p
+ 1

2q
)(d−1)

(ˆ
∂Br

∣∣∇ tanu
∣∣ 2q

q+1

) q+1
2q

.

The analogous estimate for v reads

(ˆ
∂Br

|v − vε|
2p

p−1

)p−1
2p

� ε
1− 1

p
(d−1)

(ˆ
∂Br

∣∣∇ tanv
∣∣ 2p

p+1

)p+1
2p

.

We plug (39) and (41) into these two estimates and use our case distinction (36) to
arrive at

(ˆ
∂Br

|u − uε|
2p

p−1

)p−1
2p +

(ˆ
∂Br

|v − vε|
2p

p−1

)p−1
2p

� 

1
2 ε

1−( 1
2p

+ 1
2q

)(d−1)
.

Inserting this into (49) we obtain for the boundary term in the Neumann case

(53)
∣∣∣∣
ˆ

∂Br

(u − v)ν · (a∇u − ahom∇v)

∣∣∣∣ � 
ε
1−( 1

2p
+ 1

2q
)(d−1)

.

We finally turn to the Dirichlet case (37) for the boundary term (44), which
yields a simpler estimate as compared to the Neumann case because u and v are
immediately comparable along the boundary ∂Br . We use Hölder’s inequality, the
triangle inequality and the case distinction in combination with (39) and (40) to
obtain

∣∣∣∣
ˆ

∂Br

(u − v)ν · (a∇u − ahom∇v)

∣∣∣∣ � 

1
2

(ˆ
∂Br

|u − uε|
2q

q−1

) q−1
2q

.
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Appealing again to convolution estimates used to obtain (53) and the case distinc-
tion, we obtain with (39) the estimate

(54)

∣∣∣∣
ˆ

∂Br

(u − v)ν · (a∇u − ahom∇v)

∣∣∣∣ � 

1
2 ε

1− 1
q
(d−1)

(ˆ
∂Br

∣∣∇ tanu
∣∣ 2q

q+1

) q+1
2q

� 
ε
1−( 1

2p
+ 1

2q
)(d−1)

,

which corresponds with the Neumann estimate (53). Inserting (54) and (53) to-
gether with (48) and (47) into (46) yields (34) which, after expanding the definition
of 
 from (33), takes the form

(55)

ˆ
B 1

4

∇w · a∇w � 


(ˆ
B1

∇u · a∇u

)

·
(
ε

1−( 1
2p

+ 1
2q

)(d−1) + 
ρ
min{p−1

2p
,
q−1
2q

} 1

ε
min{ q+1

q
,
p+1
p

}(d−1)

+ 

1

ρd+2

((ˆ
B1

|φ| 2p
p−1

)p−1
p +

(ˆ
B1

|σ | 2q
q−1

) q−1
q

))
.

Finally, to adapt (55) to an arbitrary radius R > 0, observe that if u is an a-
harmonic function on BR , the augmented homogenization error w may be defined
as

w(x) = u(x) −
(

1 + η

(
x

R

)
φi(x)∂i

)
v(x),

where v is the ahom-harmonic function defined in (35) on Br , for some r ∈ [R
2 ,R],

and according to the case distinction (36), and η is defined exactly as in (43) on
B1. The general estimate

(56)

 
BR

4

∇w · a∇w � 


( 
BR

∇u · a∇u

)

·
(
ε

1−( 1
2p

+ 1
2q

)(d−1) + 
ρ
min{p−1

2p
,
q−1
2q

} 1

ε
min{ q+1

q
,
p+1
p

}(d−1)

+ 

1

ρd+2

(( 
BR

|φ| 2p
p−1

)p−1
p +

( 
BR

|σ | 2q
q−1

) q−1
q

))
,

then follows from (55), the rescaling w̃(x) = (1/R)w(Rx) and the scaling of the
defining equations. This completes the proof of Step 2.

Step 3. In this step, we prove that whenever u is an a-harmonic function on BR ,
there exists for any δ0 > 0 a constant C0 = C0(δ0, d,
,K) > 0 such that, when-
ever on the ball BR the augmented corrector (φ, σ ) satisfies (10) with constant C0,
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we have

(57)
 

BR
4

∇w · a∇w ≤ δ0

 
BR

∇u · a∇u,

where w := u − (1 + φi∂i)v is the homogenization error. Here, we remark that
the reader can take one of two approaches. To immediately apply (10), one would
need first to augment the extended corrector (φ, σ ) by subtracting their respective
averages over BR . Conversely, one could immediately apply the equivalence be-
tween (25) and (26), and work directly with the unmodified quantities. Therefore,
in the three steps to follow, we assume without loss of generality that wherever
encountered the corrector pair (φ, σ ) has average zero.

Here comes the argument. Given δ0 > 0, owing to the linearity and scaling of
the equation the estimate (56) from Step 2 implies existence of C1 = C1(d,K)

such that 
BR

4

∇w · a∇w ≤ C1

(

ε

1−( 1
2p

+ 1
2q

)(d−1) + 
2 1

ρd+2C2
0

+ 
2ρ
min{p−1

2p
,
q−1
2q

} 1

ε
min{ q+1

q
,
p+1
p

}(d−1)

) 
BR

∇u · a∇u.

We first fix ε0 = ε0(δ0, d,
,K) > 0 small enough such that

C1
ε
1−( 1

2p
+ 1

2q
)(d−1)

0 ≤ 1

3
δ0,

which is possible in view of (9). Second, we choose ρ0 = ρ0(δ0, d,
,K) > 0
small enough satisfying

C1

2ρ

min{p−1
2p

,
q−1
2q

}
0

1

ε
min{ q+1

q
,
p+1
p

}(d−1)

0

≤ 1

3
δ0.

Finally, we select C0 = C0(δ0, d,
,K) > 0 large enough so that

C1

2 1

ρd+2
0 C2

0

≤ 1

3
δ0.

Since the right-hand sides in the three previous relations add to δ0, the proof of this
step is complete.

Step 4. For any α ∈ (0,1) there exists θ0 ∈ (0, 1
4) and C0 such that the following

holds: For any radius R > 0 with the property that the augmented corrector is small
on scale R:

(58)

1

R

( 
BR

∣∣∣∣φ −
 

BR

φ

∣∣∣∣
2p

p−1
)p−1

2p ≤ 1

C0
,

1

R

( 
BR

∣∣∣∣σ −
 

BR

σ

∣∣∣∣
2q

q−1
) q−1

2q ≤ 1

C0
,
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and the corrector φ is small on scale r := θ0R

(59)
1

r

( 
Br

∣∣∣∣φ −
 

Br

φ

∣∣∣∣
2p

p−1
)p−1

2p ≤ 1

C0
,

we get that for every a-harmonic function u on BR its excess satisfies

(60) Exc(r) ≤ θ2α
0 Exc(R),

where we recall

Exc(r) = inf
ξ∈Rd

 
Br

(∇u − (ξ + φξ )
) · a(∇u − (ξ + φξ )

)
.

Here comes the argument. To simplify the notation, we will use ‖·‖a,r to denote
the L2(a)-intrinsic energy of vector fields U as defined by

‖U‖a,r :=
ˆ

Br

U · aU.

We now use the definition of the homogenization error w = u − (1 + φi∂i)v, and
observe that, for every 0 < r ≤ R

4 , we have

‖∇w‖a,r = ∥∥∇u − ∇v(Id + ∇φ) − φi∇(∂iv)
∥∥
a,r .

The first two terms are decomposed as

∇u − ∇v(Id + ∇φ) = ∇u − ∇v(0)(Id + ∇φ) + (∇v(0) − ∇v
)
(Id + ∇φ)

and, by defining ξ := ∇v(0), we obtain using the triangle inequality, since 0 < r ≤
R
4 ,

(61)

∥∥∇u − (ξ + ∇φξ )
∥∥
a,r ≤ ‖∇w‖

a,R
4

+
(
sup
Br

∣∣∇v(0) − ∇v
∣∣)2(‖Id + ∇φ‖a,r

)

+
(
sup
Br

∣∣∇(∂iv)
∣∣)2‖φ‖a,r ,

where φ = (φ1, . . . , φd) denotes the vector of correctors.
The first term on the right-hand side of (61) is controlled using the estimate (57)

from Step 3. There exists, for any δ0 > 0, a constant C0 = C0(δ0, d,
,K) > 0
such that, whenever the corrector and flux correction satisfy (10) with constant C0,
we have

(62) ‖∇w‖
a,R

4
≤ δ0

ˆ
BR

∇u · a∇u.

It remains to control the last two terms on the right-hand side of (61). First, since
the corrector satisfies

−∇ · a(Id + ∇φ) = 0,
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the Caccioppoli estimate (Lemma 3) together with (10) implies

‖Id + ∇φ‖a,r � rd .

Then, by repeating the argument leading to (42), since 0 < r ≤ R
4 , we have the

estimate

(63) sup
Br

∣∣∇2v
∣∣2 � 1

Rd+2 ‖∇u‖a,R.

Finally, owing to definition (1) and condition (2), and following an application
of Hölder’s inquality, then Young’s inequality and finally the Sobolev inequality,
since after subtracting a constant vector it may be assumed that

ffl
Br

φ = 0,

(64)

‖φ‖a,r �
 

Br

|φ|2μ ≤
( 

Br

|φ| 2p
p−1

)p−1
p

( 
Br

μp

) 1
p

� 


( 
Br

|∇φ| 2q
q+1

) q+1
q

� 
.

We insert (62), (63) and (64) into (61), use (8) and (10), and find for a constant
C1 = C1(d,
,K) > 0 that

∥∥∇u − (ξ + ∇φξ )
∥∥
a,r ≤ C1

(
δ0 +

(
r

R

)2(
r

R

)d)
‖∇u‖a,R.

Then, after dividing by rd ,

(65)

 
Br

(∇u − (ξ + ∇φξ )
) · a(∇u − (ξ + ∇φξ )

)

≤ C1

(
δ0

(
R

r

)d

+
(

r

R

)2) 
BR

∇u · a∇u.

Fix α ∈ (0,1). The proof of Step 4 will be complete once we prove that the ratio
r
R

and the constant δ0 can fixed sufficiently small so as to guarantee the inequality

C1

(
δ0

(
R

r

)d

+
(

r

R

)2)
≤

(
r

R

)2α

,

and which is possible because α is strictly smaller than one. First, we choose θ0 ∈
(0, 1

4) small enough to satisfy

(66) C1θ
2
0 ≤ 1

2
θ2α

0 ,

and then choose δ0 small enough to ensure

(67) C1δ0θ
−d
0 ≤ 1

2
θ2α

0 .
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Then, for θ0 satisfying (66) and (67), whenever r
R

= θ0 we obtain from (65) the
estimate

inf
ζ∈Rd

 
Br

(∇u − (ζ + ∇φζ )
) · a(∇u − (ζ + ∇φζ )

) ≤
(

r

R

)2α  
BR

∇u · a∇u.

After replacing u with u − ξ · (x + φ), where ξ := argminξ∈Rd

ffl
BR

a(∇u − (ξ +
∇φξ )) · (∇u − (ξ + ∇φξ )), we obtain (60) and complete Step 3.

Step 5. In the final step of the proof, we will prove that, for arbitrary pairs r < R

satisfying the hypothesis of Theorem 2, we have the excess decay

(68) Exc(r) �
(

r

R

)2α

Exc(R).

For this, we iterate the estimate (60) to obtain, for θ0 ∈ (0,1) from Step 4,

Exc(θ0R) ≤ θ2α
0 Exc(R).

First, we remark that, if r/R ≥ θ0, then for C = C(θ0) > 0,

Exc(r) ≤
(

R

r

)d

Exc(R) =
(

R

r

)d+2α(
r

R

)2α

Exc(R)

≤ θ
−(d+2α)
0

(
r

R

)2α

Exc(R) ≤ C

(
r

R

)2α

Exc(R),

which implies estimate (68). It therefore remains only to treat the case 0 < r/R <

θ0. For this, let n be the unique positive integer satisfying θn−1
0 ≤ r/R < θn

0 . Then,
by induction,

Exc(r) � Exc
(
θn

0 R
)
�

(
θn

0
)2α Exc(R) = θ2α

0
(
θn−1

0

)2α Exc(R) �
(

r

R

)2α

Exc(R),

which concludes the proof of (68) and thereby the proof of Theorem 2.

6. Proof of Lemma 3. After possibly adding a constant to u we may assume
c = 0. Fix two radii R > 0 and 0 < ρ < R

2 , and suppose that u is an a-harmonic
function in BR . Let η denote a smooth cutoff function such that 0 ≤ η ≤ 1 and

η(x) =
{

1 in BR−ρ,

0 in R
d \ BR,

and satisfying

|∇η| � 1

ρ
.

Using Hölder’s inequality and (11), we have

(69)
( 

BR−ρ

|∇u| 2q
q+1

) q+1
q

� 


 
BR−ρ

∇u · a∇u � 


 
BR

η2∇u · a∇u.
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Then, by testing the equation −∇ · a∇u against η2u, and using the identity

∇(
η2u

) · a∇u = η2∇u · a∇u + 2ηu∇η · a∇u,

it follows from the definition of μ in (31) that 
BR

η2∇u · a∇u = −2
 

BR

ηu∇η · a∇u ≤
 

BR

2η|a∇u||u∇η|

≤ 2
 

μ
1
2
(
η2∇u · a∇u

) 1
2 |u∇η|.

Following an application of Hölder’s inequality, we obtain

 
BR

η2∇u · a∇u �
( 

BR

η2∇u · a∇u

) 1
2
( 

BR

μp

) 1
2p

( 
BR

|u∇η| 2p
p−1

)p−1
2p

.

Then, after dividing by the square-root of the left-hand side and using properties
of the cutoff η, we have

(70)
 

BR

η2∇u · a∇u � 


ρ2

( 
BR\BR−ρ

|u| 2p
p−1

)p−1
p

.

In combination, inequalities (69) and (70) imply

( 
BR−ρ

|∇u| 2q
q+1

) q+1
q

� 


 
BR−ρ

∇u · a∇u � 
2

ρ2

( 
BR\BR−ρ

|u| 2p
p−1

) p
p−1

,

which completes the proof of Lemma 3.

APPENDIX

A.1. An alternate construction of the flux correction σ in Lemma 1. We
claim that for any exponent in the range of

(71)
(
2∗)′

< r < 2,

where (2∗)′ denotes the dual exponent of 2∗, which in turn denotes the Sobolev
exponent for 2, we have the following existence result: For a stationary random

field g with 〈|g|r〉 1
r < ∞ there exists a curl-free stationary random field ∇σ of

vanishing expectation 〈∇σ 〉 = 0 with

(72) −�σ = ∇ · g and
〈|∇σ |r 〉 1

r �
〈|g|r 〉 1

r .

We note that the range (71) is sufficient for our purposes: We use it for 1
r

= 1
2 + 1

2p

and note that under the weaker assumption 1
d

> 1
2p

, as compared with 1
p

+ 1
q

≤ 2
d

,

we indeed have (71) in the reciprocal form of 1
(2∗)′ = 1− (1

2 − 1
d
) = 1

2 + 1
d

> 1
r

> 1
2 .
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By applying the same reasoning as in the proof of Lemma 1, we may assume
that 〈|g|2〉 < ∞, so that by Riesz’ representation theorem that there exists a curl-
free stationary random field ∇σ with 〈∇σ 〉 = 0 and

−�σ = ∇ · g and
〈|∇σ |2〉 1

2 �
〈|g|2〉 1

2 .

By a standard duality argument, it is enough to establish (72) in the dual range of
exponents, that is,

(73)
〈|∇σ |r 〉 1

r �
〈|g|r 〉 1

r for 2 < r < 2∗.

The first ingredient is that thanks to r < 2∗ in conjunction with 〈|∇σ |2〉 1
2 < ∞

and 〈∇σ 〉 = 0 and r < 2∗, a repetition of the proof leading Lemma 2 we have the
sublinearity

(74) lim
R↑∞

1

R

〈 
BR

∣∣∣∣σ −
 

BR

σ

∣∣∣∣r
〉 1

r = 0.

The second ingredient is that thanks to r > 2 and d ≥ 2, we have the following
strengthening of Calderon–Zygmund’s estimate (in physical space):

(75)
(ˆ

|∇σ̃ |r
) 1

r

�
(ˆ

|g̃|r
) 1

r + R

(ˆ
|f̃ |r

) 1
r

,

provided the functions σ̃ , f̃ and the field g̃ satisfy

(76) −�σ̃ = ∇ · g̃ + f̃ and supp σ̃ , g̃, f̃ ⊂ BR.

We consider σ̃ := η(σ − c) for some constant c and some smooth function η

supported in BR to be fixed soon and note that (76) is satisfied for

g̃ := ηg + 2(σ − c)∇η and f̃ := −∇η · g + (σ − c)�η.

Choosing the cut-off of the form η(x) = η̂( x
R

) with η̂(x̂) = 1 for |x̂| ≤ 1
2 we see

that (75) turns into

(ˆ
BR

2

|∇σ |r
) 1

r

�
(ˆ

BR

|g|r
) 1

r + 1

R

(ˆ
BR

|σ − c|r
) 1

r

.

We now choose c = ffl
BR

σ and apply 〈(·)r〉 1
r to the above. By stationarity of ∇σ

and g we obtain

〈|∇σ |r 〉 1
r �

〈|g|r 〉 1
r + 1

R

〈 
BR

∣∣∣∣σ −
 

BR

σ

∣∣∣∣r
〉 1

r

.

With help from (74) we obtain (73).
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A.2. The proof of Lemma 4. The proof of Lemma 4 consists of two steps.
In the first step, using separation of variables we prove an analogous claim for 1-
periodic harmonic function on a slab (0,1)×R

d−1. In the second step, we decom-
pose the solutions corresponding respectively to Dirichlet and Neumann boundary
conditions into a collection of d 1-periodic harmonic functions, defined on a slab,
for which Step 1 can be applied.

Step 1. Suppose that v ∈ C∞(Rd−1) is a 1-periodic function satisfying´
Qd−1

v = 0, and let w denote the solution

(77)

{−
w = 0 in R
d−1 × (0,1),

w(·,0) = v, w(·,1) = 0 in R
d−1.

Then for each 1 < p < ∞ there exists C = C(d,p) such that

(78) ‖∇w‖Lp(∂Qd) ≤ C‖∇v‖Lp(Qd−1).

Observe that (1) ∇v = ∇ tanw, that is, the right-hand side measures only the tan-
gential part of the gradient of ∇w; and (2) on the left-hand side the full boundary
∂Qd (which consists of 2d faces) appears, compared to only the bottom face Qd−1
appearing on the right-hand side.

Moreover, replacing the bottom and top Dirichlet boundary conditions w(·,0) =
v and w(·,1) = 0 by Neumann boundary conditions ∂w

∂xd
(·,0) = v and ∂w

∂xd
(·,1) = 0

in R
d−1, we analogously get

(79) ‖∇w‖Lp(∂Qd) ≤ C‖v‖Lp(Qd−1).

We first show an argument for (78). Since
´
Qd−1

v = 0, after writing, for each

k ∈ Z
d−1,

v̂k =
ˆ

Qd−1

v
(
x′)e−2πik·x′

dx′,

we express v in terms of the Fourier series

v
(
x′) = ∑

k∈Zd−1\{0}
v̂ke

2πik·x′
for x′ ∈ R

d−1.

Using separation of variables, we see the solution w admits the representation, for
(x′, xd) ∈R

d−1 × [0,1],

(80) w
(
x′, xd

) = ∑
k∈Zd−1\{0}

v̂ke
2πik·x′

(
e−2π |k|xd − e−2π |k|(2−xd)

1 − e−4π |k|
)
.

Therefore,

(81)
∂w

∂xd

(
x′, xd

) = − ∑
k∈Zd−1\{0}

(
2π |k|)v̂ke

2πik·x′
(

e−2π |k|xd + e−2π |k|(2−xd)

1 − e−4π |k|
)
,
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and from the Mikhlin multiplier theorem (see Mikhlin [25] for the original or
Mikhlin [26], Appendix, Theorem 2) we have

(82)
‖∇w‖Lp(Qd−1×{0}) � ‖∇v‖Lp(Qd−1),

‖∇w‖Lp(Qd−1×{1}) � ‖∇v‖Lp(Qd−1).

The argument proceeds by considering each component of the gradient separately.
Indeed, for the normal derivative, the Mikhlin multiplier theorem is applied to the
multiplier

(83) m(k) = −
(

1 + e−4π |k|

1 − e−4π |k|
)
,

for which an immediate computation yields, for each 0 < r < d
2 + 2,

sup
k∈Rd

|k|r ∣∣∇rm(k)
∣∣ < ∞.

Therefore, with (81),∥∥∥∥ ∂w

∂xd

∥∥∥∥
Lp(Qd−1×{0})

�
∥∥∥∥ ∑
k∈Zd−1\{0}

(
2π |k|)v̂ke

2πik·x′
m(k)

∥∥∥∥
Lp(Qd−1)

� ‖∇v‖Lp(Qd−1),

where the final inequality is immediate for the case p = 2 and follows generally
from the vector-valued Mikhlin multiplier theorem (see Bergh and Löfström [10],
Theorem 6.1.6) applied to the multiplier, considered as a map from R

d−1 to R,

m(k) =
(
ψ1(k)

|k|
k1

, . . . ,ψd−1(k)
|k|

kd−1

)
for each k = (k1, . . . , kd−1) ∈ R

d−1.

Here, the collection {ψj }j∈{1,...,d−1} forms a partition of unity defined on the
sphere Sd−2 and where, for each j ∈ {1, . . . , d − 1}, the function ψj is extended
to R

d−1 \B 1
2

as a smooth, zero homogenous function which is nonzero on a set of
the form {

k ∈R
d−1 \ B 1

2
| |ki | � |kj | for each i �= j ∈ {1, . . . , d − 1}}.

Finally, since it is immediate from (80) that, for j ∈ {1, . . . , d − 1},∥∥∥∥ ∂w

∂xj

∥∥∥∥
Lp(Qd−1×{0})

=
∥∥∥∥ ∂v

∂xj

∥∥∥∥
Lp(Qd−1)

,

this completes the proof of (82) on the set Qd−1 × {0}.
The analogous considerations prove (82) on the set Qd−1 × {1}, where in this

case the tangential derivatives, for j ∈ {1, . . . , d − 1}, are controlled using the
Mikhlin multiplier theorem applied to the multiplier

(84) m(k) =
(

e−2π |k| − e−2π |k|

1 − e−4π |k|
)
,
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and the normal derivative is controlled following the above computation but with
(83) replaced with (84). This completes the proof of (82).

The estimate for ∇w on the remaining (2d − 2) faces of ∂Qd then follows from
the estimate

(85) ‖w‖Lp(∂Qd) ≤ C‖v‖Lp(Qd−1),

which holds for any function w satisfying (77). Indeed, since for i = 1, . . . , d − 1
the function ∂w

∂xi
solves (77) with boundary condition ∂v

∂xi
, estimate (85) implies∥∥∥∥ ∂w

∂xi

∥∥∥∥
Lp(∂Qd)

�
∥∥∥∥ ∂v

∂xi

∥∥∥∥
Lp(Qd−1)

≤ ‖∇v‖Lp(Qd−1).

The argument works for ∂w
∂xd

as well, with the small difference that the derivative
in xd does not satisfy zero boundary condition on Qd−1 × {1}. Hence, we first
split the harmonic extension of this derivative into two parts: the first one having
0 boundary condition at Qd−1 × {1} while keeping its value at Qd−1 × {0}, the
second having it reversed, and then applying (85) to each of them separately [while
using (82)].

It remains to prove (85). We observe that it is enough to study harmonic func-
tions in the half-space R

d−1 × (0,∞), more precisely, to show that the unique
decaying solution u of

(86)

{−
u = 0 in R
d−1 × (0,∞),

u(·,0) = u0 on R
d−1,

with u0 being 1-periodic with zero average, satisfies, for any 1 < p < ∞,∥∥u(·,1)
∥∥
Lp(Qd−1)

≤ α‖u0‖Lp(Qd−1),(87) ∥∥u(0, ·)∥∥Lp(Qd−2×(0,1)) � ‖u0‖Lp(Qd−1),(88)

with α = α(p) < 1. Indeed, for the boundary data v [from (85)] we solve the half-
space problem (86), denoting the solution by u1. Let u2 now denote the harmonic
extension of u1(·,1) in R

d−1 × (−∞,1). Repeating this procedure [denoting u3
harmonic extension of u2(·,0) in R

d−1 × (0,∞) etc.] we can write the solution
w of (77) with w(·,0) = v as w = ∑∞

i=1(−1)(i+1)ui , where the sum is converging
thanks to α < 1. Summing estimate (88), applied to each ui , then implies (85).

The advantage of considering the half-space over the slab as a domain is that in
the half-space we have a simple representation for u using the Poisson kernel:

(89) u(x, y, z) =
ˆ
Rd−1

Pz

(
x′, y′)u0

(
x − x′, y − y′) dx′ dy′,

where (x, y, z) ∈ R×R
d−2 × (0,∞) and the Poisson kernel has an explicit form

(90) Pz(x, y) = 2z

d|Bd |
1

|x2 + |y|2 + z2|d/2 .
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We start with (87). Writing the solution u using Fourier series (as we have done
for w before), using the fact that u0 has vanishing average and the fact that all the
remaining frequencies decay exponentially, by Plancherel’s equality we see that
(87) holds for p = 2 [with α(2) < 1]. Using (89) we get for the case p = 1ˆ

Qd−1

∣∣u(x, y,1)
∣∣dx dy

≤
ˆ

Qd−1

ˆ
Rd−1

∣∣P1
(
x′, y′)∣∣∣∣u0

(
x − x′, y − y′)∣∣ dx′ dy′ dx dy

=
ˆ

Qd−1

|u0|dx dy,

where the final inequality follows from Fubini’s theorem, the 1-periodicity of u0
and the fact that, for any z > 0, the kernel Pz > 0 with

(91)
ˆ
Rd−1

Pz(x, y)dx dy = 1.

Hence, we see that (87) holds for p = 1 with α(1) = 1. Combining this with the
fact that α(2) < 1, for the range 1 < p ≤ 2 estimate (87) follows by standard inter-
polation. Since the periodicity of u0 and (91) imply that

sup
(x,y)∈Qd−1

∣∣u(x, y,1)
∣∣

≤ sup
(x,y)∈Qd−1

ˆ
Rd−1

∣∣P1
(
x′, y′)∣∣∣∣u0

(
x − x′, y − y′)∣∣ dx′ dy′

≤
(

sup
Qd−1

|u0|
)ˆ

Rd−1

∣∣P1
(
x′, y′)∣∣ dx′ dy′

=
(

sup
Qd−1

|u0|
)
,

that is, (87) holds for p = ∞ with α(∞) = 1, we obtain (87) for the remaining
range 2 ≤ p < ∞ again using interpolation.

To show (88), for z > 0 we will prove the following two estimates:

(92)

∥∥u(0, ·, z)∥∥L
p
y (Qd−2)

�
∥∥∇(x,y)u(·, ·, z)∥∥L1

x(0,1;Lp
y (Qd−2))

� 1

z

∥∥u0(·, ·)
∥∥
L1

x(0,1;Lp
y (Qd−2))

and

(93)

∥∥u(0, ·, z)∥∥L
p
y (Qd−2)

≤ ∥∥u(·, ·, z)∥∥L∞
x (0,1;Lp

y (Qd−2))

�
∥∥u0(·, ·)

∥∥
L∞

x (0,1;Lp
y (Qd−2))

.
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Considering the map u0 �→ u(0, ·, ·), the first estimate says that this map is weak-
type from L1

x(0,1;Lp
y (Qd−2)) to L1

z(0,1;Lp
y (Qd−2)), while the second estimate

says it is strong-type from L∞
x (0,1;Lp

y (Qd−2)) to L∞
z (0,1;Lp

y (Qd−2)). Hence,
estimate (88) follows from the Banach-space valued Marcinkiewicz interpolation
theorem; see [29], Chapter I, Theorem 3.

The first inequality in (92) follows from the fact that, for any z > 0, we have

(94)
ˆ

Qd−1

u(x, y, z)dx dy = 0.

Indeed, for a fixed z > 0, for each x ∈ [0,1], denote by (u)x the average

(u)x :=
ˆ

Qd−2

u(x, y, z)dy.

Then, it follows that

‖u‖L1
x(0,1;Lp

y (Qd−2))
≤ ∥∥u − (u)x

∥∥
L1

x(0,1;Lp
y (Qd−2))

+ ∥∥(u)x
∥∥
L1

x(0,1;Lp
y (Qd−2))

� ‖∇yu‖L1
x(0,1;Lp

y (Qd−2))
+ ∥∥∂x(u)x

∥∥
L1

x(0,1)

� ‖∇yu‖L1
x(0,1;Lp

y (Qd−2))
+ ‖∂xu‖L1

x(0,1;Lp
y (Qd−2))

,

where the first inequality follows from the triangle inequality, the second inequal-
ity follows from the Poincaré inequality, (94) and the fact that the averages are
y-independent, and the final inequality follows from Hölder’s inequality and the
definition of the averages.

Fubini’s theorem therefore implies that there exists x0 ∈ [0,1] such that

(95)
∥∥u(x0, ·, z)

∥∥
L

p
y (Qd−2)

� ‖∇yu‖L1
x(0,1;Lp

y (Qd−2))
+ ‖∂xu‖L1

x(0,1;Lp
y (Qd−2))

.

It remains only to transfer estimate (95) to the slice x = 0. For this, we will use the
integral version of the Minkowski inequality which, for p ∈ [1,∞), two measure
spaces (S1,μ1) and (S2,μ2), and a measurable function F : S1 × S2 → R, states
that

(96)

[ˆ
S2

∣∣∣∣
ˆ

S1

F(x, y)μ1(dx)

∣∣∣∣pμ2(dy)

] 1
p

≤
ˆ

S1

(ˆ
S2

∣∣F(x, y)
∣∣pμ2(dy)

) 1
p

μ1(dx).

Precisely,∥∥u(0, ·, z)∥∥L
p
y (Qd−2)

≤ ∥∥u(0, ·, z) − u(x0, ·, z)
∥∥
L

p
y (Qd−2)

+ ∥∥u(x0, ·, z)
∥∥
L

p
y (Qd−2)

� ‖∂xu‖L1
x(0,x0;Lp

y (Qd−2))
+ ∥∥u(x0, ·, z)

∥∥
L

p
y (Qd−2)

� ‖∇yu‖L1
x(0,1;Lp

y (Qd−2))
+ ‖∂xu‖L1

x(0,1;Lp
y (Qd−2))

,
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where the first line uses the triangle inequality, the second relies upon an explicit
computation and (96), and the final inequality relies upon x0 ∈ [0,1] and (95). This
completes the proof of the first inequality appearing in (92).

To prove the second inequality of (92), for x ∈ (0,1) we use (96) to obtain

(97)

[ˆ
Qd−2

∣∣∇(x,y)u(x, y, z)
∣∣p dy

] 1
p

≤
ˆ
Rd−1

(ˆ
Qd−2

∣∣u0
(
x − x′, y − y′)∣∣p dy

) 1
p

· ∣∣∇(x′,y′)Pz

(
x′, y′)∣∣ dx′ dy′.

Since u0 is 1-periodic, we can write

(ˆ
Qd−2

∣∣u0
(
x − x′, y − y′)∣∣p dy

)1/p

=: U(
x − x′)

for some 1-periodic U . Integrating (97) in x over (0,1) then yields

∥∥∇(x,y)u(·, ·, z)∥∥L1
x(0,1;Lp

y (Qd−2))

≤
ˆ 1

0

ˆ
R

U
(
x − x′)(ˆ

Rd−2

∣∣∇(x′,y′)Pz

(
x′, y′)∣∣ dy′

)
dx′ dx

=
ˆ
R

(ˆ 1

0
U

(
x − x′) dx

)(ˆ
Rd−2

∣∣∇(x′,y′)Pz

(
x′, y′)∣∣ dy′

)
dx′

=
(ˆ 1

0
U(x)dx

)(ˆ
Rd−1

∣∣∇(x′,y′)Pz

(
x′, y′)∣∣ dx′ dy′

)

� 1

z
‖u0‖L1

x(0,1;Lp
y (Qd−2))

,

where the last inequality follows from (91) and |∇(x,y)Pz(x, y)| � 1
z
Pz(x, y),

which in turn follows from an explicit computation.
To prove (93), for x ∈ (0,1), we apply the Minkowski integral inequality (96)

to obtain

(98)

[ˆ
Qd−2

∣∣u(x, y, z)
∣∣p dy

] 1
p

≤
ˆ
Rd−1

(ˆ
Qd−2

∣∣u0
(
x − x′, y − y′)∣∣p dy

) 1
p

Pz

(
x′, y′) dx′ dy′.
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We take supremum over x ∈ (0,1) in the above relation, while using the notation
U from above as well as (91), to get

∥∥u(·, ·, z)∥∥L∞
x (0,1;Lp

y (Qd−2))
≤ sup

x∈(0,1)

ˆ
R

U
(
x − x′)(ˆ

Rd−2
Pz

(
x′, y′) dy′

)
dx′

≤
(

sup
x∈(0,1)

U(x)
)(ˆ

Rd−1
Pz

(
x′, y′) dx′ dy′

)

= ‖u0‖L∞
x (0,1;Lp

y (Qd−2))
.

Since this is exactly (93), the proof of (78) is complete.
To finish the proof of Step 1, it remains to consider the Neumann case. We need

to show (79), that is, that for 1 < p < ∞ there exists C = C(d,p) such that

‖∇w‖Lp(∂Qd) ≤ C‖v‖Lp(Qd−1),

where w denotes the unique solution (with zero average) of⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
w = 0 in R
d−1 × (0,1),

∂w

∂xd

= v at Rd−1 × {0},
∂w

∂xd

= 0 at Rd−1 × {1},

and v is a smooth 1-periodic function on R
d−1 with zero average.

Similarly as before, we use Fourier series to write w in terms of the Fourier
coefficients v̂ of v:

w
(
x′, xd

) = − ∑
k∈Zd−1\{0}

v̂k

2π |k|e
2πik·x′

(
e−2π |k|xd + e−2π |k|(2−xd)

1 − e−4π |k|
)
,

for x′ ∈ R
d−1 and xd ∈ (0,1). Then after applying the Mikhlin multiplier the-

orem, see [25] or [26], Appendix, Theorem 2, to the maps v → ∇w(·,0) and
v → ∇w(·,1), we see that

(99) ‖∇w‖Lp(Qd−1×{0}) + ‖∇w‖Lp(Qd−1×{1}) � ‖v‖Lp(Qd−1).

Indeed, the Mikhlin multiplier theorem is applied for each component, where for
the tangential derivatives on the set Qd−1 ×{0}, indexed by j ∈ {1, . . . , d − 1}, the
multipliers are defined by

mj(k) = − ikj

|k|
(

1 + e−4π |k|

1 − e−4π |k|
)
.

For the normal derivative on the set Qd−1 × {0}, the multiplier is

md(k) =
(

e4π |k| − 1

1 − e4π |k|
)
.
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An explicit computation proves that, for each j ∈ {1, . . . , d} and 0 ≤ r ≤ d
2 + 1,

sup
k∈Rd

|k|r ∣∣∇rmj (k)
∣∣ < ∞.

Combining this with the analogous computation on Qd−1 × {1} and applying the
Mikhlin multiplier theorem yields (99).

We will denote by wb the solution of⎧⎪⎪⎨
⎪⎪⎩

−
wb = 0 in R
d−1 × (0,1),

wb = w at Rd−1 × {0},
wb = 0 at Rd−1 × {1}.

Since w (and hence wb) is 1-periodic with zero average at the bottom of the slab,
estimate (78) implies that

‖∇wb‖Lp(∂Qd) � ‖∇w‖Lp(Qd−1×{0}) � ‖v‖Lp(Qd−1).

We similarly define wt as a harmonic function in the slab that is zero at the bottom
and equal to w at the top part of the boundary. For such function, we can use
(78) after the change of coordinates xd → 1 − xd , the triangle inequality and the
identity w = wb + wt , which follows by uniqueness of w, to obtain

‖∇w‖Lp(∂Qd) � ‖v‖Lp(Qd−1).

Step 2. In this step, we decompose the given harmonic functions w in Qd into a
2-periodic harmonic function on the slab (0,1) × R

d−1, and then apply Step 1 to
these to conclude proof of Lemma 4. We first address the Dirichlet case.

First, we will use the boundary data v to define a 2-periodic function ṽ1 on
{0,1} × R

d−1 using even reflections. To this end, for i ∈ {0,1}, we consider the
restriction ṽ1 of v to the right and left (d − 1)-dimensional face

(100) ṽ1(i, x2, . . . , xd) := v|{0,1}×Qd−1 = v(i, x2, . . . , xd) : {0,1} × Qd−1 →R.

We will extend ṽ1 to a 2-periodic function ṽ1 on {0,1} × R
d−1 via a sequence of

even reflections. To achieve this, define the even reflection on {i} × [0,2] × Qd−2
by the rule

(101) ṽ1(i, x2, . . . , xd) :=
{
ṽ1(i, x2, . . . , xd) if x2 ∈ [0,1],
ṽ1(i,2 − x2, . . . , xd) if x2 ∈ [1,2].

Then, for 1 ≤ l < d and i = 0,1, assume inductively that ṽ1 has been defined on
{i} × [0,2]l × Qd−1−l and define the extension to {i} × [0,2]l+1 × Qd−2−l as

(102)

ṽ1(i, . . . , xl+1, . . . , xd)

:=
{
ṽ1(i, x2, . . . , xl+1, . . . , xd) if xl+1 ∈ [0,1],
ṽ1(i, x2, . . . ,2 − xl+1, . . . , xd) if xl+1 ∈ [1,2].
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The function ṽ1 can then be extended to a 2-periodic function to the whole {0,1}×
R

d−1, which completes the construction.
We then define w1 to be the harmonic extension of the ṽ1 on the slab domain

[0,1] ×R
d−1. Namely,

(103)

{−
w1 = 0 in (0,1) ×R
d−1,

w1 = ṽ1 on {0,1} ×R
d−1,

where we observe, in particular, that v1 := w − w1 solves

(104)

{−
v1 = 0 in Qd,

v1 = 0 on {0,1} × Qd−1.

The argument now proceeds inductively. Let us fix 1 ≤ k < d , and suppose that
for i = 1, . . . , k we have already constructed functions wi , which in particular
satisfy the following two properties: First, for each 1 ≤ i ≤ k,

(105) vi := w −
i∑

r=1

wr on ∂Qd,

with

(106) vi |∂Qi×Qd−i
= 0,

meaning vi vanishes on the first i pairs of faces. Second, for i = 1, . . . , k, wi is
harmonic in Qd [in fact in the whole slab R

i−1 × (0,1) ×R
d−i] and vanishes on

∂Qi−1 × Qd−i+1.
To define wk+1 (and hence vk+1) we proceed similarly as before by first extend-

ing the restriction of vk on the two faces Qk−1 × {0,1} × Qd−k by odd reflections
in the first k − 1 variables and even reflections in the remaining d − k variables.
More precisely, on [0,2] × Qk−2 × {0,1} × Qd−k we use odd reflection to define

ṽk+1(x1, . . . , xk−1, i, xk+1, . . . , xd)

=
{
vk(x1, . . . , xk−1, i, xk+1, . . . , xd) if x1 ∈ [0,1],
−vk(2 − x1, . . . , xk−1, i, xk+1, . . . , xd) if x1 ∈ [1,2].

(107)

Observe that for the extension of ṽk+1 to be a Sobolev function we require (106).
Continuing this process, we use odd reflections in k − 1 variables x2, . . . , xk to ex-
tend ṽk+1 to the set [0,2]k ×{0,1}×Qd−k−1. To extend ṽk+1 to [0,2]k ×{0,1}×
[0,2]d−k−1 we use even reflections in the remaining variables xk+1, . . . , xd . Fi-
nally, we extend ṽk+1 to a 2-periodic function on R

k × {0,1} ×R
d−k−1.

As before, the extension ṽk+1 plays the role of the boundary data ṽ1 in (103),
and is used to define wk+1. Precisely, we require

(108)

{−
wk+1 = 0 in R
k × (0,1) ×R

d−k−1,

wk+1 = ṽk+1 on R
k × {0,1} ×R

d−k−1,
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where, owing to the odd symmetry of {ṽk+1}i∈{0,1} in the first k-variables, it is
immediate that

(109) wk+1|∂Qk×Qd−k
= 0.

After defining the entire collection {wk}dk=1, owing to the definition (105) and
properties (108) and (109),

(110)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−


(
w −

d∑
k=1

wk

)
= 0 in Qd,

(
w −

d∑
k=1

wk

)
= 0 on ∂Qd.

From this, we deduce that w = w1 + · · · + wd . Hence, in order to estimate normal
derivatives of w on the boundary ∂Qd it suffices to bound the normal derivatives
of the {wk}dk=1 on the boundary ∂Qd .

Again, proceeding by induction, we consider first the case k = 1. We decompose
w1 in the form

w1 = w1
0 + w1

1 + w1
a,

where, after writing 〈ṽ1,i〉 := ffl
2Qd−1

ṽ1(i, x2, . . . , xd) for i ∈ {0,1}, the functions

w1
0 and w1

1 denote the solutions of

(111)

⎧⎪⎪⎨
⎪⎪⎩

−
w1
0 = 0 in (0,1) ×R

d−1,

w1
0 = ṽ1,0 − 〈

ṽ1,0〉
on {0} ×R

d−1,

w1
0 = 0 on {1} ×R

d−1,

and

(112)

⎧⎪⎪⎨
⎪⎪⎩

−
w1
1 = 0 on (0,1) ×R

d−1,

w1
1 = 0 on {0} ×R

d−1,

w1
1 = ṽ1,1 − 〈

ṽ1,1〉
on {1} ×R

d−1,

and w1
a is the solution

(113)

⎧⎪⎪⎨
⎪⎪⎩

−
w1
a = 0 in (0,1) ×R

d−1,

w1
a = 〈

ṽ1,0〉
on {0} ×R

d−1,

w1
a = 〈

ṽ1,1〉
on {1} ×R

d−1,

which admits the explicit representation w1
a = (1 − x1)〈ṽ1,0〉 + x1〈ṽ1,1〉.

We will now show how estimate (78) from Step 1 implies the first estimate in
Lemma 4. Using (78) for i = 0,1 we get

(114)
∥∥∇w1

i

∥∥
Lp(∂Qd) �

∥∥∇ tanv
∥∥
Lp(∂Qd).
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And, by direct computation,

(115)
∥∥∇w1

a

∥∥
Lp(∂Qd) �

∣∣〈ṽ1,1〉 − 〈
ṽ1,0〉∣∣ �

∥∥∇ tanv
∥∥
Lp(∂Qd).

In combination, (114) and (115) yield

(116)
∥∥∇w1∥∥

Lp(∂Qd) �
∥∥∇ tanv

∥∥
Lp(∂Qd).

Notice here that we consider the full gradient, not merely the normal component,
since it will be necessary for the induction step.

Assume inductively that for 1 < k < d estimate (116) is satisfied for every {wi},
i − 1, . . . , k. Then, in view of (78), (105), the definition of ṽk+1 (107), (108) and
the inductive hypothesis,

(117)

∥∥∇wk+1∥∥
Lp(∂Qd) �

∥∥∇ tanṽk+1∥∥
Lp(Qk×{0,1}×Qd−k−1)

�
∥∥∇ tanv

∥∥
Lp(∂Qd) +

k∑
i=1

∥∥∇ tanwi
∥∥
Lp(∂Qd)

�
∥∥∇ tanv

∥∥
Lp(∂Qd).

Since w = w1 + · · · + wd by (110), the proof of the lemma in the Dirichlet case is
complete.

In the Neumann case, the process works verbatim with a single modification:
we need to switch the role of even and odd reflections.
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[22] JIKOV, V. V., KOZLOV, S. M. and OLEĬNIK, O. A. (1994). Homogenization of Differential
Operators and Integral Functionals. Springer, Berlin. MR1329546

[23] LI, P. (1997). Harmonic sections of polynomial growth. Math. Res. Lett. 4 35–44. MR1432808
[24] MARAHRENS, D. and OTTO, F. (2015). Annealed estimates on the Green function. Probab.

Theory Related Fields 163 527–573. MR3418749
[25] MIKHLIN, S. G. (1956). On the multipliers of Fourier integrals. Dokl. Akad. Nauk SSSR 109

701–703. MR0080799
[26] MIKHLIN, S. G. (1957). Fourier integrals and multiple singular integrals. Vestn. Leningr. Univ.,

Mat. Meh. Astron. 12 143–155. MR0088603
[27] SAPOZHNIKOV, A. (2017). Random walks on infinite percolation clusters in models with long-

range correlations. Ann. Probab. 45 1842–1898. MR3650417
[28] SIMON, L. (1997). Schauder estimates by scaling. Calc. Var. Partial Differential Equations 5

391–407. MR1459795

http://www.ams.org/mathscinet-getitem?mr=1010728
http://www.ams.org/mathscinet-getitem?mr=3395463
http://www.ams.org/mathscinet-getitem?mr=0482275
http://www.ams.org/mathscinet-getitem?mr=3418544
http://www.ams.org/mathscinet-getitem?mr=3573286
http://www.ams.org/mathscinet-getitem?mr=1491451
http://arxiv.org/abs/arXiv:1602.08428
http://www.ams.org/mathscinet-getitem?mr=3675925
http://www.ams.org/mathscinet-getitem?mr=0501367
http://www.ams.org/mathscinet-getitem?mr=3528529
http://www.ams.org/mathscinet-getitem?mr=3640071
http://www.ams.org/mathscinet-getitem?mr=3099262
http://www.ams.org/mathscinet-getitem?mr=3542610
http://arxiv.org/abs/arXiv:1409.2678
http://www.ams.org/mathscinet-getitem?mr=1329546
http://www.ams.org/mathscinet-getitem?mr=1432808
http://www.ams.org/mathscinet-getitem?mr=3418749
http://www.ams.org/mathscinet-getitem?mr=0080799
http://www.ams.org/mathscinet-getitem?mr=0088603
http://www.ams.org/mathscinet-getitem?mr=3650417
http://www.ams.org/mathscinet-getitem?mr=1459795


1422 P. BELLA, B. FEHRMAN AND F. OTTO

[29] STEIN, E. M. (1993). Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscil-
latory Integrals. Princeton Mathematical Series 43. Princeton Univ. Press, Princeton, NJ.
MR1232192

[30] YAU, S. T. (1975). Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl.
Math. 28 201–228. MR0431040

P. BELLA

MATHEMATISCHES INSTITUT

UNIVERSITÄT LEIPZIG

AUGUSTUSPLATZ 10
04109 LEIPZIG

GERMANY

E-MAIL: bella@math.uni-leipzig.de

B. FEHRMAN

F. OTTO

MAX PLANCK INSTITUTE FOR MATHEMATICS

IN THE SCIENCES

INSELSTRASSE 22
04103 LEIPZIG

GERMANY

E-MAIL: fehrman@mis.mpg.de
otto@mis.mpg.de

http://www.ams.org/mathscinet-getitem?mr=1232192
http://www.ams.org/mathscinet-getitem?mr=0431040
mailto:bella@math.uni-leipzig.de
mailto:fehrman@mis.mpg.de
mailto:otto@mis.mpg.de

	Introduction and the main results
	Organization and notation

	The proof of Theorem 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 2
	Proof of Lemma 3
	Appendix
	An alternate construction of the ﬂux correction sigma in Lemma 1
	The proof of Lemma 4

	Acknowledgments
	References
	Author's Addresses

