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VOLATILITY AND ARBITRAGE
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The capitalization-weighted cumulative variation

d∑
i=1

∫ ·
0

μi(t)d〈logμi〉(t)

in an equity market consisting of a fixed number d of assets with capitaliza-
tion weights μi(·), is an observable and a nondecreasing function of time.
If this observable of the market is not just nondecreasing but actually grows
at a rate bounded away from zero, then strong arbitrage can be constructed
relative to the market over sufficiently long time horizons. It has been an
open issue for more than ten years, whether such strong outperformance of
the market is possible also over arbitrary time horizons under the stated con-
dition. We show that this is not possible in general, thus settling this long-
open question. We also show that, under appropriate additional conditions,
outperformance over any time horizon indeed becomes possible, and exhibit
investment strategies that effect it.

1. Introduction and summary. It has been known since Fernholz (2002) that
volatility in an equity market can generate arbitrage, or at least relative arbitrage
between a specified portfolio and the market portfolio, under idealized conditions
on market structure and on trading. However, the questions of exactly what level of
volatility is required and of how long it might take for this arbitrage to be realized,
have never been fully answered. Here, we hope to shed some light on these ques-
tions, and come to an understanding about what might represent adequate volatility
and over which time-frame relative arbitrage might be achieved.

A common condition regarding market volatility, sometimes known as strict
nondegeneracy, is the requirement that the eigenvalues of the market covaria-
tion matrix be bounded away from zero. It was shown in Fernholz (2002) that
strict nondegeneracy coupled with market diversity, the condition that the largest
relative market weight be bounded away from one, will produce relative ar-
bitrage with respect to the market over sufficiently long time horizons. Later,
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Fernholz, Karatzas and Kardaras (2005) showed that these two conditions lead to
relative arbitrage over arbitrarily short time horizons (or “short-term relative ar-
bitrage”, for brevity). Market diversity is actually a rather mild condition, very
likely to be satisfied in any market with even a semblance of anti-trust regulation.
However, strict nondegeneracy is a much stronger condition, and probably not
amenable to statistical verification in any realistic market setting. While it might
be reasonable to assume that the market covariation matrix is nonsingular, it would
seem rather courageous to make strong assumptions regarding the behavior over
time of the smallest eigenvalue of a random d × d matrix, where d ∈ N is usually
a large integer standing for the number of stocks in an equity market.

Accordingly, it is preferable to avoid the use of strict nondegeneracy as a char-
acterization of adequate volatility and consider instead measures based on aggre-
gated relative variations. An important such measure is the so-called cumulative
internal variation of the market:

(1.1) �(·) := 1

2

d∑
i=1

∫ ·
0

μi(t)d〈logμi〉(t).

This is based on the cumulative weighted average of the variations of the loga-
rithmic market weights, and will be discussed at some length below. Here, μi(t)

represents the market weight of the ith stock at time t ≥ 0, for each i = 1, . . . , d .
Fernholz and Karatzas (2005) show that if the slope of �(·) is bounded away from
zero, then relative arbitrage with respect to the market will exist over a long enough
time horizon. We shall see in Section 6 that this condition does not necessarily
lead to relative arbitrage over an arbitrary time horizon. However, not all is lost:
in Section 5, we shall show that under additional assumptions, such as when there
are only two stocks (d = 2) or when the market weights satisfy appropriate time-
homogeneity properties, relative arbitrage does exist over arbitrary time horizons
when the slope of �(·) in (1.1) is bounded away from zero. Other sufficient condi-
tions are also provided. We remark also that Pal (2016) recently derived sufficient
conditions for large markets that yield asymptotic short-term arbitrage.

Preview: The structure of the paper is as follows: Sections 2, 3 and 4 set up
the basic definitions, including the concept of functional generation of trading
strategies. Introduced by Fernholz (1999, 2002) and developed in Fernholz and
Karatzas (2009) and Karatzas and Ruf (2017), functionally-generated strategies
are very useful for constructing arbitrages relative to the market. Section 5 estab-
lishes conditions under which such relative arbitrage can be shown to exist over
arbitrary time horizons. Section 6 constructs examples of markets which have ade-
quate volatility but admit no such relative arbitrage—indeed, the price processes in
these examples are all martingales. Section 7 summarizes the results of this paper
and discusses some open questions.
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2. The market setup and trading strategies. We fix a probability space
(�,F ,P) endowed with a right-continuous filtration F = (F (t))t≥0. For sim-
plicity, we take F (0) = {∅,�}, mod. P. All processes to be encountered will
be adapted to this filtration. On this filtered probability space and for some in-
teger d ≥ 2, we consider a continuous d-dimensional semimartingale μ(·) =
(μ1(·), . . . ,μd(·))′ taking values in the lateral face

�d :=
{
(x1, . . . , xd)′ ∈ [0,1]d :

d∑
i=1

xi = 1

}
⊂H

d

of the unit simplex, where H
d denotes the hyperplane

(2.1) H
d :=

{
(x1, . . . , xd)′ ∈ R

d :
d∑

i=1

xi = 1

}
.

We assume that μ(0) ∈ �d+, where we set

�d+ := �d ∩ (0,1)d .(2.2)

We interpret μi(t) as the relative market weight, in terms of capitalization in the
market, of company i = 1, . . . , d at time t ≥ 0. An individual company’s market
weight is allowed to become zero, but we insist that

∑d
i=1 μi(t) = 1 must hold for

all t ≥ 0. In this spirit, it is useful to think of the generic market weight process
μi(·) as the ratio

(2.3) μi(·) := Si(·)
�(·) , i = 1, . . . , d; �(·) := S1(·) + · · · + Sd(·) > 0.

Here, Si(·) is a continuous nonnegative semimartingale for each i = 1, . . . , d , rep-
resenting the capitalization (stock price, multiplied by the number of shares out-
standing) of the ith company; whereas the process �(·), assumed to be strictly
positive, stands for the total capitalization of the entire market.

For later reference, we introduce the stopping times

(2.4) D := D1 ∧ · · · ∧ Dd, Di := inf
{
t ≥ 0 : μi(t) = 0

}
.

To avoid notational inconvenience, we assume that μi(Di + t) = 0 holds for all
i = 1, . . . , d and t ≥ 0; in other words, the origin is an absorbing state for any of
the market weights.

One of our results, Theorem 5.10 below, needs the following notion.

DEFINITION 2.1 (Deflator). A strictly positive process Z(·) is called defla-
tor for the vector semimartingale μ(·) of relative market weights, if the product
Z(·)μi(·) is a local martingale for every i = 1, . . . , d .
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Except when explicitly stated otherwise, the results below will hold indepen-
dently of whether the vector semimartingale μ(·) of relative market weights admits
a deflator, or not.

In order to fix ideas and simplify the presentation, we shall assume from now
onwards that each stock in the market has exactly one share outstanding. With this
normalization, capitalizations and prices coincide.

We consider now a predictable process ϑ(·) = (ϑ1(·), . . . , ϑd(·))′ with values
in R

d , and interpret ϑi(t) as the number of shares held at time t ≥ 0 in the stock
of company i = 1, . . . , d . Then the total value, or “wealth”, of this investment,
measured in terms of the total market capitalization, is

V ϑ(·) :=
d∑

i=1

ϑi(·)μi(·).

DEFINITION 2.2 (Trading strategies). Suppose that the R
d -valued, pre-

dictable process ϑ(·) is integrable with respect to the continuous Rd -valued semi-
martingale μ(·). We shall say that ϑ(·) is a trading strategy if it satisfies the so-
called “self-financibility” condition

(2.5) V ϑ(T ) = V ϑ(0) +
∫ T

0

d∑
i=1

ϑi(t)dμi(t), T ≥ 0.

We call a trading strategy ϑ(·) long-only, if it never sells any stock short: i.e., if
ϑi(t) ≥ 0 holds for all stocks i = 1, . . . , d and all times t ≥ 0.

The vector stochastic integral in (2.5) gives the gains-from-trade realized over
[0, T ]. The self-financibility requirement of (2.5) posits that these “gains” account
for the entire change in the value generated by the trading strategy ϑ(·) between
the start t = 0 and the end t = T of the interval [0, T ].

Instead of defining trading strategies in terms of the market weights μ(·), we
could have defined them in terms of the capitalizations S(·) that appear in (2.3).
This approach would have led to exactly the same class of trading strategies, thanks
to the insights on “changes of numéraires” by Geman, El Karoui and Rochet
(1995); see also Proposition 2.3 in Karatzas and Ruf (2017).

The special trading strategy ϑ∗(·) = (1, . . . ,1)′ buys an equal number of shares
in each one of the assets at time t = 0, then holds on to these shares indefinitely
(equivalently, invests in each asset in proportion to its relative capitalization at all
times). This strategy implements the so-called market portfolio.

The following observation, a result of straightforward computation, will be
needed in the proof of Theorem 5.7.

REMARK 2.3 (Concatenation of trading strategies). Suppose we are given a
real number b ∈ R, a stopping time τ of the underlying filtration F, and a trad-
ing strategy ϕ(·). We then form a new process ψ(·) = (ψ1(·), . . . ,ψd(·))′, again
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integrable with respect to μ(·) and with components

(2.6) ψi(·) := b + (
ϕi(·) − V ϕ(τ)

)
1�τ,∞�(·), i = 1, . . . , d.

Then the process ψ(·) is a trading strategy itself, and its associated wealth process
V ψ(·) is given by

V ψ(·) = b + (
V ϕ(·) − V ϕ(τ)

)
1�τ,∞�(·).

3. Functional generation of trading strategies. There is a special class of
trading strategies for which the representation of (2.5) takes an exceptionally sim-
ple and explicit form; in particular, one in which stochastic integrals disappear
entirely from the right-hand side of (2.5). In order to present this class of trading
strategies, we start with the definition of regular functions.

DEFINITION 3.1 (Regular function). A continuous mapping G : �d → R is
called regular function for the vector process μ(·) of relative market weights, if
the process G(μ(·)) is a semimartingale of the form

(3.1) G
(
μ(·)) = G

(
μ(0)

) +
∫ ·

0

d∑
i=1

DiG
(
μ(t)

)
dμi(t) − �G(·)

for some measurable function DG : �d →R
d and a process �G(·) of finite varia-

tion on compact time intervals.

The notion comes from Karatzas and Ruf (2017). We stress that it pertains to a
specific market weight process μ(·); a function G might be regular with respect to
some such process, but not with respect to another.

In this paper, we shall only deal with regular functions G that can be extended
to twice continuously differentiable functions in a neighborhood of the set �d+ in
(2.2). From now on, every regular function G we encounter will be supposed to
have this smoothness property. Then we may assume that DG(x) is the gradient
of G evaluated at x, at least for all x ∈ �d+. Moreover, the finite-variation pro-
cess �G(·) of (3.1) will then be given, on the stochastic interval �0,D � and in the
notation of (2.4), by the expression

(3.2) �G(·) = −1

2

d∑
i=1

d∑
j=1

∫ ·
0

D2
i,jG

(
μ(t)

)
d〈μi,μj 〉(t),

a G-aggregated cumulative measure of the market’s internal variation.
There are two ways in which a regular function G can generate a trading strat-

egy:
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1. Additive functional generation: The vector process ϕG(·) = (ϕG
1 (·), . . . ,

ϕG
d (·))′ with components

(3.3)
ϕG

i (·) := DiG
(
μ(·)) + �G(·) + G

(
μ(·)) −

d∑
j=1

μj(·)DjG
(
μ(·)),

i = 1, . . . , d

is a trading strategy, and is said to be additively generated by G. The wealth pro-
cess V ϕG

(·) associated with this trading strategy has the extremely simple form

(3.4) V ϕG
(·) = G

(
μ(·)) + �G(·).

That is, V ϕG
(·) can be represented as the sum of a completely observed and “con-

trolled” term G(μ(·)), plus a “cumulative earnings” term �G(·).
2. Multiplicative functional generation: The second way to generate a trading

strategy requires the process 1/G(μ(·)) to be locally bounded [equivalently, the
continuous, adapted process G(μ(·)) in the denominator not to vanish]. This as-
sumption allows us to define the process

(3.5) ZG(·) := G
(
μ(·)) exp

(∫ ·
0

d�G(t)

G(μ(t))

)
> 0.

Then the vector process ψG(·) = (ψG
1 (·), . . . ,ψG

d (·))′ with components

(3.6)
ψG

i (·) := ZG(·)
(

1 + 1

G(μ(·))
(
DiG

(
μ(·)) −

d∑
j=1

DjG
(
μ(·))μj(·)

))
,

i = 1, . . . , d

is a trading strategy, and is said to be multiplicatively generated by G. The wealth

V ψG
(·) associated with this strategy is given by the process of (3.5); namely,

V ψG
(·) = ZG(·).

It is important to note that the expressions in (3.3), (3.4) and (3.5), (3.6) are
completely devoid of stochastic integrals.

If the regular function G is nonnegative and concave, then it can be shown that
both strategies ϕG(·) and ψG(·) are long-only: to wit, all quantities in (3.3), (3.6)
are nonnegative, and in this case the process �G(·) in (3.1) is actually nondecreas-
ing. More generally, we introduce the following notion.

DEFINITION 3.2 (Lyapunov function). A regular function G is called Lya-
punov function, if the process �G(·) in (3.1) is nondecreasing.
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For a Lyapunov function G, the process �G(·) has the significance of an ag-
gregated measure of cumulative internal variation in the market. The Hessian
matrix-valued process −D2G(μ(·)) which quantifies the aggregation, acts then
as a sort of “local curvature” on the covariation matrix of the semimartingale μ(·)
to give us this cumulative measure of variation or “volatility”. A concave mapping
G : �d → R that can be extended to a twice continuously differentiable function
in a neighborhood of the set �d+ in (2.2) is a Lyapunov function for any continuous
semimartingale process μ(·) representing relative market weights.

The theory and applications of functionally-generated trading strategies were
developed by Fernholz (1999, 2002); see also Karatzas and Ruf (2017). All claims
made in this section are proved in these references, and several examples of
functionally-generated trading strategies are discussed. We introduce now four reg-
ular functions which will be important in our present context.

1. The entropy function of statistical mechanics and information theory

(3.7) H := −
d∑

i=1

xi logxi, x ∈ �d,

with the convention 0 × log∞ = 0, is a particularly important regular function
[provided that μ(·) allows for a deflator]. Note that H is concave, thus also a
Lyapunov function, and takes values in [0, logd]. It generates additively the long-
only entropy-weighted trading strategy

(3.8) ϕH
i (·) =

(
log

(
1

μi(·)
)

+ �H (·)
)

1{μi(·)>0}, i = 1, . . . , d.

Here,

(3.9)

�H (·) = 1

2

d∑
i=1

∫ ·
0

d〈μi〉(t)
μi(t)

= 1

2

d∑
i=1

∫ ·
0

μi(t)d〈logμi〉(t) = �(·) on �0,D �

coincides with the process �(·) in (1.1); it denotes both the cumulative earnings of
the strategy ϕH (·) in the manner of (3.4), as well as the H -aggregated measure of
the market’s cumulative internal volatility as in (3.2).

This nondecreasing, trace-like process �H (·) coincides also with the cumulative
excess growth of the market in the context of stochastic portfolio theory, where it
plays an important role. The process �H (·) measures the market’s cumulative in-
ternal variation—stock-by-stock, then averaged according to each stock’s weight.
As such, it offers a gauge of the market’s “intrinsic volatility”. Figure 1 uses the
monthly stock database of the Center for Research in Securities Prices (CRSP)
at the University of Chicago to plot the quantity of (3.9) over the 80-year period
1926–2005.



VOLATILITY AND ARBITRAGE 385

FIG. 1. Cumulative internal variation (excess growth) �H (·) for the U.S. Market, 1926–2005.

2. The quadratic function

Q(x) := 1 −
d∑

i=1

x2
i , x ∈ �d,(3.10)

takes values in [0,1−1/d], and is also a concave regular function. It is mathemati-
cally very convenient to work with Q, so this function will play a major role when
constructing specific counterexamples in Section 6. The corresponding aggregated
measure of cumulative variation, or volatility, is given by the nondecreasing trace
process

�Q(·) =
d∑

i=1

〈μi〉(·).(3.11)

We note also that the difference

(3.12)

2�H (·) − �Q(·)

=
d∑

i=1

∫ ·
0

1{μi(t)>0}
(

1

μi(t)
− 1

)
d〈μi〉(t) is nondecreasing,

where �H (·) is given in (3.9), thanks to the property
∫ ·

0 1{μi(t)=0} d〈μi〉(t) = 0 from
Exercise 3.7.10 in Karatzas and Shreve (1991).

3. We shall also have a close look at the concave, geometric mean function

R(x) :=
(

d∏
i=1

xi

)1/d

, x ∈ �d(3.13)
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with corresponding aggregated cumulative variation process given on �0,D � by

�R(·) = 1

2d

d∑
i=1

∫ ·
0

R
(
μ(t)

)
d〈logμi〉(t)

− 1

2d2

d∑
i=1

d∑
j=1

∫ ·
0

R
(
μ(t)

)
d〈logμi, logμj 〉(t).

4. Finally, we shall use in one of the proofs the power function

F (x) := x
q
1 , x ∈ �d(3.14)

for q ≥ 1. Note that F is, for q > 1, a convex rather than concave function, as was
the case in the other three examples. It is nevertheless regular, so it can still be used
to generate a trading strategy. Indeed, if μ1(·) does not vanish, the multiplicatively
generated strategy ψ(·) of (3.6) exists. More precisely, with the process of (3.5)
given now by

ZF(·) = (
μ1(·))q exp

(
−1

2
q(q − 1)

∫ ·
0

(
μ1(t)

)−2 d〈μ1〉(t)
)
,(3.15)

the expression in (3.6) can be written here as

(3.16)
ψF

1 (·) =
(

q

μ1(·) + 1 − q

)
ZF(·);

ψF
i (·) = (1 − q)ZF(·) < 0, i = 2, . . . , d.

The resulting strategy ψF(·) takes short positions in all stocks but the first; whereas
in this first stock it invests heavily and in a leveraged manner, that is, ψF

1 (·) >

ZF(·) ≡ V ψF
(·).

4. Relative arbitrage and an old question. We introduce now the important
notion of relative arbitrage with respect to the market.

DEFINITION 4.1 (Relative arbitrage). Given a real constant T > 0, we say
that a trading strategy ϑ(·) is relative arbitrage with respect to the market over the
time horizon [0, T ] if V ϑ(0) = 1, V ϑ(·) ≥ 0, and

P
(
V ϑ(T ) ≥ 1

) = 1, P
(
V ϑ(T ) > 1

)
> 0.

If in fact P(V ϑ(T ) > 1) = 1 holds, this relative arbitrage is called strong.

REMARK 4.2 (Equivalent martingale measure). Let us fix a real number
T > 0. Then, over the time horizon [0, T ], no relative arbitrage is possible with
respect to a market whose relative weight processes μ1(· ∧ T ), . . . ,μd(· ∧ T ) are
martingales under some equivalent probability measure QT ∼ P defined on F (T ).
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Suppose now that no relative arbitrage is possible over the time horizon [0, T ],
with respect to a market with relative weights μ(·). Provided that μ(·) admits a
deflator, there exists then on F (T ) an equivalent probability measure QT ∼ P
under which the relative weights μ1(· ∧ T ), . . . ,μd(· ∧ T ) are martingales; see
Delbaen and Schachermayer (1994) or Karatzas and Kardaras (2007).

Since the process μ(·) expresses the market portfolio, the arbitrage of Defini-
tion 4.1 is interpreted as relative arbitrage with respect to the market. The question
of whether a given market portfolio can be “outperformed” as in Definition 4.1, is
of great theoretical and practical importance—particularly given the proliferation
of index-type mutual funds3 which try to track and possibly outperform a specific
market portfolio or “index” or “benchmark”.

To wit: Under what conditions is there relative arbitrage with respect to the
market? over which time horizons? if it exists, can such relative arbitrage be
strong?

Functionally-generated trading strategies are ideal for answering such ques-
tions, thanks to the representations of (3.4) and (3.5) which describe their perfor-
mance relative to the market in a pathwise manner, devoid of stochastic integration.
The following result is taken from Karatzas and Ruf (2017); its lineage goes back
to Fernholz (2002) and to Fernholz and Karatzas (2005). In our present context, it
is a straightforward consequence of the representation (3.4).

THEOREM 4.3 (Strong relative arbitrage over sufficiently long time horizons).
Suppose that G : �d → [0,∞) is a Lyapunov function with G(μ(0)) > 0. Sup-
pose, moreover, that there is a real number T∗ > 0 with the property

(4.1) P
(
�G(T∗) > G

(
μ(0)

)) = 1.

Then the trading strategy ϕG∗(·) = (ϕ
G∗
1 (·), . . . ,ϕG∗

d (·))′, generated additively in
the manner of (3.3) by the function G∗ := G/G(μ(0)), is strong relative arbitrage
with respect to the market over any time horizon [0, T ] with T ∈ [T∗,∞).

The following result is also a direct corollary of the representation (3.4). It per-
tains to regular functions G : �d → [0,∞) that satisfy

(4.2)
P
(
the mapping [0,∞) � t �→ �G(t) − ηt is nondecreasing

) = 1

for some constant η > 0.

This condition will be very important from now onwards.

3As Jason Zweig writes for The Wall Street Journal in his August 31, 2016 article “Birth of the
Index Mutual Fund: Bogle’s Folly turns 40”: “Today [. . . ] index mutual funds and exchange-traded
funds invest nearly $5 trillion in combined assets”.
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PROPOSITION 4.4 (Slope bounded from below). Suppose that G : �d →
[0,∞) is a regular function with G(μ(0)) > 0 satisfying the condition (4.2). Then
the trading strategy ϕG∗(·) of Theorem 4.3 is strong relative arbitrage with respect
to the market, over any time horizon [0, T ] with

(4.3)
G(μ(0))

η
< T < ∞.

The assertion of Proposition 4.4 appears already in Fernholz and Karatzas
(2005) for the entropy function H of (3.7). In this case, the condition of (4.2)
posits that the cumulative internal variation �H (·) as in (3.9) or (1.1) is not just
increasing, but actually dominates a straight line with positive slope. This assump-
tion can be read most instructively in conjunction with the plot of Figure 1. Under
it, Proposition 4.4 guarantees the existence of relative arbitrage with respect to the
market over any time horizon [0, T ] of finite length T > H (μ(0))/η.

REMARK 4.5. The following question was raised in Fernholz and Karatzas
(2005), and was posed again in Banner and Fernholz (2008).

Assume that (4.2) holds with G = H , the entropy function of (3.7). Is then rel-
ative arbitrage with respect to the market possible over every time horizon [0, T ]
of finite length T > 0?

In Section 5, we shall present results which guarantee, under appropriate addi-
tional conditions, affirmative answers to this question. Then in Section 6 we shall
construct market models illustrating that, in general, the answer to the above ques-
tion is negative. This settles an issue which had remained open for more than 10
years.

5. Existence of short-term relative arbitrage. Given a Lyapunov func-
tion G : �d → [0,∞) with G(μ(0)) > 0, Theorem 4.3 provides the condition
P(�G(T ) > G(μ(0))) = 1 on the length T > 0 of the time horizon [0, T ] as suffi-
cient for the existence of strong relative arbitrage with respect to the market over
[0, T ].

In this section, we study conditions under which relative arbitrage exists on
the time horizon [0, T ], for any given real number T > 0. Section 5.1 discusses
conditions that guarantee the existence of short-term relative arbitrage which is
strong. The conditions of Section 5.2 guarantee only the existence of short-term
relative arbitrage, not necessarily strong.

5.1. Existence of strong short-term relative arbitrage. The following theorem
greatly extends and simplifies the results in Section 8 of Fernholz, Karatzas and
Kardaras (2005) and in Section 8 of Fernholz and Karatzas (2009).
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THEOREM 5.1 (One asset with sufficient variation). In a market as in Sec-
tion 2 with relative weight processes μ1(·), . . . ,μd(·), suppose there exists a con-
stant η > 0 such that 〈μ1〉(t) ≥ ηt holds on the stochastic interval �0,D∗� with

D∗ := inf
{
t ≥ 0 : μ1(t) ≤ μ1(0)

2

}
.

Then, given any real number T > 0, there exists a long-only trading strategy ϕ(·)
which is strong relative arbitrage with respect to the market over the time horizon
[0, T ].

PROOF. Let us fix a real number T > 0 and consider the market with weights
ν(·) := μ(· ∧ D∗). It suffices to prove the existence of a long-only trading strategy
ϕ(·) which is strong relative arbitrage with respect to the new market with weights
ν(·) over the time horizon [0, T ]. For then the long-only trading strategy ϕ(·∧D∗)
is strong relative arbitrage with respect to the original market with weights μ(·)
over the time horizon [0, T ].

For some number q > 1 to be determined presently, we recall the regular func-
tion F of (3.14). Since 1/ν1(·) is locally bounded, F generates multiplicatively, for
the market with weight process ν(·), the strategy ψF (·) given by (3.16), with μ(·)
replaced by ν(·). We note that ψF

i (·) < 0 holds for i = 2, . . . , d , that ψF
1 (·) ≤ 1,

and that V ψF
(·) = ZF (·) is given as in (3.15). We introduce now the long-only

trading strategy

ϕi(·) = 1 + (
ν1(0)

)q − ψF
i (·), i = 1, . . . , d

with associated wealth process

V ϕ(·) = 1 + (
ν1(0)

)q − ZF (·).
In particular, we note V ϕ(0) = 1 and V ϕ(·) ≥ 0. On the event {D∗ ≤ T }, we have

V ϕ(T ) ≥ 1 + (
ν1(0)

)q − (
ν1(T )

)q = 1 + (
ν1(0)

)q −
(

ν1(0)

2

)q

> 1;
whereas, on the event {D∗ > T } we have

V ϕ(T ) ≥ 1 + (
ν1(0)

)q − exp
(
−1

2
q(q − 1)〈ν1〉(T )

)
≥ 1 + (

ν1(0)
)q −

(
exp

(
−η

2
(q − 1)T

))q

> 1,

provided we choose q = q(T ) large enough so that

(5.1) exp
(
−η

2
(q − 1)T

)
< ν1(0) = μ1(0).

This shows P(V ϕ(T ) > 1) = 1, as claimed. �
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REMARK 5.2 [Dependence of ϕ(·) on the length of the time horizon]. The
trading strategy ϕ(·) of Theorem 5.1 is constructed in a very explicit and “model-
free” manner, but does depend on the length of the time horizon over which it
effects arbitrage with respect to the market. The shorter the length of the time-
horizon T > 0, the higher the “leverage parameter” q = q(T ) needs to be in (5.1).

The following two remarks recall two alternative ways for obtaining the exis-
tence of strong relative arbitrage opportunities over arbitrary time horizons.

REMARK 5.3 (Smallest asset with sufficient variation). In the spirit of Theo-
rem 5.1, Banner and Fernholz (2008) also prove the existence of a strong relative
arbitrage over arbitrary time horizons. However, they do not assume that one fixed
asset contributes to the overall market volatility—but rather that it is always the
smallest stock that has sufficient variation. The strategy they construct is again
“model-free” but does depend on the length of the time horizon.

REMARK 5.4 (Completeness and arbitrage imply strong arbitrage). If the un-
derlying market model allows for a deflator (recall Definition 2.1) and is complete
(any contingent claim can be replicated), then the existence of an arbitrage op-
portunity implies the existence of a strong one; see Theorem 8 in Ruf (2011).
However, this strong arbitrage usually will depend on the model and on the length
of the time horizon.

Diversity and strict nondegeneracy.

DEFINITION 5.5 (Diversity). We say that a market with weight processes
μ1(·), . . . ,μd(·) is diverse if

(5.2) P

(
sup

t∈[0,∞)

max
1≤i≤n

μi(t) ≤ 1 − δ
)

= 1 holds for some constant δ ∈ (0,1).

Diversity posits that no company can come close to dominating the entire mar-
ket capitalization. It is a typical characteristic of large, deep and liquid equity mar-
kets.

Let us assume now that the continuous semimartingales S1(·), . . . , Sd(·) in (2.3),
to wit, the capitalization processes of the various assets in the market, have covari-
ations of the form

(5.3) 〈Si, Sj 〉(·) =
∫ ·

0
Si(t)Sj (t)Ai,j (t)dt, i, j = 1, . . . , d

for a suitable symmetric, nonnegative definite matrix-valued and progressively
measurable process A(·) = (Ai,j (·))1≤i,j≤d .
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COROLLARY 5.6 (Diversity and strict nondegeneracy). Suppose that a market
as in (2.3) is diverse, that (5.3) holds, and that the asset covariation matrix-valued
process A(·) = (Ai,j (·))1≤i,j≤d of (5.3) satisfies the strict nondegeneracy condi-
tion

(5.4) ξ ′A(t,ω)ξ ≥ λ‖ξ‖2 for all ξ ∈ R
d, (t,ω) ∈ [0,∞) × �

for some λ > 0. Then, given any real number T > 0, there exists a long-only trad-
ing strategy ϕ(·) which is strong relative arbitrage with respect to the market over
the time horizon [0, T ].

PROOF. With the help of (2.6) and (3.11) in Fernholz and Karatzas (2009), the
conditions in (5.2) and (5.4)—namely, diversity and strict nondegeneracy—lead to
the lower bound

〈μ1〉(t ∧ D∗) ≥ λ

∫ t∧D∗

0

(
μ1(s)

)2
(
1 − max

1≤i≤n
μi(s)

)2
ds ≥ η

(
t ∧ D∗)

, t ≥ 0

for η := λ(δμ1(0)/2)2. The claim is now a direct consequence of Theorem 5.1.
�

5.2. Existence of short-term relative arbitrage, not necessarily strong. In this
subsection, we provide three more criteria that guarantee the existence of relative
arbitrage with respect to the market over arbitrary time horizons. The first criterion
is a condition on the time-homogeneity of the support of the market weight vector
process μ(·). The second criterion uses failure of diversity. The third criterion is a
condition on the nondegeneracy of the covariation matrix-valued process of μ(·).

5.2.1. Time-homogeneous support. Let us recall the condition in (4.1). There,
the threshold G(μ(0)) “is at its lowest”, when the initial market-weight config-
uration μ(0) is at a site where G attains, or is very close to, its smallest value
on �d . These are the most propitious sites from which relative arbitrage can be
launched: starting at them the accumulated volatility is large relative to the overall
displacement of G evaluated along the market weight vector process μ(·).

The following result assumes that the essential infimum of the continuous semi-
martingale G(μ(·)) remains constant over time. In particular, that sites in the state
space which are close to this infimum—and thus “propitious” for launching rel-
ative arbitrage—can be visited “quickly” (i.e., over any given time horizon) with
positive probability. The result shows that relative arbitrage with respect to such a
market can then be realized over any time horizon [0, T ] of arbitrary length T > 0.

THEOREM 5.7 (A time-homogeneity condition on the support). Suppose that
for a given regular function G and appropriate real constants η > 0 and h ≥ 0,
the condition in (4.2) is satisfied along with the lower bound

(5.5) P
(
G

(
μ(t)

) ≥ h, t ≥ 0
) = 1
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and the “time homogeneous support” property

(5.6) P
(
G

(
μ(t)

) ∈ [h,h + ε) for some t ∈ [0, T ]) > 0 for all T > 0, ε > 0.

Then arbitrage relative to the market exists over the time horizon [0, T ], for every
real number T > 0.

The basic argument in the proof of Theorem 5.7 is quite simple to describe:
Given a time horizon [0, T ], the condition in (5.6) declares that the vector process
μ(·) of relative market weights will visit, before time T/2 and with positive prob-
ability, sites which are “very propitious” for arbitrage relative to the market. The
moment this happens it makes good sense to switch from the market portfolio to
the trading strategy ϕ�(·) generated by the function G� = c(G − h) in the manner
of (3.3), for some appropriately chosen constant c > 0. The challenge then is to
show that such a strategy does not underperform the market, and has a positive
probability of outperforming it strictly.

PROOF OF THEOREM 5.7. For an arbitrary but fixed real number T > 0, we
introduce the regular function

G� := (G − h)
3

ηT
and denote ��(·) := �G�

(·) = 3

ηT
�G(·).

We also introduce the stopping time

τ := inf
{
t ∈

[
0,

T

2

]
: G(

μ(t)
)
< h + ηT

3

}
with the usual convention that the infimum of the empty set is equal to infinity, and
note that (5.6) implies

P
(
τ ≤ T

2

)
> 0.(5.7)

We let ϕ�(·) := ϕG�
(·) denote the trading strategy generated by the function G� in

the manner of (3.3). We also introduce the trading strategy ϕ(·) which follows the
market portfolio up to the stopping time τ , then switches for the remainder of the
time horizon [0, T ] to the trading strategy ϕ�(·); namely,

ϕi (·) := 1 + (
ϕ�

i (·) − G�(μ(τ)
) − ��(τ)

)
1�τ,∞�, i = 1, . . . , d

in the “self-financed” manner of (2.6). According to (5.7), this switching occurs
with positive probability. As we saw in Remark 2.3, the value that results from this
concatenation is given by

V ϕ(t) = 1 + (
G�(μ(t)

) + ��(t) − G�(μ(τ)
) − ��(τ)

)
1�τ,∞�(t)

≥ 1�0,τ �(t) + 3

ηT

(
�G(t) − �G(τ )

)
1�τ,∞�(t)

≥ 1�0,τ �(t) + 3(t − τ)

T
1�τ,∞�(t), t ≥ 0.
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Here, we have used the comparisons G�(μ(·)) ≥ 0 and G�(μ(τ)) ≤ 1 in the first
inequality, and (4.2) in the second inequality.

Now it clear from this last display that V ϕ(·) ≥ 0 holds, and that V ϕ(T ) ≥ 3/2
holds on the event {τ ≤ T/2}; it is also clear that V ϕ(T ) = 1 holds on {τ > T/2} =
{τ = ∞}. Since the event {τ ≤ T/2} has positive probability on account of (5.7), it
follows that the trading strategy ϕ(·) is relative arbitrage with respect to the market
over the time horizon [0, T ]. �

REMARK 5.8 (On the type of arbitrage). There is nothing in the above argu-
ment to suggest that the probability in (5.7), which is argued there to be positive,
is actually equal to 1. Thus, the relative arbitrage constructed in Theorem 5.7 need
not be strong. It should also be noted that the trading strategy which implements
this arbitrage depends on the length T of the time horizon [0, T ]—in marked con-
trast to the strategy of Theorem 4.3 which does not, as long as T ≥ T∗.

5.2.2. Failure of diversity. Theorem 5.7 has the following corollary. Taken to-
gether, Corollaries 5.6 and 5.9 illustrate that both diversity, and its failure, can lead
to arbitrage over arbitrary time horizons—under appropriate additional conditions
in each case. For the statement, we let e1, . . . , ed denote the extremal points (unit
vectors) of the lateral face �d of the unit simplex.

COROLLARY 5.9 (Failure of diversity). Suppose that diversity fails for a mar-
ket with relative weights μ(·), in the sense that

P
(

sup
t∈[0,T )

max
1≤i≤d

μi(t) > 1 − δ
)

> 0 holds for every (T , δ) ∈ (0,∞) × (0,1).

Suppose also that, for some nonnegative regular function G which satisfies

G(ei ) = min
x∈�d

G(x) for each i = 1, . . . , d,

the condition in (4.2) holds for some real constant η > 0. Relative arbitrage with
respect to the market exists then over every time horizon [0, T ] of finite length
T > 0.

5.2.3. Strict nondegeneracy. Theorem 5.7 has yet another important conse-
quence, Theorem 5.10 below. This establishes the existence of relative arbitrage
with respect to the market, under the “sufficient intrinsic volatility” condition of
(4.2) and under additional nondegeneracy conditions. Theorem 5.10 is proved at
the end of this subsection.

In order to prepare the ground for the result, let us recall the trace process �Q(·)
of (3.11). From Proposition II.2.9 of Jacod and Shiryaev (2003), we have the rep-
resentation

〈μi,μj 〉(·) =
∫ ·

0
αi,j (t)d�Q(t), 1 ≤ i, j ≤ d(5.8)
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for some symmetric and nonnegative-definite matrix-valued process α(·) =
(αi,j (·))i,j=1,...,d whose entries are progressively measurable and satisfy∑d

j=1 αi,j (·) ≡ 0 for every i = 1, . . . , d . Furthermore, thanks to the Kunita–
Watanabe inequality [Proposition 3.2.14 in Karatzas and Shreve (1991)], the pro-
cess αi,j (·) takes values in [−1,1] for every 1 ≤ i, j ≤ d . Since

�Q(·) =
d∑

i=1

〈μi〉(·) =
∫ ·

0

(
d∑

i=1

αi,i(t)

)
d�Q(t),

we may also assume that

d∑
i=1

αi,i(·) = 1.(5.9)

We shall also consider the sequence (Dn)n∈N of stopping times

(5.10) Dn := inf
{
t ≥ 0 : min

1≤i≤d
μi(t) <

1

n

}
, n ∈N.

THEOREM 5.10 (A strict nondegeneracy condition). Let us suppose that for
the process μ(·) = (μ1(·), . . ., μd(·))′ of market weights there exists a deflator, as
well as a regular function G : �d → R which satisfies the condition of (4.2) for
some real constant η > 0. Moreover, we assume that the d − 1 largest eigenvalues
of the matrix-valued process α(·) in (5.8) are bounded away from zero on �0,Dn�

uniformly in (t,ω), for each n ∈ N and with the notation of (5.10). Then rela-
tive arbitrage with respect to the market exists over [0, T ], for every real number
T > 0.

The proof of Theorem 5.10 is at the end of this subsection.
For the conclusion of this result to hold, it is not sufficient that the d − 1 largest

eigenvalues of the matrix-valued process α(·) be strictly positive. If these eigen-
values are not additionally bounded away from zero, an example is constructed in
the proof of Proposition 6.11 where relative arbitrage with respect to the mar-
ket does not exist over the time horizon [0, T ] for some suitable real number
T > 0.

It is important to stress that Theorem 5.10 establishes only the existence of a
trading strategy, which effects the claimed relative arbitrage. Moreover, unlike the
trading strategy of Theorem 4.3 which is strong relative arbitrage, explicit, model-
free, and independent of the time horizon, the trading strategy whose existence is
claimed in Theorem 5.10 may be none of these things.
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REMARK 5.11 (Itô-process covariation structure). If 〈μi,μj 〉(·) =∫ ·
0 βi,j (t)dt holds for all i, j = 1, . . . , d , then

�Q(·) =
d∑

j=1

∫ ·
0

βj,j (t)dt;

αi,j (·)1{∑d
k=1 βk,k(·)>0} = βi,j (·)∑d

k=1 βk,k(·)
1{∑d

k=1 βk,k(·)>0}, i, j = 1, . . . , d.

Hence, in this case, a sufficient (though not necessary) condition for the nondegen-
eracy assumption in Theorem 5.10 to hold, is that the d − 1 largest eigenvalues of
the matrix-valued process β(·) be bounded away from zero and from infinity on
�0,Dn�, for each n ∈ N.

The proof of Theorem 5.10 uses the following lemma.

LEMMA 5.12 (Sum of quadratic variations bounded from below). Assume
that there exist a regular function G and a constant η > 0 such that (4.2) is sat-
isfied. Then, for each n ∈ N, there exists a real constant Cn = C(n,η, d,G) such
that the mapping t �→ �Q(t) − Cnt is nondecreasing on �0,Dn�.

PROOF. Let us fix n ∈ N. Thanks to (3.2), (5.8) we get

�G(·) = −1

2

d∑
i=1

d∑
j=1

∫ ·
0

D2
i,jG

(
μ(t)

)
αi,j (t)d�Q(t) on �0,Dn�.

Next, we observe that
∑d

i=1
∑d

j=1 |D2
i,jG(μ(·))| is bounded from above by a real

constant Kn > 0 on the stochastic interval �0,Dn�. The inequality |αi,j (·)| ≤ 1 for
all 1 ≤ i, j ≤ d implies that the difference

(5.11) Kn�
Q(·) − 2�G(·) is nondecreasing on �0,Dn�.

Hence, (4.2) yields the statement with Cn = 2η/Kn. �

Proposition 5.13 right below shows that in the case d = 2 of two assets, the
condition in (4.2) yields, for every given time horizon, the existence of a long-only
trading strategy which is strong relative arbitrage with respect to the market over
this time horizon. This result is a consequence of Theorem 5.1; its proof requires,
however, the technical observation made in Lemma 5.12.

PROPOSITION 5.13 (The case of two assets). Assume that d = 2 and that
there exist a regular function G and a real constant η > 0 such that (4.2) is sat-
isfied. Then strong arbitrage relative to the market can be realized by a long-only
trading strategy over the time horizon [0, T ], for any given real number T > 0.
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PROOF. This follows directly from Lemma 5.12 and Theorem 5.1, as in this
case μ1(·) + μ2(·) = 1 and �Q(·) = 2〈μ1〉(·). �

Alternatively, a weaker formulation of Proposition 5.13, which guarantees the
existence of relative arbitrage over any given time horizon but not the fact that
this relative arbitrage is strong, can be obtained from Theorem 5.10. To apply this
result, it suffices to check that the largest eigenvalue of α(·) equals 1. However,
this is easy to see here: we have μ2(·) = 1 − μ1(·); hence α1,1(·) = α2,2(·) = 1/2
and α1,2(·) = α2,1(·) = −1/2, so the eigenvalues of the matrix α(·) are then indeed
0 and 1.

PROOF OF THEOREM 5.10. We may assume without loss of generality that,
in addition to satisfying (4.2), the function G is nonnegative. We shall argue by
contradiction, assuming that for some real number T∗ > 0 no relative arbitrage is
possible with respect to the market on the time horizon [0, T∗]. Remark 4.2 gives
then the existence of an equivalent probability measure Q∗ ∼ P on F (T∗), under
which the relative market weights μ1(· ∧ T∗), . . . ,μd(· ∧ T∗) are martingales.

The plan is to show that this leads to the time-homogeneous support property
(5.6) with h = minx∈�d G(x), and hence, on the strength of Theorem 5.7, to the
desired contradiction. In order to make headway with this approach, we fix real
numbers ε > 0 and T ∈ (0, T∗], define

(5.12) U := G−1([h,h + ε)
) ∩ (0,1)d ⊂ �d+,

choose a point x ∈ U , and fix an integer N ∈ N large enough so that

min
1≤i≤d

xi >
2

N
; min

1≤i≤d
μi(0) >

2

N
.

We recall the constant CN = C(N,η, d,G) from Lemma 5.12, define the stopping
time

(5.13) � := inf
{
t ≥ 0 : �Q(t) > CNT

}
,

and note that Lemma 5.12 yields the set inclusion{
DN ≥ T

} ⊂ {� ≤ T }.(5.14)

Now in order to obtain the property (5.6) of Theorem 5.7 it suffices, on account
of (5.12) and of the equivalence of Q∗ and P, to show that the stopped process

(5.15) ν(·) := μ(· ∧ �)

satisfies Q∗(ν(T ) ∈ U) > 0. This, in turn, will follow as soon as we have shown

Q∗
(

d∑
i=1

(
νi(T ) − xi

)2
< δ

)
> 0.(5.16)
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Here, the constant δ ∈ (0,1/N) is sufficiently small so that, for all y ∈ �d , we
have

d∑
i=1

(yi − xi)
2 < δ implies y ∈ U and min

1≤i≤d
yi >

1

N
;

d∑
i=1

(
yi − μi(0)

)2
< δ implies min

1≤i≤d
yi >

1

N
.

Clearly, on account of (5.13), we have for the stopped process ν(·) in (5.15) the
upper bound

(5.17)
d∑

i=1

〈νi〉(·) =
d∑

i=1

〈μi〉(· ∧ �) = �Q(· ∧ �) ≤ CNT .

In order to establish (5.16), we modify the arguments in Stroock and Varadhan
(1972) and Stroock (1971). We fix the vector

ζ := x − μ(0)

CNT
(5.18)

and let α�(·) denote the Moore–Penrose pseudo-inverse of the matrix-valued pro-
cess α(·) in (5.8). Next, we note that the vector ζ is in the range of α(·) on �0,DN �,
since the matrix-valued process α(·) has rank d − 1 and satisfies α(·)e = 0, where
e = (1, . . . ,1)′. Thus, we have α(·)α�(·)ζ = ζ on �0,DN �.

We introduce now the continuous Q∗-local martingale

M(·) :=
∫ ·∧DN

0

〈
α�(t)ζ,dν(t)

〉 = ∫ ·∧DN∧�

0

〈
α�(t)ζ,dμ(t)

〉
.

The quadratic variation of this local martingale is dominated by a real constant,
namely

〈M〉(·) =
∫ ·∧DN∧�

0

(
ζ ′α�(t)

)
α(t)

(
α�(t)ζ

)
d�Q(t) =

∫ ·∧DN∧�

0
ζ ′α�(t)ζd�Q(t)

≤ ζ ′ζ
cN

�Q(· ∧ DN ∧ �
) ≤ 1

CNT cN

d∑
i=1

(
xi − μi(0)

)2
,

on account of (5.17) and (5.18); here the real constant cN > 0 stands for a
lower bound on the smallest positive eigenvalue of α(·) on the stochastic inter-
val �0,DN �. Likewise, we have

(5.19)

〈νi,M〉(·) =
d∑

j=1

d∑
k=1

∫ ·∧DN∧�

0
ζkα

�
k,j (t)αi,j (t)d�Q(t)

= ζi�
Q(· ∧ DN ∧ �

)
= xi − μi(0)

CNT
�Q(· ∧ DN ∧ �

)
, i = 1, . . . , d.
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The Novikov theorem [Proposition 3.5.12 in Karatzas and Shreve (1991)] now
implies that the stochastic exponential E(M(·)) is a uniformly integrable Q∗-
martingale. Thus, this exponential martingale generates a new probability measure
Q on F (T∗), which is equivalent to Q∗. According to the van Schuppen–Wong
extension of the Girsanov theorem (ibid., Exercise 3.5.20), the processes

(5.20) Xi(·) := νi

(· ∧ DN ) − μi(0) − 〈νi,M〉(· ∧ DN )
, i = 1, . . . , d

are then Q-local martingales with Xi(0) = 0.
We consider next the event

(5.21) A :=
{

max
0≤t≤T

d∑
i=1

X2
i (t) < δ

}
.

Thanks to (5.19), any vector process with components μi(0) + 〈νi,M〉(·), i =
1, . . . , d , is a random, convex combination of the vectors μ(0) and x; in particular,
this is true of the vector process (X1(·), . . . ,Xd(·))′ with components as in (5.20),
and leads to the set-inclusion

A ⊂ {
DN ≥ T

}
.

Now, in conjunction with (5.19), this set inclusion implies �Q(T ∧ DN ∧ �) =
CNT thanks to (5.14), thus

〈νi,M〉(T ) = xi − μi(0), i = 1, . . . , d

on the event A of (5.21) and, therefore,
d∑

i=1

(
νi(T ) − xi

)2 =
d∑

i=1

(
νi(T ) − μi(0) − 〈νi,M〉(T )

)2

=
d∑

i=1

X2
i (T ) < δ on A.

Consequently, the claim (5.16) will follow from the equivalence Q∗ ∼ Q, as soon
as we have established that the event in (5.21) satisfies

Q(A) > 0.(5.22)

In order to argue this positivity, we introduce the processes

(5.23) R(·) :=
d∑

i=1

X2
i (·) and Y(·) :=

∫ ·
0

1{δ/4≤R(t)≤δ} dR(t)

and the Q-local martingale

(5.24)
N(·) := Y(·) −

∫ ·∧DN∧�

0
1{δ/4≤R(t)≤δ} d�Q(t)

= 2
∫ ·

0
1{δ/4≤R(t)≤δ}

〈
X(t),dX(t)

〉
,
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where we used (5.9). We now perform another change of measure. To this end, we
define the Q-local martingale

M̂(·) = −1

2

∫ ·
0

1{δ/4≤R(t)≤δ}
1

X′(t)α(t)X(t)

〈
X(t),dX(t)

〉
,

whose quadratic variation is dominated again by a real constant, namely

〈M̂〉(·) = 1

4

∫ ·∧DN∧�

0
1{δ/4≤R(t)≤δ}

1

X′(t)α(t)X(t)
d�Q(t)

≤ 4

cNδ2 �Q(· ∧ �) ≤ 4CNT

cNδ2

on account of (5.17). Here, the real constant cN > 0 stands again for a lower bound
on the smallest positive eigenvalue of α(·) on the stochastic interval �0,DN �. An-
other application of Novikov’s theorem yields now that the stochastic exponential
E(M̂(·)) is a uniformly integrable Q-martingale and generates via the Girsanov
theorem a probability measure Q̂, equivalent to Q on F (T∗). Thus, in order to
show (5.22) it suffices to argue

Q̂
(

max
0≤t≤T

R(t) < δ
)

> 0.(5.25)

To make headway, we start by noting that R(0) = 0. Moreover, with the stop-
ping times

τ1 := inf
{
t ≥ 0 : R(t) >

δ

2

}
, τ2 := inf

{
t ≥ τ1 : R(t) /∈

(
δ

4
, δ

)}
,

we note that (5.25) is implied by the assertion Q̂(τ2 > T ) > 0, which we argue
now. To this end, we observe that, from the Girsanov theorem and in the notation
of (5.23) and (5.24), the process

Y(·) = N(·) +
∫ ·∧DN∧�

0
1{δ/4≤R(t)≤δ} d�Q(t) = N(·) − 〈N,M̂〉(·)

is a Q̂-local martingale, and has bounded quadratic variation

〈Y 〉(·) = 4
∫ ·∧DN∧�

0
1{δ/4≤R(t)≤δ}X′(t)α(t)X(t)d�Q(t)

≤ 4
∫ ·∧�

0
1{R(t)≤δ}R(t)d�Q(t) ≤ 4δCNT

by virtue of (5.9) and (5.13). Therefore, Y(·) can be expressed in its Dambis–
Dubins–Schwarz representation Y(·) = β(〈Y 〉(·)) for a suitable scalar Q̂-Brownian
motion β(·) starting at the origin [e.g., Theorem 3.4.6 and Problem 3.4.7 in
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Karatzas and Shreve (1991)]. Moreover, we have R(·) − R(τ1) = Y(·) − Y(τ1)

on the stochastic interval �τ1, τ2�, and thus

{τ2 > T } ⊃
{

max
0≤t≤T

∣∣Y(t ∨ τ1) − Y(τ1)
∣∣ ≤ δ

4

}
⊃

{
max

0≤t≤4δCNT

∣∣β̃(u)
∣∣ ≤ δ

4

}
,

where β̃(·) is another scalar Q̂-Brownian motion starting at the origin. The event
on the right-hand side has positive Q̂-probability, so the same is true for the event
on the left-hand side. This then yields (5.25), concluding the proof. �

In the absence of strict nondegeneracy conditions as in Theorem 5.10, the con-
trollability approach of Kunita (1974, 1978) yields conditions which guarantee
that the assumptions of Theorem 5.7 hold in the special case when the vector mar-
ket weight process μ(·) = (μ1(·), . . . ,μd(·))′ is an Itô diffusion. In the same spirit,
suitable Hörmander-type hypoellipticity conditions on the covariations of the com-
ponents of such a diffusion, along with additional technical conditions on the drifts,
yield good “tube estimates” which then again avoid the need to impose strict non-
degeneracy conditions; see Bally, Caramellino and Pigato (2016) and the literature
cited there.

6. Lack of short-term relative arbitrage opportunities. In Remark 4.5, we
raised the question, whether the condition of (4.2) yields the existence of relative
arbitrage over sufficiently short time horizons. In Section 5, we saw that, under ap-
propriate additional conditions on the covariation structure of the market weights,
the answer to this question is affirmative. In general, however, the answer to the
question of Remark 4.5 is negative, as we shall see in the present section. Specific
counterexamples of market models will be constructed here in a fairly systematic
way, to illustrate that arbitrage opportunities over arbitrarily short time horizons
do not necessarily exist in models which satisfy (4.2).

In Sections 6.1, 6.2 and 6.3, we shall focus on the quadratic function Q of
(3.10). More precisely, we construct there variations of market models μ(·) that
satisfy (4.2) with G = Q, but do not admit relative arbitrage over any time horizon.
We recall from (3.12) that 2�H (·) − �Q(·) is nondecreasing for the cumulative
internal variation �H (·) of (3.9); thus, if (4.2) is satisfied by the quadratic function
Q, it is automatically also satisfied by the entropy function H of (3.7). This then
also yields a negative answer to the question posed in Remark 4.5. In Section 6.4,
market weight processes μ(·) are constructed, such that G(μ(·)) moves along the
level sets of a general Lyapunov function G at unit speed, namely, with G(μ(t)) =
G(μ(0)) − t and �G(t) = t , but which do not admit relative arbitrage over any
time horizon.

REMARK 6.1 (Some simplifications for notational convenience). Throughout
this section, we shall make certain assumptions, mostly for notational convenience:
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• We shall focus on the case d = 3. Indeed, Proposition 5.13 shows that it would
be impossible to find a counterexample to the question of Remark 4.5 when
d = 2. The counterexamples of this section can be generalized to more than
three assets, but at the cost of additional notation and without any major addi-
tional insights.

• We shall construct market models that satisfy for a certain nonnegative Lya-
punov function G the condition

(6.1)
P
(
the mapping

[
0, T �] � t �→ �G(t) − ηt is nondecreasing

) = 1

for some η > 0 and T � > 0.

We may do this without loss of generality. Indeed, let us assume that the relative
market weight process μ(·) satisfies (6.1) and does not allow relative arbitrage
over any time horizon. By appropriately adjusting the dynamics of μ(·), say
after time T �/2, it is then always possible to construct a market model μ̂(·) that
satisfies (4.2), and also does not allow for arbitrage over short time horizons (as
it displays the same dynamics up to time T �/2).

6.1. A first step for the quadratic function. Here is a first result on absence of
relative arbitrage under the condition of (6.1).

PROPOSITION 6.2 (Counterexample with Lipschitz-continuous dispersion ma-
trix). Assume that the filtered probability space (�,F ,P), F = (F (t))t≥0
supports a scalar Brownian motion W(·). Then there exists an Itô diffusion
μ(·) = (μ1(·),μ2(·),μ3(·))′ with values in �3 and with a time-homogeneous and
Lipschitz-continuous dispersion matrix in �3+, for which the following properties
hold:

(i) No relative arbitrage exists with respect to the market with weight process
μ(·), over any time horizon [0, T ] with T > 0.

(ii) The condition of (6.1) is satisfied by the quadratic G = Q of (3.10) with
η = 2/3 − Q(μ(0)) and with T � = T �(μ(0)) a strictly positive real number, pro-
vided that Q(μ(0)) ∈ (1/2,2/3).

We provide the proof of Proposition 6.2 at the end of this subsection. The fol-
lowing system of stochastic differential equations will play a fundamental role
when deriving the dynamics of the relative market weight process μ(·) in this
proof:

dv1(t) = 1√
3

(
v2(t) − v3(t)

)
dW(t), t ≥ 0,(6.2)

dv2(t) = 1√
3

(
v3(t) − v1(t)

)
dW(t), t ≥ 0,(6.3)

dv3(t) = 1√
3

(
v1(t) − v2(t)

)
dW(t), t ≥ 0,(6.4)
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where W(·) denotes a scalar Brownian motion. The Lipschitz continuity of the
coefficients guarantees that this system has a pathwise unique, strong solution for
any initial point v(0) ∈ R

3. If, moreover, the point v(0) lies on the hyperplane H
3

of (2.1), then we also have v(t) ∈H
3 for all t ≥ 0.

REMARK 6.3 (Explicit solution). Let us give an explicit solution v(·) of the
system (6.2)–(6.4) assuming that v(0) ∈ H

3. If v(0) = (1/3,1/3,1/3)′, then we
have also v(t) = (1/3,1/3,1/3)′ for all t ≥ 0.

More generally, some determined but fairly basic stochastic calculus shows that
the solution of the system (6.2)–(6.4) is given by

v1(t) = 1

3
+ et/2

3

[
2v1(0) cos

(
W(t)

) + v2(0)
(− cos

(
W(t)

) + √
3 sin

(
W(t)

))
+ v3(0)

(− cos
(
W(t)

) − √
3 sin

(
W(t)

))];
v2(t) = 1

3
+ et/2

3

[
v1(0)

(− cos
(
W(t)

) − √
3 sin

(
W(t)

)) + 2v2(0) cos
(
W(t)

)
+ v3(0)

(− cos
(
W(t)

) + √
3 sin

(
W(t)

))];
v3(t) = 1

3
+ et/2

3

[
v1(0)

(− cos
(
W(t)

) + √
3 sin

(
W(t)

))
+ v2(0)

(− cos
(
W(t)

) − √
3 sin

(
W(t)

)) + 2v3(0) cos
(
W(t)

)]
.

REMARK 6.4 (Representation in a special case). With the initial condition

vi(0) = 1

3
+ δ cos

(
2π

(
u + i − 1

3

))
, i = 1,2,3

for some constants δ ∈ [0,1/3] and u ∈ R, we find another useful representation
of the solution in Remark 6.3. Indeed, a computation shows

(6.5)
3∑

i=1

vi(0) = 1 + δ

(
cos(2πu) + cos

(
2πu + 2π

3

)
+ cos

(
2πu + 4π

3

))
= 1,

hence v(0) ∈H
3. We now claim that

(6.6) vi(t) = 1

3
+ δet/2 cos

(
W(t) + 2π

(
u + i − 1

3

))
, i = 1,2,3, t ≥ 0

solves the system (6.2)–(6.4). To this end, we note that Itô’s rule yields the dynam-
ics

dvi(t) = −δet/2 sin
(
W(t) + 2π

(
u + i − 1

3

))
dW(t), i = 1,2,3, t ≥ 0.
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Moreover, since sin(π/3) = √
3/2, it suffices to argue that

2 sin
(

π

3

)
sin

(
x + 2π(i − 1)

3

)
= cos

(
x + 2π(i + 1)

3

)
− cos

(
x + 2πi

3

)
,

i = 1,2,3, x ∈ R.

This is a basic trigonometric identity, from which the claim (6.6) follows.

To study the dynamics of the solution v(·) for the system in (6.2)–(6.4) further,
we introduce the function

(6.7)
r : R3 → [0,∞),

x �→ r(x) := 1

3

(
(x1 − x2)

2 + (x1 − x3)
2 + (x2 − x3)

2)
.

The following result shows that
√

r(x) is the distance of x from the “node”
(1/3,1/3,1/3)′ on the lateral face of the unit simplex.

LEMMA 6.5 (Another representation for the function r). We have the repre-
sentation

r(x) =
3∑

i=1

(
xi − 1

3

)2
=

3∑
i=1

x2
i − 1

3
= 2

3
− Q(x), x ∈ H

3(6.8)

in the notation of (2.1), (3.10). Moreover, if v(·) denotes a solution to the system
of stochastic differential equations (6.2)–(6.4) with v(0) ∈ H

3, then

r
(
v(t)

) = r
(
v(0)

)
et , t ≥ 0.(6.9)

PROOF. Fix x ∈ H
3 and define yi := xi − 1/3 for each i = 1,2,3. Then we

get

r(x) = 1

3

(
(y1 − y2)

2 + (y1 − y3)
2 + (y2 − y3)

2)
= 2

3

3∑
i=1

y2
i − 2

3
(y1y2 + y1y3 + y2y3)

= 2

3

3∑
i=1

y2
i + 2

3

(
y2

1 + y2
2 + y1y2

)

= 2

3

3∑
i=1

y2
i + 1

3

3∑
i=1

y2
i =

3∑
i=1

y2
i =

3∑
i=1

(
xi − 1

3

)2
,

using y3 = −y1 − y2 repeatedly. Basic stochastic calculus and (6.8) yield now, in
conjunction with (6.2)–(6.4), the very simple deterministic dynamics dr(v(t)) =
r(v(t))dt for all t ≥ 0, provided that v(0) ∈ H

3; and (6.9) follows. �
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PROOF OF PROPOSITION 6.2. We let v(·) denote the solution of the system of
stochastic equations described in (6.2)–(6.4) for some v(0) ∈ �3+. Next, we define
the stopping time

(6.10) τ := inf
{
t ≥ 0 : v(t) /∈ �3+

} = inf
{
t ≥ 0 : vi(t) = 0 for some i ∈ {1,2,3}}

and the stopped process μ(·) := v(· ∧ τ). This is a vector of martingales, so rela-
tive arbitrage with respect to a market with the components of μ(·) as its relative
weights is impossible, over any given time horizon [0, T ] of finite length T > 0;
see also Remark 4.2.

Now, the definition (6.10) of the stopping time τ implies Q(μ(τ)) ≤ 1/2, thus
also r(μ(τ)) ≥ 1/6. In conjunction with Lemma 6.5, this yields that τ is bounded
away from zero, namely that

T �(μ(0)
) := log

(
1

6r(μ(0))

)
≤ τ

holds, since Q(μ(0)) > 1/2 holds by assumption. Moreover, with (6.7) and (6.9)
we have

∂

∂t
�Q(t) =

3∑
i=1

∂

∂t
〈μi〉(t) = r

(
μ(t)

) ≥ r
(
μ(0)

)
, t ∈ [

0, T �(μ(0)
)]

on account of (3.11) and (6.2)–(6.4). Hence, the requirement (6.1) is satisfied with
T � = T �(μ(0)), G = Q and η = r(μ(0)) = 2/3 − Q(μ(0)) ∈ (0,1/6), thanks to
(6.8). �

REMARK 6.6 (A sanity check). We can verify that T �(μ(0)) < Q(μ(0))/η

holds with the notation of the above proof, and in accordance with Proposition 4.4.

REMARK 6.7 (Expanding circle). Let us observe from (6.9) that the market
weights constructed in Proposition 6.2 live on an expanding circle. More specifi-
cally, from (6.8) and (6.9) we have

μ2
1(t) + μ2

2(t) + μ2
3(t) = 1

3
+ r

(
μ(t)

) = 1

3
+ r

(
μ(0)

)
et , t ∈ [

0, T �];
hence the vector μ(·) of relative market weights lies on the intersection of the
hyperplane H

3 with the sphere of radius
√

(1/3) + r(μ(0))et centered at the
origin. This intersection is a circle of radius

√
r(μ(0))et centered at the node

(1/3,1/3,1/3)′.

6.2. Starting away from the node, and “moving slowly”. As (6.9) shows, in
the context of Proposition 6.2, the process μ(·) starts out away from the node
on the lateral face of the unit simplex, then spins outward very fast (namely,
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exponentially fast), until it reaches the boundary of the simplex at some time
τ ≥ log(1/(6r(μ(0)))); this time is bounded away from zero.

We construct here another market model, similar to the one in Section 6.1,
but in which the spinning motion of μ(·) is “slowed down” quite consider-
ably. More precisely, the diffusion process of Theorem 6.8 starts away from
the node (1/3,1/3,1/3)′ at some point μ(0) with Q(μ(0)) ∈ (1/2,2/3), then
moves outwards along level sets of the quadratic function Q. This takes time
at least T = Q(μ0) − 1/2; on the interval [0, T ] the condition in (6.1) is sat-
isfied with G = Q and η = 1, but no arbitrage with respect to the market can
exist.

THEOREM 6.8 (Lack of short term relative arbitrage opportunities). Assume
that the filtered probability space (�,F ,P), F = (F (t))t≥0 supports a Brownian
motion W(·). Fix μ0 ∈ �3+ with Q(μ0) ∈ (1/2,2/3). Then there exists an Itô diffu-
sion μ(·) = (μ1(·),μ2(·),μ3(·))′ with values in �3, time-homogeneous dispersion
matrix, starting point μ(0) = μ0, and the following properties:

(i) No relative arbitrage exists with respect to the market with weight process
μ(·), over any time horizon [0, T ] of finite length T > 0.

(ii) The condition of (6.1) is satisfied for the quadratic function G = Q with
η = 1 and with T � = Q(μ0) − 1/2.

We prove this theorem at the end of the subsection, after a remark and a prelim-
inary result.

REMARK 6.9 (An open question). Suppose that the condition in (4.2) is sat-
isfied by a market model with relative weight process μ(·), for the quadratic
function Q with η = 1. Theorem 4.3 yields then the existence of a strong rel-
ative arbitrage with respect to this market, over any time horizon [0, T ] with
T > Q(μ(0)). On the other hand, Theorem 6.8 shows that, for time hori-
zons [0, T ] with T ≤ Q(μ(0)) − 1/2, there exist market models with respect
to which no relative arbitrage is possible, even if (4.2) holds for them. We
do not know what happens for time horizons [0, T ] with T ∈ (Q(μ(0)) −
1/2,Q(μ(0)].

For the next result, we recall the function r from (6.7), (6.8).

PROPOSITION 6.10 [Time-changed, slowed-down version of (6.2)–(6.4)]. As-
sume that the filtered probability space (�,F ,P), F = (F (t))t≥0 supports a

Brownian motion W(·). Then, for any initial condition w(0) ∈ H
3 with w(0) �=

(1/3,1/3,1/3)′, the following system of stochastic differential equations has a
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pathwise unique strong solution w(·), taking values in H
3:

dw1(t) = 1√
3r(w(t))

(
w2(t) − w3(t)

)
dW(t);(6.11)

dw2(t) = 1√
3r(w(t))

(
w3(t) − w1(t)

)
dW(t);(6.12)

dw3(t) = 1√
3r(w(t))

(
w1(t) − w2(t)

)
dW(t).(6.13)

PROOF. Let w(·) denote any solution to the system (6.11)–(6.13) with w(0) ∈
H

3 \ {(1/3,1/3,1/3)′}. Then it is clear that w(t) ∈ H
3 holds for all t ≥ 0. Next,

we define the stopping time

σ = inf
{
t ≥ 0 : r(

w(t)
)
<

r(w(0))

2

}
and note as in Lemma 6.5, via an application of Itô’s rule, that

dr
(
w(σ ∧ t)

) = 1{σ>t} dt, t ≥ 0.

Hence, if σ > 0, the process r(w(·)) is nondecreasing and deterministic; indeed,
we then have r(w(t)) = r(w(0)) + t for all t ≥ 0, and σ = ∞. For this reason,
given any ε ∈ (0,3r(w(0)), any solution to the system (6.11)–(6.13) solves also
the system

dwε
1(t) = 1√

ε ∨ 3r(wε(t))

(
wε

2(t) − wε
3(t)

)
dW(t),(6.14)

dwε
2(t) = 1√

ε ∨ 3r(wε(t))

(
wε

3(t) − wε
1(t)

)
dW(t),(6.15)

dwε
3(t) = 1√

ε ∨ 3r(wε(t))

(
wε

1(t) − wε
2(t)

)
dW(t).(6.16)

Since the system (6.14)–(6.16) has Lipschitz-continuous coefficients, its solution
is unique. This yields uniqueness of the solution to the system (6.11)–(6.13). Ex-
istence of a solution to the system (6.11)–(6.13) follows by checking that any so-
lution to (6.14)–(6.16) is also a solution to (6.11)–(6.13). �

PROOF OF THEOREM 6.8. We proceed as in the proof of Proposition 6.2. With
w(0) = μ0, we recall the process w(·) of Proposition 6.10, define the stopping time
τ := inf{t ≥ 0 : w(t) /∈ �3+} as in (6.10), and set μ(·) := w(· ∧ τ). This process
μ(·) is a vector of continuous martingales; hence, no relative arbitrage is possible
with respect to this market, over any given time horizon. Finally, we note that
�Q(t) = t ∧ τ holds for all t ≥ 0, and that Q(μ0) − τ = Q(μ(τ)) ≤ 1/2. This
then yields the statement. �
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6.3. Modifications. We provide here modifications of the examples in the pre-
vious subsections. More precisely, we recall the first system of stochastic differ-
ential equations (6.2)–(6.4) along with the solution given in (6.6). That is, we
consider, for some δ ∈ (0,1/3) and u ∈ R, the corresponding market model with
weight processes

μi(t) = 1

3
+ δet/2 cos

(
W(t) + 2π

(
u + i − 1

3

))
,

i = 1,2,3, t ∈ [
0,−2 log(3δ)

]
,

where W(·) is Brownian motion and u a real number.
The first modification perturbs this model radially in the plane of �3, so that the

resulting new model has a covariation matrix-valued process α(·) as in (5.8) with
two strictly positive eigenvalues.

PROPOSITION 6.11 (Nondegeneracy and absence of arbitrage). Assume that
the filtered probability space (�,F ,P), F = (F (t))t≥0 supports two independent
Brownian motions W(·) and B(·). Then there exist a real number T � > 0 and an
Itô diffusion μ(·) = (μ1(·),μ2(·),μ3(·))′, with the following properties:

(i) No relative arbitrage with respect to the market with weights μ(·) exists,
over any time horizon [0, T ] of finite length T > 0.

(ii) The condition of (6.1) is satisfied by the quadratic function G = Q of
(3.10), with η = r(μ(0))/4.

(iii) The covariation matrix of μ(·) has two strictly positive eigenvalues on
[0, T �]; that is, for each t ∈ [0, T �] the matrix α(t) of (5.8) has two strictly positive
eigenvalues.

PROOF. To describe the model, let us fix a real constant δ ∈ (0,1/9). We con-
sider also a process �(·) which is both a diffusion and a martingale of the filtration
generated by the Brownian motion B(·); the process �(·) takes values in the inter-
val (δ,3δ) and starts at �(0) = 2δ.

More precisely, we introduce the Itô diffusion

�(·) :=
∫ ·

0

(
�(t) − δ

)(
�(t) + δ

)
dB(t)

with state space (−δ, δ) and inaccessible boundaries, thanks to Feller’s test of ex-
plosions. We note that the quadratic variation

〈�〉(·) =
∫ ·

0

(
�(t) − δ

)2(
�(t) + δ

)2 dt

of this martingale is strictly increasing. Next, we define the martingale �(·) :=
2δ + �(·) with takes values in the interval (δ,3δ).
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We now define T � := −2 log(9δ) > 0 and the market weights as positive Itô
processes

(6.17)
μi(t) := 1

3
+ �

(
t ∧ T �)e(t∧T �)/2 cos

(
W

(
t ∧ T �) + 2π

3
(i − 1)

)
,

i = 1,2,3, t ≥ 0.

Since �(·) and W(·) are independent, μi(·) is a martingale for each i = 1, . . . ,3.
Indeed, it has the dynamics

dμi(t) = −�(t)et/2 sin
(
W(t) + 2π

3
(i − 1)

)
dW(t)

+ et/2 cos
(
W(t) + 2π

3
(i − 1)

)
d�(t)

for all i = 1,2,3 and t ∈ [0, T �]. As a result, no relative arbitrage can exist with
respect to this market. Moreover, we note

〈μi〉(·) ≥
∫ ·∧T �

0
�2(t)et sin2

(
W(t) + 2π

3
(i − 1)

)
dt

≥ δ2
∫ ·∧T �

0
et sin2

(
W(t) + 2π

3
(i − 1)

)
dt.

Since �Q(·) = ∑3
i=1〈μi〉(·), we get

∂

∂t
�Q(t) ≥ δ2

3∑
i=1

sin2
(
W(t) + 2π

3
(i − 1)

)
= r

(
μ(0)

)
, t ∈ [

0, T �]
and (ii) follows. Here, the last equality follows from the same type of computations
as the ones in Remark 6.4.

Of the two Brownian motions that drive this market model, W(·) generates
circular motion on the plane of �3 about the point (1/3,1/3,1/3)′; while B(·)
generates the martingale �(·), whose quadratic variation has strictly positive time-
derivative. Thus, these two independent random motions span the two-dimensional
space, and the covariation process α(·) of the market weight process μ(·) has
rank 2. �

REMARK 6.12 (Contrasting Theorem 5.10 to Proposition 6.11). Theo-
rem 5.10 yields the existence of short-term relative arbitrage, if the (d − 1) largest
eigenvalues of the covariance matrix α(·) are uniformly bounded away from zero.
According to Proposition 6.11 the weaker requirement, that all these (d −1) largest
eigenvalues be strictly positive, is not sufficient to guarantee short-term relative
arbitrage. Indeed, the slope of the quadratic variation 〈�〉(·) in the proof of Propo-
sition 6.11 can get arbitrarily close to zero over any given time horizon, with
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positive probability; see, for example, Bruggeman and Ruf (2016). This prevents
the second-largest eigenvalue of the covariance matrix α(·) from being uniformly
bounded from below, away from zero.

REMARK 6.13 (Spiral expansion). In the market model of (6.17), the rela-
tive weights take values on a circle whose radius is allowed to expand at the rate
�(t)et/2; more precisely, we have

μ2
1(t) + μ2

2(t) + μ2
3(t) = 1

3
+ 3�2(t)et

2
<

1

3
+ 3(3δ)2eT �

2
= 1

2
, t ∈ [

0, T �].
Therefore, at any given time t ∈ [0, T �] the vector μ(t) of relative market
weights lies on the intersection of the hyperplane H

3 with the sphere of radius√
(1/3) + (3/2)�2(t)et centered at the origin. This intersection is a circle of radius√
3/2�(t)et/2 <

√
1/6, contained in �3+ and centered at its node (1/3,1/3,1/3)′;

see also Remark 6.7. Thus, a more precise description of the current situation might
be that the market weights live on a spiral. The rate of this “spiral expansion” is
exactly that one, for which the market weights become martingales.

This remark raises the following question: What happens if the market weights
are confined to a stationary circle in �3? Such a diffusion, confined to a circle,
turns out to be incompatible with a martingale structure and to open the door to
“egregious” forms of arbitrage. This is the subject of the example that follows.

EXAMPLE 6.14 (Immediate arbitrage). Let W(·) denote a scalar Brownian
motion, fix a real constant δ ∈ (0,1/3), and define the positive market weight pro-
cesses

μi(·) := 1

3
+ δ cos

(
W(·) + 2π

3
(i − 1)

)
, i = 1,2,3.

These market weights take values in the interval (0,2/3); in fact they live on a
circle, namely

μ2
1(t) + μ2

2(t) + μ2
3(t) = 1

3
+ 3δ2

2
<

1

2
so r

(
μ(·)) ≡ 3δ2

2
in the notation of (6.7), and have dynamics

dμi(t) = −δ sin
(
W(t) + 2π

3
(i − 1)

)
dW(t)

− δ

2
cos

(
W(t) + 2π

3
(i − 1)

)
dt, t ≥ 0.

As above, we have

�Q(t) =
∫ t

0
r
(
μ(s)

)
ds = r

(
μ(0)

)
t = 3δ2t

2
, t ≥ 0.
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Let us introduce now the normalized quadratic function Q� := Q/Q(μ(0)),
where Q(μ(0)) = (2/3) − (3δ2/2) > 0. For the trading strategy ϕQ�

(·) gener-
ated additively by this function Q� as in (3.3), and the associated wealth process

V ϕQ�

(·) of (3.4), we get

V ϕQ�

(t) = Q�(μ(t)
) + �Q�

(t) = 1 + 3δ2

2Q(μ(0))
t > 1, t > 0.

Hence, the additively-generated strategy ϕQ�
(·) yields a strong relative arbitrage

over any given time horizon [0, T ]. Investing according to this strategy ϕQ�
(·) is

a sure way to do better than the market right away, and to keep doing better and
better as time goes on.

Indeed, the existence of such “egregious” or “immediate” arbitrage, should not
come here as a surprise, since the so-called “structure equation” is not satisfied.
In particular, no deflator as in Definition 2.1 exists for μ(·); see, for example,
Schweizer (1992), or Theorem 1.4.2 in Karatzas and Shreve (1998).

REMARK 6.15 (General submanifolds). The diffusion constructed in Exam-
ple 6.14 lives on a submanifold of R3, which is incompatible with a martingale
structure. By contrast, in Section 6.1 the submanifold was allowed to evolve as
an expanding circle. The diffusions in these examples could probably be general-
ized to diffusions with support on an arbitrary submanifold of Rd , for d ≥ 2, and
then the submanifold could be allowed to evolve through R

d in the manner of our
expanding circle in R

3.
In this case, a natural question would be to characterize the evolution that would

cause the diffusion on the evolving submanifold to become a martingale. How
would this martingale-compatible evolution depend on the diffusion? What would
become of this evolving submanifold over time? Would the evolving submanifold
develop singularities? (Et cetera.) We provide some partial answers to such ques-
tions in the following Section 6.4, but the picture that emerges seems to be far from
complete.

6.4. General Lyapunov functions. We extend now the construction of market
models, for which (6.1) is satisfied but no short-term relative arbitrage is possible,
to a general class of regular functions. Throughout this section, we fix a Lyapunov
function G : �3 → [0,∞); this function is assumed to be strictly concave and
twice continuously differentiable in a neighborhood of �3+. We assume moreover
that its Hessian D2G is locally Lipschitz continuous. Next, we introduce the non-
negative number

g := sup
x∈�3\�3+

G(x).

If G attains an interior local (hence also global) maximum at a point c ∈ �3+, we
call this c the “navel”, or “umbilical point”, of the function G.
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THEOREM 6.16 (General Lyapunov functions, lack of short-term relative ar-
bitrage). Assume that the filtered probability space (�,F ,P), F = (F (t))t≥0
supports a Brownian motion W(·). Suppose also that we are given a Lyapunov
function G : �3 → [0,∞) with the properties and notation just stated, along with
a vector μ0 ∈ �3+ such that G(μ0) ∈ (g,maxx∈�3 G(x)). Then there exists an Itô
diffusion μ(·) = (μ1(·),μ2(·),μ3(·))′ with starting point μ(0) = μ0, values in �3,
and the following properties:

(i) No relative arbitrage is possible with respect to μ(·) over any time horizon
[0, T ] with T > 0.

(ii) The condition of (6.1) is satisfied with η = 1 and T � = G(μ0) − g.

Moreover, we have

G
(
μ(t)

) = G(μ0) − t, �G(t) = t; t ∈ [
0, T �].

PROOF. We introduce the vector function σ = (σ1, σ2, σ3)
′ with components

σ1(x) := D3G(x) − D2G(x);
σ2(x) := D1G(x) − D3G(x);
σ3(x) := D2G(x) − D1G(x)

for x ∈ �3+. If σ1(x) = σ2(x) = σ3(x) = 0, then x = c is the umbilical point. In-
deed, if for some x ∈ �3+ we have D1G(x) = D2G(x) = D3G(x), then the strict
concavity of G yields

0 =
3∑

i=1

DiG(x)(xi − yi) > G(y) − G(x), y ∈ �3+ \ {x}.

Next, we introduce the function

(6.18) L(x) := −1

2
σ ′(x)D2G(x)σ (x), x ∈ �3+

and note that L(x) > 0 holds, as long as x is not the umbilical point c.
Let us now consider the Itô diffusion process μ(·) = (μ1(·),μ2(·),μ3(·))′ with

initial condition μ(0) = μ0 and dynamics

(6.19) dμi(t) = σi(μ(t))√
L(μ(t))

dW(t), i = 1,2,3.

It is clear from this construction and the property
∑3

i=1 σi(x) = 0 for all x ∈ �n+
that, as long as the process μ(·) is well-defined by the above system, it satisfies
μ1(·)+μ2(·)+μ3(·) = 1. Furthermore, as long as the process μ(·) is well-defined,
elementary stochastic calculus and the property

3∑
i=1

DiG(x)σi(x) = 0, x ∈ �n+
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lead to the dynamics

dG
(
μ(t)

) = 1

2

3∑
i=1

3∑
j=1

D2
ijG

(
μ(t)

)
d〈μi,μj 〉(t) = −d�G(t).

This double summation is identically equal to −dt , by virtue of (6.18) and (6.19).
Thus, G(μ(·)) is strictly decreasing at the constant rate −1, and stays clear of
the navel c (when this exists); by the same token, �G(·) is strictly increasing at the
constant rate +1. Hence, by analogy with the proof of Proposition 6.10, we deduce
that the process μ(·) is well defined, since the system of stochastic differential
equations in (6.19) has a pathwise unique and strong solution up until the time D .
This stopping time was defined in (2.4) and describes the first time when μ(·) hits
the boundary of �3; in particular, we have for it

(6.20) G(μ0) − g ≤ D = G(μ0) − G
(
μ(D)

) ≤ G(μ0).

The market weight processes μi(·) for i = 1,2,3 are continuous martingales with
values in the unit interval [0,1]. As a result, no relative arbitrage can exist with
respect to the resulting market, over any given time horizon. Since D ≥ G(μ0)−g,
we can conclude the proof. �

Theorem 6.8 is a special case of Theorem 6.16. We do not know whether the
assumption G(μ0) �= maxx∈�3+ G(x) can be removed from Theorem 6.16, but con-
jecture that this should be possible.

REMARK 6.17 (Presence of a gap). We continue here the discussion started
in Remark 6.9. It is very instructive to compare the interval (G(μ0,∞) of (4.3),
which provides the lengths of time horizons [0, T ] over which strong arbitrage
is possible with respect to any market that satisfies the condition in (4.2) with
η = 1; and the interval [0,G(μ0) − g] of Theorem 6.16, giving the lengths of time
horizons [0, T ] over which examples of markets can be constructed that do not
admit relative arbitrage but satisfy the condition in (4.2).

There is a gap in these two intervals, when g is positive. For instance, in the case
of the entropy function G = H of (3.7), the gap is very much there, as we have
g = 2 log 2 but maxx∈�3 H (x) = 3 log 3. In this “entropic” case, the dynamics of
(6.19) and (6.18) take the form

dμi(t) = log
(

μi+1(t)

μi−1(t)

)
dW(t)√
L(μ(t))

,

i = 1,2,3, t ≥ 0 with μ0(·) := μ3(·),μ4(·) := μ1(·);

L(x) =
3∑

i=1

1

2xi

(
log

(
xi+1

xi−1

))2
, x ∈ �3+ with x0 := x3, x4 := x1.
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REMARK 6.18 (Absence of a gap). The gap in Remark 6.17 disappears, of
course, when g = 0; most eminently, when the function G vanishes on the bound-
ary �d \ �d+, but is strictly positive on �d+.

For such a function G and for the market model constructed in the proof of
Theorem 6.16, we are then led from (6.20) and with the notation of (2.4), to the
rather remarkable identity

D = D1 ∧ D2 ∧ D3 = G(μ0)

for the stopping time of (2.4). That is, at exactly the time T � = G(μ0), one of the
components of the diffusion μ(·) vanishes for the first time.

Assuming now that P(�G(t) ≥ t,0 ≤ t < ∞) = 1 holds, we conclude then from
Theorems 4.3 and 6.16 that strong arbitrage with respect to the market is possible
over any horizon [0, T ] with T > G(μ0); and that there exists an Itô diffusion
μ(·) for the vector process of market weights, with respect to which no arbitrage
is possible over any time-horizon [0, T ] with 0 < T ≤ G(μ0).

A prominent example of such a function is the geometric mean R from (3.13); in
this case, and with μ0(·), μ4(·), x0, and x4 as above, the dynamics corresponding
to (6.19) and (6.18) are given as

dμi(t) =
(

1

μi−1(t)
− 1

μi+1(t)

)
dW(t)√
L∗(μ(t))

, i = 1,2,3, t ≥ 0.

Here, we have set

L∗(x) = R(x)

18

( 3∑
i=1

3

x2
i

(
1

xi−1
− 1

xi+1

)2

−
3∑

i=1

3∑
j=1

1

xixj

(
1

xi−1
− 1

xi+1

)(
1

xj−1
− 1

xj+1

))

= R(x)

6x2
1x2

2x2
3

3∑
i=1

(xi+1 − xi−1)
2 = 1

2(R(x))5

3∑
i=1

(
xi − 1

3

)2

= r(x)

2(R(x))5 , x ∈ �3+,

where the last two equalities follow from (6.8).

7. Summary. In this paper, we place ourselves in the context of continuous
semimartingales μ(·) taking values in the d-dimensional simplex �d . Each com-
ponent of μ(·) is interpreted as the relative capitalization of a company in an equity
market, with respect to the whole market capitalization. We then study conditions
on the volatility structure of μ(·) that guarantee the existence of relative arbitrage
opportunities with respect to the market. More precisely, we consider conditions



414 E. R. FERNHOLZ, I. KARATZAS AND J. RUF

that bound a cumulative aggregation �G(·) of the volatilities of the individual com-
ponents of μ(·) from below. Here, the aggregation is done according to a so-called
regular function G : �d → R, assumed to be sufficiently smooth. Then �G(·) is
given by (3.2), namely

�G(·) = −1

2

d∑
i=1

d∑
j=1

∫ ·
0

D2
i,jG

(
μ(t)

)
d〈μi,μj 〉(t),

and the condition on the cumulative aggregated market volatility by (4.2):

P
(
the mapping [0,∞) � t �→ �G(t) − ηt is nondecreasing

) = 1

for some η > 0.

Section 4 recalls the trading strategy ϕG(·), which is a strong relative arbitrage
on the time horizon [0, T ] for all T > G(μ(0))/η, provided that (4.2) holds. It is
important to note that this strategy ϕG(·) is “model-free”: it does not depend on
the specifications of a particular model for asset capitalizations or relative weights,
and works for any continuous semimartingale model that satisfies (4.2).

Section 5 provides several sufficient conditions guaranteeing the existence of
short-term relative arbitrage. First, Section 5.1 studies the question of strong short-
term relative arbitrage. If a specific stock contributes to the overall market volatil-
ity, then Theorem 5.1 yields the existence of such a strong arbitrage opportunity.
The corresponding trading strategy turns out to be independent of the model speci-
fication but will be dependent on the choice of time horizon. A similar construction
is the underlying idea of Banner and Fernholz (2008). There, not a specific stock,
but always the smallest one in terms of capitalization, contributes to the overall
market volatility; see also Remark 5.3.

Section 5.2 yields sufficient conditions for the existence of short-term relative
arbitrage, not necessarily strong. The first sufficient condition concerns the support
of μ(·) and assumes that it is, in a certain weak sense, time-homogeneous (The-
orem 5.7). The second sufficient condition is on the strict nondegeneracy of the
covariance process of μ(·); see Theorem 5.10. Any of the two conditions yields, in
conjunction with (4.2), the existence of a relative arbitrage opportunity for the time
horizon [0, T ], for any T > 0. However, the corresponding trading strategies usu-
ally depend on the model specification (including the specification on drifts) and
also on the time horizon T . Moreover, these sufficient conditions usually do not
yield strong relative arbitrage. Nevertheless, if the market is complete, the strate-
gies can be chosen to be strong relative arbitrages; see Remark 5.4.

Section 6 answers negatively the long-standing question, whether the condition
in (4.2) yields indeed the existence of relative arbitrage opportunities with respect
to the market on [0, T ], for any given real number T > 0. Specific counterexam-
ples are constructed. In this section, we assume that d = 3, namely, that we are
in a market of only three stocks. This is done for notational convenience, as a
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lower-dimensional market can always be embedded in a higher-dimensional one.
A smaller choice for d is not possible, as Proposition 5.13 yields that in the case
d = 2 of two stocks the condition of (4.2) always yields the existence of relative
arbitrage opportunities over any time horizon.

Section 6 differs from the earlier ones. In Section 5, we considered a fixed mar-
ket with relative weight processes μ(·) and formulated conditions on the market
model that yield (possibly strong) relative arbitrage opportunities for short time
horizons. These trading strategies might or might not depend on the specific char-
acteristics of μ(·). Now, in Section 6, we fix the regular function G and then con-
struct market weights μ(·) for which there exist no relative arbitrage opportunities
over time horizon [0, T ] for some T > 0, but (4.2) holds. To be precise, the models
we construct do not satisfy exactly (4.2) but only the local (in time) version (6.1).
As pointed out in Remark 6.1, this is done for notational convenience only. Some
additional technical assumptions are made on the regular function G in Section 6,
most importantly that G is strictly concave and its second derivative is locally
Lipschitz continuous.

The constructed market models μ(·) not only prevent relative arbitrage and sat-
isfy (6.1), but also yield that G(μ(·)) is a deterministic function of time. That is,
μ(·) flows along the level sets of the Lyapunov function G.

Moreover, Proposition 6.11 yields the existence of a market model, which sat-
isfies the nondegeneracy conditions of Theorem 5.10 but not strictly, and does not
allow for relative arbitrage. This shows that the conditions on μ(·) in Theorem 5.10
are tight; see also Remark 6.12.

While this paper answers some old open questions, it suggests several new ones.
The three most important, in our opinion, are the following:

1. Under (4.2) with η = 1, strong relative arbitrage opportunities exist on [0, T ]
for all T > G(μ(0)). In Section 6, market models μ(·) are constructed that satisfy
(4.2) but do not admit relative arbitrage opportunities on [0, T �], for some real
number T � = T �(μ(0)) ∈ (0,G(μ(0))). What can be said for time horizons [0, T ]
with T ∈ (T �,G(μ(0))]? In this connection, see also Remarks 6.6, 6.9 and 6.17.

2. The following question arises from the methodology used in Section 6 to
construct the counterexamples. Assume a diffusion lives on a submanifold of Rd ,
which is incompatible with a martingale structure (e.g., on a sphere). If we now
want to turn the diffusion into a martingale, how will the submanifold evolve
through R

d (e.g., it could turn into an expanding sphere)? In this connection, see
also Remark 6.15.

3. Section 6 contains examples for diffusions, which could be turned into mar-
ket models where short-term relative arbitrage is impossible but long-term relative
arbitrage is possible. There are no additional frictions (e.g., trading costs, etc.) nec-
essary to achieve this. Are there any interesting economic implications and, if so,
what are they? For instance, can such models arise from equilibrium theory in an
economy where agents have preferences with respect to different time horizons?
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