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ON DYNAMIC DEVIATION MEASURES AND CONTINUOUS-TIME
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In this paper, we propose the notion of dynamic deviation measure, as a
dynamic time-consistent extension of the (static) notion of deviation measure.
To achieve time-consistency, we require that a dynamic deviation measures
satisfies a generalised conditional variance formula. We show that, under a
domination condition, dynamic deviation measures are characterised as the
solutions to a certain class of stochastic differential equations. We establish
for any dynamic deviation measure an integral representation, and derive a
dual characterisation result in terms of additively m-stable dual sets. Using
this notion of dynamic deviation measure, we formulate a dynamic mean-
deviation portfolio optimization problem in a jump-diffusion setting and iden-
tify a subgame-perfect Nash equilibrium strategy that is linear as function of
wealth by deriving and solving an associated extended HJB equation.

1. Introduction. One traditional way of thinking about risk is in terms of
the extend that random realisations deviate from the mean. In portfolio theory as
initiated in Markowitz (1952), for instance, risk is quantified as the variance or
standard deviation of the return. In the setting of the Black and Scholes (1973)
model, it is the volatility parameter, which is equal to the standard deviation of the
log-stock price at unit time, that is often taken as description of the risk. Alterna-
tive approaches to quantification of risk that have emerged more recently also take
into account other aspects of the return distribution such as heavy tails and asym-
metry. In this context, an axiomatic framework for (general) deviation measures
was introduced and developed in Rockafellar, Uryasev and Zabarankin (2006a),
which form a certain class of nonnegative positively homogeneous (static) oper-
ators acting on square-integrable random variables. General deviation measures
allow to distinguish between upper and lower deviations from the mean, gener-
alising standard deviation. Various aspects of portfolio optimization and financial
decision making under general deviation measures have been explored in the liter-
ature, in particular regarding CAPM, asset betas, one- and two-fund theorems and
equilibrium theory; see also among many others Cheng, Liu and Wang (2004),
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Rockafellar, Uryasev and Zabarankin (2006b, 2006c, 2007), Märkert and Schultz
(2005), Stoyanov et al. (2008), Grechuk, Molyboha and Zabarankin (2009) or
Grechuk and Zabarankin (2013, 2014). In this paper we present an axiomatic ap-
proach to deviation measures in dynamic continuous-time settings. We show that
such dynamic deviation measures admit in general a dual robust representation
and are linked to a certain family of stochastic differential equations, if a certain
domination condition is satisfied. Subsequently, we use this notion of a dynamic
deviation measure to phrase a mean-deviation portfolio optimization problem in a
jump-diffusion setting and identify for this problem a subgame-perfect Nash equi-
librium portfolio allocation strategy by means of an associated novel type of ex-
tended Hamilton–Jacobi–Bellman equation, which complements the ones studied
in Björk and Murgoci (2010).

(Conditional) deviation measures. Dynamic deviation measures are given in
terms of conditional deviation measures, which are in turn a conditional ver-
sion of the notion of (static) deviation measure defined in Rockafellar, Uryasev
and Zabarankin (2006a) that we describe next. On a filtered probability space
(�,F, (Ft )t∈[0,T ],P), where T > 0 denotes the horizon, consider the (risky)
positions described by elements in Lp(Ft ), t ∈ [0, T ], p ≥ 0, the space of
Ft -measurable random variables X such that E[|X|p] < ∞. By L

p
+(Ft ), L∞(Ft )

and L∞+ (Ft ) are denoted the subsets of nonnegative, bounded and nonnegative
bounded elements in Lp(Ft ). The definition is given as follows.

DEFINITION 1.1. For any given t ∈ [0, T ], Dt : L2(FT ) → L2+(Ft ) is called
an Ft -conditional deviation measure if it is normalised (Dt(0) = 0) and the fol-
lowing properties are satisfied:

(D1) Translation Invariance: Dt(X + m) = Dt(X) for any m ∈ L∞(Ft ).
(D2) Positive Homogeneity: Dt(λX) = λDt(X) for any X ∈ L2(FT ) and λ ∈

L∞+ (Ft ).
(D3) Subadditivity: Dt(X + Y) ≤ Dt(X) + Dt(Y ) for any X,Y ∈ L2(FT ).
(D4) Positivity: Dt(X) ≥ 0 for any X ∈ L2(FT ), and Dt(X) = 0 if and only if

X is Ft -measurable.

If F0 is trivial, D0 is a deviation measure in the sense of Definition 1 in
Rockafellar, Uryasev and Zabarankin (2006a). The value Dt(X) = 0, we recall,
corresponds to the riskless state of no uncertainty, and axiom (D1) can be in-
terpreted as the requirement that adding to a position X a constant (interpreted
as cash) should not increase the risk. Furthermore, it follows similarly as in
Rockafellar, Uryasev and Zabarankin (2006a) that, if D satisfies (D2)–(D3), (D1)
holds if and only if Dt(m) = 0 for any m ∈ L2(Ft ). In other words, constants do
not carry any risk. Moreover, it is well known that if (D2) holds, (D3) is equivalent
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to conditional convexity, that is, for any X,Y ∈ L2(FT ) and any λ ∈ L∞(Ft ) that
is such that 0 ≤ λ ≤ 1:

Dt

(
λX + (1 − λ)Y

) ≤ λDt(X) + (1 − λ)Dt(Y ).

The property of convexity is often given the interpretation that diversification of
a position should not increase its riskiness. We also note that (D2) implies that,
for any X1,X2 ∈ L2(FT ), Dt(IAXi) = IADt(Xi), i = 1,2, where IA denotes the
indicator of the set A, so that3

(1.1) Dt(IAX1 + IAcX2) = IADt(X1) + IAcDt(X2), A ∈ Ft .

In the analysis typically also a lower semicontinuity condition is imposed, the
conditional version of which is given as follows:

(D5) Lower Semicontinuity: If Xn converges to X in L2(FT ), then Dt(X) ≤
lim infn Dt(X

n).

Dynamic deviation measures. We impose additional structure on a given fam-
ily of Ft -conditional deviation measures in order to ensure it satisfies a form of
time-consistency. One recursive structure that has been successfully deployed in
among others the case of mean-variance portfolio optimization is the one em-
bedded in the conditional variance formula given by vars(X) = vars(E[X|Ft ]) +
E[vart (X)|Fs] for s ≤ t and X ∈ L2(FT ) with vars(X) = E[(X −E[X||Fs])2|Fs];
see, for instance, Basak and Chabakauri (2010), Wang and Forsyth (2011), Li,
Zeng and Lai (2012) or Czichowsky (2013). Inspired by this recursive structure,
we require that a collection (Dt)t∈[0,T ] of conditional deviation measures satisfy
the following generalisation of the conditional variance formula:

(D6) Time-Consistency: For all s, t ∈ [0, T ] with s ≤ t and X ∈ L2(FT ),

(1.2) Ds(X) = Ds

(
E[X|Ft ])+E

[
Dt(X)|Fs

]
.

REMARK 1.2. (i) As D(X) ≥ 0, (D6) implies that (Ds(X))s∈[0,T ] is a super-
martingale, which implies in particular that D has a càdlàg modification.

(ii) It follows by standard arguments that (D6) for s = 0 already uniquely de-
termines a dynamic deviation measure D. Suppose that D0 and X ∈ L2(FT ) are
given and besides (Dt(X))t∈[0,T ] there exists a collection of square-integrable
Fs-measurable random variables (D′

t (X))t∈[0,T ] satisfying (D6) for s = 0, then
Dt(X) = D′

t (X) for all t ∈ [0, T ]. Indeed, if the Ft -measurable set A′ :=
{D′

t (X) > Dt(X)} were to have nonzero measure, then by (1.1) and (D6) we find

E
[
IA′Dt(X)

] = E
[
Dt(IA′X)

] = D0(IA′X) − D0
(
E[IA′X|Ft ]) = E

[
D′

t (IA′X)
]

= E
[
IA′D′

t (X)
]
,

3To see that (1.1) holds, note that by (D2) IADt (1AX1 + 1AcX2) = Dt(IA(IAX1 + 1AcX2)) =
Dt(IAX1) = IADt (X1); similarly, we have IAcDt (1AX1 + 1AcX2) = IAcDt (X2).
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which is a contradiction to the definition of the set A′. Similarly, it may be seen
that the set {D′

t (X) < Dt(X)} has measure zero.
(iii) Since D0 is convex, lower semicontinuous and finite, D0 is continuous in

L2(FT ) [see Proposition 2 in Rockafellar, Uryasev and Zabarankin (2006a, 2006b,
2006c)].

We arrive thus at the following definition of dynamic deviation measure.

DEFINITION 1.3. A family (Dt)t∈[0,T ] is called a dynamic deviation measure
if Dt , t ∈ [0, T ], are Ft -conditional deviation measures satisfying (D5) and (D6).

One way to construct examples of dynamic deviation measures is in terms of
the solutions of a certain type of SDEs. Such solutions, when seen as function of
the corresponding random variable, we will call g-deviation measures (where g is
the driver function of the SDE in question). We show in Theorem 3.2 that, under
a domination condition, any dynamic deviation measure is equal to a g-deviation
measure for some driver function g. This result may be considered to be an ana-
logue of the link between the dynamic coherent and convex risk measures and
g-expectations; see Coquet et al. (2002) and Royer (2006) [for contributions on
convex risk measures and g-expectations and their generalizations see, for in-
stance, Barrieu and El Karoui (2005, 2009), Rosazza Gianin (2006), Klöppel and
Schweizer (2007), Jiang (2008), El Karoui and Ravanelli (2009), Bion-Nadal and
Kervarec (2012) or Pelsser and Stadje (2014)]. By drawing on dual robust repre-
sentation results, we also establish characterisations of general dynamic deviation
measures that are valid without the domination condition (see Theorems 3.7, 3.11
and 3.12).

REMARK 1.4 (Relation to dynamic coherent risk-measures). By generalising
arguments given in Rockafellar, Uryasev and Zabarankin (2006a, 2006b, 2006c)
to the Ft -conditional context, we note that any (static) Ft -conditional deviation
measure is equal to the sum of a conditional expectation and a risk-measure ρt that
satisfies a (Ft -conditional) lower range dominance condition. As the notions of
time-consistency differ in cases of dynamic deviation and dynamic risk measures
this relation does not carry over to the dynamic case (see Proposition 3.14). A
collection (ρt )t∈[0,T ], ρt : L2(FT ) → L2+(Ft ), forms a family of dynamic coherent
risk measures, we recall, if, for every t ∈ [0, T ], ρt is positively homogeneous and
subadditive [as in (D2) and (D3)], and is (dynamically) monotone and translation
invariant in the following sense:

Translation Invariance: For all X ∈ L2(FT ) and m ∈ L∞(Ft ), we have ρt (X +
m) = ρt (X) − m.

Monotonicity: If X,Y ∈ L2(FT ) and X ≤ Y , then ρt (X) ≥ ρt(Y ).
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For a discussion of these axioms, see Artzner et al. (1999). Note that by (D1)–
(D2) Dt(m) = 0 for any m ∈ L2(Ft ), so that dynamic deviation measures do
not satisfy the axiom of monotonicity. While for dynamic deviation measures
time-consistency is defined in terms of the generalised conditional variance for-
mula (1.2), in the theory of dynamic coherent and convex risk measures a recursive
tower-type property is the relation strongly time-consistent dynamic risk-measures
should satisfy. Specifically, a dynamic coherent or convex risk measures is called
strongly time-consistent, we recall, if

(1.3) ρs

(
ρt (X)

) = ρs(X) for s ≤ t;
see, for instance, among many others Chen and Epstein (2002), Riedel (2004),
Delbaen (2006), Artzner et al. (2007), Föllmer and Schied (2011), Cheridito and
Kupper (2011). Note that a dynamic deviation measure D is not strongly time-
consistent [in view of the fact that Dt(DT (X)) = Dt(0) = 0 for t < T ]. Interest-
ingly, as shown in Proposition 4.4, a collection of conditional deviation measures
satisfies (D6) if and only if in their dual representations the dual sets are con-
vex, closed, and additively m-stable, which is a result naturally complementing
the well-known fact in the literature that the property of time-consistency for co-
herent risk measures [defined by (1.3)] may be characterised in terms of convex,
closed, multiplicatively m-stable sets [see Delbaen (2006)].

Contents. The remainder of the paper is organised as follows. We present in
Section 2 the definition of g-deviation measures, its properties and a number of
examples. With these results in hand, we turn in Section 3.1 to the characterisation
of dynamic deviation measures under a domination condition (Theorem 3.2) and
proceed to establish in Section 3.2 an integral representation for general dynamic
deviation measures, removing the aforementioned domination condition (Theo-
rem 3.7) and a dual robust representation result (Theorems 3.11 and 3.12). In
Section 5, we phrase a dynamic mean-deviation portfolio-optimization problem
and present an equilibrium solution. It is of interest to investigate other (financial)
optimization problems in terms of dynamic deviation measures, such as optimal
hedging problems, capital allocation problems and optimal stopping problems; in
the interest of brevity, we leave these as topics for future research.

2. g-Deviation measures. In the sequel, we assume that the probability space
(�,F,P) is equipped with (i) a standard d-dimensional Brownian motion W =
(W 1, . . . ,Wd)ᵀ and (ii) a Poisson random measure N(dt ×dx) on [0, T ]×Rk \{0},
independent of W , with intensity measure N̂(dt × dx) = ν(dx)dt , where the Lévy
measure ν(dx) satisfies the integrability condition∫

Rk\{0}
(|x|2 ∧ 1

)
ν(dx) < ∞,
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and let Ñ(dt × dx) := N(dt × dx) − N̂(dt × dx) denote the compensated Pois-
son random measure. Further, let U denote the Borel sigma-algebra induced by
the L2(ν(dx))-norm, (Ft )t∈[0,T ] the right-continuous completion of the filtration
generated by W and N , and P and O the predictable and optional sigma-algebras
on [0, T ] × � with respect to (Ft ). We denote by L2

d(P,dP × dt) the space of
all predictable d-dimensional processes that are square-integrable with respect to
the measure dP× dt and we let S2 = {Y ∈O : E[sup0≤t≤T |Yt |2] < ∞} denote the
collection of square-integrable càdlàg optional processes. Further, let B(Rk \ {0})
be the Borel sigma-algebra on Rk \ {0}. For any X ∈ L2(FT ) we denote by
(HX, H̃X) the unique pair of predictable processes with HX ∈ L2

d(P,dP × dt)

and H̃X ∈ L2(P × B(Rk \ {0}),dP× dt × ν(dx)), subsequently referred to as the
representing pair of X, satisfying4

(2.1) X = E[X] +
∫ T

0
HX

s dWs +
∫ T

0

∫
Rk\{0}

H̃X
s (x)Ñ(ds × dx),

where
∫ T

0 HX
s dWs := ∑d

i=1
∫ T

0 HX,i
s dWi

s .
We consider the following class of driver functions.

DEFINITION 2.1. We call a P ⊗B(Rd) ⊗ U -measurable function

g : [0, T ] × � × Rd × L2(ν(dx)
) → R+,

(t, ω, h, h̃) 
−→ g(t,ω,h, h̃)

a driver function if for dP× dt a.e. (ω, t) ∈ � × [0, T ]:
(i) (Positivity.) For any (h, h̃) ∈ Rd × L2(ν(dx)) g(t, h, h̃) ≥ 0 with equality if

and only if (h, h̃) = 0.
(ii) (Lower semicontinuity.) If hn → h, h̃n → h̃ L2(ν(dx))-a.e., then

g(t, h, h̃) ≤ lim infn g(t, hn, h̃n).

DEFINITION 2.2. We call a driver function g convex if g(t, h, h̃) is convex in
(h, h̃), dP×dt a.e.; positively homogeneous if g(t, h, h̃) is positively homogeneous
in (h, h̃), that is, for λ > 0, g(t, λh,λh̃) = λg(t, h, h̃), dP × dt a.e. and of linear
growth if for some K > 0 we have dP× dt a.e.,

(2.2)
∣∣g(t, h, h̃)

∣∣2 ≤ 1 + K2|h|2 + K2
∫
Rk\{0}

h̃(x)2ν(dx).

To such a driver function g, one may associate a corresponding dynamic devia-
tion measure given in terms of the solution to a certain (backward) SDE.

4See, for example, Theorem III.4.34 in Jacod and Shiryaev (2003).
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DEFINITION 2.3. Let g be a convex and positively homogeneous driver func-
tion of linear growth. The g-deviation measure Dg = (D

g
t )t∈[0,T ] is equal to the

collection Dt : L2(FT ) → L2+(Ft ), t ∈ [0, T ], given by

D
g
t (X) = Yt , X ∈ L2(FT ),

where (Y,Z, Z̃) ∈ S2 ×L2
d(P,dP×dt)×L2(P×B(Rk \{0}),dP×dt ×ν(dx)) is

the unique solution of the SDE given in terms of the representing pair (HX, H̃X)

of X by

dYt = −g
(
t,HX

t , H̃X
t

)
dt + Zt dWt

(2.3)
+
∫
Rk\{0}

Z̃t (x)Ñ(dt × dx), t ∈ [0, T ),

YT = 0,(2.4)

Any g-deviation measure admits an integral representation in terms of g.

PROPOSITION 2.4. Let g be a convex and positively homogeneous driver
function of linear growth.

(i) For given X ∈ L2(FT ), we have

(2.5) D
g
t (X) = E

[∫ T

t
g
(
s,HX

s , H̃X
s

)
ds
∣∣∣Ft

]
, t ∈ [0, T ].

(ii) Dg is a dynamic deviation measure. In particular, Dg satisfies (D6).

PROOF. (i) Letting Yt be equal to the right-hand side of (2.5) we note that
YT = 0, while we have

Yt = Mt −
∫ t

0
g
(
s,HX

s , H̃X
s

)
ds, Mt = E

[∫ T

0
g
(
s,HX

s , H̃X
s

)
ds
∣∣∣Ft

]
.

Letting (Z, Z̃) = (ZMT , Z̃MT ) the representing pair of MT we have that Yt satis-
fies (2.3).

(ii) To verify that (D6) holds, we note that the representation (2.5) implies that,
for any s, t ∈ [0, T ] with s ≤ t ,

Dg
s

(
E[X|Ft ]) = E

[∫ t

s
g
(
u,HX

u , H̃X
u

)
du

∣∣∣Fs

]
,

which yields that D
g
s (E[X|Ft ]) +E[Dg

t (X)|Fs] is equal to

E

[∫ t

s
g
(
u,HX

u , H̃X
u

)
du

∣∣∣Fs

]
+E

[
E

[∫ T

t
g
(
u,HX

u , H̃X
u

)
du

∣∣∣Ft

]∣∣∣Fs

]

= E

[∫ T

s
g
(
u,HX

u , H̃X
u

)
du

∣∣∣Fs

]
,
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which is equal to D
g
s (X). We show next that the axioms (D1)–(D5) are satisfied.

We note from (2.5) that D
g
t (X + m) = D

g
t (X) for any X ∈ L2(FT ), m ∈ L∞+ (Ft )

while D
g
t (m) = 0 as g(t,0,0) = 0, so that (D1) holds. Using (2.5), we see that Dg

inherits the properties of convexity and positive homogeneity from g, so that (D2)
and (D3) are satisfied. Positivity (D4) is straightforward to verify by using that g is
nonnegative and strictly positive for (h, h̃) �= 0. Finally, noting that (a) if Xn → X

in L2(FT ), (HXn
, H̃Xn

) converges to (HX, H̃X) in L2
d(dP× dt) × L2(dP× dt ×

ν(dx))-norm and that (b) g is nonnegative and lower semicontinuous, we have by
an application of Fatou’s lemma

lim inf
n

D
g
t

(
Xn) = lim inf

n
E

[∫ T

t
g
(
s,HXn

s , H̃Xn

s

)
ds
∣∣∣Ft

]

≥ E

[∫ T

t
lim inf

n
g
(
s,HXn

s , H̃Xn

s

)
ds
∣∣∣Ft

]

≥ E

[∫ T

t
g
(
s,HX

s , H̃X
s

)
ds
∣∣∣Ft

]

= D
g
t (X),

which shows that also the lower semicontinuity condition in (D5) is satisfied. �

The linear growth condition and convexity guarantee that a g-deviation measure
is continuous in L2.

LEMMA 2.5. Let g be a convex driver function of linear growth. If Xn con-
verge to X in L2(FT ), then limn D

g
0 (Xn) = D

g
0 (X).

PROOF. If Xn converge to X in L2(FT ) then, as noted before, HXn
and

H̃Xn
converge to HX and H̃X in L2

d(dP × dt) and L2(dP × dt × ν(dx))

norms. Next, note that |g(s,HXn

s , H̃Xn

s )| is a uniformly integrable sequence by
the growth-condition (2.2) and the convergence of the processes |HXn |2 and∫
Rk\{0} |H̃Xn |2(x)ν(dx) in L1(dP × dt)-norm. As g is continuous [as it is con-

vex and locally bounded, cf. Theorem 2.2.9 in Zălinescu (2002)], it follows thus
that limn D

g
0 (Xn) = limnE[∫ T

0 g(s,HXn

s , H̃Xn

s )ds] = E[∫ T
0 g(s,HX

s , H̃X
s )ds] =

D
g
0 (X). �

We list a number of properties of a g-deviation measure that are characterised
in terms of those of the driver function g.

PROPOSITION 2.6. Let g and g̃ be driver functions of linear growth:

(i) Dg is conditionally convex if and only if g is convex.
(ii) Dg satisfies (D2) if and only if g is positively homogeneous.
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(iii) Dg is symmetric, that is, D
g
t (X) = D

g
t (−X) for all t , if and only if g is

symmetric in (h, h̃).
(iv) Dg ≥ Dg̃ if and only if g ≥ g̃ dP× dt a.e.

To simplify notation, we denote, for s, t ∈ [0, T ] with s ≤ t and (H, H̃ ) ∈
L2

d(P,dP× dt ×L2(P ×B(Rk \ {0}),dP× dt × ν(dx)), (H ·W)s,t := ∫ t
s Hu dWu

and (H̃ · Ñ)s,t := ∫
(s,t]×Rk\{0} H̃u(x)Ñ(du × dx), and moreover, (H · W)t :=

(H · W)0,t and (H̃ · Ñ)t := (H̃ · Ñ)0,t .

PROOF OF PROPOSITION 2.6. First, we prove (i) “⇒” by contradiction. Sup-
pose that there exist predictable processes Bi and B̃i for i = 1,2, a nonzero pre-
dictable set C and a λ ∈ (0,1) such that for (s,ω) ∈ C

g
(
s, λB1

s + (1 − λ)B2
s , λB̃1

s + (1 − λ)B̃2
s

)
> λg

(
s,B1

s , B̃1
s

)+ (1 − λ)g
(
s,B2

s , B̃2
s

)
.

Set Hi
s (ω) = Bi

s(ω), i = 1,2, if (s,ω) ∈ C and zero otherwise, define H̃ i , i = 1,2,
similarly and set X = (H 1 · W)T + (H̃ 1 · Ñ)T , Y = (H 2 · W)T + (H̃ 2 · Ñ)T and
Cs = {ω ∈ � : (s,ω) ∈ C}. using that g(s,0,0) = 0 it follows that D

g
0 (λX + (1 −

λ)Y ) is equal to

E

[∫ T

0
g
(
s, λICsH

1
s + (1 − λ)ICsH

2
s , λICs H̃

1
s + (1 − λ)ICs H̃

2
s

)
ds

]

= E

[∫ T

0
ICsg

(
s, λH 1

s + (1 − λ)H 2
s , λH̃ 1

s + (1 − λ)H̃ 2
s

)
ds

]

> λE

[∫ T

0
ICsg

(
s,H 1

s , H̃ 1
s

)
ds

]
+ (1 − λ)E

[∫ T

0
ICsg

(
s,H 2

s , H̃ 2
s

)
ds

]
(2.6)

= λE

[∫ T

0
g
(
s, ICsH

1
s , ICs H̃

1
s

)
ds

]

+ (1 − λ)E

[∫ T

0
g
(
s, ICsH

2
s , ICs H̃

2
s

)
ds

]
.

The right-hand side of (2.6) is equal to λD
g
0 (X)+(1−λ)D

g
0 (Y ), in contradiction to

the convexity of D
g
0 . The directions “⇒” in (ii), (iii) and (iv) follow by similar lines

of reasoning. The implications “⇐” in (i)–(iv) follow from (2.5) in Proposition 2.4.
�

Examples. We give next a number of examples of g-deviation measures.

EXAMPLE 2.7. The family of g-deviation measures with driver functions
given by

(2.7) gc,d(t, h, h̃) = c|h| + d

√∫
Rk\{0}

∣∣h̃(x)
∣∣2ν(dx), c, d ∈ R+\{0},



DYNAMIC DEVIATION MEASURES AND PORTFOLIO OPTIMIZATION 3351

corresponds to a measurement of the risk of a random variable X ∈ L2(FT ) by the
integrated multiples of the local volatilities of the continuous and discontinuous
martingale parts in its martingale representation (2.1).

EXAMPLE 2.8. In the case of a g-deviation measure with driver function
given by

g(ω, t, h, h̃) = CVaRν
t,a(h̃), a ∈ (

0, ν
(
Rk\{0})),

the risk is measured in terms of the values of the (large) jump sizes under
CVaRν

t,a . Here CVaRν
t,a(h̃) = 1

a

∫ a
0 VaRν

t,b(h̃)db is given in terms of the left-

quantiles VaRν
t,a(h̃), a ∈ (0, ν(Rk\{0})) of h(J ) under the measure ν(dx), that

is,

VaRν
t,a(h̃) := VaRν

a

(
h(J )

) := sup
{
y ∈R : ν({x ∈ Rk\{0} : h̃(x) < −y

})
< a

}
.

In the next example, we deploy the following auxiliary result.

PROPOSITION 2.9. Let I := {t0, t1, . . . , tn} ⊂ [0, T ] be strictly ordered.
D = (Dt)t∈I satisfies (D1)–(D4) and (D6) if and only if for some collection
D̃ = (D̃t )t∈I of conditional deviation measures we have

Dt(X) = E

[ ∑
ti∈I :ti≥t

D̃ti

(
E[X|Fti+1] −E[X|Fti ]

)∣∣∣Ft

]
,

(2.8)
t ∈ I,X ∈ L2(FT ).

In particular, a dynamic deviation measure D satisfies (2.8) with D̃ti = Dti , ti ∈ I .

PROOF. “⇐”: We will only show that Dt satisfies (D6), as it is clear
that (D1)–(D4) are satisfied. Let X ∈ L2(FT ) and note that as D̃t , t ∈ I , sat-
isfy (D1) and (D4) we have for any s, t ∈ I with s > t that Dt(E[X|Fs]) =∑

ti∈I :t≤ti<s E[D̃ti (E[X|Fti+1])|Ft ]. Thus, we have that Dt(X) is equal to∑
ti∈I :t≤ti<s

E
[
D̃ti

(
E[X|Fti+1]

)|Ft

]+ ∑
ti∈I :s≤ti

E
[
D̃ti

(
E[X|Fti+1]

)|Ft

]

= Dt

(
E[X|Fs])+E

[
Ds(X)|Ft

]
.

“⇒”: For X ∈ L2(FT ) and ti−1 ∈ I , i ≥ 1, we have by (D6) and (D1)

Dti−1(X) = Dti−1

(
E[X|Fti ]

)+E
[
Dti (X)|Fti−1

]
(2.9)

= Dti−1

(
E[X|Fti ] −E[X|Fti−1]

)+E
[
Dti (X)|Fti−1

]
.

An induction argument based on (2.9) then yields that (2.8) holds with D̃t = Dt ,
t ∈ I . �



3352 M. PISTORIUS AND M. STADJE

EXAMPLE 2.10. The formula (2.8) in Proposition 2.9 gives a way to define a
collection D = (Dt)t∈I satisfying axioms (D1)–(D6) for s, t ∈ I , which we call a
dynamic deviation measure on the grid I . Comparison of (2.8) and (2.5) suggests
that one may obtain the values of a dynamic deviation measure as limit of the
values of (suitably chosen) dynamic deviation measures on grids with vanishing
mesh sizes. We next illustrate this for the g-deviation measures D̄λ := Dgλ , λ > 0,
corresponding to the driver functions gλ given by

(2.10) gλ(ω, t, h, h̃) := λ

√
|h|2 +

∫
Rk\{0}

∣∣h̃(x)
∣∣2ν(dx), λ > 0,

and random variables X ∈ L2(FT ) of the form

(2.11) X = x +
∫ T

0
f (t)dWt +

∫
[0,T ]×Rk\{0}

g(t, y)Ñ(dt × dy)

with x ∈ R, f ∈ C([0, T ],Rd) and g ∈ C0([0, T ]×Rk,R).5 We construct approx-
imating sequences in terms of the conditional CVaR-deviation measures given by
D̃t (Y ) := CVaRt,α(Y −E[Y |Ft ]) for Y ∈ L2(FT ), t ∈ [0, T ], α ∈ (0,1), where for
Z ∈ L2(FT )

CVaRt,α(Z) = 1

α

∫ α

0
VaRt,b(Z)db,

VaRt,b(Z) = sup
{
y ∈ R : P(Z < −y|Ft ) < b

};
see Rockafellar, Uryasev and Zabarankin (2006a).

Specifically, the expression in (2.8) suggests to scale the value of conditional
deviation measures corresponding to small time units in order to obtain in the limit
a dynamic deviation measure. Denoting for X of the form (2.11),

Mti+1 := E[X|Fti+1], �Mi+1 := Mti+1 − Mti ,

ti = T i/2n, i = 0, . . . ,2n − 1,

with t2n = T and following this suggestion we specify the contribution to the total
risk of

�Mi+1 =
∫ ti+1

ti

f (s)dWs +
∫
(ti ,ti+1]×(Rk\{0})

g(s, y)Ñ(ds × dy),

i = 0, . . . ,2n − 1,

5C([0, T ],Rd ) and C0([0, T ] × Rk,R) denote the sets of continuous functions f : [0, T ] 
→ Rd ,

and of continuous functions g : [0, T ]×Rk 
→R that are such that supt∈[0,T ] |g(t, x)| → 0 as |x| →
∞ and supx∈Rk\{0} supt∈[0,T ]{|g(t, x)|/|x|2} < ∞.
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by D̃ti (�Mi+1) := √
�ti+1CVaRti ,α(�Mi+1), �ti+1 = ti+1 − ti , which gives rise

to the dynamic deviation measure D(n) = (D
(n)
t )t∈In on In := {ti , i = 0, . . . ,2n}

given by

D
(n)
t (X) = ∑

ti≥t

E
[
D̃ti (�Mi+1)|Ft

]

= ∑
ti≥t

√
σ 2(ti)�ti+1E

[
CVaRti ,α

(
�Mi+1√

σ 2(ti)�ti+1

)∣∣∣Ft

]
,(2.12)

with σ 2(t) := ∣∣f (t)
∣∣2 +

∫
Rk\{0}

∣∣g(t, x)
∣∣2ν(dx), t ∈ In,

where we used that CVaRti ,α is positively homogeneous. As �Mi+1 is infinitely
divisible and f and g are bounded, we have by an application of the Lindeberg–
Feller central limit theorem [see, e.g., Durrett (2010), p. 129] that, when we let

n → ∞ while keeping ti fixed the ratio �Mi+1/
√

σ 2(ti)�ti+1 converges in distri-
bution to a standard normal random variable ξ . By uniform integrability and the
independence of �Mi+1 from Fti , we have

CVaRα,ti

(
�Mi+1√

σ 2(ti)�ti+1

)
= CVaRα

(
�Mi+1√

σ 2(ti)�ti+1

)
→ CVaRα(ξ)

= 1

α

∫ α

0
�−1(u)du =: cα,

where CVaRα(·) = CVaRα,0(·) and �−1 denotes the inverse of the standard normal
distribution function �. Hence, letting n → ∞ in (2.12) and deploying the uniform
continuity of f and g we have for any t ∈ [0, T ] of the form t = k/2m, k,m ∈ N,

D
(n)
t (X) → cαE

[∫ T

t

√∣∣f (s)
∣∣2 +

∫
Rk\{0}

∣∣g(t, x)
∣∣2ν(dx)ds

∣∣∣Ft

]
(2.13)

= D̄
cα
t (X).

3. Representation results, m-stability and time-consistency.

3.1. Characterisation result. We show next that any dynamic deviation mea-
sure that satisfies a domination condition is a g-deviation measure for some driver
function g.

DEFINITION 3.1. A dynamic deviation measure D = (Dt)t∈[0,T ] is called λ-
dominated if for all t ∈ [0, T ] and X ∈ L2(FT ) and we have

Dt(X) ≤ D̄λ
t (X).
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PROPOSITION 3.2. Let D = (Dt)t∈[0,T ] be a collection of maps
Dt : L2(FT ) → L2+(Ft ), t ∈ [0, T ]. Then D is a dynamic deviation measure that
is λ-dominated for some λ > 0 if and only if there exists a convex and positively
homogeneous driver function g of linear growth such that D = Dg . Furthermore,
this driver function g is unique dP× dt a.e.

PROOF. We first verify uniqueness: If ḡ is a driver function that satisfies Dg =
Dḡ , it follows from Proposition 2.6(iv) that g = ḡ dP × dt a.e. We note next that
the implication “⇐” follows from Proposition 2.4. The remainder is devoted to
the proof of the implication “⇒”, which is established using a number of auxiliary
results (the proofs of which are deferred to the end of the section).

Thus, let D be a given dynamic deviation measure that is λ-dominated, so that
in particular D0 is finite. We identify next a candidate driver function g. For the
remainder of the proof, we assume for the ease of presentation that d = 1. For fixed
h ∈R and h̃ ∈ L2(ν(dx)), consider the mapping μ

h,h̃
: P ×P →R given by

μ
h,h̃

: C1 × C2 
→ D0
(
(IC1h · W)T + (IC2 h̃ · Ñ)T

)
.

LEMMA 3.3. Let (h, h̃) ∈ R× L2(ν(dx)).

(i) C 
→ μ
h,h̃

(C,∅),C 
→ μ
h,h̃

(∅,C) and C 
→ μ
h,h̃

(C,C) are σ -finite mea-
sures on ([0, T ] × �,P).

(ii) For any C1,C2 ∈ P we have

μ
h,h̃

(C1,C2) = μ
h,h̃

(C1 \ C2,∅) + μ
h,h̃

(∅,C2 \ C1)
(3.1)

+ μ
h,h̃

(C1 ∩ C2,C1 ∩ C2).

The proof of Lemma 3.3 is given in the Appendix. As D0 is λ-dominated
C 
→ μ

h,h̃
(C,C) is absolutely continuous with respect to the measure dP × dt

and we conclude from the Radon–Nikodym theorem that there exists an integrable
nonnegative density, say R

h,h̃
(s,ω), that is such that R0,0 = 0 and for any set

C ∈ P

μ
h,h̃

(C,C) = E

[∫ T

0
ICsRh,h̃

(s)ds

]
,(3.2)

where Cs = {ω ∈ � : (ω, s) ∈ C}. In particular, we note that μ
h,h̃

(C,∅) =
μh,0(C,C) and μ

h,h̃
(∅,C) = μ0,h̃

(C,C) satisfy (3.2) with R
h,h̃

replaced by R0,h̃

and Rh,0, respectively. We define the candidate driver function g in terms of R by

(3.3) g(t,ω,h, h̃) := R
h,h̃

(t,ω), (t,ω) ∈ [0, T ] × �.

The next result confirms that g is a driver function (the proof is given in the Ap-
pendix).
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LEMMA 3.4. There exists a version of g such that, for dP × dt a.e. (t,ω),
(h, h̃) 
→ g(t,ω,h, h̃) is continuous, convex, positively-homogeneous and domi-
nated by gλ.

Note that (t,ω) 
→ g(t,ω,h, h̃) is predictable for every (h, h̃) ∈ R×L2(ν(dx))

and by Lemma 3.4 (h, h̃) 
→ g(t,ω,h, h̃) is continuous in (h, h̃), so that by stan-
dard arguments g can be approximated by P ⊗B(Rd) ⊗ U -measurable step func-
tions and g itself may seen to be P ⊗ B(Rd) ⊗ U -measurable. Note further that
g(t,ω,h, h̃) is nonnegative as R

h,h̃
(t,ω) is so for each (h, h̃), and g(s,ω,0,0) = 0

since the density R0,0(s,ω) of the measure μ0,0 is zero. In the next result, we show
that D0 may be identified with D

g
0 .

LEMMA 3.5. Let g be as in Lemma 3.4. For X ∈ L2(FT ), we have D0(X) =
D

g
0 (X).

Lemma 3.5 (which we prove in the Appendix) and Remark 1.2(ii) imply that
Dt = D

g
t not only for t = 0 but also for all other t ∈ (0, T ]. The proof is complete.

�

The proof of Lemma 3.3 is based on the following auxiliary result.

LEMMA 3.6. Let D be a dynamic deviation measure and t ∈ [0, T ]. If
A1, . . . ,An ∈ Ft and Ai ∩ Aj = ∅ for i �= j and X1, . . . ,Xn ∈ L2(FT ), then for
any t ∈ [0, T ],

(3.4) Dt

(
n∑

i=1

IAi
Xi

)
=

n∑
i=1

Dt(IAi
Xi).

PROOF. Set Sk := ∑k
i=1 IAi

Xi and Bk = ⋃k
i=1 Ai , k = 1, . . . , n. Let us first

show by an induction argument that

(3.5) Dt(Sn) =
n∑

i=1

IAi
Dt(Xi).

Equation (3.4) is a direct consequence of (3.5) and (1.1). Using (1.1) and the fact
Bn−1 ∩ An =∅, we have

Dt(Sn) = Dt(IBn−1Sn−1 + IBc
n−1

IAnXn) = IBn−1Dt(Sn−1) + IBc
n−1

Dt(IAnXn)

= IBn−1

n−1∑
i=1

IAi
Dt(Xi) + IBc

n−1
IAnDt(Xn) =

n∑
i=1

IAi
Dt(Xi),

where we used (1.1) and the induction assumption in the third equality. This com-
pletes the proof of (3.5) and hence of the lemma. �
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3.2. m-Stability and time-consistency. We next turn to a dual representation
result for general dynamic deviation measures which is, as we show in Theo-
rem 3.12, given in terms of additively m-stable representing sets (see Defini-
tion 3.10). Specifically, we show that additive m-stability is in some sense neces-
sary and sufficient to obtain the time-consistency axiom (D6); see Proposition 4.4.
The proof of these results rests on auxiliary dual representation results. Using these
results, we first establish in Theorem 3.7 that an integral representation of the form
(2.5) holds for any dynamic deviation measure even if the domination condition is
not satisfied.

In particular, we may strengthen the characterisation of dynamic deviation mea-
sures given in Proposition 3.2 as follows.

THEOREM 3.7. Let D = (Dt)t∈[0,T ] be a collection of maps Dt : L2(FT ) →
L2+(Ft ), t ∈ [0, T ]. Then D is a dynamic deviation measure if and only if there
exists a convex positively homogeneous driver function g such that for any t ∈
[0, T ] and X ∈ L2(FT )

(3.6) Dt(X) = E

[∫ T

t
g
(
s,HX

s , H̃X
s

)
ds
∣∣∣Ft

]
.

Theorem 3.7 completely characterises DDMs in a continuous-time setting. It
is remarkable that contrary to the characterization of nonlinear expectations of
g-expectations [see, for instance, Coquet et al. (2002) or Hu et al. (2008)] a domi-
nation criterion for DDMs is not needed. The reason is as follows: For a dynamic
deviation measure D, we can construct an increasing sequence of gn, each of linear
growth, with corresponding dynamic deviation measures Dgn

such that

D(X) = lim
n→∞Dgn

(X) = lim
n→∞E

[∫ T

0
gn(s,HX

s , H̃X
s

)
ds

]

= E

[∫ T

0
g(s,Hs, H̃s)ds

]
,

where g := limgn and the last expectation is well defined by the monotone conver-
gence theorem as gn is an increasing sequence and D(X) is finite by assumption.
For the characterization of nonlinear expectations through g-expectations even in
a purely Brownian setting, however, we get

(3.7) ρ(X) = lim
n→∞ρn(X) = lim

n→∞Egn

(−X) = lim
n→∞E

[∫ T

0
gn(s,Zn

s

)
ds

]
.

We would like to conclude that the last term is equal to

E

[∫ T

0
g(s,Zs)ds

]
.

But although we know that gn increases to a function g, we can in general not
infer that Zn converges to a suitable process Z. If gn and g would be Lipschitz, or
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of uniform linear or quadratic growth (which would be guaranteed by domination
type criteria), there are results in the literature giving that the BSDE with driver g

has a solution (Y,Z) and

Zn n→∞−→ Z, Egn

(−X)
n→∞−→ Y,

and, therefore, by (3.7) ρ(X) = Y . Hence, in this case the approach given above
works also for nonlinear expectations. However, without such additional growth
conditions on g the convergence of Zn cannot be guaranteed and, therefore, also
not the convergence of the last term in (3.7).

In the sequel, we give two examples where nonlinear expectations cannot be
characterised by a g-expectation which in particular implies that the Zn in (3.7)
will not converge to a well integrable limit (no matter actually how the approxima-
tion for the gn is chosen).

EXAMPLE 3.8 (No-arbitrage pricing). Suppose that we are in a classical in-
complete financial market with two one-dimensional Brownian motions (W 1,W 2)

and a stock price process given by

dSt = St

((
dW 1

t + dW 2
t

)+ μdt
)
.

We assume that the interest rate of the bond is zero. The set of equivalent martin-
gale measures is given by

M := {
Q� P|qs ∈ C, s ∈ [0, T ]},

where dQ
dP = E((q · W)T ), with E denoting the stochastic exponential, and C =

{q = (q1
q2

) ∈ R2|μ + q1 + q2 = 0}. Let us define ρt : L∞(FT ) → L∞(Ft ) by

ρt(X) = ess sup
Q∈M

EQ[−X|Ft ].

It is well known that ρ is a time-consistent coherent risk measure; see Remark 3.13
below or Proposition 9.1 in Delbaen (2006). Define

Bn := {
Q � P||q|2 ≤ n2} and ρn

t (X) := ess sup
Q∈M∩Bn

EQ[−X|Ft ].

One may see that ρn
t satisfies a domination criterion as the set M ∩ Bn is weakly

compact. In fact, ρn may be related to good-deal bound pricing and one can prove
[see Krätschmer et al. (2015)] that

ρn
t (X) = Egn

(−X),

where Egn
is the g-expectation with driver function gn given by

gn(z) =
√

n2 − ∣∣PB(0)
∣∣2∣∣PKernel(A)(z)

∣∣+ zPB(0),
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where A = (1,1), B = {x ∈R2|Ax = −μ}, and PV (x) denotes the projection of x

onto the space V . Hence,

ρt (X) = lim
n→∞Egn

(−X),

but on {z ∈ R2|PKernel(A)(z) �= 0}, g(z) = limn→∞ gn(z) = ∞. In particular, al-
though ρt is a time-consistent coherent risk measure, ρt can not be characterised
by a g-expectation.

EXAMPLE 3.9. The following example is inspired by Delbaen, Hu and Bao
(2011). Let (q∗

t ) be a deterministic, positive process with∫ T −ε

0

∣∣q∗
t

∣∣2 dt < ∞ for every ε > 0, and
∫ T

0

∣∣q∗
t

∣∣2 dt = ∞.

In particular, E((q∗ · W)T ) = 0. Define further

σ := inf
{
t ∈ [0, T ]|E((q∗ · W )

t

) ≥ n
}
,

where n is chosen large enough, so that P(σ = T ) > 0. Define Q∗ by

dQ∗

dP
= E

((
q∗ · W )

T ∧σ

)
.

Note that Q∗ � P, dQ∗
dP is bounded, P[dQ∗

dP = 0] > 0 and Q∗ ∼ P on Ft for t < T .
Define ρt : L2(FT ) → L2(Ft ) by ρT (X) := −X and

ρt (X) := EQ∗[−X|Ft ] for t ∈ [0, T ).

Note that for t < T we have that ρt (X) is well defined a.s. as Q∗ ∼ P on Ft .
Clearly, ρt is a coherent risk measure for every t . Furthermore, since we have

ρt(−ρs(X)) = ρt(X) for every 0 ≤ t ≤ s ≤ T , ρt is also time-consistent. However,
if we choose η ∈ L∞+ (FT ) with P[η > 0] > 0 and Q∗[η > 0] = 0, ρt (η) cannot be
the solution of a BSDE. This is seen as follows: As η = 0 Q∗-a.s., for t < T we
have

ρt (η) = ρt(0) = 0.

Now solutions of BSDEs are a.s. continuous in t . So, if (ρt (η))0≤t≤T was the
solution of a BSDE, this would imply for tn ↑ T

−η = ρT (η) = lim
n→∞ρtn(η) = 0,

which is a contradiction.
Note that in this counter-example the potential limiting BSDE corresponds to

YT = −η,

dYt = −q∗
t Zt dt + Zt dWt, t ∈ [0, T ).

This BSDE has a non-Lipschitz driver that explodes at t = T .
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The mentioned notion of additive m-stability is the requirement of stability un-
der additive pasting of subsets of the collections of (conditionally) zero-mean ran-
dom variables given by

QFt := {
ξ ∈ L2(FT )|E[ξ |Ft ] = 0

}
, Q := QF0 = {

ξ ∈ L2(FT )|E[ξ ] = 0
}
.

DEFINITION 3.10. A set S ⊂ Q is called additively m-stable if for any
ξ1, ξ2 ∈ S and t ∈ [0, T ], ξ2 +E[ξ1 − ξ2|Ft ] defines an element of S .

Denoting for a given set S ⊂ Q

Ss,t := {
E[ξ |Ft ] −E[ξ |Fs]|ξ ∈ S

}
, s, t ∈ [0, T ],

we note that S = S0,T and that a necessary and sufficient condition for S to be
additively m-stable is

S = S0,t + St,T for any t ∈ [0, T ],
where A + B denotes the direct sum of the sets A and B .6

THEOREM 3.11. Let D = (Dt)t∈[0,T ] be a collection of maps Dt : L2(FT ) →
L0(Ft ), t ∈ [0, T ], satisfying (D4). Then D is a dynamic deviation measure if and
only if for some convex, bounded, closed subset SD of Q that contains zero and is
additively m-stable we have

Dt(X) = ess sup
ξ∈SD∩QFt

E[ξX|Ft ], t ∈ [0, T ].(3.8)

In the next result, we call a P ⊗B(Rd) ⊗ U -measurable subset C = (Ct )t∈[0,T ]
of [0, T ] × � × Rd × L2(ν(dx)) closed, convex or nonempty if for dP × dt a.e.
(t,ω) ∈ [0, T ] × �, the sets Ct(ω) are closed, convex or nonempty. We denote by
int(C) the collection of interiors of the sets Ct(ω), (t,ω) ∈ [0, T ] × �.

THEOREM 3.12. Let D = (Dt)t∈[0,T ] be a collection of maps Dt : L2(FT ) →
L0(Ft ), t ∈ [0, T ]. Then D is a dynamic deviation measure if and only if there
exists a P ⊗ B(Rd) ⊗ U -measurable set CD = (CD

t )t∈[0,T ] that is convex, closed
with 0 ∈ int(CD), such that D satisfies the representation in (3.8) with a bounded
set SD given in terms of CD by

SD = {
ξ ∈Q|(Hξ

t , H̃
ξ
t

) ∈ CD
t for all t ∈ [0, T ]}.(3.9)

The proofs of Theorems 3.7, 3.11 and 3.12 are given below.

6That is, A + B := {a + b : a ∈ A,b ∈ B}.
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REMARK 3.13 (Relation to strong time-consistency of dynamic risk-measures).
The characterisation in Theorem 3.12 is reminiscent of analogous characteri-
sation results of (strong) time-consistency of dynamic risk measures available
in the literature. If we call a set S ′ ⊂ M multiplicatively m-stable if for ev-
ery ξ1, ξ2 ∈ S ′ and t ∈ [0, T ] the element Lt := ξ1

t ξ2
T /ξ2

t is contained in S ′,
we note that under multiplicative m-stability of S ′ we have the decomposition
S ′ = S ′

0,T = S ′
0,tS ′

t,T with S ′
s,t := {E[ξ |Ft ]/E[ξ |Fs]|ξ ∈ S ′} (with 0/0 = 0), so

that the set S ′ is stable under “multiplicative” pasting. It is well known that co-
herent risk measures are (strongly) time-consistent precisely if the representing
sets in the corresponding dual representations are multiplicatively m-stable; see
among many others Chen and Epstein (2002) (where multiplicative m-stablility
is called “rectangular property”), Riedel (2004), Delbaen (2006), Artzner et al.
(2007) or Föllmer and Schied (2011). Specifically, in a Brownian setting it is
shown in Delbaen (2006) that multiplicative m-stability of a convex and closed
set S ′ ⊂ M := {ξ ∈ L1+(FT )|E[ξ ] = 1} containing 1 corresponds to the existence
of a P ⊗B(Rd) ⊗ U -measurable, closed and convex set C′ containing 0 such that
S ′ = {ξ ∈ M|(qξ

s ,ψ
ξ
s ) ∈ C′

s for all s ∈ [0, T ]}, where (qξ ,ψξ ) is related to the
stochastic logarithm of ξ by ξ = E((qξ ·W)T + (ψξ · Ñ)T ) with E(·) denoting the
Doléans–Dade exponential. This result implies that time-consistent coherent risk
measures on L∞ satisfy the representation

ρt (X) = ess sup
ξ∈S ′∩MFt

E[−ξX|Ft ],

(3.10) with MFt := {
ξ ∈ L1+(FT )|E[ξ |Ft ] = 1

}
and

S ′ = {
ξ ∈ L1+(FT )|(qξ

s ,ψξ
s

) ∈ C′
s for all s ∈ [0, T ]}.

This result is generalised in Delbaen et al. (2010) to convex risk measures. As a
counterpart of Theorem 3.1 in Delbaen (2006), which concerns multiplicatively
m-stable sets in a Brownian filtration, we have from Theorem 3.12 and Proposi-
tions 4.1–4.4 below that a closed and convex set S ⊂ Q containing 0 is additively
m-stable if and only if, for some P ⊗B(Rd)⊗U -measurable set C∗ = (C∗

t )t∈[0,T ]
that is convex, closed and contains 0, we have S = {ξ ∈ Q|(Hξ

t , H̃
ξ
t ) ∈ C∗

t for all
t ∈ [0, T ]}.

While a static deviation measure can under additional assumptions be repre-
sented as a coherent risk measure plus an expectation, in a dynamic setting this
is typically not possible. So a DDM under our assumptions, is not a conditional
expectation plus a coherent risk measure, but a genuinely new stochastic process.
In particular, our SDEs do not correspond to classical BSDEs (plus a conditional
expectation) but constitute a different class of stochastic equations. In fact, the
following proposition holds.
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PROPOSITION 3.14. Let D = Dg be a DDM with corresponding set CD =
(CD

t )0≤t≤T . Suppose that the boundary ∂CD
t (ω) of the set CD

t (ω) is deterministic
in the sense that it does not depend on ω. Define ρ(X) := E[−X] + γD(X). Then
ρ satisfies translation invariance, positive homogeneity and subadditivity, but not
monotonicity.

4. Proofs.

Auxiliary representation results. Our starting point is the Ft -conditional ver-
sion of the duality result given in Theorem 1 in Rockafellar, Uryasev and
Zabarankin (2006a).

PROPOSITION 4.1. Let t ∈ [0, T ] and let the map Dt : L2(FT ) → L0(Ft ) be
given:

(i) Dt satisfies (D1)–(D3) and (D5) and maps L2(FT ) to L2+(Ft ) if and only
if there exists a bounded, closed and convex set SDt ⊂ QFt containing zero such
that

(4.1) Dt(X) = ess sup
ξ∈SDt

E[ξX|Ft ], X ∈ L2(FT ).

The set SDt is uniquely determined by its (convex) indicator function JSDt
:

L2(FT ) → {0,∞} given by

(4.2) JSDt
(ξ) := ess sup

X∈L2(FT )

{
E[ξX|Ft ] − Dt(X)

}
.

(ii) Assume the conditions in (i) are satisfied. Then Dt satisfies (D4) if and
only if for every X ∈ L2(FT ) with X /∈ L2(Ft ) there exists ξ ∈ SDt such that
P[E[ξX|Ft ] > 0] > 0.

REMARK 4.2. Note that by (4.2) we have for any set A ∈ Ft and ξ1, ξ2 ∈ SDt

that IAξ1 + IAcξ2 ∈ SDt . Sets having this property are directed.7

Hence, Dt(X) admits a robust representation with representing set given by a
collection of signed measures. This proposition is stated in Rockafellar, Uryasev
and Zabarankin (2006a) in a static setting but it can be seen to also hold true
conditionally on Ft ; see, for instance, Riedel (2004), Ruszczyński and Shapiro
(2006), or Cheridito and Kupper (2011) for related arguments.

For dynamic deviation measures the property, (D6) induces a specific structure
of the sets SDt , t ∈ [0, T ], which we specify in the next results. A first observation
is as follows.

7A set S is called directed if for any ξ1, ξ2 ∈ S there exists ξ̄ ∈ S with ξ̄ ≥ ξ1 ∨ ξ2.
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PROPOSITION 4.3. Let t ∈ [0, T ] and let D be a dynamic deviation measure
and denote SD := SDT

. We have that the set SDt in the representation (4.1) of Dt

is such that SDt = SD ∩QFt = SD
t,T .

The following result shows that stability under “additive pasting” of the repre-
senting set in the form of additive m-stability is a necessary and sufficient condition
for (D6) to hold.

PROPOSITION 4.4. Let S ⊂ Q be a convex, closed set containing
zero. S is additively m-stable if and only if the collection Dt(X) :=
ess supξ∈S∩QFt

E[ξX|Ft ], t ∈ [0, T ], X ∈ L2(FT ), satisfies (D6).

The proofs of Propositions 4.3 and 4.4 are given in the Appendix.

PROOF OF THEOREM 3.11. The assertion follows by combining Propositions
4.1, 4.3 and 4.4. �

In the proofs of Theorems 3.7 and 3.12, we deploy, for a given dynamic
deviation measure D, the sequence (D(n))n∈N of dynamic deviation measures
D(n) = (D

(n)
t )t∈[0,T ], D

(n)
t : L2(FT ) → L2(Ft ) defined by

D
(n)
t (X) := ess sup

ξ∈(SD∩QFt )∩An

E[ξX|Ft ] with(4.3)

An :=
{
ξ ∈ L2(FT )

∣∣∣ sup
s∈[0,T ]

{∣∣Hξ
s

∣∣2 +
∫
Rk\{0}

∣∣H̃ ξ
s (x)

∣∣2ν(dx)

}
≤ n2

}
.(4.4)

LEMMA 4.5. Let t ∈ [0, T ] and X ∈ L2(FT ) and, for a given dynamic devia-
tion measure D, let (D(n))n∈N and (An)n∈N be as in (4.3)–(4.4).

(i) For any n ∈ N, we have D
(n)
t (X) ≤ D

(n+1)
t (X) and An+1 = n+1

n
An. More-

over, D
(n)
t (X) ↗ Dt(X) in L2(Ft ) as n → ∞.

(ii) For any n ∈ N, S ∩ An contains zero and is closed, bounded, convex and
additively m-stable.

(iii) For any n ∈ N, D(n) is a dynamic deviation measure that is n-dominated.

PROOF. (i) It is easily verified that An+1 = n+1
n

An so that An ⊂ An+1 for n ∈
N. Hence, by (4.3) we have D

(n)
t (X) ≤ D

(n+1)
t (X) for t ∈ [0, T ] and X ∈ L2(FT ).

Furthermore, as (An)n∈N is dense in L2(FT ) and the set SD in Theorem 3.11 is
bounded, we have that D

(n)
t (X) ↗ Dt(X) as n → ∞.

(ii) Let n ∈N. It is straightforward to verify that An contains zero and is closed,
bounded and convex. Let us show next that An is additively m-stable. Let t ∈ [0, T ]
and ξ1, ξ2 ∈ An and denote L = ξ2 + E[ξ1 − ξ2|Ft ]. Then the representing pair



DYNAMIC DEVIATION MEASURES AND PORTFOLIO OPTIMIZATION 3363

(HL, H̃L) of L ∈ L2(FT ) is expressed in terms of the representing pairs (H i, H̃ i),
i = 1,2, of ξ1, ξ2 by HL

s = H 1
s I[0,t](s) + H 2

s I(t,T ](s) and H̃L
s = H̃ 1

s I[0,t](s) +
H̃ 2

s I(t,T ](s). In particular, we have sups∈[0,T ]{|HL
s |2 + ∫

Rk\{0} |H̃L
s (x)|2ν(dx)} ≤

n2 so that L ∈ An. Thus, An is additively m-stable. Since the set SD is also closed,
convex and additively m-stable, the same holds for An ∩ S .

(iii) Let n ∈ N. From Proposition 4.1 and part (ii), we conclude that D(n) sat-
isfies (D1)–(D3) and (D5). Furthermore, from Proposition 4.4 and part (ii) we
have that D(n) satisfies (D6). Let us show next that D(n) satisfies positivity (D4).
Let t ∈ [0, T ] and X ∈ L2(FT )\L2(Ft ). By Propositions 4.1 and 4.3, there ex-
ists a ξ̃ ∈ SD ∩ QFt such that E[ξ̃X|Ft ] > 0 on a nonzero set. As (An)n∈N is
increasing and dense in L2(FT ) [as noted in the proof of part (i)], we can find
a sequence (ξm)m such that ξm ∈ SD ∩ QFt ∩ Am converges to ξ̃ in L2(FT ) as
m → ∞. Next, choose m′ sufficiently large such that on a nonzero set, say A,
we have E[ξm′

X|Ft ] > 0 (which is possible since ξmX converges to ξ̃X in L1

as m → ∞). Define ξ∗ ∈ SD ∩ QFt ∩ An by ξ∗ := n
m′ ξm′

. Since on A we have

E[ξ∗X|Ft ] = n
m′E[ξ̃m′

X|Ft ] > 0 we conclude from (4.3) that D(n) satisfies (D4).

Finally, by deploying the Cauchy–Schwarz inequality we note that D
(n)
t (X)

may be bounded above by

sup
ξ∈An

E[ξX|Ft ] = sup
ξ∈An

E

[∫ T

0

((
Hξ

s

)ᵀ
HX

s +
∫
Rk\{0}

H̃ ξ
s (x)H̃X

s (x)ν(dx)

)
ds
∣∣∣Ft

]

≤ nE

[∫ T

0

√∣∣HX
s

∣∣2 +
∫
Rk\{0}

∣∣H̃X
s (x)

∣∣2ν(dx)ds
∣∣∣Ft

]
(4.5)

= D̄n
t (X),

where we denote by vᵀ the transpose of the column vector v ∈ Rd . �

4.1. Proof of Theorem 3.7. With the previously established results in hand,
we can now complete the proof of Theorem 3.7. As the arguments in the proof
of the implication “⇐” in Proposition 3.2 carry over for the proof of “⇐” in
Theorem 3.7, the remainder of the proof is concerned with the proof of “⇒”.
Let D be a dynamic deviation measure, X ∈ L2(FT ) and denote by (D(n))n∈N
the approximating sequence of dynamic deviation measures from Lemma 4.5. By
Lemma 4.5(i), (iii) and Proposition 3.2 the sequence (D(n)(X))n∈N is monotone
increasing and there exists a sequence (gn)n∈N of convex and positively homo-
geneous driver functions such that (3.6) holds (with D and g replaced by D(n)

and gn). Therefore, by Proposition 2.6(iv), gn ≤ gn+1 for n ∈ N, so that we
can define g := limn→∞ gn. Clearly, g is convex, positively homogeneous and
lower semcontinuous as the limit of functions having these properties. Further-
more, for (h, h̃) �= 0 we have g(ω, t, h, h̃) ≥ g1(ω, t, h, h̃) > 0 and g(ω, t,0,0) =
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limn→∞ gn(ω, t,0,0) = 0 dP× dt a.e. Hence, g is a convex and positively homo-
geneous driver function. Finally, as (gn)n is an increasing sequence of functions
an application of the monotone convergence theorem yields

Dt(X) = lim
n

D
(n)
t (X) = lim

n
E

[∫ T

t
gn(s,HX

s , H̃X
s

)
ds
∣∣∣Ft

]

= E

[∫ T

t
g
(
s,HX

s , H̃X
s

)
ds
∣∣∣Ft

]
.

This completes the proof of Theorem 3.7.

4.2. Proof of Theorem 3.12. In the proof of Theorem 3.12, we deploy the fol-
lowing auxiliary result.

LEMMA 4.6. (i) Let g be a convex and positively homogeneous driver function
and let the P ⊗B(Rd) ⊗ U -measurable set C = (Ct )t∈[0,T ] be determined by

JCt (u, ũ) = r(t, u, ũ)

:= sup
u∈Rd ,ũ∈L2(ν(dx))

{
uᵀh +

∫
Rk\{0}

ũ(x)h̃(x)ν(dx) − g(t, u, ũ)

}

for u ∈ Rd and ũ ∈ L2(ν(dx)). Then 0 ∈ int(Ct )(ω) dP× dt a.e.
(ii) Let CD = (CD

t )t∈[0,T ] be a P ⊗ B(Rd) ⊗ U -measurable set and let SD

be given by the right-hand side of (3.9). If 0 ∈ int(CD
t )(ω) dP × dt a.e. then,

for any t ∈ [0, T ] and X ∈ L2(FT )\L2(Ft ), there exists a ξ ′ ∈ SD such that
P(E[ξ ′X|Ft ] > 0) > 0.

PROOF. To simplify notation, we denote z := (h, h̃) and y = (q,ψ) for el-
ements (h, h̃), (q,ψ) in the Hilbert space Rd × L2(ν(dx)). Further, we denote

〈y, z〉∗ = qh + ∫
Rk\{0} ψ(x)h̃(x)ν(dx) and |z|∗ =

√
|h|2 + ∫

Rk\{0} |h̃(x)|2ν(dx).

(i) Set Z := {z ∈ Rd × L2(ν(dx))||z|∗ = 1} and for z ∈ Z and λ ∈ R we denote
zλ := λz. By the positive homogeneity of g and the symmetry of the set Z, we
have for fixed y ∈ Rd × L2(ν(dx)) that r(t, y) = supz∈Z,λ∈R{〈y, zλ〉∗ − g(t, zλ)}
is equal to

r(t, y) = sup
z∈Z,λ≥0

{〈
y, zλ〉

∗ − g
(
t, zλ)} = sup

z∈Z,λ≥0
λ
{〈y, z〉∗ − g(t, z)

}
.(4.6)

The supremum in (4.6) is finite (and in this case equal to zero) if and only if for all
z ∈Z 〈y, z〉∗ ≤ g(t, z). Letting (yn)n be a sequence such that |yn|∗ → 0 and using
the Cauchy–Schwarz inequality, we have that

sup
z∈Z

∣∣〈yn, z〉∗
∣∣ ≤ |yn|∗ sup

z∈Z
|z|∗ = |yn|∗ → 0.



DYNAMIC DEVIATION MEASURES AND PORTFOLIO OPTIMIZATION 3365

Since by assumption g(t, z) > 0 for every z ∈ Z it follows then from (4.6) that
from a certain n onwards r(t, yn) = 0. As r(t,ω, yn) = JCt (ω)(yn) this entails
that yn ∈ Ct(ω) from a certain n onwards for every sequence yn that is such that
|yn|∗ → 0. Hence, 0 ∈ int(Ct (ω)).

(ii) Let t ∈ [0, T ] and X ∈ L2(FT )\L2(Ft ). For any s ∈ [0, T ], we note that
if 0 ∈ int(CD

s (ω)) then there exists ε′
s(ω) ∈ (0,1] such that |y|∗ ≤ ε′

s(ω) im-
plies y ∈ CD

s (ω). Define λs(ω) := |(HX
s (ω), H̃X

s (ω))|2∗, A = {(s,ω) ∈ [t, T ] ×
� : λs(ω) > 0} and denote by ε = (εs)s∈[0,T ] the process given by εs(ω) :=
IA(s,ω)ε′

s(ω)/λs(ω). Then ξ ′ := (εHX · W)t,T + (εH̃X · Ñ)t,T is element of SD .
Since X ∈ L2(FT )\L2(Ft ), the set A has positive dP× dt-measure so that

E
[
E
[
Xξ ′|Ft

]] = E

[
E

[∫ T

t
IAε′

s ds
∣∣∣Ft

]]
= E

[∫ T

t
IAε′

s ds

]
> 0,

which implies, as E[Xξ ′|Ft ] is nonnegative, that P(E[Xξ ′|Ft ] > 0) > 0. �

PROOF OF THEOREM 3.12. Let us first show the implication “⇐”: We note
first that, as is straightforward to verify, SD given in (3.9) is additively m-stable,
convex, bounded, closed and contains zero. Moreover, Lemma 4.6 and Proposi-
tion 4.1(ii) imply that, for any t ∈ [0, T ], Dt : L2(FT ) → L2(Ft ) defined by (3.8)
satisfies (D4). Hence, by Theorem 3.11 D = (Dt)t∈[0,T ] is a dynamic deviation
measure.

We next turn to the proof of “⇒”. In view of Theorem 3.11 it suffices to show
that SD is given by the expression in (3.9). For any n ∈ N, let D(n) be defined
as in (4.3). As noted before (D(n))n∈N is a collection of dynamic deviation mea-
sures increasing to D (Lemma 4.5) and the corresponding sequence (gn)n∈N of
driver functions is increasing and satisfies gn ≤ g [Proposition 2.6(iv)], where g

is the function in the representation (3.6) of D (in Theorem 3.7). For u ∈ Rd ,
ũ ∈ L2(ν(dx)) and n ∈ N define

rn(s, u, ũ) := sup
h∈Qd ,h̃∈{h1,h2,h3,...}

{
uᵀh +

∫
Rk\{0}

ũ(x)h̃(x)ν(dx) − gn(s, h, h̃)

}
,

where {h1, h2, h3, . . .} denotes a countable basis of L2(ν(dx)). Note that for any
n ∈ N we have (i) rn lower semicontinuous and convex in (u, ũ) and (ii) rn is a
(convex) indicator function of some convex and closed set, say Cn = (Cn

s )s∈[0,T ].
Furthermore, we note the following observations: (a) since rn is the supremum
of a P ⊗ B(Rd) ⊗ U measurable process and Cn is the set where rn is equal to
zero, we have that Cn is also P ⊗B(Rd) ⊗ U -measurable and (b) as the functions
gn(s, h, h̃) is continuous in (h, h̃), rn coincides with the dual conjugate of gn, so
that we have dP× dt a.e.

(4.7) gn(s,ω,h, h̃) = sup
(u,ũ)∈Cn

s (ω)

{
uᵀh +

∫
Rk\{0}

ũ(x)h̃(x)ν(dx)

}
.
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Moreover, we have that (c) as the sequence (gn)n is increasing, (rn)n is a decreas-
ing sequence so that Cn ⊂ Cn+1 for any n ∈ N. Denote C = ⋃∞

n=1 Cn and note
that C is convex and measurable as the increasing union of convex and measurable
sets.

Let us next establish the representation (3.8) for D(n)(X) for given n ∈ N and
X ∈ L2(FT ). As D(n)(X) = Dgn

(X), we have

D
(n)
0 (X) = E

[∫ T

0
sup

(u,ũ)∈Cn
s

(
uᵀHX

s +
∫
Rk\{0}

ũ(x)H̃X
s (x)ν(dx)

)
ds

]

≥ sup
{(H,H̃ )|(Hs,H̃s)∈Cn

s ,s∈[0,T ]}
E

[∫ T

0

(
H ᵀ

s HX
s

(4.8)

+
∫
Rk\{0}

H̃s(x)H̃X
s (x)ν(dx)

)
ds

]

= sup
ξ∈Mn

E

[∫ T

0

((
Hξ

s

)ᵀ
HX

s +
∫
Rk\{0}

H̃ ξ
s (x)H̃X

s (x)ν(dx)

)
ds

]
,(4.9)

with Mn := {ξ ∈ Q|(Hξ
s , H̃

ξ
s ) ∈ Ck

s , s ∈ [0, T ]}, where the supremum in (4.8) is
taken over pairs (H, H̃ ) ∈ L2

d(P,dP×dt)×L2(P×B(Rk \{0}),dP×dt ×ν(dx)).
Let us show next that the inequality in (4.8) is in fact an equality. It is well

known [see, for instance, Theorem 2.4.9 in Zălinescu (2002)] that the subgradients
of continuous and convex functions are nonempty so that the suprema in the dual
representations of the functions gn, n ∈ N, are attained. Hence, we can apply a
measurable selection theorem to the set

Gn :=
{
(s,ω,u, ũ)

∣∣gn(s,ω,HX
s , H̃X

s

)− uᵀHX
s

−
∫
Rk\{0}

ũ(x)H̃X
s (x)ν(dx) + JCn

s (ω)(u, ũ) = 0
}
,

obtaining P × P ⊗ U -measurable processes (Un, Ũn) such that, for every s,
(Un

s , Ũn
s ) ∈ Cn

s and gn(s,HX
s , H̃X

s ) = (Un
s )ᵀHX

s + ∫
Rk\{0} Ũn

s (x)H̃X
s (x)ν(dx).

This implies (4.8) holds with equality, and yields the desired representation
for D(n).

To see that we also get a representation for D, let us first prove that the set
C defined above [our natural candidate to satisfy (3.8)–(3.9)] is closed. Note that
from (4.9) it follows that for any X ∈ L2(FT )

sup
ξ∈S∩An

E[ξX] = D
(n)
0 (X)

(4.10)
= sup

ξ∈Mn
E

[∫ T

0

((
Hξ

s

)ᵀ
HX

s +
∫
Rk\{0}

H̃ ξ
s (x)H̃X

s (x)ν(dx)

)
ds

]
.
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As S ∩An and Mn are both convex and closed sets, we conclude from (4.10) S ∩
An = Mn. In particular, for m ≥ n we have Mn = Mm ∩ An. As there is a one-
to-one correspondence between ξ ∈ Q and square-integrable predictable processes
(H, H̃ ) this entails that

Cn = Cm ∩
{
(H, H̃ ) ∈ L2(dP× dt)

× L2(dP× dt × ν(dx)
)∣∣∣ sup

t∈[0,T ]

{
|Ht |2 +

∫
Rk\{0}

∣∣H̃t (x)
∣∣2ν(dx)

}
≤ n2

}
.

Hence, dP× dt a.e.

Cn
t (ω) = Cm

t (ω) ∩
{
(h, h̃) ∈ Rd × L2(ν(dx)

)∣∣∣|h|2 +
∫
Rk\{0}

∣∣h̃(x)
∣∣2ν(dx) ≤ n2

}
.

Taking the union over all m ∈ N on the right-hand side of previous display yields

Cn
t (ω) = Ct(ω) ∩

{
(h, h̃) ∈ Rd × L2(ν(dx)

)∣∣∣|h|2 +
∫
Rk\{0}

∣∣h̃(x)
∣∣2ν(dx) ≤ n2

}
.

Since the sets Cn
t (ω), n ∈ N, are closed in Rd × L2(ν(dx)), we have that also

Ct(ω) is closed.
As gn, n ∈ N, are convex positively homogeneous driver functions it follows by

Lemma 4.6 that 0 ∈ int(Cn). As Cn ⊂ C, we have thus that 0 ∈ int(C).
Finally, to show that C satisfies the desired representation (3.8)–(3.9) we note

that D0(X) is equal to

sup
n∈N

D
(n)
0 (X) = sup

n∈N
sup

{(H,H̃ )|(Hs,H̃s)∈Cn
s ,s∈[0,T ]}

E

[∫ T

0

(
H ᵀ

s HX
s

+
∫
Rk\{0}

H̃s(x)H̃X
s (x)

)
ν(dx)ds

]

= sup
{(H,H̃ )|(Hs,H̃s)∈Cs,s∈[0,T ]}

E

[∫ T

0

(
H ᵀ

s HX
s

+
∫
Rk\{0}

H̃s(x)H̃X
s (x)ν(dx)

)
ds

]

= sup
{ξ∈Q|(Hξ

s ,H̃
ξ
s )∈Cs,s∈[0,T ]}

E[ξX],

where in the first and second line the suprema are taken over pairs (H, H̃ ) ∈
L2

d(P,dP× dt) × L2(P × B(Rk \ {0}),dP× dt × ν(dx)). This yields (3.8)–(3.9)
for s = 0, and hence for all s ∈ [0, T ] by Remark 1.2(ii). Thus, the implication
“⇒” is shown, and the proof is complete. �
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4.3. Proof of Proposition 3.14. It is clear that ρ satisfies translation invariance,
positive homogeneity and subadditivity.

Let us show that ρ is not monotone by finding a Radon–Nikodym derivative in
the dual representative set SD which takes values smaller than −1 on a nonzero
set.

By Theorem 3.12, the set CD = (CD
t )t∈[0,T ] is convex, closed, contains zero

and has nonempty interior [for fixed (t,ω)]. Furthermore, CD satisfies the dual
representation in (3.8) with a bounded set SD given in terms of CD by

SD = {
ξ ∈ Q|(Hξ

t , H̃
ξ
t

) ∈ CD
t for all t ∈ [0, T ]}.(4.11)

As CD has nonempty interior, contains zero and ∂CD
t is deterministic, there

exists a, say 1-dimensional, positive deterministic process (μt ,0) ∈ ∂CD
t with

0 = (0, . . . ,0) ∈ Rd . As CD
t is closed clearly (μt ,0) ∈ CD

t . We set for fixed
M > 0: λt := min(|μt |,M)

|μt | ∈ (0,1] and μ̂t := λtμt + (1 − λt )0. Note that μ̂ is

bounded and positive by the definition of λt . Furthermore, (μ̂t ,0) ∈ CD
t for every

t by the convexity of CD
t . Define the Radon–Nikodym derivative ξ := (μ̂ · W)T .

By definition ξ has a normal distribution with nonzero variance
∫ T

0 μ̂2
s ds and by

(4.11) ξ ∈ SD . In particular, ξ takes values smaller than minus one with positive
probability. As ξ ∈ SD it follows that ρ defined above is not monotone.

5. Dynamic mean-deviation portfolio optimization. We turn next to the
stochastic optimization problem of identifying a dynamic portfolio allocation strat-
egy that maximises the sum of the expected return and a penalty for its riskiness
given in terms of a dynamic deviation measure of the final wealth achieved under
this allocation strategy. Throughout this section, we impose the following condi-
tions.

ASSUMPTION 5.1. (i) The Lévy measure ν is such that ν({x ∈ Rk\{0} :
mini=1,...,k xi ≤ −1}) = 0, and

(5.1) ν2 :=
∫
Rk\{0}

|x|2ν(dx) < ∞.

(ii) D is a g-deviation measure with nonrandom, time-independent driver ĝ :
Rd × L2(ν(dx)) →R+.

Under (5.1), L = (L1
t , . . . ,L

k
t )

ᵀ
t∈[0,T ] with L

j
t = ∫

[0,t]×Rk\{0} xj Ñ(ds ×dx), j =
1, . . . , k, where xj is the j th coordinate of x ∈ Rk , is a vector of pure-jump (Ft )-
martingales.

The financial market that we consider consists of a bank-account that pays in-
terest at a fixed rate r ≥ 0 and n risky stocks (with 1 ≤ n ≤ min{d, k}) with price
processes Si = (Si

t )t∈[0,T ], i = 1, . . . , n, satisfying the SDEs given by

dSi
t

Si
t−

= μi dt +
d∑

j=1

σij dW
j
t +

k∑
j=1

ρij dL
j
t , t ∈ (0, T ],(5.2)
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where Si
0 = si ∈ R+\{0}, μi ∈ R, σij ∈ R+ and ρij ∈ R+ such that

∑k
j=1 ρij ≤

1 denote the rates of appreciation, the volatilities and the jump-sensitivities. By
π = (π1, . . . , πn)ᵀ, we denote the dynamic allocation process that indicates the
fraction of the total wealth that is invested in the stocks 1, . . . , n [i.e., if Xπ(t−)

denotes the wealth just before time t , πi(t)X
π(t−) is the cash amount invested in

stock i at time t under allocation strategy π ]. We adopt the standard frictionless
setting (no transaction costs, infinitely divisible stocks, continuous trading, etc.)
and restrict to the case that short-sales and borrowing are not permitted, by only
considering allocation processes π = (πt )t∈[0,T ] that take values in the set

B =
{
x ∈ R1×n : min

i=1,...,n
xi ≥ 0,

n∑
i=1

xi ≤ 1

}
.

Such an allocation process π is said to be admissible if (i) π is predictable, (ii) the
associated wealth process Xπ is nonnegative (i.e., Xπ satisfies the insolvency con-
straint inft∈[0,T ] Xπ

t ≥ 0) and (iii) π is a self-financing portfolio such that Xπ sat-
isfies the SDE [with μ = (μ1, . . . ,μn)

ᵀ, � = (σij ) ∈ Rn×d and R = (ρij ) ∈Rn×k]
given by

dXπ
t

Xπ
t−

= [
r + (μ − r1)ᵀπt

]
dt + π

ᵀ
t � dWt + π

ᵀ
t R dLt, t ∈ (0, T ],(5.3)

with initial wealth Xπ
0 = x ∈ R+\{0}, where 1 ∈ Rn×1 denotes the column vector

of ones. We denote by � the collection of admissible allocation strategies and let
γ > 0 denote a risk-aversion parameter. To a given allocation strategy π ∈ �, we
associate the following dynamic performance criterion:

(5.4) Jπ
t := E

[
Xπ

T |Ft

]− γDt

(
Xπ

T

)
, t ∈ [0, T ].

Due to the fact that, unlike the conditional expectation, Dt(X) is a nonlinear func-
tion of X, the dynamic programming principle is not satisfied for this objective.
There is a growing literature exploring alternative solution approaches to dynamic
optimization problems for which the dynamic programming principle is not appli-
cable. One alternative dynamic solution concept is that of subgame-perfect Nash
equilibrium—in such a game-theoretic approach the problem (5.4) may informally
be seen as a (noncooperative) game with infinitely many players, one for each
time t , which may be interpreted in terms of the changing preferences of one per-
son over time; see Ekeland and Pirvu (2008) and Björk and Murgoci (2010) for
background, and see Basak and Chabakauri (2010), Björk and Murgoci (2010),
Wang and Forsyth (2011), Czichowsky (2013), Björk, Murgoci and Zhou (2014),
Bensoussan et al. (2014) and references therein, for studies of dynamic mean-
variance portfolio optimization problems. Following Ekeland and Pirvu (2008) and
Björk and Murgoci (2010), we have the following formalisation of this equilibrium
solution concept in our setting.
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DEFINITION 5.2. (i) An allocation strategy π∗ ∈ � is an equilibrium policy
for the dynamic mean-deviation problem with objective (5.4) if

(5.5) lim inf
h↘0

Jπ∗
t − J

π(h)
t

h
≥ 0

for any t ∈ [0, T ) and any policy π(h) ∈ � satisfying, for some π ∈ �,

π(h)s = πsI[t,t+h)(s) + π∗
s I[t+h,T ](s), s ∈ [t, T ].

(ii) An equilibrium policy π∗ is of feedback type if, for some feedback function
π∗ : [0, T ] ×R+ → B such that (5.3) with πt replaced by π∗(t,Xt−) has a unique
solution X∗ = (X∗

t )t∈[0,T ], we have

π∗
t = π∗

(
t,X∗

t−
)
, t ∈ [0, T ],

with X∗
0− = X∗

0 .

For a given equilibrium policy π∗ = (π∗
t )t∈[0,T ] of feedback-type, we have by

the Markov property that Jπ∗
t = V (t,X∗

t ) and E[Xπ∗
T |Ft ] = h(t,X∗

t ), t ∈ [0, T ],
for some functions V : [0, T ] × R+ → R+ and h : [0, T ] × R+ → R+. Further-
more, if h is sufficiently regular (e.g., h ∈ C1,2([0, T ] × R+,R+) and h′ ≡ ∂h

∂x
is

bounded) we find by an application of Itô’s lemma that the representing pair of X∗
T

is given by

H
X∗

T
s = a∗,h(s,X∗

s−
)
, H̃

X∗
T

s (y) = b∗,h(s,X∗
s−, y

)
,

s ∈ [0, T ], y ∈ Rk\{0},
with

a∗,h(s, x) := h′(s, x)xπ∗(s, x)ᵀ�,

b∗,h(s, x, y) := h
(
s, x + xπ∗(s, x)ᵀRy

)− h(s, x),

so that Dt(X
∗
T ), t ∈ [0, T ], takes the form Dt(X

∗
T ) = D̃t,X∗

t
(X∗

T ), where

D̃t,x

(
X∗

T

) = Et,x

[∫ T

t
ĝ
(
a∗,h(s,X∗

s−
)
, b∗,h(s,X∗

s−, ·))ds

]
,

(5.6)
(t, x) ∈ [0, T ] ×R+,

with Et,x[·] = E[·|X∗
t = x]. To any vector π ∈ B, we associate the operators Lπ :

f 
→ Lπf and Gπ : f 
→ Gπf that map C0,2([0, T ]×R+,R) to C0,0(R+,R) and
are given by

Lπf (t, x) = μπxf ′(t, x) + σ 2
π

2
x2f ′′(t, x) +

∫
Rk\{0}

[
f
(
t, x + xπᵀRy

)
(5.7)

− f (t, x) − xπᵀRyf ′(t, x)
]
ν(dy),

Gπf (t, x) = ĝ
(
xf ′(t, x)πᵀ�,δxπᵀRIf (t, x)

)
,(5.8)
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for (t, x) ∈ [0, T ] ×R+, where δyf :R+ →R and I :Rk×1 →Rk×1 are given by

δyf (x) = f (t, y + x) − f (t, x), I (z) = z, z ∈Rk×1, x ∈ R+, y ∈ R,

and where

μπ = r + (μ − r1)ᵀπ, σ 2
π = πᵀ��ᵀπ, π ∈ B.

Given the form of the objective and Definition 5.2, we are led to consider the
extended Hamilton–Jacobi–Bellman equation for a triplet (π∗,V ,h) of a feedback
function π∗, the corresponding value function V and auxiliary function h given by
(denoting V̇ = ∂V

∂t
)

V̇ (t, x) + sup
π∈B

{
LπV (t, x) − γGπh(t, x)

} = 0,

(5.9)
(t, x) ∈ [0, T ) ×R+\{0},

ḣ(t, x) +Lπ∗(t,x)h(t, x) = 0,
(5.10)

(t, x) ∈ [0, T ) ×R+\{0},
V (T , x) = h(T , x) = x, x ∈ R+,(5.11)

V (t,0) = h(t,0) = 0, t ∈ [0, T ],(5.12)

where, for any t ∈ [0, T ] and x ∈ R+, π∗(t, x) is a maximiser of the supermum
in (5.9) (note that the continuity of LπV (t, x) and Gπh(t, x) in π for each fixed
t ∈ [0, T ] and x ∈ R+\{0} in conjunction with the compactness of B guarantees
that the maximum in (5.9) is attained).

We have the following verification result.

THEOREM 5.3. Let (π∗, h,V ) be a triplet satisfying the extended HJB equa-
tion (5.9)–(5.12), let X∗ be the unique solution of (5.3) with πt replaced by
π∗(t,Xt−) and define π∗

t = π∗(t,X∗
t−), t ∈ [0, T ]. Assume h,V ∈ C1,2([0, T ] ×

R+,R) with h′,V ′ bounded and that π∗ = (π∗
t )t∈[0,T ] ∈ �. Then π∗ is an equi-

librium policy of feedback-type and h and V are given by V (t, x) = Et,x[Xπ∗
T ] −

γ D̃t,x(X
π∗
T ) and h(t, x) = Et,x[Xπ∗

T ] for (t, x) ∈ [0, T ] ×R+.

PROOF. We first verify the stochastic representations. Let π = (πs)s∈[0,T ] ∈
�, t ∈ [0, T ) and τ ∈ (0, T − t) be given and denote �π,V,h(s, x) := (V̇ +
LπsV − γGπsh)(s, x), aπ,V (s, x) := V ′(s, x)xπ

ᵀ
s � and bπ,V (s, x, y) = V (s, x +

xπ
ᵀ
s Ry) − V (s, x). An application of Itô’s lemma to V (t + τ,Xπ

t+τ ) shows that

V
(
t + τ,Xπ

t+τ

)− V
(
t,Xπ

t

)− γ

∫ t+τ

t
Gπsh

(
s,Xπ

s−
)

ds

=
∫ t+τ

t
�π,V,h(s,Xπ

s−
)

ds +
∫ t+τ

t
aπ,V (s,Xπ

s−
)

dWs(5.13)

+
∫
(t,t+τ ]×Rk\{0}

bπ,V (s,Xπ
s−, y

)
Ñ(ds × dy).



3372 M. PISTORIUS AND M. STADJE

Similarly, it follows h(t + τ,Xπ
t+τ ) satisfies (5.13) with V , Gπsh and �π,V,h re-

placed by h, 0 and �π,h,0, respectively. In particular, choosing π equal to π∗,
and taking expectations, the three terms on the right-hand side of (5.13) vanish in
view of (5.9), the fact that π∗(t, x) is a maximiser in (5.9) and as the stochastic
integrals are martingales (in view of the boundedness of V ′, h′ and B). Then, let-
ting τ ↗ T − t and using the boundary conditions (5.11), we obtain the asserted
stochastic representations of h and V .

Next, we turn to the proof that π∗ is an equilibrium solution. By an application
of the tower-property of conditional expectation and (D6), we have for any π ∈ �,
t ∈ [0, T ) and τ ∈ (0, T − t):

Jπ
t = E

[
E
[
Xπ

T |Ft+τ

]|Ft

]− γE
[
Dt+τ

(
Xπ

T

)|Ft

]− γDt

(
E
[
Xπ

T |Ft+τ

])
(5.14)

= E
[
Jπ

t+τ |Ft

]− γDt

(
E
[
Xπ

T |Ft+τ

])
.

Fixing (εn)n, εn ↘ 0, and strategies πn := π(εn) ∈ � as in Definition 5.2 (with
π∗ as asserted in the theorem) and noting that the Markov property (which is in
force as π∗ is a feedback strategy) implies

(5.15) J
πn
t+εn

= V
(
t + εn,X

πn
t+εn

)
, E

[
X

πn

T |Ft+εn

] = h
(
t + εn,X

πn
t+εn

)
,

and that (5.15) remains valid with πn replaced by π∗, we have from (5.13) and
(5.14) and the fact Dt(h(t + εn,X

πn
t+εn

)) = E[∫ t+εn
t ĝ(a

πn,h
s , b

πn,h
s )ds|Ft ] that

(5.16) Jπ∗
t − J

πn
t = E

[∫ t+εn

t

[
�π∗,V ,h(s,Xπ∗

s−
)− �πn,V,h(s,Xπn

s−
)]

ds
∣∣∣Ft

]
.

Since �π∗(s,x),V ,h(s, x) = 0 and �πn,V,h(s, x) ≤ 0 for s ∈ [0, T ], x ∈ R+, [by (5.9)
and the fact that π∗(t, x) is the maximiser in (5.9)] we have lim infn→∞(J π∗

t −
J

πn
t )/εn ≥ 0, and the proof is complete. �

We next identify an explicit equilibrium policy for the mean-deviation portfolio
optimization problem, under the following regularity assumption on �, R and ĝ,
assumed to be in force in the sequel.

ASSUMPTION 5.4. For some countable set A and any a ∈ [0, γ −1]\A, the
function Ta : B →R given by

(5.17) Ta(c) := a(μ − r1)ᵀc − ĝ
(
cᵀ�,cᵀRI

)
, c ∈ B,

achieves its maximum over ∂B at a unique c∗ ∈ ∂B.8

To define the optimal policy, we deploy the following auxiliary result.

8∂B denotes the boundary of B, that is, ∂B = cl(B)\ int(B) where cl(B) and int(B) denote the
closure and interior of B.
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LEMMA 5.5. For any f : [0, T ] → B denote by Af ,df , bf ,Ff : [0, T ] → R

the functions given by

bf (t) := exp
(∫ T

t

{
r + (μ − r1)ᵀf (s)

}
ds

)
,(5.18)

df (t) := bf (t)

∫ T

t
ĝ
(
f (s)ᵀ�,f (s)ᵀRI

)
ds,(5.19)

Af (t) := γ −1 − (
bf (t)

)−1
df (t),(5.20)

Ff (t) := ACf
(t) with(5.21)

Cf (t) :=
⎧⎪⎨
⎪⎩

arg sup
c∈∂B

{
Tf (t)(c)

}
if f (t) /∈ A,

Centroid
(
arg sup

c∈∂B

{
Tf (t)(c)

})
if f (t) ∈ A,

(5.22)

where for any Borel set A′ ⊂ Rd , Centroid(A′) is equal to the mean of U ∼
Unif(A′). Then there exists a continuous nondecreasing function a∗ : [0, T ] →R+
such that a∗ = Fa∗ .

The proof of Lemma 5.5 is provided below. With this result in hand, we identify
an equilibrium policy as follows.

THEOREM 5.6. With Ta(c) and a∗ given in (5.17) and in Lemma 5.5, we
let s(a) := supc∈∂B Ta(c), a− := sup{a ∈ [0, γ −1] : s(a) ≤ 0}, and t∗ := sup{t ∈
[0, T ] : a∗(t) ≤ a−} (where sup∅ := −∞).

(i) If s(1/γ ) ≤ 0, then π∗ ≡ 0 with value-function given by V (t, x) =
x exp(r(T − t)) for (t, x) ∈ [0, T ] ×R+.

(ii) If s(1/γ ) > 0, define the function C∗ : [0, T ] → B by

C∗(t) =
{
Ca∗(t) if t ∈ [

t∗ ∨ 0,1
]
,

0 otherwise,

where Ca∗(t) is given in (5.22) with f = a∗. Then π∗ = C∗ is an equilibrium policy
with value function given by V (t, x) = x(bC∗(t) − γ dC∗(t)) for (t, x) ∈ [0, T ] ×
R+, where bC∗ and dC∗ are given in (5.18) and (5.19) with f = C∗.

REMARK 5.7. Under the equilibrium policy π∗ given in Theorem 5.6, it is
optimal to invest in the n stocks according to the proportions C∗ = (C∗

1 , . . . ,C∗
n)

of the current wealth, which are nonrandom functions of t only. Hence, it is optimal
to invest at time t an amount Xπ∗

(t−)C∗
i (t) in stock i, i = 1, . . . , n.

PROOF OF THEOREM 5.6. The proof consists in verifying that the triplet
(π∗,V ,h), with π∗ and V as stated and with h : [0, T ] × R+ → R given by
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h(t, x) = xbC∗(t), satisfies the extended HJB equation (5.9)–(5.12); the assertions
then follow by an application of Theorem 5.3.

(i) Once we verify that the supremum in (5.9) is attained at π∗ ≡ 0, it is easily
checked that V and h are equal and satisfy (5.9)–(5.12), using that g is positively
homogeneous. To see that the former is the case, note that the left-hand side of
(5.9) is equal to x exp(r(T − t))[−r + γ supc∈B T1/γ (c)]; since s(1/γ ) ≤ 0, the
latter supremum is zero and it is attained at c = 0 [as T1/γ (0) = 0].

(ii) Assume for the moment that the supremum in (5.9) is attained at π∗. Then
the positive homogeneity of g and the fact (which is straightforward to verify) that
functions bC∗ and dC∗ satisfy the system of equations

ḃ + (r + μC∗)b = 0, t ∈ [0, T ), b(T ) = 1,

ḋ + (r + μC∗)d + bĝ
((

C∗)ᵀ�,
(
C∗)ᵀRI

) = 0, t ∈ [0, T ), d(T ) = 0,

where as before I :Rk×1 →Rk×1 is given by I (y) = y, imply that h and V satisfy
(5.9)–(5.12).

Next, we verify that the supremum in (5.9) is attained at π∗. Inserting the forms
of h and V and using that γ inft∈[0,T ] bC∗(t) > 0 we have for any t ∈ [0, T ] that

arg sup
π∈B

{
LπV (t, x) − γGπh(t, x)

}
= arg sup

π∈B
{
μπ

(
bC∗(t) − γ dC∗(t)

)− γ bC∗(t)ĝ
(
πᵀ�,πᵀRI

)}
(5.23)

= arg sup
π∈B

{
μπAC∗(t) − ĝ

(
πᵀ�,πᵀRI

)}
.

If t ≤ t∗, then AC∗(t) = a− so that s(AC∗(t)) ≤ 0 and 0 is included in the
argsup in (5.23), while if t > t∗, then AC∗(t) > a− and we have that s(AC∗(t)) =
supπ∈B{(μπ − r)AC∗(t) − ĝ(πᵀ�,πᵀRI)} > 0 is attained at π = CAC∗ (t) =
Ca∗(t) = C∗(t). �

PROOF OF LEMMA 5.5. The proof relies on an application of Schauder’s
fixed-point theorem9 to the map F : A → C([0, T ],R) given by f 
→ Ff , where
A denotes the set of continuous functions f ∈ C([0, T ],R) that are such that
(a) f (T ) = γ −1 and (b) for all s, t ∈ [0, T ] with s ≤ t we have f (t) − f (s) ∈
[χ−(t − s),χ+(t − s)] where

χ+ : = sup
{
ĝ
(
cᵀ�,cᵀRI

) : c ∈ ∂B
}
, χ− := inf

{
ĝ
(
cᵀ�,cᵀRI

) : c ∈ ∂B
}
.

We note that both χ+ and χ− are strictly positive, by positivity of the driver func-
tion ĝ. It is straightforward to verify that F maps A to A and that the set A is a
nonempty, closed, bounded and convex subset of C([0, T ],R). Since F is com-
pact (as we prove below), Schauder’s fixed-point theorem yields that there exists
an element a∗ ∈ A such that a∗ = Fa∗ .

9See, for example, Theorem 1.C in Zeidler (1995).
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We next prove that F is compact by showing that (i) F is continuous (with
respect to the supremum norm on [0, T ]) and (ii) the set F(A) = {Ff : f ∈ A} is
relatively compact in C([0, T ],R).

(i) Let (fn)n ⊂ A converge to f ∈ A in the supremum-norm. Then we have
that Tfn(t)(c) → Tf (t)(c) as n → ∞ uniformly in t ∈ [0, T ] for any c ∈ ∂B, and
supc∈∂B Tfn(t)(c) → supc∈∂B Tf (t)(c) for any t ∈ [0, T ]. As (fn)n and f are strictly
monotone increasing and Assumption 5.4 is in force, we have for all but countably
many t that Tfn(t)(c) and Tf (t)(c) attain their maxima over ∂B at unique c. Thus,
it follows that arg supc∈∂B Tfn(t)(c) → arg supc∈∂B Tf (t)(c), for a.e. t ∈ [0, T ].
Hence, by the dominated convergence theorem Ffn(t) = ACfn

(t) → ACf
(t) =

Ff (t) for any t ∈ [0, T ]. Since the functions ACfn
and ACf

are nondecreasing,
the convergence Ffn → Ff holds in the supremum norm.

(ii) Using the boundedness of B and the continuity of ĝ, it is straightforward
to verify that the collection of functions F(A) is equi-continuous. Hence, we
have by an application of the Arzela–Ascoli theorem10 that for any sequence
(A(n))n ⊂ F(A) there exists a continuous function A∗ : [0, T ] → R such that,
along a subsequence (nk), (A(nk))k converges uniformly to A∗, hence establish-
ing that F(A) is relatively compact. �

EXAMPLE 5.8. (i) For driver function ĝ = g1 (given in Example 2.10 with
λ = 1) and for a ∈ R+ we have that Ta(c) in (5.17) is given by

Ta(c) = a(μ − r1)ᵀc −√
cᵀ��ᵀc + cᵀRRᵀcν2.

If ��ᵀ + RRᵀν2 is invertible, then it is straightforward to verify that Assump-
tion 5.4 is satisfied.

(ii) Let us identify explicitly the equilibrium portfolio allocation strategy given
in Theorem 5.6 in the case the driver function ĝ is as in part (i) and we have 2
risky assets (n = 2), whose dynamics we suppose are given by (5.2) with d = k =
2, μ1 > μ2 > r , r ≥ 0 and s12 := (�2 + R2ν2)12 < 0. In terms of s2

i := (�2 +
R2ν2)ii , i = 1,2, let us denote

d+ := s2
1 + s2

2 − 2s12, e+ := s12 − s2
2 ,

c+(a) := − e+
d+

+
√(

e+
d+

)2
− η(a), η(a) := a2(μ1 − μ2)

2s2
2 − e2+

d+(a2(μ1 − μ2)2 − d+)
,

for a ∈ [0,
√

d+/(μ1 − μ2)). By convexity of g, it follows that the supremum of

T̃ (c) := Ta((c,1 − c)) = a(μ2 − r) + a(μ1 − μ2)c −
√

d+c2 + 2e+c + s2
2 over

c ∈ R is attained at the c satisfying T̃ ′(c) = 0 ⇔ c = c+(a) and we have

T̃ ′(1) > 0 ⇔ a > a+ := 1

μ1 − μ2

(
s2

1 − s12√
s2

1

)
.

10See, for example, page 35 in Zeidler (1995).
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As a consequence, the equilibrium allocation strategy π∗ = (π∗
t )t∈[0,T ] in Theo-

rem 5.6 is given as follows:

π∗
t = C∗(t) =

⎧⎪⎪⎨
⎪⎪⎩

(1,0) if a∗(t) > a− ∨ a+,(
c+

(
a∗(t)

)
,1 − c+

(
a∗(t)

))
if a− < a∗(t) ≤ a− ∨ a+,

(0,0) if a∗(t) ≤ a−,

where a− and a∗(t) are as in Theorem 5.6. Hence, if the risk-aversion parameter
γ is sufficiently small and/or t is sufficiently close to the horizon T , the equilib-
rium strategy is to be fully invested in risky asset 1, which has the highest expected
return; at times t further away from the horizon or for higher risk-aversion param-
eter, the dynamic deviation penalty term starts to play a more important role and
the policy is to invest part of the wealth into asset 2, while if γ is sufficiently large
or t is sufficiently small, the equilibrium strategy is to invest all the wealth in the
bank account.

(iii) Restricting next to the case of a single risky asset (n = 1) with d = k = 1,
μ := μ1 > r , we find by a direct calculation that the value function V in Theo-
rem 5.6 and he auxiliary function h are explicitly given in terms of

t∗ =
(
T + 1

μ − r
− 1

γ
√

�2 + R2ν2

)
∧ T

by V (t, x) = V (t∗ ∧T ,x exp{r(t∗ ∧T − t)}) and h(t, x) = h(t∗ ∧T ,x exp{r(t∗ ∧
T − t)}) for t ∈ [0, t∗ ∧ T ) and

V (t, x) = h(t, x)
[
1 − (T − t)γ

√
�2 + R2ν2

]
,

h(t, x) = x exp
{
μ(T − t)

}
, t ∈ [

t∗ ∧ T ,T
]
,

where the equilibrium policy π∗ is given by

π∗
t = C∗(t)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if a(t) = 1

γ

1

1 + (μ − r)(T − t)
>

√
�2 + R2ν2

μ − r
= a−

⇔ t ∈ (
t∗ ∧ T ,T

]
,

0 if a(t) ≤ a− ⇔ t ∈ [
0, t∗ ∧ T

]
.

To see that π∗ takes this form, we observe that t ≤ t∗ holds precisely if
(μ − r − γ

√
�2 + R2ν2) − (μ − r)γ (T − t)

√
�2 + R2ν2 ≤ 0 ⇔ 0 ∈

arg supπ∈[0,1]{(LπV )(t, x) − γ (Gπh)(t, x)}, where Lπ and Gπ are given in (5.7)
and (5.8).
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APPENDIX A: PROOFS OF LEMMAS 3.3, 3.4 AND 3.5

PROOF OF LEMMA 3.3. (i) Let us first show that C 
→ μ
h,h̃

(C,∅) constitutes
a σ -finite measure. Clearly, μ

h,h̃
(·,∅) is nonnegative and μ

h,h̃
(∅,∅) = 0. Next,

we verify that C 
→ μ
h,h̃

(C,∅) is additive for disjoint sets of the form C1 :=
(t1, t2] × A and C2 := (t3, t4] × B with A ∈ Ft1 and B ∈ Ft3 . We consider first the
case t1 ≤ t3 ≤ t2 ≤ t4 and A ∩ B = ∅ (note that in this case C1 ∩ C2 = ∅). By
deploying Propositions 2.9 and 3.6 we note that μ

h,h̃
(((t1, t2] × A) ∪ ((t3, t4] ×

B),∅) is equal to

D0
(
(IAh · W)t1,t3 + (IA∪Bh · W)t3,t2 + (IBh · W)t2,t4

)
= E

[
Dt1

(
(IAh · W)t1,t3

)]+E
[
Dt3

(
(IA∪Bh · W)t3,t2

)]
+E

[
Dt2

(
(IBh · W)t2,t4

)]
= E

[
Dt1

(
(IAh · W)t1,t3

)]+E
[
Dt3

(
(IAh · W)t3,t2

)]
+E

[
Dt3

(
(IBh · W)t3,t2

)]+E
[
Dt2

(
(IBh · W)t2,t4

)]
= D0

(
(IAh · W)t1,t2

)+ D0
(
(IBh · W)t3,t4

)
,

which is equal to μ
h,h̃

((t1, t2] × A,∅) + μ
h,h̃

((t3, t4] × B,∅). The cases t1 ≤
t2 < t3 ≤ t4 and t1 ≤ t3 ≤ t4 ≤ t2 may be verified in a similar manner. Thus, we
may conclude that μ

h,h̃
is additive on disjoint sets of the form (t1, t2] × A and

(t3, t4]×B . As D0 is continuous in L2(FT ) [see Remark 1.2(iii)] and the collection
of sets considered above is a semi-algebra generating the predictable σ -algebra it
follows that μ

h,h̃
(·,∅) is σ -finite. The proofs that C 
→ μ

h,h̃
(∅,C) and C 
→

μ
h,h̃

(C,C) are σ -finite measures are analogous, replacing in the equations above

the term h · W by h̃ · Ñ and (h · W + h̃ · Ñ), respectively.
(ii) Define C1,C2 as in (i) and consider the case t1 ≤ t3 ≤ t2 ≤ t4 with general

(not necessarily disjoint) A ∈ Ft1 and B ∈ Ft3 . Expressing X = IA(h · W)t1,t2 +
IB(h̃ · Ñ)t3,t4 as the sum of martingale increments

X = IA(h · W)t1,t3 + IA\B(h · W)t3,t2 + IA∩B

[
(h · W)t3,t2 + (h̃ · Ñ)t3,t2

]
+ IB\A(h̃ · Ñ)t3,t2 + IB(h̃ · Ñ)t2,t4

and using Propositions 2.9 and 3.6 we have that μ
h,h̃

(C1,C2) = D0(X) is equal to

E
[
Dt1

(
IA(h · W)t1,t3

)]+E
[
Dt3

(
IA\B(h · W)t3,t2

+ IA∩B

[
(h · W)t3,t2 + (h̃ · Ñ)t3,t2

]+ IB\A(h̃ · Ñ)t3,t2
)]

+E
[
Dt2

(
IB(h̃ · Ñ)t2,t4

)]
= E

[
Dt1

(
IA(h · W)t1,t3

)]+E
[
Dt3

(
IA\B(h · W)t3,t2

)]
+E

[
Dt3

(
IA∩B

[
(h · W)t3,t2 + (h̃ · Ñ)t3,t2

])]
+E

[
Dt3

(
IB\A(h̃ · Ñ)t3,t2

)]+E
[
Dt2

(
IB(h̃ · Ñ)t2,t4

)]
.
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Thus, using Proposition 2.9 again we have

μ
h,h̃

(C1,C2) = D0
(
IA(h · W)t1,t3 + IA\B(h · W)t3,t2

)
+ D0

(
IB∩A

[
(h · W)t3,t2 + (h̃ · Ñ)t3,t2

])
+ D0

(
IB\A(h̃ · Ñ)t3,t2 + IB(h̃ · Ñ)t2,t4

)
= μ

h,h̃
(C1 \ C2,∅) + μ

h,h̃
(C1 ∩ C2,C1 ∩ C2) + μ

h,h̃
(∅,C2 \ C1).

The cases t1 ≤ t2 < t3 ≤ t4 and t1 ≤ t3 ≤ t4 ≤ t2 may be verified in a similar man-
ner. By the continuity of D0 [Remark 1.2(iii)] and monotone class arguments (by
keeping first C1 and then C2 fixed), it follows that (3.1) holds for all predictable
sets, as asserted. �

PROOF OF LEMMA 3.4. First of all, note that the predictable σ -algebra is
generated by countable many sets, say A1,A2, . . . . Fix n ∈ N and denote Pn :=
σ(A1, . . . ,An). By considering finer partitions, we may after relabeling assume
without loss of generality that the Ai are disjoint. Denote by η the measure η :=
dP × dt on (� × [0, T ],P) and let Rn

h,h̃
= Eη[Rh,h̃

|Pn].11 Since the filtration is
generated by the disjoint sets A1,A2, . . . ,An, it is standard to note that

(A.1) Rn

h,h̃
(s,ω) = ∑

i:ν(Ai) �=0

IAi
(s,ω)

η(Ai)
μ

h,h̃
(Ai,Ai) for dP× ds a.e. (s,ω).

By possibly modifying Rn

h,h̃
on a zero-set, we may assume that (A.1) holds for all

(s,ω) ∈ [0, T ] × �. It follows from (A.1) and the convexity and positive homo-
geneity of (h, h̃) → μ

h,h̃
(Ai,Ai) that, for all fixed (s,ω), Rn

h,h̃
(s,ω) is convex and

positively homogeneous in (h, h̃). Furthermore, we claim that |Rn

h,h̃
| ≤ gλ(h, h̃).

Suppose this were not the case, that is, for some (h, h̃) and Ai , |Rn

h,h̃
| > gλ(h, h̃)

for all (s,ω) ∈ Ai . Then we would have for X = (H · W)T + (H̃ · Ñ)T with
Hs = hIAi

and H̃s = h̃IAi
that D0(X) = μ

h,h̃
(Ai,Ai) = E[∫ T

0 IAi
(s)R

h,h̃
(s)ds]

satisfies

D0(X) > E

[∫ T

0
IAi

(s)gλ(h, h̃)ds

]
= E

[∫ T

0
gλ(Hs, H̃s)ds

]
= D̄λ

0 (X),

which is in contradiction with the fact that D is λ-dominated.
Since Pn is an increasing sequence of σ -algebras with

⋃∞
n=1 Pn =P it follows

from the martingale convergence theorem that Rn

h,h̃
(t,ω) = Eη[Rh,h̃

|Pn](t,ω)

converges to Eη[Rh,h̃
|P](t,ω) = R

h,h̃
(t,ω) for dP × dt a.e. (t,ω). This conver-

gence only holds up to a zero set. On this zero set, we may set R
h,h̃

(t,ω) equal

11Specifically, Rn

h,h̃
is the Pn-measurable random variable satisfying Eη[R

h,h̃
U ] = Eη[Rn

h,h̃
U ]

for all bounded Pn random variables U , with Eη[Z] = ∫ T
0 E[Z(s)]ds for Z ∈ L1(η).
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to lim supn Rn

h,h̃
(t,ω). Hence, this version of R

h,h̃
is dominated by gλ and is con-

vex and positively homogeneous in (h, h̃) for every (t,ω) ∈ [0, T ] × � as the
limit of convex and positively homogeneous functions. The asserted continuity
follows since every convex function that is locally bounded is continuous [see
Theorem 2.2.9 in Zălinescu (2002)]. �

PROOF OF LEMMA 3.5. We split the proof in four steps.
Step 1: For X = ((hIC1) · W)T + ((h̃IC2) · ÑT ) for (h, h̃) ∈ R × L2(ν(dx))

and C1,C2 ∈ P , we find by using g(t,ω,0,0) = 0 that D
g
0 (X) =

E[∫ T
0 g(s, hIC1(s), h̃IC2(s))ds] is equal to

E

[∫ T

0
IC1\C2(s)g(s, h,0)ds

]
+E

[∫ T

0
IC2\C1(s)g(s,0, h̃)ds

]

+E

[∫ T

0
IC1∩C2(s)g(s, h, h̃)ds

]
(A.2)

= μ
h,h̃

(C1 \ C2,∅) + μ
h,h̃

(∅,C2 \ C1) + μ
h,h̃

(C1 ∩ C2,C1 ∩ C2),

which is by (3.1) equal to μ
h,h̃

(C1,C2) = D0(X) [note that we only have to inte-
grate over C1 ∪ C2 as g(t,ω,0,0) = 0].

Step 2: Fix ti , ti+1 ∈ [0, T ] with ti < ti+1 and let X = ((hiI(ti ,ti+1]) · W)ti,ti+1 +
((h̃iI(ti ,ti+1]) · Ñ)ti ,ti+1 with hi := ∑m

j=1 cj IAj
, h̃i = ∑m

j=1 c̃j IAj
, and cj ∈ R, c̃j ∈

L2(ν(dx)), and disjoint sets Aj ∈ Fti , j = 1, . . . ,m, satisfying
⋃

j Aj = � (we

may assume w.l.o.g. that the Aj are the same for h and h̃ by setting some cj and
c̃j equal to zero). By step 1, denoting �Wi+1 = Wti+1 − Wti ,

E

[∫ ti+1

ti

g(s, IAj
cj , IAj

c̃j )ds

]

= D0

(
IAj

cj�Wi+1 +
∫
Rk\{0}

IAj
c̃j (x)Ñ

(
(ti , ti+1] × dx

))

= E

[
Dti

(
IAj

cj�Wi+1 +
∫
Rk\{0}

IAj
c̃j (x)Ñ

(
(ti , ti+1] × dx

))]
.

Hence, by Proposition 2.9 D0(X) is equal to

m∑
j=1

E

[
Dti

(
IAj

cj�Wti+1 +
∫
Rk\{0}

IAj
c̃j (x)Ñ

(
(ti, ti+1] × dx

))]

= E

[
m∑

j=1

∫ ti+1

ti

g(s, IAj
cj , IAj

c̃j )ds

]
,

which is equal to E[∫ T
0 g(s, hs, h̃s)ds|Ft ] = D

g
0 (X).
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Step 3: Let 0 ≤ t1 < · · · < tn = T be given. For simple functions X =
((
∑l

i=1 hiI(ti ,ti+1]) · W)T + ((
∑l

i=1 h̃iI(ti ,ti+1]) · Ñ)T for l ∈ N, with hi and h̃i as
in step 2 we have by Proposition 2.9, step 2 and Proposition 2.4

D0(X) =
l∑

i=1

E
[
Dti

((
(hiI(ti ,ti+1]) · W )

ti ,ti+1
+ (

(h̃iI(ti ,ti+1]) · Ñ)
ti ,ti+1

)]

=
l∑

i=1

E
[
D

g
ti

((
(hiI(ti ,ti+1]) · W )

ti ,ti+1
+ (

(h̃iI(ti ,ti+1]) · Ñ)
ti ,ti+1

)] = D
g
0 (X).

Hence, we have D0(X) = D
g
0 (X) for all simple functions X.

Step 4: That D0(X) = D
g
0 (X) not only for simple functions but also for general

X ∈ L2(FT ) follows by the continuity of D
g
0 and D0 in Lemma 2.5 (note that g is

of linear growth) and Remark 1.2(iii). �

APPENDIX B: PROOFS OF PROPOSITIONS 4.3, 4.4 AND 3.14

PROOF OF PROPOSITION 4.3. Let ξ ∈ L2(FT ) and t ∈ [0, T ]. For brevity, we
denote throughout the proof S = SD , St = SDt and St,T = SD

t,T . As it is clear that
S ∩QFt = St,T (noting that St,T ⊂ QFt ), the remainder of the proof is concerned
with showing that the sets S ∩QFt and St are equal.

Noting that E[Dt(X)] ≤ D0(X) [by (D6)], recalling (4.2) and deploying (D6),
(D1) and the fact that L2(FT ) is directed, we have for ξ ∈ St ⊂ QFt

JS(ξ) = sup
X∈L2(FT )

{
E[ξX] − D0(X)

} ≤ sup
X∈L2(FT )

{
E[ξX] −E

[
Dt(X)

]}

= sup
X∈L2(FT )

E
[
E[ξX|Ft ] − Dt(X)

]

= E
[

ess sup
X∈L2(FT )

{
E[ξX|Ft ] − Dt(X)

}] = 0,

where in the last equality we used (4.2). As JS(ξ) is either zero or infinity it follows
from the previous display that JS(ξ) = 0 implying that ξ ∈ S and thus ξ ∈ S∩QFt .
This shows St ⊂ S ∩QFt .

On the other hand, if ξ ∈ Sc
t := L2(FT )\St then we have either (a) ξ ∈

(L2(FT )\QFt ) ∩ Sc
t or (b) ξ ∈ QFt ∩ Sc

t . In case (a), we have ξ /∈ S ∩QFt , while
in case (b) (4.2) in Proposition 4.1 yields that there exists X′ ∈ L2(FT ) such that
E[ξX′|Ft ] − Dt(X

′) > 0 on a nonzero set, say A. Hence by using (D6) and that
ξ ∈ QFt , we have [from (4.2) with t = 0]

JS(ξ) ≥ E
[
ξIAX′]−E

[
Dt

(
X′IA

)]
= E

[
IA

(
ξX′ − Dt

(
X′))] = E

[
IA

(
E
[
ξX′|Ft

]− Dt

(
X′))] > 0.



DYNAMIC DEVIATION MEASURES AND PORTFOLIO OPTIMIZATION 3381

Thus, JS(ξ) = ∞ and we have that ξ /∈ S ∩ QFt , also in case (b). Hence, Sc
t ⊂

L2(FT )\(S ∩ QFt ). Combined with the inclusion derived in previous paragraph,
this yields that St = S ∩QFt . �

PROOF OF PROPOSITION 4.4. We first show “⇒”. We only give the proof
that (D6) holds for s = 0 as the proof for s ∈ (0, T ] is analogous. Let X ∈ L2(FT )

and t ∈ [0, T ]. Denoting ξt = E[ξ |Ft ] and ξt,T = ξ − ξt for ξ ∈ L2(FT ) we have

D0(X) = sup
ξ∈S

E[ξX]

= sup
ξ∈S

E
[
E
[
ξtX + (ξ − ξt )X|Ft

]]
= sup

ξ=ξt+ξt,T ∈S0,t+St,T

{
E[ξtX] +E

[
E[ξt,T X|Ft ]]}

= sup
ξt∈S0,t ,ξt,T ∈St,T

{
E[ξtX] +E

[
E[ξt,T X|Ft ]]}.

Hence, by the directedness of St,T (Remark 4.2) and Proposition 4.3, we obtain

D0(X) = sup
ξt∈S0,t

E
[
ξtE[X|Ft ]]+ sup

ξt,T ∈St,T

E
[
E[ξt,T X|Ft ]]

= sup
ξ∈S

E
[
ξE[X|Ft ]]+E

[
ess sup
ξt,T ∈St,T

E[ξt,T X|Ft ]
]

= D0
(
E[X|Ft ])+E

[
ess sup

ξ∈S∩QFt

E[ξX|Ft ]
]

= D0
(
E[X|Ft ])+E

[
Dt(X)

]
.

To see that we have “⇐” suppose that ξ1, ξ2 ∈ S such that ξ1
t + (ξ2 − ξ2

t ) /∈ S
for some t ∈ [0, T ]. Then by the Hahn–Banach theorem, there exists a random
variable X ∈ L2(FT ) such that we have

(B.1) E := E
[(

ξ1
t + (

ξ2 − ξ2
t

))
X
]
> sup

ξ∈S
E[ξX] = D0(X).

Using Proposition 4.3, we note E = E[ξ1
t E[X|Ft ]] + E[E[(ξ2 − ξ2

t )X|Ft ]] may
be bounded above by

D0
(
E[X|Ft ])+E

[
ess sup
ξ∈St,T

E[ξX|Ft ]
]
= D0

(
E[X|Ft ])+E

[
Dt(X)

]
= D0(X).

This bound is a contradiction to (B.1), which proves the implication “⇐”. �



3382 M. PISTORIUS AND M. STADJE

REFERENCES

ARTZNER, P., DELBAEN, F., EBER, J.-M. and HEATH, D. (1999). Coherent measures of risk. Math.
Finance 9 203–228. MR1850791

ARTZNER, P., DELBAEN, F., EBER, J.-M., HEATH, D. and KU, H. (2007). Coherent multiperiod
risk adjusted values and Bellman’s principle. Ann. Oper. Res. 152 5–22. MR2303124

BARRIEU, P. and EL KAROUI, N. (2005). Inf-convolution of risk measures and optimal risk transfer.
Finance Stoch. 9 269–298. MR2211128

BARRIEU, P. and EL KAROUI, N. (2009). Pricing, hedging and optimally designing derivatives via
minimization of risk measures. In Indifference Pricing: Theory and Applications (R. Carmona,
ed.). 77–146. Princeton Univ. Press, Princeton, NJ.

BASAK, S. and CHABAKAURI, G. (2010). Dynamic mean-variance asset allocation. Rev. Financ.
Stud. 23 2970–3016.

BENSOUSSAN, A., WONG, K. C., YAM, S. C. P. and YUNG, S. P. (2014). Time-consistent portfolio
selection under short-selling prohibition: From discrete to continuous setting. SIAM J. Financial
Math. 5 153–190. MR3174170

BION-NADAL, J. and KERVAREC, M. (2012). Risk measuring under model uncertainty. Ann. Appl.
Probab. 22 213–238. MR2932546

BJÖRK, T. and MURGOCI, A. (2010). A general theory of Markovian Time Inconsistent Stochastic
Control Problems. Working paper, Stockholm School of Economics.

BJÖRK, T., MURGOCI, A. and ZHOU, X. Y. (2014). Mean-variance portfolio optimization with
state-dependent risk aversion. Math. Finance 24 1–24. MR3157686

BLACK, F. and SCHOLES, M. (1973). The pricing of options and corporate liabilities. J. Polit. Econ.
81 637–654. MR3363443

CHEN, Z. and EPSTEIN, L. (2002). Ambiguity, risk, and asset returns in continuous time. Econo-
metrica 70 1403–1443. MR1929974

CHENG, S., LIU, Y. and WANG, S. (2004). Progress in risk measurement. Adv. Model. Optim. 6
1–20. MR2304250

CHERIDITO, P. and KUPPER, M. (2011). Composition of time-consistent dynamic monetary risk
measures in discrete time. Int. J. Theor. Appl. Finance 14 137–162. MR2780781

COQUET, F., HU, Y., MÉMIN, J. and PENG, S. (2002). Filtration-consistent nonlinear expectations
and related g-expectations. Probab. Theory Related Fields 123 1–27. MR1906435

CZICHOWSKY, C. (2013). Time-consistent mean-variance portfolio selection in discrete and contin-
uous time. Finance Stoch. 17 227–271. MR3038591

DELBAEN, F. (2006). The structure of m-stable sets and in particular of the set of risk neutral mea-
sures. In In Memoriam Paul-André Meyer: Séminaire de Probabilités XXXIX. Lecture Notes in
Math. 1874 215–258. Springer, Berlin. MR2276899

DELBAEN, F., HU, Y. and BAO, X. (2011). Backward SDEs with superquadratic growth. Probab.
Theory Related Fields 150 145–192. MR2800907

DELBAEN, F., PENG, S. and ROSAZZA GIANIN, E. (2010). Representation of the penalty term of
dynamic concave utilities. Finance Stoch. 14 449–472. MR2670421

DURRETT, R. (2010). Probability: Theory and Examples, 4th ed. Cambridge Series in Statistical
and Probabilistic Mathematics 31. Cambridge Univ. Press, Cambridge. MR2722836

EKELAND, I. and PIRVU, T. A. (2008). Investment and consumption without commitment. Math.
Financ. Econ. 2 57–86. MR2461340

EL KAROUI, N. and RAVANELLI, C. (2009). Cash subadditive risk measures and interest rate ambi-
guity. Math. Finance 19 561–590. MR2583520

FÖLLMER, H. and SCHIED, A. (2011). Stochastic Finance: An Introduction in Discrete Time, 3rd
extended ed. de Gruyter, Berlin. MR2779313

http://www.ams.org/mathscinet-getitem?mr=1850791
http://www.ams.org/mathscinet-getitem?mr=2303124
http://www.ams.org/mathscinet-getitem?mr=2211128
http://www.ams.org/mathscinet-getitem?mr=3174170
http://www.ams.org/mathscinet-getitem?mr=2932546
http://www.ams.org/mathscinet-getitem?mr=3157686
http://www.ams.org/mathscinet-getitem?mr=3363443
http://www.ams.org/mathscinet-getitem?mr=1929974
http://www.ams.org/mathscinet-getitem?mr=2304250
http://www.ams.org/mathscinet-getitem?mr=2780781
http://www.ams.org/mathscinet-getitem?mr=1906435
http://www.ams.org/mathscinet-getitem?mr=3038591
http://www.ams.org/mathscinet-getitem?mr=2276899
http://www.ams.org/mathscinet-getitem?mr=2800907
http://www.ams.org/mathscinet-getitem?mr=2670421
http://www.ams.org/mathscinet-getitem?mr=2722836
http://www.ams.org/mathscinet-getitem?mr=2461340
http://www.ams.org/mathscinet-getitem?mr=2583520
http://www.ams.org/mathscinet-getitem?mr=2779313


DYNAMIC DEVIATION MEASURES AND PORTFOLIO OPTIMIZATION 3383

GRECHUK, B., MOLYBOHA, A. and ZABARANKIN, M. (2009). Maximum entropy principle with
general deviation measures. Math. Oper. Res. 34 445–467. MR2554068

GRECHUK, B., MOLYBOHA, A. and ZABARANKIN, M. (2013). Cooperative games with general
deviation measures. Math. Finance 23 339–365. MR3034081

GRECHUK, B. and ZABARANKIN, M. (2014). Inverse portfolio problem with mean-deviation model.
European J. Oper. Res. 234 481–490. MR3144737

HU, Y., MA, J., PENG, S. and YAO, S. (2008). Representation theorems for quadratic F -consistent
nonlinear expectations. Stochastic Process. Appl. 118 1518–1551. MR2442369

JACOD, J. and SHIRYAEV, A. N. (2003). Limit Theorems for Stochastic Processes. Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 288.
Springer, Berlin. MR0959133

JIANG, L. (2008). Convexity, translation invariance and subadditivity for g-expectations and related
risk measures. Ann. Appl. Probab. 18 245–258. MR2380898

KLÖPPEL, S. and SCHWEIZER, M. (2007). Dynamic indifference valuation via convex risk mea-
sures. Math. Finance 17 599–627. MR2352907

KRÄTSCHMER, V., LADKAU, M., LAEVEN, R. A., SCHOENMAKERS, J. and STADJE, M.
(2015). Optimal stopping under drift and jump uncertainty. Preprint, available at
https://sites.google.com/site/mstadje/.

LI, Z., ZENG, Y. and LAI, Y. (2012). Optimal time-consistent investment and reinsurance strategies
for insurers under Heston’s SV model. Insurance Math. Econom. 51 191–203. MR2928756

MÄRKERT, A. and SCHULTZ, R. (2005). On deviation measures in stochastic integer programming.
Oper. Res. Lett. 33 441–449. MR2146607

MARKOWITZ, H. M. (1952). Portfolio selection. J. Finance 7 77–91.
PELSSER, A. and STADJE, M. (2014). Time-consistent and market-consistent evaluations. Math.

Finance 24 25–65. MR3157687
RIEDEL, F. (2004). Dynamic coherent risk measures. Stochastic Process. Appl. 112 185–200.

MR2073410
ROCKAFELLAR, R. T., URYASEV, S. and ZABARANKIN, M. (2006a). Generalized deviations in

risk analysis. Finance Stoch. 10 51–74. MR2212567
ROCKAFELLAR, R. T., URYASEV, S. and ZABARANKIN, M. (2006b). Optimality conditions in

portfolio analysis with general deviation measures. Math. Program. 108 515–540. MR2238713
ROCKAFELLAR, R. T., URYASEV, S. P. and ZABARANKIN, M. (2006c). Master funds in portfolio

analysis with general deviation measures. J. Bank. Financ. 30 743–778.
ROCKAFELLAR, R. T., URYASEV, S. P. and ZABARANKIN, M. (2007). Equilibrium with investors

using a diversity of deviation measures. J. Bank. Financ. 31 3251–3268.
ROSAZZA GIANIN, E. (2006). Risk measures via g-expectations. Insurance Math. Econom. 39 19–

34. MR2241848
ROYER, M. (2006). Backward stochastic differential equations with jumps and related non-linear

expectations. Stochastic Process. Appl. 116 1358–1376. MR2260739
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