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ERGODIC THEORY FOR CONTROLLED MARKOV CHAINS
WITH STATIONARY INPUTS1

BY YUE CHEN∗, ANA BUŠIĆ†,‡ AND SEAN MEYN∗

University of Florida∗, Inria† and École Normale Supérieure‡

Consider a stochastic process X on a finite state space X = {1, . . . , d}.
It is conditionally Markov, given a real-valued “input process” ζ . This is as-
sumed to be small, which is modeled through the scaling,

ζt = εζ 1
t , 0 ≤ ε ≤ 1,

where ζ 1 is a bounded stationary process. The following conclusions are ob-
tained, subject to smoothness assumptions on the controlled transition matrix
and a mixing condition on ζ :

(i) A stationary version of the process is constructed, that is coupled with
a stationary version of the Markov chain X• obtained with ζ ≡ 0. The triple
(X,X•, ζ ) is a jointly stationary process satisfying

P
{
X(t) �= X•(t)} = O(ε).

Moreover, a second-order Taylor-series approximation is obtained:

P
{
X(t) = i

} = P
{
X•(t) = i

} + ε2π(2)(i) + o
(
ε2)

, 1 ≤ i ≤ d,

with an explicit formula for the vector π(2) ∈R
d .

(ii) For any m ≥ 1 and any function f : {1, . . . , d} × R → R
m, the sta-

tionary stochastic process Y (t) = f (X(t), ζ(t)) has a power spectral den-
sity Sf that admits a second-order Taylor series expansion: A function

S(2)
f : [−π,π ] →C

m×m is constructed such that

Sf (θ) = S•
f (θ) + ε2S(2)

f (θ) + o
(
ε2)

, θ ∈ [−π,π ]
in which the first term is the power spectral density obtained with ε = 0. An

explicit formula for the function S(2)
f is obtained, based in part on the bounds

in (i).
The results are illustrated with two general examples: mean field games,

and a version of the timing channel of Anantharam and Verdu.

1. Introduction. This paper concerns second-order ergodic theory for a con-
trolled Markov chain. Consider for the sake of illustration a stochastic process X
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on a finite state space X = {1, . . . , d} which evolves together with a real-valued
stationary sequence ζ and an i.i.d. sequence N according to the recursion

(1) Xt+1 = ϕ(Xt , ζt ,Nt+1), t ∈ Z,

where ϕ : X × R
2 → X is Borel measurable. The solution is denoted X• in the

special case ζ ≡ 0: a time-homogeneous Markov chain.
In the generality of this paper, we cannot expect to compute exact statistics of X,

such as the marginal distribution. We instead obtain conditions under which a sta-
tionary solution to (1) exists, and obtain approximations of the statistics of X. Un-
der the assumptions imposed in this paper, the joint stationary process (X,X•, ζ )

is constructed on the same probability space. This makes it possible to compare
the statistics of X with the stationary Markov chain X•.

It is assumed that ζ is small: It is simplest to consider a family of processes,
parameterized by a small constant ε > 0,

ζt = εζ 1
t ,

where ζ 1 = {ζ 1
t } is a bounded sequence. The construction of (X,X•, ζ ) is ob-

tained so that

(2) P
{
Xt �= X•

t

} = O(ε).

In order to apply techniques from second-order statistics, the process is lifted to
the simplex in R

d through the following notational convention:

(3) �t = [
ej ]T when Xt = j ,

where ej denotes the j th standard basis element in R
d , and hence �t is a row

vector. This is a standard construction; it is useful since the evolution of {�t } can be
expressed as a linear state space model driven by an uncorrelated “noise process”
[see (8) below]. This linear representation is used in [14] to construct a Kalman
filter for a time-homogeneous Markov chain (without the input ζ ), and these results
are extended to a class of controlled Markov chains in [6].

The initial motivation for [6], as well as the research described here, is applica-
tion to distributed control for the purposes of “demand dispatch” using distributed
resources in a power grid. The results of the present paper are applied in [4, 5] to
obtain performance approximations in the same power grid model. Similar bounds
were previously obtained in [7], but this is the first paper to obtain an exact second-
order Taylor series approximation for second-order statistics.

The main contribution of this paper is to obtain tight approximations for the joint
auto-correlation function for (�, ζ ), and hence also its power spectral density. To
obtain these results requires the coupling bound (2), a second-order Taylor series
expansion for πε = E[�t ] in steady-state, and surprisingly complex calculations
for a linearized model.



ERGODIC THEORY FOR CONTROLLED MARKOV CHAINS 81

The goals of the present work are similar to elements of singular perturbation
theory for Markov chains (see [11, 21] and their references). In some of our ap-
proximations, we borrow one technique from [19]—the use of the fundamental
matrix appears in the approximation of πε; see (19) for a definition, and further
explanation following this equation.

The main results are summarized in Section 2, with all of the technical proofs
contained in the Appendices. Application to mean-field games is discussed in Sec-
tion 3, and Section 4 contains numerical results for an application to information
theory—a variant of the timing channel introduced in [2]. Conclusions and direc-
tions for future research are contained in Section 5.

2. Model and main results. Consider an irreducible and aperiodic Markov
chain X• evolving on a finite state space X = {1, . . . , d}, with transition ma-
trix P0. This admits a stationary realization on the two sided time-interval Z, whose
marginal distribution π0 is the invariant probability mass function (p.m.f.) for P0,
satisfying π0P0 = π0. The goal of this paper is to investigate how the statistics
change when the dynamics are subject to an exogenous disturbance.

2.1. Controlled Markov model. The stochastic process X considered in this
paper also evolves on the finite state space X. The “disturbance” in the controlled
model is a one-dimensional stationary process denoted ζ = {ζt : −∞ < t < ∞}.
A controlled transition matrix {Pζ : ζ ∈R} describes the dynamics of the process

(4) P{Xt+1 = k|ζs,Xs : s ≤ t} = Pζ (j, k) when ζt = ζ , Xt = j .

It is assumed that Pζ is a smooth function of ζ , and that P0 is the transition matrix
for X•.

Since X is no longer Markovian, we cannot apply standard Markov chain the-
ory to investigate properties of a stationary version of X. Instead we apply linear
systems theory, and for this we require a linear systems representation for the con-
trolled stochastic process.

This is obtained by embedding the process in R
d through the indicator process

�t defined in (3). Linear dynamics are obtained by considering a specific realiza-
tion of the model. We assume that there is a d × d matrix-valued function G and
an i.i.d. sequence N for which

(5) �t+1 = �tGt+1, Gt+1 = G(ζt ,Nt+1).

It is assumed moreover that N is independent of ζ , and that the entries of G are
zero or one, with

d∑
k=1

Gj,k(z, n) = 1 for all j, z, n.
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FIG. 1. Markov model.

We have Gj,k(z, n) = I{ϕ(j, z, n) = k} for the nonlinear state space model (1). In
general, it follows from (4) that, for each t ,

(6) E
[
G(ζt ,Nt+1)|ζ∞−∞

] = Pζt .

The random linear system (5) illustrated in Figure 1 is the focus of study in this
paper. The sequence � = {�t } is viewed as a state process, that is driven by the
disturbance (or “input”) ζ . The state process evolves on the extreme points of the
simplex in R

d . We let �• = {�•
t } denote the stationary Markov chain obtained with

ζ ≡ 0.
The main assumptions are summarized in the following:

A1: The transition matrix P0 is irreducible and aperiodic. The matrix valued
function Pζ is twice continuously differentiable (C2) in a neighborhood of ζ = 0,
and the second derivative is Lipschitz continuous.

A2: ζt = εζ 1
t where ζ 1 = {ζ 1

t : t ∈ Z} is a real-valued stationary stochastic pro-
cess with zero mean. The following additional assumptions are imposed:

(i) It is bounded, |ζ 1
t | ≤ 1 for all t with probability one. Hence σ 2

ζ 1 =
E[(ζ 1

t )2] ≤ 1.
(ii) Its auto-covariance is absolutely summable:

∞∑
t=0

∣∣Rζ 1(t)
∣∣ < ∞.

The power spectral density Sζ 1 exists and is continuous under Assumption A2(ii).
It also admits a spectral factor, denoted Hζ 1 :

(7) Sζ 1(θ) = Hζ 1
(
ejθ )

Hζ 1
(
e−jθ )

, −π ≤ θ ≤ π.

See [3] for background.
Assumption A1 is used to obtain the approximation of (5) by an LTI (linear time

invariant) system. The following intermediate step is an extension of Lemma 1 in
[14], which is used to derive a Kalman filter for an uncontrolled Markov chain.

PROPOSITION 2.1. The random linear system (5) can be represented as

(8) �t+1 = �tPζt + 	t+1,

where 	t+1 = �t(Gt+1 − Pζt ). This is a martingale difference sequence, with co-
variance matrix

(9) 
	 = Cov
(
�t [Gt+1 − Pζt ]

) = E
[
��

t+1 − P T
ζt

��
t Pζt

]
,
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where ��
t is the diagonal matrix with diagonal entries {�t(i) : 1 ≤ i ≤ d}. More-

over,

(10) R	,ζ (t) = 0 for all t.

That is, � and ζ are uncorrelated.

We next apply the second-order Taylor series approximation:

Pζt = P0 + Eζt + 1

2
Wζ 2

t + O
(
ε3)

,

where E and W denote the first and second derivatives of Pζ , evaluated at ζ = 0:

d

dζ
Pζ

∣∣∣∣
ζ=0

= E,
d2

dζ 2 Pζ

∣∣∣∣
ζ=0

= W .

The O(ε3) bound holds under the Lipschitz condition for the second derivative
of Pζ . The following identities will be useful: E1 = W1 = 0. This follows from
the definitions and the fact that Pζ 1 = 1 for all ζ . In particular,

(11) E1 = d

dζ
Pζ

∣∣∣∣
ζ=0

1 = d

dζ
Pζ 1

∣∣∣∣
ζ=0

= d

dζ
1 = 0.

The recursion (8) can be approximated as

�t+1 = �t

(
P0 + Eζt + 1

2
Wζ 2

t

)
+ 	t+1 + O

(
ε3)

.

This is the LTI approximation.

PROPOSITION 2.2. The recursion (5) can be approximated as follows:

(12) �t+1 = �tP0 + Dt+1 + O
(
ε3)

,

where Dt+1 = BT
t ζt + V T

t ζ 2
t + 	t+1, with

(13) BT
t = �tE, V T

t = 1

2
�tW .

Applying the LTI approximation (12), an approximation for the auto-correlation
of (�, ζ ) is obtained from an approximation for the pair process (D, ζ ). Since D
is taken as a row vector, we use the following notation for the auto-correlation of
(D, ζ ):

(14) R(t) =
[

RD(t) RD,ζ (t)

RD,ζ (−t)T Rζ (t)

]
,

where RD(t) = E[D(t)T D(0)], RD,ζ (t) = E[D(t)T ζ(0)], and the expectations are
taken in steady-state.

The existence of a steady-state solution is established in Proposition 2.3 that
follows.
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2.2. Correlation formulae and approximations. Under Assumptions A1
and A2, we obtain a coupling result, which plays a crucial role in the approxi-
mations that follow. We write �t = �•

t + Õ(ε) if

E
[∥∥�t − �•

t

∥∥] = O(ε),

which implies that (2) also holds. We adopt similar notation for other random
variables. The following result is proven in Appendix A.

PROPOSITION 2.3. Under Assumptions A1 and A2, there exists ε0 > 0 such
that the following holds for each ε ∈ (0, ε0]: the two process � and �• can be
constructed so that (�,�•, ζ ) is jointly stationary on the two-sided time interval
Z, �•

t is independent of ζ , and moreover

�t = �•
t + Õ(ε),(15)

E[�tζt ] = O
(
ε2)

.(16)

Consequently, for the stationary process,

(17) Bt = B•
t + Õ(ε), Vt = V •

t + Õ(ε), 	t = 	•
t + Õ(ε).

The following strengthening of Assumption A2 is useful in computations:

A3: The transfer function Hζ 1 in (7) is rational, with distinct poles {ρ1, . . . , ρnz}
satisfying |ρi | < 1 for each i.

Under A2 and A3 the auto-covariance function for ζ can be expressed as a sum of
geometrically decaying terms,

(18) Rζ (t) = ε2
nz∑

k=1

akρ
|t |
k ,

where the {ak} can be determined from Hζ 1 . Approximations for the auto-
correlation functions RD,ζ (t) and RD(t) in (14) are given in Theorem 2.4.

As in the perturbation theory of [19], one component in these approximations is
based on the fundamental matrix,

(19) U1 = [I − P0 + 1 ⊗ π0]−1,

where 1⊗π0 denotes the matrix whose rows are identical, and equal to π0. Because
the chain is irreducible and aperiodic, this can be expressed as a power series
expansion,

U1 = I +
∞∑

k=1

[P0 − 1 ⊗ π0]k.
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The summand can also be expressed [P0 −1⊗π0]k = [P k
0 −1⊗π0], k ≥ 1. Hence

convergence of the sum follows from the mean ergodic theorem,

(20) lim
k→∞P k

0 = 1 ⊗ π0,

where the rate of convergence is geometric.

THEOREM 2.4. Suppose that Assumptions A1 and A2 hold, and consider
the stationary process (�,�•, ζ ) constructed in Proposition 2.3, with ε ∈ (0, ε0].
Then, for each t ,

RD,ζ (t) = BRζ (t − 1) + O
(
ε3)

,(21)

RD(t) = RBζ (t)(22a)

+ R	(t)(22b)

+ RBζ,	(t − 1) + RT
Bζ,	(−t − 1)(22c)

+ RV ζ 2,	(t − 1) + RT
V ζ 2,	

(−t − 1)(22d)

+ O
(
ε3)

in which BT = π0E in (21), and each component shown on the right-hand side of
(22a)–(22d) is given below:

(a) The auto-correlation RBζ (t) = E[BtζtB
T
0 ζ0] in (22a) admits the approxi-

mation,

(23) RBζ (t) = (
P t

0E
)T


0ERζ (t) + O
(
ε3)

, t ≥ 0,

where 
0 = diag(π0).
(b) The covariance for the martingale-difference sequence � is given by

R	(t) = 0 for t �= 0.
When ε = 0, we have

(24) R	•
(0) = 
	• = 
0 − P T

0 
0P0,

and for nonzero ε this admits the approximation

(25)

R	(0) = 
	

= 
ε − P T
0 
εP0

− [
P T

0 diag
(
R�,ζ (0)

)
E + ET diag

(
R�,ζ (0)

)
P0

]
− 1

2
Rζ (0)

[
P T

0 
0W + 2ET 
0E +WT 
0P0
] + O

(
ε3)

,

where 
ε = diag(πε), with πε = E[�t ], and

(26) R�,ζ (t) = E
[
�(t)T ζ(0)

]
, t ∈ Z.
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(c) The cross-covariance RBζ,	(t) = E[Btζt	0] admits the approximation

(27) RBζ,	(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 t < 0,

ET R	2,ζ (0) + O
(
ε3)

t = 0,

ET AtR	2,ζ (−t)

+ ET
t−1∑
i=0

At−1−iET AiRζ (t − i)
	• + O
(
ε3)

t ≥ 1,

where A = P T
0 and

(28) R	2,ζ (t) = E
[
	T

t 	tζ0
]
.

(d) The cross-covariance RV ζ 2,	(t) = E[Vtζ
2
t 	0] admits the approximation

(29) RV ζ 2,	(t) =
⎧⎨⎩O

(
ε3)

t < 0,
1

2
σ 2

ζ

(
P t

0W
)T


	• + O
(
ε3)

t ≥ 0.

The derivation of Theorem 2.4 is given in Appendix E.
Theorem 2.4 leaves out an approximation for πε that is required in (25). It also

leaves out an approximation for R�,ζ (0) required in (25), and approximations for
{R	2,ζ (t) : t ≤ 0} in (27). These are obtained in the following.

PROPOSITION 2.5. The following hold under Assumptions A1 and A2:

(i) The steady state mean admits the approximation

(30) πε = π0 + ξU1 + O
(
ε3)

,

where U1 is the fundamental matrix (19), and

(31) ξ = (
R�,ζ (0)

)T E + 1

2
σ 2

ζ π0W .

(ii) For t ≥ 0 we have

(32)
R	2,ζ (−t) = diag

(
R�,ζ (−t − 1)P0

)
− P T

0 diag
(
R�,ζ (−t − 1)

)
P0 + Rζ (t + 1)E

[
X (1)•

] + O
(
ε3)

,

where E[X (1)• ] := diag(π0E) − (P T
0 
0E + [P T

0 
0E]T ).
(iii) The correlation R�,ζ is approximated as the infinite sum

(33) R�,ζ (t) = ε2
∞∑
i=1

(
BT P i−1

0

)T
Rζ 1(t − i) + O

(
ε3)

, t ∈ Z,

in which ‖BT P i−1
0 ‖ → 0 geometrically fast as i → ∞.
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FIG. 2. Dependency of autocorrelation functions involved in the approximations of R(t) in (14).

The proposition shows that the Taylor-series coefficient π(2) := ε−2ξU1 de-
pends on the entire auto-covariance sequence Rζ , along with the first and second
derivatives of Pζ .

The proof of (30) is given in Appendix C, (32) is given in Appendix D.2 and (33)
is established in Appendix D.4. The geometric bound on the limit ‖BT P i−1

0 ‖ → 0
follows from the ergodic limit (20), and the formula BT 1 = π0E1 = 0 [see (11)].

The directed graph shown in Figure 2 summarizes the dependency between all
of these terms. For example, the approximation of RD,ζ only requires Rζ , and the
covariance 
	 that defines R	 is a function of R�,ζ and πε . The approximation of
RD is a function of the four correlation functions shown [as can also be seen from
(22a)–(22d)]. The five boxed terms are those that are of interest to us directly;
the remaining five terms are introduced only to obtain a closed set of algebraic
equations.

Closed-form expressions for the approximations in Proposition 2.5 are possible
under A3. The proof of Proposition 2.6 is given in Appendix D.4.

PROPOSITION 2.6. Under A1–A3, the row vector ξ in (31) has the approxi-
mation

(34) ξ = ε2BT
nz∑

k=1

akρk[I − ρkP0]−1E + 1

2
ε2σ 2

ζ 1π0W + O
(
ε3)

.

2.3. Power spectral density approximations. Theorem 2.4 provides a second-
order approximation of the auto-covariance function {R(t)} defined in (14), which
we denote {R̂(t)}. In particular, R̂D(t) is defined as the sum of (22a)–(22d). Based
on this and Proposition 2.2, we obtain a second-order approximation {R̂tot(t)} of
the auto-covariance function {Rtot(t)} for the triple (�,D, ζ ).

The power spectral density (PSD) of a stationary process is the Fourier trans-
form of its auto-covariance. This matrix-valued function is denoted

S(θ) =
∞∑

t=−∞

tot(t)e−jθt , θ ∈ R,

in which 
tot(t) := Rtot(t) − μμT , t ≥ 0, with μT = E[(�t ,Dt , ζt )].
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To define an approximation for S we must obtain an approximation {
̂(t)} that
is summable. It turns out that this is obtained from {R̂(t)} without normalization.
For each t , the (2d + 1) × (2d + 1) matrix is decomposed as follows:


̂tot(t) =
[


̂�(t) 
̂�,(D,ζ )(t)


̂(D,ζ ),�(t) 
̂(t)

]
in which 
̂(t) = R̂(t), and the remaining terms are what would be obtained by
ignoring the O(ε3) error term appearing in (12), and replacing P0 by its deviation
P0 − 1 ⊗ π0. Denote Ã = (P0 − 1 ⊗ π0)

T , and


̂�(t) =
∞∑

i,j=0

ÃiR̂D(t − i + j)
(
Ãj )T

.

The matrix 
̂�,(D,ζ )(t) is the (d + 1)-dimensional column vector whose first d

components are


̂�,D(t) =
∞∑
i=0

ÃiR̂D(t − i)

and the final component is defined by the right-hand side of (33), ignoring the
approximation error. This can be equivalently expressed,


̂�,ζ (t) = ε2
∞∑
i=1

Ãi−1BRζ 1(t − i),

where we have used the fact that ÃkB = (P T
0 )kB since 1T B = ∑

Bi = 0. Finally,

̂(D,ζ ),�(t) = 
̂�,(D,ζ )(−t)T .

Denote

Ŝ(θ) =
∞∑

t=−∞

̂tot(t)e−jθt , θ ∈ R.

It can be shown that the sequence {R̂tot(t)} is absolutely summable, so that the
approximation Ŝ is a continuous bounded function of θ . The following is an im-
mediate corollary to Theorem 2.4.

PROPOSITION 2.7. The approximation of the power spectral density of the
stationary sequence {Dt+1 = 	t+1 +BT

t ζt +V T
t ζ 2

t } can be expressed as the sum:

(35)
ŜD(θ) = Ŝ	(θ) + ŜBζ (θ) + e−jθ ŜBζ,	(θ) + [

e−jθ ŜBζ,	(θ)
]∗

+ e−jθ ŜV ζ 2,	(θ) + [
e−jθ ŜV ζ 2,	(θ)

]∗
in which each approximation on the right-hand side is obtained from the Fourier
transform of the corresponding approximations (23)–(29) in Theorem 2.4, and
where “∗” denotes complex-conjugate transpose.
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The power spectral density approximation for � is given by

Ŝ�(θ) = [
Ie−jθ − Ã

]−1ŜD(θ)
[
Iejθ − ÃT ]−1

and the cross-power spectral density approximations are

Ŝ�,D(θ) = [
Ie−jθ − Ã

]−1ŜD(θ),

Ŝ�,ζ (θ) = ε2
∞∑

t=−∞

∞∑
i=1

Ãi−1BRζ 1(t − i)e−jθt .

Under slightly stronger assumptions, we obtain a uniform bound for this ap-
proximation. The proof of Proposition 2.8 is given in Section E.4.

PROPOSITION 2.8. Suppose that Assumptions A1 and A2 hold, and in ad-
dition Rζ (t) → 0 geometrically fast as t → ∞. Then the uniform approximation
holds: For any � ∈ (0,1),

Ŝ(θ) = S(θ) + O
(
ε2+�)

, θ ∈ R.

3. Example: Individual in a mean-field limit. The theory of mean field
games is an active area of research today. While some of the basic concepts can be
found in statistical physics, much of the current research has been inspired by more
recent contributions [1, 12, 13, 15, 20] with applications to control and economics,
and applications to power systems in [16, 17].

The initial motivation for the research reported in this paper is the mean-field
model of [18]; as in [17], the setting is not a game since no local optimization is
assumed. Instead, each “agent” (an electric load) responds to a global command
signal, and at each discrete time t , it changes its state at time t + 1 based on this
information and its local state. The goal of [17, 18] is demand dispatch: power
consumption from the collection of loads is varied automatically and continuously
to provide service to the grid, without impacting QoS (quality of service) to the
consumers.

Figure 3 illustrates the control architecture, in which r = {rt } is a reference
signal that the normalized aggregate power deviation yN = {yN

t } is intended to

FIG. 3. Demand Dispatch model of [5, 18].
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track (perhaps scaled by a constant depending on N ). It is assumed that yN
t is a

linear function of the histogram of states μN
t : for a function U : X →R,

yN
t = 〈

μN,U
〉 := ∑

x∈X

U(x)μN
t (x),

where

μN
t (x) = 1

N

N∑
i=1

I
{
Xi(t) = x

}
, x ∈ X.

The pair (r,yN) is transformed to create a signal ζN via the block Gc shown
in the figure, which is assumed to be a causal linear transfer function in [4, 5, 18].
Each load evolves probabilistically according to a controlled transition matrix. For
each load, the only departure from Figure 1 is that the signal ζN depends on N

since it is a functional of r and yN .
It is shown under general conditions that a limiting model exists:

μt = lim
N→∞μN

t , ζt = lim
N→∞ ζN

t t ≥ 0, a.s.,

in which the row vectors {μt } evolve according to the mean-field equation

μt+1 = μtPζt , t ≥ 0.

It follows that ζ is a deterministic functional of r and the initial distribution μ0.
This limiting model is illustrated in Figure 4.

In the aforementioned work on mean field games, the limiting model is used to
understand aggregate behavior such as y and μ. Here and in [5], the mean field
model is used to approximate the statistics of an individual load in this demand
dispatch architecture.

There is no space here to present any detailed numerical examples, so we show
results from one numerical experiment from the dissertation [4]; full details can
be found in [4], Section 5.3.2. In these experiments, the stochastic process r is
assumed stationary and scaled by ε > 0. A stationary realization of ζ is defined
consistently so that it is scaled by the same factor.

In these experiments, QoS for an individual load is defined to be a discounted
sum of the deviation of power consumption from its nominal mean value Ū :

QoS(t) =
∞∑

k=0

βk{U(
X(t − k)

) − Ū
}
, t ∈ Z,

FIG. 4. Mean field model obtained from Figure 3 as the limit as N tends to infinity.
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FIG. 5. Histogram of QoS and its approximation obtained from Proposition 2.8 (plots based on
Figures 5–8 of [4]).

with β < 1. An approximation for the power spectral density of {U(X(t)) : t ∈ Z}
can be obtained from Proposition 2.8 and based on this we obtain an approxima-
tion for the power spectral density of QoS. The resulting variance approximations
are illustrated in Figure 5: the histograms of QoS are based on 104 independent
experiments.

Even with ε = 1, the approximation of the mean and variance obtained from
Proposition 2.8 is remarkably accurate. The approximations are nearly exact with
ε = 0.3. The histograms appear Gaussian because β is close to unity in these ex-
periments.

4. Example: Bits through queues. The following example is motivated by
the communication model of [2]. There is a sender that wishes to send data to a re-
ceiver. Neither has access to a communication channel in the usual sense. Instead,
the sender manipulates the timing of packets to a queue, and the receiver gathers
data through observations of the timing of departures from the queue.

4.1. Timing channel model. To obtain a finite state-space model, it is assumed
that the queue size is bounded by q̄ , and arrivals are rejected if they cause an
overflow. The dynamics of the queue are described as a reflected random walk:

(36) Qt+1 = min
{
q̄,max(0,Qt − St+1 + At+1)

}
, t ≥ 0.

In the nominal model in which ζ ≡ 0, the pair process (S,A) is i.i.d. on Z
2+.

The sender wishes to manipulate the arrival process A, and the receiver observes
the departure process S. This manipulation is modeled through a scalar input se-
quence ζ .

For simplicity, for the nominal model we restrict to the M/M/1 queue: The usual
model evolves in continuous time, but after sampling using uniformization one
obtains (36), in which A a Bernoulli sequence, and St = 1−At for each t . For each
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integer n ∈ X = {0,1, . . . , q̄}, denote n+ = min(n+ 1, q̄) and n− = max(n− 1,0).
If 0 < λ < 1

2 is the probably of success for A, we then have

P
{
Q(t + 1) = n+|Q(t) = n

} = 1 − P
{
Q(t + 1) = n−|Q(t) = n

} = λ.

Its steady-state p.m.f. is given by

π
Q
0 (n) = κρn,

where ρ = λ/(1 − λ), and κ > 0 is a normalizing factor.
Recall that the receiver observes departures from the queue, which is equivalent

to observations of the sequence S. To estimate joint statistics, we expand the state
space to X(t) = (Q(t), S(t)), which evolves on the state space X = {0,1, . . . , q̄}×
{0,1}. The nominal transition matrix is defined as follows:

P0
(
(n, s),

(
n+,0

)) = λ,

P0
(
(n, s),

(
n−,1

)) = 1 − λ.

The first identity holds because a transition from (n, s) to (n+,0) means that
At+1 = 1, in which case St+1 = 1 − At+1 = 0. The justification for the second
identity is symmetrical. The transition matrix is sparse: P0(x, x′) = 0 for all but at
most two values of x′, regardless of x.

The sender wishes to the manipulate timing of arrivals, which motivates the
following formulation for the controlled transition matrix:

Pζ

(
(n, s),

(
n+,0

)) = λ(1 + ζ ),

Pζ

(
(n, s),

(
n−,1

)) = 1 − λ(1 + ζ )

in which ζ is constrained to the interval [−1,1]. The state process evolves as the
nonlinear state space model (1), with

Qt+1 = min
{
q̄,max

(
0,Qt − 1 + 2I

{
Nt+1 ≤ λ(1 + ζt )

})}
,

St+1 = I
{
Nt+1 > λ(1 + ζt )

}
, t ≥ 0,

in which N is i.i.d., with marginal equal to the uniform distribution on [0,1].
Figure 6 shows a comparison of the steady-state mean queue length as a func-

tion of ε2 for a numerical example. The linear approximation is obtained from
the approximation of πε given in Proposition 2.5. Other statistics are shown in
Figure 7. Details can be found in Section 4.3.

4.2. Second-order bound for mutual information. The mutual information rate
I (S, ζ ) between S and ζ defines the capacity of this channel. Letting χN de-
note the joint distribution of {S1, . . . , SN, ζ1, . . . , ζN }, and denoting the marginals
{S1, . . . , SN } ∼ χN

S , {ζ1, . . . , ζN } ∼ χN
ζ , the mutual information rate is defined as

the limit

I (S, ζ ) = lim
N→∞

1

N
D

(
χN ‖ χN

S × χN
ζ

)
,
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FIG. 6. Mean queue length grows approximately linearly in ε2, for ε2 ≤ 0.2. The error for ε = 1
is approximately 25%.

where D denotes relative entropy (i.e., K-L divergence) [8]. In the following, an
approximation D̂ is introduced, and based on this an approximation to mutual in-
formation,

(37) Î (S, ζ ) = lim
N→∞

1

N
D̂

(
χN ‖ χN

S × χN
ζ

)
.

The approximation of relative entropy is given here in a general setting. Let
ψa and ψb be probability measures on an abstract measurable space (E,B). For
a measurable function f : E → R, we let ψa(f ) denote the mean

∫
f (x)ψa(dx).

FIG. 7. Experiments using γ = 0.4. The approximation for the cross power spectral density SS,ζ

appears to be exact for the entire range of ε. The approximation for the steady-state distribution of
Q is accurate for ε2 ≤ 0.5, but is very poor for ε = 1.
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The approximation is the nonnegative functional defined as follows:

D̂(ψa ‖ ψb) = 1

2
sup

{
ψa(f )2

ψb(f 2)
:

ψb(f ) = 0,ψa

(|f |) < ∞, and 0 < ψb

(
f 2)

< ∞
}
.

(38)

The proof of Proposition 4.1 is contained in Appendix F.

PROPOSITION 4.1. The following hold for any two probability measures ψa

and ψb on an abstract measurable space (E,B). Let f ∗ = log(dψa/dψb) denote
the log-likelihood ratio:

(i) The maximum in (38) is given by f̂ ∗ = ef ∗ − 1 = dψa/dψb − 1, whenever
D̂(ψa ‖ ψb) is finite.

(ii) There is a convex, increasing function κ : R+ → R+ that vanishes only
at the origin, and such that the following bound holds for any two probability
measures with bounded log-likelihood ratio:∣∣D̂(ψa ‖ ψb) − D(ψa ‖ ψb)

∣∣ ≤ κ
(∥∥f ∗∥∥3

∞
)
,

where ‖f ∗‖∞ denotes the supremum norm.

Returning to the stochastic process setting, in the context of (37), we have for
fixed N the following correspondences:

ψa = χN, ψb = χN
S × χN

ζ .

Consider for 0 ≤ n < N the function

f (S1, . . . , SN, ζ1, . . . , ζN) =
N−n∑
k=1

S̃k+nζk

in which S̃t = St − E[St ]. This has mean zero under ψb, and its mean under ψa is

ψa(f ) = EχN

[
f (S1, . . . , SN, ζ1, . . . , ζN)

] = (N − n)
S,ζ (n).

The second moment is also expressed in terms of autocorrelation functions:

ψb

(
f 2) = EχN

S ×χN
ζ

[
f 2(S1, . . . , SN, ζ1, . . . , ζN)

]
=

N−n∑
k=1

N−n∑
�=1

EχN
S ×χN

ζ
E[S̃k+nS̃�+nζkζ�]

=
N−n∑
k=1

N−n∑
�=1


S(k − �)
ζ (k − �).
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For fixed n and N � n, this admits the approximation ψb(f
2) ≈ (N −n)SS×ζ (0),

where

SS×ζ (0) =
∞∑

m=−∞

S(m)
ζ (m).

This gives the large-N approximation,

D̂(ψa ‖ ψb) ≥ 1

2

ψa(f )2

ψb(f 2)
= 1

2


S,ζ (n)2

SS×ζ (0)
N + O(1).

While the derivation was performed for n ≥ 0, similar arguments establish the
same bound for any integer n. The approximation for mutual information rate is
thus lower bounded:

(39) Î (S, ζ ) ≥ 1

2
sup

−∞<n<∞

S,ζ (n)2

SS×ζ (0)
.

This function class is of course highly restrictive. A larger class of functions can
be obtained by defining for each n and each α,β ∈R

n+1,

f (S1, . . . , SN, ζ1, . . . , ζN) =
N−n∑
k=1

Sα
k ζ

β
k ,

with

Sα
k =

n∑
m=0

αmS̃k+m, ζ
β
k =

n∑
m=0

βmζk+m.

Formulae for ψa(f ) and ψb(f
2) can be obtained as in the foregoing, yielding

Î (S, ζ ) ≥ 1

2


Sα,ζβ (0)2

SSα×ζβ (0)
.

4.3. Numerical experiments. In all of the numerical examples described here,
λ is chosen so that ρ = λ/(1 − λ) = 0.9, and the upper bound appearing in (36) is
q̄ = 18.

A Markovian model was chosen for ζ 1 so that exact computations can be ob-
tained for the larger Markov chain. A simple model was chosen, in which ζ 1

evolves on the three states {−1,0,1}. The larger Markov chain �t = (Qt , St , ζ
1
t )

then evolves on a state space of size 6(1 + q̄).
The three states are labeled {zi : i = 1,2,3} = {−1,0,1}. For a fixed parame-

ter γ ∈ (0, 1
2), the transition matrix K is defined as follows. First, P{ζt+1 = zj |

ζt = zi} = γ whenever |zj − zi | = 1:

K1,2 = K2,1 = K2,3 = K3,2 = γ.
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The remaining transition probabilities are K1,1 = K3,3 = 1 − γ , and K2,2 =
1 − 2γ . The steady-state p.m.f. μ0 is uniform, so the steady-state variance is

σ 2
ζ = (

(−1)2 + 02 + 12)
/3 = 2/3.

Its autocorrelation is equal to its autocovariance: Rζ (m) = σ 2
ζ (1 − γ )|m|.

Unless explicitly stated otherwise, the results that follow use γ = 0.4, so that
the asymptotic variance (the variance appearing in the central limit theorem) is

asym. variance = Sζ (0) =
∞∑

k=−∞
Rζ (k) =

(
2

γ
− 1

)
σ 2

ζ = 4σ 2
ζ .

Let π̂ε = π0 + ξU1 [with ξ and U1 defined in (2.5)]. The approximate p.m.f.
illustrated in the plots on the right-hand side of Figure 7 are defined by the first
marginal, π̂

Q
ε (n) = ∑

s=0,1 π̂ε(n, s), for n = 0, . . . ,18. The approximate steady-
state queue length plotted in Figure 6 is defined by

Ê[Q] =
18∑

n=0

nπ̂Q
ε (n).

The steady state p.m.f. for � was computed to obtain the exact steady-state mean
E[Q], which is the concave plot shown in Figure 6. The approximations are accu-
rate for ε ≤ 0.7.

The approximations for the cross power spectral density shown on the left-hand
side of Figure 7 are remarkable.

The statistics of Q and its approximations are highly sensitive to the parame-
ter γ . For γ = 0.8, the approximation of the steady-state mean E[Q] and approx-
imations of π

Q
ε (n) are nearly exact for the entire range of ε. For 0 < γ ≤ 0.2, the

approximations are accurate only for a very narrow range of ε ∼ 0. Results for
γ = 0.2 and γ = 0.8 are shown in Figure 8.

The approximation for mutual information in (39) is defined as a maximum,
which was achieved at n = 1 in each experiment:

Î (S, ζ ) ≥ 1

2
max−∞<n<∞


S,ζ (n)2

SS×ζ (0)
= 1

2


S,ζ (1)2

SS×ζ (0)
.

Plots for four different values of γ are shown in Figure 9.
The plots in Figure 9 use the approximations obtained in Section 2. However,

plots obtained using the exact values of 
S,ζ (1) and SS×ζ (0) are indistinguish-
able.

Unfortunately, we cannot compare Î (S, ζ ) with the true mutual information
rate. This is a computational challenge that is beyond the scope of this paper.
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FIG. 8. The top row shows results from numerical experiments with γ = 0.2, and the bottom row

γ = 0.8. The approximation for π
Q
ε (n) is nearly perfect in the latter case, even with ε = 1. With

γ = 0.2, the second-order approximation is poor for ε ≥ 0.5.

5. Conclusions. It is very surprising to obtain an exact second-order Taylor
series expansion for these second-order statistics with minimal assumptions on
the controlled Markov model. The accuracy of the approximations obtained in
numerical examples is also fortunate. The companion paper [5] and dissertation [4]
contain more numerical work related to distributed control. Further work is needed
to see if this will lead to useful bounds in applications to information theory.

APPENDIX A: COUPLING

We present here the proof of Proposition 2.3.
We first obtain a recursion for the joint process � := (�,�•), driven by ζ , and

two i.i.d. sequences N◦ and N•, each with marginal distribution uniform on [0,1].
The three sequences ζ ,N◦,N• are mutually independent.

FIG. 9. Lower bound for Î (S, ζ ) as a function of ε2 for three values of γ .
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Letting W denote the 3-dimensional stationary stochastic process (ζ ,N◦,N•),
we construct a function F for which

(40) �t+1 = F(�t ,Wt+1).

Since � evolves on a finite set, the existence of a stationary solution follows from
[10] (see Theorem 5 and the discussion that follows).

To construct the function F , it is enough to define the matrix sequence G that
appears in (5), and also the sequence G• that defines the dynamics of �•. Each are
based on the following definition: for ζ ∈ R and s ∈ [0,1], denote

Gi,j (ζ, s) = I

{j−1∑
k=1

Pζ (i, k) ≤ s <

j∑
k=1

Pζ (i, k)

}

with the convention that “
∑0

k=1[·]k = 0”. We then take, for any t ,

G•
t = G

(
0,N•

t

)
.

A third i.i.d. sequence N is obtained by sampling:

(41) Nt+1 =
{
N•

t+1 if �t = �•
t ,

N◦
t+1 else.

We then take Gt = G(ζt−1,Nt).
Based on these definitions, the evolution equation (40) holds for some F ; we

now focus analysis on a stationary solution defined for all t ∈ Z.
Choose T0 ≥ 1, δ0 > 0, ε0 > 0, so that

P
{
Xt+1 = X•

t+1|Xt = X•
t

} ≥ 1 − δ0ε,

P
{
Xt+T0 = X•

t+T0
|Xt �= X•

t

} ≥ δ0, t ∈ Z, ε ≤ ε0.

This is possible by the construction of the joint evolution equations, and the as-
sumption that X• is irreducible and aperiodic. The first bound may be extended to
obtain

P
{
Xt+T = X•

t+T |Xt = X•
t

} ≥ (1 − δ0ε)
T ≥ 1 − T δ0ε, T ≥ 1.

We then have by stationarity

P
{
X0 = X•

0
} = P

{
XT0 = X•

T0

}
= P

{
XT0 = X•

T0
|X0 = X•

0
}
P
{
X0 = X•

0
}

+ P
{
XT0 = X•

T0
|X0 �= X•

0
}
P
{
X0 �= X•

0
}
.

Now, substitute the prior bounds, giving

P
{
X0 = X•

0
} ≥ (1 − T0δ0ε)P

{
X0 = X•

0
}

+ δ0P
{
X0 �= X•

0
}
.
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Substituting P{X0 �= X•
0} = 1 − P{X0 = X•

0} and rearranging terms gives

P
{
X0 = X•

0
} ≥ 1

1 + T0ε
≥ 1 − T0ε

which completes the proof of (15).
The approximation (16) follows from (15) and independence of ζ and �•:

E[�tζt ] = E
[
ζt�

•
t

] + E
[
ζt

(
�t − �•

t

)] = E[ζt ]E[
�•

t

] + O
(
ε2) = O

(
ε2)

.

The remaining bounds in (17) follow directly from (15) and the smoothness as-
sumptions on Pζ . �

APPENDIX B: MARTINGALE DIFFERENCE SEQUENCE

This appendix contains the proof of Proposition 2.1.
Define the σ -algebra Ft = σ {ζ∞−∞,Nt−∞}. The random vector 	t is Ft -

measurable for each t , and it follows from (6) that

E[	t+1|Ft ] = E
[
�t

{
G(ζt ,Nt+1) − Pζt

}|Ft

] = 0,

where G(ζt ,Nt+1) = Gt+1. This proves that 	t is a martingale difference se-
quence. Moreover, using the smoothing property of conditional expectation, for
any t and τ ,

E[	t+1ζτ ] = E
[
�t

[
G(ζt ,Nt+1) − Pζt

]
ζτ

]
= E

[
�tζτ E

[{
G(ζt ,Nt+1) − Pζt

}|Ft

]] = 0.

This establishes R	,ζ (k) = 0 for any k, which is (10).
The covariance of � is obtained by applying the representation �T

t �t =
diag(�t ) := ��

t . This follows from the fact that �T
t is a standard basis vector for

each t . Consequently,

Cov(	t+1) = E
[
(�tGt+1)

T (�tGt+1)
] − E

[
(�tPζt )

T (�tPζt )
]

= E
[
�T

t+1�t+1
] − E

[
(Pζt )

T �T
t �tPζt

]
= E

[
��

t+1
] − E

[
(Pζt )

T ��
t Pζt

]
which is (9). �

APPENDIX C: APPROXIMATING THE STEADY-STATE MEAN

The approximation (30) is obtained here, starting with the approximate evolu-
tion equation that was used to obtain (12):

�t+1 = �tPζt + 	t+1

= �t

[
P0 + ζtE + 1

2
ζ 2
t W

]
+ 	t+1 + O

(
ε3)

.
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Taking the mean of each side, and using stationarity,

(42)

E[�t ] = E[�t+1]
= E[�t ]P0

+ E[ζt�t ]E

+ 1

2
E
[
ζ 2
t �t

]
W + O

(
ε3)

.

To approximate E[ζ 2
t �t ], we use �t = �•

t + Õ(ε). This combined with indepen-
dence of �•, ζ gives

E
[
ζ 2
t �t

] = E
[
ζ 2
t �•

t

] + E
[
ζ 2
t

(
�t − �•

t

)]
= E

[
ζ 2
t

]
E
[
�•

t

] + O
(
ε3)

= σ 2
ζ π0 + O

(
ε3)

.

Substituting this into (42) gives the approximate fixed-point equation,

(43) π̃ε = π̃εP0 + ξ + O
(
ε3)

,

where π̃ε = πε − π0, and ξ is defined in (31).
The matrix I − P0 is not invertible since it has eigenvalue at 0. To obtain an in-

vertible matrix, we note that π̃ε[1⊗π0] = 0 for any ε, and hence (43) is equivalent
to the vector equation,

π̃ε[I − P0 + 1 ⊗ π0] = π̃ε[I − P0] = ξε2 + O
(
ε3)

.

The desired result (30) is obtained by inversion:

π̃ε = ξ [I − P0 + 1 ⊗ π0]−1 + O
(
ε3) = ξU1 + O

(
ε3)

. �

APPENDIX D: CROSS-COVARIANCE WITH INPUT

Approximations for RD,ζ and RBζ are relatively simple because ζt = O(ε).

D.1. Cross-covariance between D and ζ . Using the coupling result, we ob-
tain an approximation for the cross-correlation function,

(44)

RD,ζ (t) = E
[
DT

t+1ζ1
]

= E
[(

BT
t ζt + 	t+1

)T
ζ1

] + O
(
ε3)

= E
[
B•

t ζt ζ1
] + O

(
ε3)

= BRζ (t − 1) + O
(
ε3)

.



ERGODIC THEORY FOR CONTROLLED MARKOV CHAINS 101

D.2. Cross-covariance between ��T and ζ . Recall the σ -algebra Fs =
σ {ζ∞−∞,Ns−∞} introduced in Appendix B. Taking s = −1, we obtain from the
smoothing property of the conditional expectation:

R	2,ζ (−t) = E
[
	T

0 	0ζt

] = E
[
ζtE

[
	T

0 	0|F−1
]]

, t ∈ Z.

The conditional expectation is a matrix that is denoted

(45) X = E
[
	T

0 	0|F−1
] = diag(�−1Pζ−1) − P T

ζ−1
��−1Pζ−1 .

LEMMA D.1. For t ≥ 0, we have

R	2,ζ (−t) = E[ζtX ]
= diag

(
R�,ζ (−t − 1)P0

) − P T
0 diag

(
R�,ζ (−t − 1)

)
P0

+ Rζ (t + 1)E
[
X (1)•

] + O
(
ε3)

,

where E[X (1)• ] is defined below (32).

PROOF. A first-order Taylor series approximation gives X = X (0) +
ζ−1X (1) + O(ε2), where

X (0) = diag(�−1P0) − P T
0 diag(�−1)P0,

X (1) = diag(�−1E) − (
P T

0 diag(�−1)E + [
P T

0 diag(�−1)E
]T )

.

Hence, for t ≥ 0,

E[ζtX ] = E
[
ζt

(
X (0) + ζ−1X (1) + O

(
ε2))]

= E
[
ζtX (0)] + E

[
ζt ζ−1X (1)•

] + O
(
ε3)

= E
[
ζtX (0)] + Rζ (t + 1)E

[
X (1)•

] + O
(
ε3)

,

where, in the second equality we used X (1) = X (1)• + Õ(ε) with

X (1)• = diag
(
�•−1E

) − (
P T

0 diag
(
�•−1

)
E + [

P T
0 diag

(
�•−1

)
E

]T )
,

and also used the fact that �•−1 is independent of ζ . We have by the definitions:

E
[
ζtX (0)] = diag

(
R�,ζ (−t − 1)P0

) − P T
0 diag

(
R�,ζ (−t − 1)

)
P0.

Substitution into the previous approximation for E[ζtX ] completes the proof. �
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D.3. Auto-correlation of Bζ . Applying the coupling result (17) in Proposi-
tion 2.3 gives BT

t = B•T
t + Õ(ε), where BT

t = �tE . Hence,

(46) RBζ (t) = E
[
BtζtB

T
0 ζ0

] = E
[
B•

t ζt

(
B•

0ζ0
)T ] + O

(
ε3) = RB•ζ (t) + O

(
ε3)

.

Independence of ζ and �•
t implies a formula for the simpler auto-correlation:

(47)

RB•ζ (t) := E
[
B•

t ζt

(
B•

0ζ0
)T ]

= E
[(

�•
t E

)T (
�•

t E
)]

E[ζt ζ0]
= ET R�•(t)ERζ (t).

A formula for R�•(t) is given next: For t ≥ 0,

(48) R�•(t) = E
[(

�•
t

)T
�•

0
] = E

[(
�•

0P t
0
)T

�•
0
] = (

P T
0

)tE[(
�•

0
)T

�•
0
] = (

P T
0

)t

0,

where the last equality is from the fact that �t has binary entries and E[�t ] = π0.
Combining (46)–(48) completes the proof of (23). �

D.4. Cross-covariance between � and ζ . The derivation of (33) is obtained
via a recursion, similar to the calculation in Section C. It is simplest to work with
the row vectors νk = (R�,ζ (k))T = E[�kζ0]. For any k ∈ Z,

νk+1 = E[�k+1ζ0]
= E

[
(�kPζk

+ 	k+1)ζ0
]

= E[�kPζk
ζ0]

= E
[
�k

(
P0 + Eζk + O

(
ε2))

ζ0
]

= νkP0 + E[�kEζkζ0] + O
(
ε3)

,

where in the third equation we used the fact that the sequences � and ζ are uncor-
related. Recalling the definition BT = πE = E[�•

k ]E , and applying the coupling
result �k = �•

k + Õ(ε) gives

E[�kEζkζ0] = E
[
�•

kEζkζ0
] + O

(
ε3) = BT Rζ (k) + O

(
ε3)

.

Hence, νk+1 = νkP0 + BT Rζ (k) + O(ε3); that is, there is a bounded sequence of
row vectors {γk} such that

νk+1 = νkP0 + BT Rζ (k) + ε3γk.

It follows from (11) that BT 1 = π0E1 = 0. Moreover, since {�t } are p.m.f.s, we
have for any �,

(49) ν�1 = E[ζ0��]1 = E[ζ0] = 0.

It then follows that γk1 = 0 for each k.
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On iterating, we obtain for any integer n ≥ 1

νk+n = νkP
n
0 +

n∑
i=1

[
BT + ε3γi

]
P i−1

0 Rζ (k + n − i).

Now, substitute t = k + n, where t ∈ Z is a fixed integer, and n is a large positive
integer:

(50) νt = νt−nP
n
0 +

n∑
i=1

[
BT + ε3γi

]
P i−1

0 Rζ (t − i).

For large n, we have P n
0 = 1 ⊗ π0 + oe(1), where oe(1) → 0 geometrically fast as

n → ∞. Consequently,

νt−nP
n
0 = E[ζ0�t−n]1 ⊗ π0 + oe(1),

γiP
i−1
0 = γi1 ⊗ π0 + oe(1).

We have seen that E[ζ0�t−n]1 = 0 and γi1 = 0, from which we conclude that

νt−nP
n
0 = oe(1) and

∞∑
i=1

∥∥γiP
i−1
0 Rζ (t − i)

∥∥ < ∞.

This justifies letting n → ∞ in (50) to obtain

νt = BT
∞∑
i=1

P i−1
0 Rζ (t − i) + O

(
ε3)

,

which is equivalent to (33) on substituting the definition νk = (R�,ζ (k))T . �
Based on this result, we now prove Proposition 2.6. It is sufficient to establish

the following approximation:

(51) R�,ζ (0) = ε2
nz∑

k=1

akρk

[
I − ρkP

T
0

]−1
B + O

(
ε3)

.

The representation (34) for ξ then follows immediately from the original definition
(31).

Recall that νk = E[�kζ0], k ∈ Z. Under A3 we apply (18) to conclude that for
t ≤ 1 and i ≥ 1,

Rζ (t − i) = ε2
nz∑

k=1

akρ
i−t
k .

For these values of t and i, we have i − t = i + |t |, and hence the approximation
(33) gives

νt = ε2
nz∑

k=1

∞∑
i=1

BT P i−1
0 akρ

i+|t |
k + O

(
ε3)

.
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Rearranging terms, and letting j = i − 1 gives

νt = ε2BT
nz∑

k=1

akρ
1+|t |
k

∞∑
j=0

P
j
0 ρ

j
k + O

(
ε3)

.

On setting t = 0 and taking transposes, this becomes (51). �

APPENDIX E: PROOF OF THEOREM 2.4

The representation of RD(t) as the sum of the terms (22a)–(22d), plus an error
of order ε3, follows immediately from the arguments preceding the theorem. The
proof of (21) is given in (44).

Next, we consider each of the terms (22a)–(22d) separately.
The approximation for RBζ (t) that appears in (22a) was given in Section D.3.

Consider next the covariance 
	 in (22b).

E.1. Approximation of �� in (25). Equation (9) gives

(52) 
	 = 
ε − E
[
P T

ζt
��

t Pζt

]
,

where 
ε = diag(πε); recall that πε is approximated in Proposition 2.5.
The random variable P T

ζt
��

t Pζt is approximated using a second-order Taylor

series expansion. The random matrix ��
t has binary entries, so we leave it fixed in

this approximation. For any scalar ζ and matrix �, we have

(53) P T
ζ �Pζ = P T

0 �P0 + ζM(1) + 1

2
ζ 2M(2) + O

(|ζ |3)
,

where M(i) is the ith derivative of P T
ζ �Pζ with respect to ζ , evaluated at ζ = 0.

To obtain M(1), first differentiate using the product rule:

d

dζ
P T

ζ �Pζ = P T
ζ �P ′

ζ + [
P T

ζ �P ′
ζ

]T
.

Evaluating at ζ = 0 gives

M(1) = P T
0 �E + [

P T
0 �E

]T
.

Similarly, given the second derivative,

d2

dζ 2 P T
ζ �Pζ = (

P ′
ζ
T
�P ′

ζ + P T
ζ �P ′′

ζ

) + (
P ′

ζ
T
�P ′

ζ + P T
ζ �P ′′

ζ

)T
we obtain

M(2) = P T
0 �W + 2ET �E +WT �P0.
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Substituting ζt = ζ and �t = � in (53) gives the approximation

(54)

E
[
P T

ζt
��

t Pζt

] = E
[
P T

0 ��
t P0

]
+ E

[(
P T

0 ��
t E + ET ��

t P0
)
ζt

]
+ 1

2
E
[(

P T
0 ��

t W + 2ET ��
t E +WT ��

t P0
)
ζ 2
t

] + O
(
ε3)

.

The first term on the right-hand side can be approximated using Proposition 2.5.
The second expectation involves E[ζt�t ], which is approximated in Lemma 2.6.
For the third term, we replace �t by �•

t + Õ(ε), where �•
t has mean π0 and is

independent of ζ . Combining all of these approximations gives the following ap-
proximation for the second term in (52):

(55)

E
[
P T

ζt
��

t Pζt

] = P T
0 
εP0

+ P T
0 diag

(
E[�tζt ])E + ET diag

(
E[�tζt ])P0

+ 1

2

(
P T

0 
0W + 2ET 
0E +WT 
0P0
)
E
[
ζ 2
t

] + O
(
ε3)

,

where 
0 = diag(π0) and 
ε = diag(πε). This gives (25) since R�,ζ (0) =
E[�T

t ζt ]. �

E.2. Computation of RBζ,�(t) in (27). This is the most complex part of the
proof.

We consider three cases separately: For t < 0, we have demonstrated that
RBζ,	(t) = 0. The second case is t = 0. The approximation for RBζ,	(0) is used
as an initial condition in a recursive approximation for RBζ,	(t), t ≥ 1.

An approximation for RBζ,	(0) is obtained from Lemma D.1. Using
E[	0|F−1] = 0, we obtain

(56)

RBζ,	(0) = E
[
(�0Eζ0)

T 	0
]

= ET E
[
ζ0(�−1Pζ−1 + 	0)

T 	0
]

= ET E
[
ζ0(�−1Pζ−1)

T 	0
] + ET R	2,ζ (0)

= ET E
[
ζ0(�−1Pζ−1)

T E[	0|F−1]] + ET R	2,ζ (0)

= ET R	2,ζ (0).

Lemma D.1 provides an approximation for R	2,ζ (0). Substituting this into (56)
gives the approximation for RBζ,	(0) shown in (27). �

In the remainder of this subsection, we consider t ≥ 1. Iterating (5) gives

BT
t = �tE = �0G1G2 · · ·GtE .
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Each term is conditionally independent of 	0, given ζ , except for �0 = �−1G0 =
�−1Pζ−1 + 	0. Using the fact that �−1Pζ−1 is also conditionally independent of
	0, we obtain

RBζ,	(t) = E
[
ζtET P T

ζt−1
P T

ζt−2
· · ·P T

ζ0
[�−1Pζ−1 + 	0]T 	0

]
= ET E

[
ζtP

T
ζt−1

· · ·P T
ζ0

E
[
	T

0 	0|F−1
]]

= ET E
[
ζtP

T
ζt−1

· · ·P T
ζ0
X

]
,

(57)

where X was introduced in (45).
Denote Ai = P T

ζi
, A = P T

0 , and the matrix product �t = AtAt−1 · · ·A0, for
t ≥ 0. We set �t = I for t < 0. The product is approximated in the following.

LEMMA E.1. For t ≥ 0,

(58) �t = At+1 +
t∑

i=0

At−iET Aiζi + O
(
ε2)

.

The proof of (58) is postponed to the end of this subsection.
Once we have established this lemma, we then have the complete cross-

correlation.

PROOF OF APPROXIMATION (27) FOR RBζ,	(t), t ≥ 1. We return to (57),
which can be expressed

RBζ,	(t) = ET E[ζt�t−1X ], t ≥ 1.

Substituting the bound in Lemma E.1,

RBζ,	(t) = ET E
[
ζtA

tX
] + ET E

[
ζt

t−1∑
i=0

At−1−iET AiζiX
]

+ O
(
ε3)

= ET AtE[ζtX ] + ET E

[
ζt

t−1∑
i=0

At−1−iET Aiζi

(
X • + Õ(ε)

)] + O
(
ε3)

= ET AtE[ζtX ] + ET
t−1∑
i=0

At−1−iET AiRζ (t − i)
	• + O
(
ε3)

.

This establishes (27) since E[ζtX ] = R	2,ζ (−t). �

The proof of Lemma E.1 uses a Taylor series approximation for �t :

�t = At�t−1 = A�t−1 + Wt,

where Wt = Et +Ft ; Et = ET ζt�t−1 is the first-order term in the Taylor series ap-
proximation, and Ft is the approximation error whose norm is bounded by O(ε2).

The following result provides a uniform bound on At−iFi for each t and i, and
also At−iET [which appears in (58)].
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LEMMA E.2. There exists 0 < κ < ∞ and 0 < � < 1 such that∥∥AnET
∥∥ = ∥∥EP n

0

∥∥ ≤ κ�n,∥∥AnFi

∥∥ ≤ κ�nε2.

PROOF. The proof that E1 = 0 was established previously; see (11). Next,
we apply the ergodic limit (20), recalling that P n

0 → 1 ⊗ π0 geometrically fast as
n → ∞: there exists 0 < κ0 < ∞ and 0 < � < 1 such that

(59) ‖en‖ ≤ κ0�
n with en = P n

0 − 1 ⊗ π0.

Consequently, EP n
0 = EP n

0 1 ⊗ π0 + Een = Een, which implies the desired bound
‖Een‖ ≤ κ�n, with κ = κ0‖E‖.

The proof of the second bound is similar: For each i, we have

1T Wi = 1T (Ai − A)�i−1 = 0T ,

1T Ei = 1T ET �i−1ζi = (E1)T �i−1ζi = 0T .

We then have 1T Fi = 1T (Wi − Ei) = 0T , from which we obtain as before

FT
i P n

ζ = FT
i (1 ⊗ π0 + en) = FT

i en.

Applying (59), we arrive at the desired bound:∥∥AnFi

∥∥ = ∥∥FT
i P n

0

∥∥ = ∥∥FT
i en

∥∥ ≤ ‖Fi‖
∥∥en

∥∥ ≤ ε2κ�n,

where ε2κ is equal to κ0 times a worst-case bound on ‖Fi‖. �

PROOF OF LEMMA E.1. Applying Lemma E.2,
t∑

i=1

∥∥At−iFi

∥∥ =
t∑

i=1

∥∥FT
i P t−i

0

∥∥ ≤ ε2 κ

1 − �
= O

(
ε2)

.

This implies the following approximation for �t :

�t = At�t−1

= (
A + ET ζt

)
�t−1 + Ft

= A�t−1 + ET �t−1ζt + Ft

= At�0 +
t∑

i=1

At−iET �i−1ζi +
t∑

i=1

At−iFi

= At (A + ET ζ0 + O
(
ε2)) +

t∑
i=1

At−iET �i−1ζi + O
(
ε2)

= At+1 +
t∑

i=0

At−iET �i−1ζi + O
(
ε2)

.
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In particular, this shows that �t = At+1 + O(ε). Moreover, Lemma E.2 gives the
geometric bound ‖At−iET ‖ ≤ κ�t−i . This justifies substitution �i−1ζi = Aiζi +
O(ε2) to obtain the desired result (58). �

E.3. Approximation of RV ζ 2,�(t) in (29). Recall that V T
t = 1

2�tW , and de-
note R�•,	•(t) = E[(�•

t )
T 	•

0].
Applying the coupling result Proposition 2.3, the cross-correlation is approxi-

mated as follows:

RV ζ 2,	(t) = E
[

1

2
(�tW)T ζ 2

t 	0

]
= 1

2
WT E

[
ζ 2
t

]
E
[(

�•
t

)T
	•

0
] + O

(
ε3)

= 1

2
ε2σ 2

ζ 1WT R�•,	•(t) + O
(
ε3)

.

We have R�•,	•(t) = 0 for t < 0, and thus RV ζ 2,	(t) = O(ε3) for t < 0.
We also have R�•,	•(0) = E[(�•

0)T 	•
0] = 
	• = 
0 −P T

0 
0P0, and for t ≥ 1,

R�•,	•(t) = E
[(

�•
0P t

0
)T

	•
0
]

= E
[((

�•−1P0 + 	•
0
)
P t

0
)T

	•
0
]

= E
[(

P t
0
)T (

	•
0
)T

	•
0
] = (

P t
0
)T


	•
.

Substituting R�•,	•(t) = (P T
0 )t
	•

into the previous expression for RV ζ 2,	(t)

gives (29) for t ≥ 0.

E.4. Proof of Proposition 2.8. The proof begins with the uniform bound

∥∥S(θ) − Ŝ(θ)
∥∥ ≤

∞∑
t=−∞

∥∥
tot(t) − 
̂tot(t)
∥∥, θ ∈R,

where ‖ · ‖ is any matrix norm. The right-hand side is finite under Assumptions A1
and A2. It remains to obtain an estimate that is O(ε2+�). We establish a slightly
stronger bound:

(60)
∞∑
t=0

∥∥
tot(t) − 
̂tot(t)
∥∥ = O

(
ε2 log(1/ε)

)
.

Under the assumption that Rζ (t) → 0 geometrically fast, it follows that the
same is true for 
̂tot(t) and 
tot(t): for some b0 < ∞ and δ > 0,∥∥
tot(t)

∥∥ + ∥∥
̂tot(t)
∥∥ ≤ exp

(
b0 − δ|t |), t ∈ Z.
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Moreover, μ = μ0 + O(ε2), where the first d components of μ0 coincide with
π0, and the remaining are zero. It follows that 
tot(t) = R(t) − μ0μ

T
0 + O(ε4).

Consequently, Theorem 2.4 implies that for some b1 < ∞,∥∥
tot(t) − 
̂tot(t)
∥∥ ≤ exp(b1)ε

3, t ∈ Z.

To establish (60), we decompose the sum into two parts. Denote

N(ε) = min
{
t ≥ 0 : exp(b0 − δt) ≤ exp(b1)ε

3}
.

This implicit definition can be solved to give N(ε) = [b0 + 3b1 log(1/ε)]δ−1.
From this, we obtain

∞∑
t=0

∥∥
tot(t) − 
̂tot(t)
∥∥ ≤ exp(b1)ε

3N(ε) + ∑
t>N(ε)

exp(b0 − δt)

≤ exp(b1)ε
3N(ε) + exp

(
b0 − δN(ε)

) 1

1 − exp(−δ)

≤ exp(b1)ε
3N(ε) + exp(b1)ε

3 1

1 − exp(−δ)
.

This together with the formula for N(ε) immediately gives the bound (60). �

APPENDIX F: PROOF OF PROPOSITION 4.1

Recall the representation of relative entropy as the convex dual of the log-
moment generating function: For any probability measure ψb on E and measurable
function f : E →R, the log-moment generating function is denoted

�b(f ) = log
(
ψb

(
ef ))

.

For any other probability measure ψa on (E,B), we have

D(ψa ‖ ψb) = sup
{
ψa(f ) − �b(f )

}
,

where the supremum is over all measurable functions f for which ψa(f ) is defined
[9], Theorem 3.1.2.

Provided the relative entropy is finite, the supremum is achieved uniquely with
the log-likelihood function f ∗ = log(dψa/dψb). The error bound (ii) in the propo-
sition is vacuous unless ‖f ∗‖∞ < ∞. Consequently, to establish the error bound
we can restrict to functions f for which ‖f ‖∞ < ∞.

Apply the second-order Taylor-series expansion:

�b(f ) = log
(

1 + ψb(f ) + 1

2
ψb

(
f 2)) = ψb(f ) + 1

2
ψb

(
f 2) + O

(‖f ‖3∞
)
.

A quadratic approximation to relative entropy is obtained on dropping the error
term. To complete the proof, we establish the following alternate expression for
(38):

D̂(ψa ‖ ψb) := sup
{
ψa(f ) − ψb(f ) − 1

2
ψb

(
f 2)}

,
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where the supremum is over all functions f whose mean is defined with respect
to both ψa and ψb. Without loss of generality, we may assume that the maximum
is over all functions f for which ψb(f ) = 0. It is not difficult to show that the
maximizing function is f̂ ∗ = ef ∗ − 1 = dψa/dψb − 1 whenever D̂(ψa ‖ ψb) is
finite. This establishes (i).

We can scale by a constant θ to obtain

D̂(ψa ‖ ψb) = max
f

max
θ

{
θψa(f ) − 1

2
θ2ψb

(
f 2)}

,

where the first maximum is over measurable functions f satisfying ψb(f ) = 0 and
ψa(|f |) + ψb(f

2) < ∞. The optimizing value is θ∗ = ψa(f )/ψb(f
2). Substitu-

tion leads to the formula (38). �
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