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Construction of Weights in Surveys:
A Review
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Abstract. Weighting is one of the central steps in surveys. The typical
weighting process involves three major stages. At the first stage, each unit
is assigned a base weight, which is defined as the inverse of its inclusion
probability. The base weights are then modified to account for unit nonre-
sponse. At the last stage, the nonresponse-adjusted weights are further mod-
ified to ensure consistency between survey estimates and known population
totals. When needed, the weights undergo a last modification through weight
trimming or weight smoothing methods in order to improve the efficiency
of survey estimates. This article provides an overview of the various stages
involved in the typical weighting process used by national statistical offices.
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1. INTRODUCTION

Surveys are used to gather data on a usually small
subset of a population. Surveys are widely used by
a variety of professions and disciplines including but
not limited to national statistical offices (NSO); envi-
ronmental, behavioral and social sciences; and polling
market research firms. Typically, the aim is to estimate
finite population parameters, which are those describ-
ing some aspect of the finite population under study.
Frequently encountered parameters include means, to-
tals and proportions. In some cases, the interest lies in
estimating more complex parameters such as quantiles
and poverty indicators. In most surveys, information is
collected on many variables of interest (also called sur-
vey variables or characteristics of interest) and the aim
is to estimate many population parameters; such sur-
veys are thus often referred to as multipurpose surveys.
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Surveys conducted at NSOs provide an abundance of
examples of multipurpose surveys. Most often, the data
collected are stored in a rectangular data file, each
row corresponding to a sample unit (e.g., a business,
a household, an individual, etc.) and each column cor-
responding to a characteristic of interest (age, gender,
income, etc.). Made available on the data file is a col-
umn of final weights. This set of weights constitutes
a weighting system. The idea is to construct a single
weighting system applicable to all the characteristics
of interest. With a unique weighting system, linearly
weighted estimates of totals and other finite population
parameters are readily obtained by data users. This is
important for routine and timely production of statis-
tics (Särndal and Lundström, 2005). The focus of this
paper is to describe the typical weighting process in
multipurpose surveys. Weighting in surveys has been
discussed in Kish (1992), Kalton and Flores-Cervantes
(2003), Särndal (2007), Gelman (2007) and its discus-
sion, Rao et al. (2010), Haziza and Lesage (2016) and
Lavallée and Beaumont (2016), among others.

The typical weighting process consists of three ma-
jor stages:

Stage 1: Each sample unit is first assigned a design
(or basic) weight, which is defined as the inverse of its
inclusion probability in the sample. Most surveys use
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some form of unequal probability sampling design that
includes stratified sampling, proportional-to-size sam-
pling and multi-stage/phase sampling as special cases.
Unequal probability sampling designs are used for a
number of reasons: (i) To improve the statistical effi-
ciency of the sampling strategy or to reduce the cost
of sampling. (ii) Subpopulations of high interest may
be assigned a higher inclusion probability than other
subpopulations. This is often referred to as dispropor-
tionate sampling. (iii) In multi-stage cluster sampling
designs, proportional-to-size sampling of primary sam-
pling units may ensure self-weighting (equal overall
probabilities of selection) within strata. This approach
provides approximately equal interviewer work loads
which is desirable in terms of field operations (Rao,
2005). In Section 2, we describe several sampling de-
signs frequently encountered in practice. Based on
the inclusion probabilities, one can construct the basic
weighting system; see Section 3.

Stage 2: Virtually all surveys suffer from nonre-
sponse, which can be defined as the failure to obtain
usable responses from sample units. It is customary to
distinguish unit nonresponse from item nonresponse.
Unit nonresponse results in a complete lack of infor-
mation on a given sample unit, whereas item nonre-
sponse occurs when some characteristics, but not all,
are collected. The treatment of item nonresponse is be-
yond the scope of this article. The most common way
of dealing with unit nonresponse is to eliminate the
nonrespondents from the data file and to adjust the de-
sign weights of the respondents to compensate for the
elimination of the nonrespondents. To that end, the ba-
sic weights of respondents are multiplied by a nonre-
sponse adjustment factor. At this step, survey statisti-
cians aim at reducing the nonresponse bias, which may
be appreciable when respondents and nonrespondents
are different with respect to the characteristics of in-
terest. Whether or not one will succeed in achieving
an efficient bias reduction depends on the availability
of powerful auxiliary information (Särndal and Lund-
ström, 2005), which is a set of variables observed for
both respondents and nonrespondents. Weighting ad-
justment procedures in the context of unit nonresponse
are discussed in Section 5.

Stage 3: The last stage consists of modifying the
weights adjusted for nonresponse so that survey
weighted estimates agree with known population to-
tals available from external sources (e.g., the census
or administrative data) for important variables such as
gender, age group or region. This process is known as
calibration. It includes post-stratification and raking as

special cases. Calibration procedures are discussed in
Sections 4 and 5.

In some cases, the weighting process involves an ad-
ditional stage during which the final weights undergo
further modification. If the latter are highly dispersed
and are poorly related to the characteristics of interest,
the resulting estimators may exhibit a large variance.
A number of approaches, including weight trimming
and weight smoothing, have been developed to im-
prove the efficiency of survey estimates. These meth-
ods are discussed in Section 6.

In this paper, the properties (e.g., bias and variance)
of estimators are studied with respect to the sampling
design. This inferential approach is usually referred to
as the design-based approach; see Skinner and Wake-
field (2017) for a discussion of the alternative model-
based approach.

2. SAMPLING DESIGN

Let U be a finite population consisting of N units.
In survey sampling, the interest usually lies in estimat-
ing finite population parameters such as the population
total (or the population mean) of a characteristic of in-
terest. Let y1, . . . , yp , denote p characteristics of inter-
est (e.g., income, age, gender, job status, etc.) and let
yk = (y1k, . . . , ypk)

� be the p-vector of characteristics
of interest corresponding to the kth unit, k = 1, . . . ,N .
We denote by Y the p × N matrix whose N columns
are the p dimensional vectors y1, . . . ,yN . A finite pop-
ulation parameter is any function h(Y).

To estimate finite population parameters, it is com-
mon practice to select a sample S from the finite pop-
ulation. We assume that a q-vector of auxiliary vari-
ables, z, is available for all the population units prior
to sampling and let Z denote a q × N matrix whose N

columns are the q dimensional vectors z1, . . . , zN . In
practice, virtually all surveys conducted by NSO’s use
some form of auxiliary information in order to strat-
ify the population and/or to select the sample with in-
clusion probabilities proportional to some size vari-
able. The sample S is selected according to a given
sampling design F(I|Z), where I = (I1, . . . , IN)� is
the N -vector of sample selection indicators such that
Ik = 1 if unit k is selected in the sample and Ik = 0,
otherwise.

The first moment of the distribution F(I|Z) is
E(I|Z) = (π1(Z), . . . , πN(Z))� ≡ π(Z), the vector of
first-order inclusion probabilities. To ease notation, we
write πk(Z) = P(Ik = 1|Z) ≡ πk for the first-order in-
clusion probability attached to unit k. We assume that
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πk > 0 for all k ∈ U . This condition is often violated
in practice, in which case we are in the presence of
under-coverage.

The reader is referred to Tillé (2017) for a de-
scription of some basic sampling designs includ-
ing simple random sampling without replacement,
Bernoulli/Poisson sampling and proportional-to-size
sampling without replacement. Below, we briefly de-
scribe two-stage and two-phase sampling designs.

2.1 Two-Stage Sampling

Suppose the population U is partitioned into M clus-
ters or primary sampling units (p.s.u.). At the first
stage, a sample S1 of m p.s.u.’s is selected according
to a given sampling design. At the second stage, in the
ith p.s.u. selected at the first stage, a sample Si of sec-
ondary sampling units (also called elements or ultimate
units) is selected according to a given sampling design,
i = 1, . . . ,m. The selection of elements in a p.s.u. se-
lected at the first stage is independent of the selection
of elements in any other p.s.u. selected at the first stage.
The first-order inclusion probability of element k in the
ith p.s.u. is given by πk = πi × πk|i , where πi is the
first-order inclusion probability of the ith p.s.u. in the
first-stage sample, S1, and πk|i is the first-order inclu-
sion probability of element k in the ith p.s.u. given that
the ith p.s.u. was selected in S1.

2.2 Two-Phase Sampling

We discuss two-phase sampling because of its close
connection with unit nonresponse (see Section 5).
Two-phase sampling is used in surveys when the sam-
pling frame contains little or no auxiliary information.
It consists of first selecting a large sample from the
population (typically using a rudimentary sampling de-
sign) in order to collect data on variables that are inex-
pensive to obtain and that are related to the character-
istics of interest. The idea behind two-phase sampling
is to create a pseudo-sampling frame richer in auxil-
iary information than the original frame. Then, using
the variables observed in the first phase, an efficient
sampling procedure can be used to select a (typically
small) subsample from the first-phase sample in order
to collect the characteristics of interest.

Two-phase sampling may also be useful for sur-
veying rare populations when an appropriate sampling
frame does not exist. For instance, it is used at Statistics
Canada to survey aboriginal people. There does not ex-
ist any frame containing aboriginal people in Canada.
The first-phase sample consists of selecting a large
sample of households and collecting basic information

on all the household members such as the aboriginal
status. In 2016, these data were collected through the
long-form Census administered to roughly one-fourth
of the Canadian population. Then, at the second phase,
a stratified sample is selected among aboriginal peo-
ple selected in the first phase (Cloutier and Langlet,
2014). Statistics Canada conducts other similar post-
censal surveys targeting rare populations and using the
long-form Census as a sampling frame for a second
phase of sampling.

Two-phase sampling may be described as follows:
a N -vector I1 is generated according to the sampling
design F(I1|Z1), where I1 is the N -vector of first-
phase indicators and Z1 is a matrix of auxiliary in-
formation available for all the population units prior
to first-phase sampling. Let S1 be the first-phase sam-
ple. Then a n1-vector of second-phase sample indi-
cators, I2, is generated according to the sampling de-
sign F(I2|I1,Z∗

2), where Z∗
2 denotes a matrix of auxil-

iary information available for all the first-phase sample
units. The population version of Z∗

2 is denoted by Z2
but is not observed for units not selected at the first
phase. Let π1k = P(I1k = 1|Z1) be the first-order in-
clusion probability of unit k in the first-phase sample
and let π2k(I1) = P(I2k = 1|I1,Z∗

2) be the first-order
inclusion probability of unit k in the second-phase sam-
ple. The second-phase sample, denoted by S2, is the
set of population units for which both I1k = 1 and
I2k = 1. Note that the inclusion probabilities at the
second-phase may depend on the realized sample S1.
For this reason, the inclusion probabilities πk are in-
tractable except when the two-phase design is invariant
(Beaumont and Haziza, 2016). For an arbitrary two-
phase sampling design, the πk’s are generally unknown
because their calculation requires knowledge not only
of P(I1 = i1|Z1) for every possible realisation of I1
(in many cases, these are known) but also of π2k(I1)

for every realisation of I1. The latter are generally un-
known because π2k(I1) may depend on the outcome of
phase 1.

2.3 Indirect Sampling

The selection of a sample from the finite population
U requires the availability of a sampling frame UF that
contains a list of units that covers the entire popula-
tion U . Ideally, the sampling frame UF and the finite
population U are identical so that sampling from UF

is equivalent to sampling from U . In some sample sur-
veys, such a frame is not available but there exists a
sampling frame UF related in some way to the pop-
ulation of interest U . We assume that each unit of U
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is linked to at least one unit of UF . We denote by lik ,
the binary variable indicating whether unit i ∈ UF is
linked to unit k ∈ U (lik = 1) or not (lik = 0). We also
denote by UF

k , the set of units in UF that have a link
with unit k ∈ U , and by Ui , the set of units in U that
have a link with unit i ∈ UF .

Under the above set-up, a sample S from U can be
obtained indirectly by drawing a sample SF from UF

using standard selection methods. For each unit i ∈ SF ,
the information is collected for all the units k ∈ Ui . We
denote by SF

k , the set of units in SF that have a link
with unit k ∈ U . The sample S is simply the set of units
in U that have a link with at least one unit in SF . In
other words, S is the set of units k ∈ U for which SF

k

is not empty. When indirect sampling is used, the first-
order inclusion probability of a unit k ∈ U , πk , may
be difficult to derive but the first-order inclusion prob-
ability of a unit i ∈ UF , denoted by πF

i , can be eas-
ily computed provided that standard selection methods
have been used to sample from UF .

The Motion Picture Production Survey conducted by
Statistics Canada provides an example of indirect sam-
pling. In that survey, the sampling frame (called the
Business Register) contains an incomplete list of all
the establishments for which we are interested in col-
lecting information. A stratified simple random sam-
ple SF is drawn from that incomplete list, UF . For
any given selected establishment i ∈ SF , the contact
information of the company that possesses this estab-
lishment is obtained and the desired information is col-
lected for all the establishments belonging to that com-
pany (all k ∈ Ui ), including those that were not listed in
the sampling frame. This is done for each selected es-
tablishment in SF . This selection procedure avoids the
bias due to the incomplete frame as long as each estab-
lishment of the entire population U has a link with at
least one establishment in the sampling frame.

Sometimes, the population U can only be reached
through the use of more than one overlapping sampling
frames, UF

r , r = 1, . . . ,R, with R being the number
of frames. A sample is then selected from each frame,
each of them may be incomplete but the union of all
the frames, UF = ⋃R

r=1 UF
r , is assumed to cover U .

Multiple frame surveys can be viewed as a special case
of indirect sampling (see Lavallée, 2007).

3. BASIC WEIGHTING SYSTEM

3.1 Basic Set-up

For simplicity, we use the generic notation y to de-
note a characteristic of interest but the reader should

keep in mind that a typical survey involves a possi-
bly large number of variables. We focus on an impor-
tant parameter in practice: the population total, ty =∑

k∈U yk , where yk denotes the kth value of the char-
acteristic of interest y, k = 1, . . . ,N . We consider esti-
mators of ty of the form

(3.1) t̂y = ∑
k∈S

wkyk,

where wk is a weight attached to unit k. The weight
wk may vary from one unit to another and, for a given
unit, may vary from one sample to another. The set
{wk;k ∈ S} is called a weighting system. Note that the
weights wk are constructed without using the values of
the characteristics of interest. As a result, the weighting
system {wk;k ∈ S} can be applied to any characteristic
of interest.

In the case of design-based inference, the properties
of estimators are studied with respect to the sampling
design. That is, when taking the expectation of an es-
timator, the only source of randomness is the vector I
and all the other quantities involved in the inference are
treated as fixed. The latter include the design variables
Z and the characteristics of interest Y. To simplify the
notation, the symbol � is used to denote any quantity
but the vector I. The design-expectation of t̂y is defined
as E(t̂y |�). In a calibration context (see Section 4), �

will also include the calibration variables.
In this paper, we discuss the case of population

totals. In practice, the interest often lies in estimat-
ing more complex parameters. For example, many pa-
rameters encountered in practice can be expressed as
smooth functions of totals, for example, ratios and co-
efficients of correlation. These can be estimated using
a plug-in type estimator, whereby each population to-
tal is replaced by its corresponding weighted estimator.
The reader is referred to Särndal et al. (1992), Chap-
ter 5, for a treatment of complex parameters.

3.2 Expansion Estimators

The basic (or design) weight attached to unit k is de-
fined as the inverse of its inclusion probability. That is,
dk = 1/πk . The basic weighting system is {dk;k ∈ S}.
Applying the basic weighting system to the y-variable
leads to the well-known expansion estimator or π -
estimator (Narain, 1951, Horvitz and Thompson, 1952)
of ty :

(3.2) t̂y,π = ∑
k∈S

dkyk = ∑
k∈U

dkykIk.
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The dk’s are often referred to as expansion factors be-
cause, when applied to the sample y-values, the es-
timator t̂y,π reaches the level of the whole popula-
tion. Noting that E(Ik|�) = πk , the estimator (3.2) is
design-unbiased for ty regardless of the characteristic
of interest y being considered. That is, E(t̂y,π |�) = ty
for all y = (y1, . . . , yN)� ∈ R

N . Also, under mild reg-
ularity conditions, t̂y,π is design-consistent for ty in the
sense that t̂y,π − ty = Op(N/

√
n). For a discussion of

the asymptotic framework as well as the regularity con-
ditions required for establishing design-consistency,
the reader is referred to Breidt and Opsomer (2016).
It follows that, in the absence of nonsampling errors,
the basic weighting system ensures that, when applied
to any characteistic of interest y, the resulting estima-
tor is design-unbiased and design-consistent. An ex-
pression of the design variance of t̂y,π can be found
in Breidt and Opsomer (2016), equation (2). For a
fixed-size sampling design, the design-variance of t̂y,π ,
V (t̂y,π |�), is equal to zero when yk ∝ πk . This re-
sult suggests that the expansion estimator is very effi-
cient when yk is approximately proportional to πk . Of
course, in practice, it is not possible to satisfy the re-
quirement yk ∝ πk as the inclusion probabilities are set
prior to sampling, and the y-values are available only
after the sample has been selected.

A naive estimator of ty that does not use the design
information is the unweighted estimator

(3.3) t̂y,un = N

n

∑
k∈S

yk = N

n

∑
k∈U

ykIk.

Here, the expansion factor is equal to N/n for all k.
The unweighted estimator is generally design-biased.
Assuming a sampling design with a fixed sample
size n, its relative bias is given by

E(t̂y,un|�) − ty

ty
(3.4)

= (N − 1)

N
Ry,πCV(y)CV(π),

where

Ry,π = 1

(N − 1)

∑
k∈U(yk − yU)(πk − πU)

SySπ

denotes the finite population coefficient of corre-
lation between y and π with yU = ty/N , πU =∑

k∈U πk/N , Sy = [(N − 1)−1 ∑
k∈U(yk − yU)2]1/2

and Sπ is similarly defined, CV(y) = Sy/yU and
CV(π) = Sπ/πU are the coefficients of variation of
the y-variable and the π -variable, respectively. From

(3.4), the unweighted estimator is generally biased un-
less Ry,π = 0 (i.e., the y-variable is unrelated to the
π -variable) and/or CV(π) = 0, which corresponds to
a self-weighting design (i.e., a design for which all the
units have equal weights). The bias of t̂y,un increases
as the correlation between the y-variable and the π -
variable increases. When Ry,π = 0, the bias of t̂y,un

vanishes and the latter may be significantly more stable
than t̂y,π . This was illustrated in the famous circus ex-
ample of Basu (1971), where the expansion estimator
led to a disastrous result; see also Rao (1966) and Scott
and Smith (1969) for a theoretical discussion. In gen-
eral, t̂y,π tends to be unstable when the πk’s are highly
dispersed and are poorly related to the characteristic of
interest; see also Brewer (2002).

3.3 Empirical Illustration

We conducted a simulation study in order to com-
pare the performance of t̂y,π and t̂y,un in terms of bias
and efficiency. We generated a finite population of size
N = 1000 consisting of ten variables: an auxiliary vari-
able z available for all the population units prior to
sampling and nine characteristics of interest y1 − y9.
The nine characteristics of interest were generated in
order to illustrate the problem of the choice of weights
in multipurpose surveys. First, the z-values were gen-
erated according to a Gamma distribution with shape
parameter equal to 1 and scale parameter equal to 10,
resulting in a coefficient of variation of the z-values,
CV(z), equal to 1. Given the z-values, the values of y1

to y9 were generated according to the model

ytk = β0t + β1t zk + √
zkεk, t = 1, . . . ,9,

where the errors εk were generated from a normal dis-
tribution with mean equal to 0 and variance σ 2. In each
population, the coefficient of variation of the y-values,
CV(y), and the value of σ 2 were set to 1 and 12, re-
spectively. The values of β0t and β1t were chosen so
that the coefficient of correlation between yt and z was
set to 0.1t , t = 1, . . . ,9.

From the population, we selected 10,000 samples
of size n = 50 using the Rao–Sampford design (Rao,
1965, Sampford, 1967) with probability proportional to
the z-variable, that is, πk = nzk/

∑
k∈U zk . For such a

design, we have Ry,z = Ry,π and CV(π) = CV(z) = 1.
This suggests that the πk’s were fairly dispersed in our
experiment.

We were interested in estimating the population to-
tal for each of the characteristics of interest y1 − y9.
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FIG. 1. Relative bias of the Horvitz–Thompson and the unweighted estimator for several values of Ry,π .

In each sample, we computed the expansion estimator
given by (3.2) and the unweighted estimator given by
(3.3). Define the Monte Carlo average of an estimator
t̂ by

EMC(t̂) = 1

10,000

10,000∑
r=1

t̂(r),

where t̂(r) denotes the estimator t̂ in the r th repetition,
r = 1, . . . ,10,000. As a measure of bias of an estima-
tor t̂ , we computed the Monte Carlo percent relative
bias defined as RBMC(t̂) = 100 × {EMC(t̂) − ty}/ty .
As a measure of variability of t̂ , we computed the
Monte Carlo variance defined as VMC(t̂) = EMC{t̂ −
EMC(t̂)}2. Finally, we computed the Monte Carlo mean
square error defined as MSEMC(t̂) = EMC(t̂ − ty)

2.
Figure 1 shows the Monte Carlo percent relative bias

of t̂y,π and t̂y,un for varying values of Ry,π . As ex-
pected, t̂y,π showed a negligible bias for every value
of Ry,π . In contrast, the bias of t̂y,un increased as Ry,π

increased. This is consistent with (3.4).
Figure 2 shows the percent relative variance and the

percent relative efficiency

RV = 100 × VMC(t̂y,π )

VMC(t̂y,un)
,

RE = 100 × MSEMC(t̂y,π )

MSEMC(t̂y,un)

for varying values of Ry,π . From Figure 2, t̂y,un was
more stable than t̂y,π for all values of Ry,π as the val-
ues of RV were all greater than 100. For example, for

Ry,π = 0.5, the value of RV was approximately equal
to 480. Turning to relative efficiency, t̂y,un was more
efficient than the expansion estimator for small values
of Ry,π (less than 0.4). For Ry,π ≥ 0.5, t̂y,π was more
efficient than t̂y,un with values of RE smaller than 100.
For example, for Ry,π = 0.9, the value of RE was ap-
proximately equal to 85.

These results suggest that, although the expansion
estimator is design-unbiased, it may be inefficient if the
πk’s are highly dispersed and are poorly related to the
characteristic of interest.

3.4 The Double Expansion Estimator

As mentioned in Section 2.2, the first-order inclu-
sion probabilities πk are generally unknown in the
case of an arbitrary two-phase design. As a result, the
basic weighting system {dk;k ∈ S} described in Sec-
tion 3.2 cannot be used since the dk’s are unknown.
To cope with this problem, we use the weighting sys-
tem {d̃k;k ∈ S2}, where d̃k = 1/{π1kπ2k(I1)}. Note that
d̃k 	= dk , in general, unless the two-phase design is in-
variant. Applying the weighting system {d̃k;k ∈ S2} to
a characteristic of interest y leads to double expansion
estimator (Särndal et al., 1992, Chapter 9) of ty :

(3.5) t̂y,DE = ∑
k∈S2

d̃kyk = ∑
k∈U

d̃kykI1kI2k.

Let � denote any quantity involved in the infer-
ence but the vectors of sample inclusion indicators
I1 and I2. Noting that E(I2k|I1,�) = π2k(I1) and
E(I1k|�) = π1k , it follows that the estimator (3.5) is
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FIG. 2. Relative variance and relative efficiency for several values of Ry,π .

design-unbiased for ty regardless of the characteris-
tic of interest y being considered. That is, E(t̂y,DE) =
E{E(t̂y,DE|I1,�)|�} = ty for all y = (y1, . . . , yN)� ∈
R

N .

3.5 Generalized Weight Share Method

With indirect sampling, the πk’s are often difficult or
even impossible to compute exactly and the expansion
estimator cannot be computed. One possible alterna-
tive consists of taking advantage of the links that relate
the population U to the sampling frame UF . The basic
principle behind this approach is to express a total over
the population U in terms of a total over UF . Then
standard weighting methods can be used to estimate
the latter total. More formally, consider the estimation
of ty = ∑

k∈U yk and define constants αik such that∑
i∈UF

likαik = ∑
i∈UF

k

αik = 1,

for all k ∈ U . A simple and common choice is αik =
1/Mk , where Mk = ∑

i∈UF lik is the size of UF
k ; that

is, the number of units in the sampling frame UF that
have a link with unit k ∈ U . The total ty can then be
rewritten as

ty = ∑
k∈U

yk = ∑
k∈U

yk

∑
i∈UF

likαik = ∑
i∈UF

∑
k∈U

likαikyk

= ∑
i∈UF

∑
k∈Ui

αikyk = ∑
i∈UF

yF
i ,

where yF
i = ∑

k∈U likαikyk = ∑
k∈Ui

αikyk .

The estimation of ty = ∑
k∈U yk can thus be achieved

by estimating
∑

i∈UF yF
i using standard weighting

methods. For instance, the expansion estimator, t̂Fy,π =∑
i∈SF dF

i yF
i , can be used, where dF

i = 1/πF
i .

The estimator t̂Fy,π can be used directly but it requires
the creation and the use of the modified values yF

i .
Some users would prefer to use the original values yk ,
for k ∈ S, along with a proper set of weights. This can
be done using this approach by noting that t̂Fy,π can be
rewritten as

t̂Fy,π = ∑
i∈SF

dF
i yF

i = ∑
i∈SF

dF
i

∑
k∈U

likαikyk

= ∑
k∈S

yk

∑
i∈SF

k

dF
i αik = ∑

k∈S

wGWS
k yk,

where wGWS
k = ∑

i∈SF
k

dF
i αik .

The weight wGWS
k can be obtained using the so-

called generalized weight share method (e.g., Laval-
lée, 2007; Deville and Lavallée, 2006). The condition∑

i∈UF
k

αik = 1, k ∈ U , ensures that the estimator t̂Fy,π

is design-unbiased for ty . The choice αik = 1/Mk is
common but may be inefficient. As an illustration, sup-
pose that one unit j ∈ UF is selected with certainty,
that is, πF

j = 1. All the units k ∈ Uj will thus be se-
lected with certainty in S, that is, πk = 1, for k ∈ Uj .
As a result, efficiency considerations suggest that, for
any given unit k ∈ Uj , αik , for i ∈ UF

k , should be cho-
sen so that wGWS

k = 1. This can be achieved by letting
αjk = 1 and αik = 0, for all other units i ∈ UF

k , i 	= j .
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Intuitively, a unit i ∈ UF
k with a relatively large prob-

ability πF
i should be associated with a large value of

αik . This is not the case of αik = 1/Mk as it gives the
same value for all units i ∈ UF

k . Optimal or, at least,
more efficient choices of αik are discussed in greater
depth in Deville and Lavallée (2006).

4. CALIBRATED WEIGHTING SYSTEM

In practice, some auxiliary information is often
available at the estimation stage. Let x = (x1, . . . ,

xJ )� be a J -vector of auxiliary variables recorded for
all the sample units. Further, we assume that the vector
of population totals, tx = (tx1, . . . , txJ

)�, is available
from external sources, where txj

= ∑
k∈U xjk . External

sources include the census and administrative records.
While the basic weighting system ensures unbiased-
ness, that is, E(t̂x,π |�) = tx, it does not produce an
exact estimate for each of the J auxiliary variables;
that is, t̂x,π 	= tx, in general. This lack of consistency
may be embarrassing in practice. For instance, suppose
that two distinct surveys collect the variable gender
for each sample unit. The estimated number of males
and females will almost certainly differ in both sur-
veys. Further, these estimates will almost certainly dif-
fer from the census counts, which begs the question:
which set of estimates to consider in an analysis in-
volving the gender? To cope with this problem, the
basic weights are modified so that survey estimates co-
incide with known population totals available from ex-
ternal sources (e.g., the census counts). This process is
known as calibration. The reasons for using calibration
are three-fold:

(i) to force consistency of certain survey estimates
to known population quantities;

(ii) to reduce nonsampling errors such as nonre-
sponse errors and coverage errors;

(iii) to improve the precision of estimates.

The use of calibration for reducing nonresponse er-
rors is discussed in Section 5. The use of calibration
for handling coverage errors is outside the scope of this
paper. Its justification usually relies on the assumption
that a linear model holds between the characteristics of
interest and the auxiliary variables. The reader is re-
ferred to Särndal (2007), Kott (2009), Kim and Park
(2010) and Wu and Lu (2016) for excellent overviews
of calibration weighting.

We seek a calibrated weighting system {w̃k;k ∈ S}
such that the weights w̃k are “as close as possible” to

the design weights dk while satisfying the calibration
constraints

(4.1)
∑
k∈S

w̃kxk = tx;

see Deville and Särndal (1992) and Deville et al.
(1993). There are infinitely many possible weighting
systems {w̃k;k ∈ S} that satisfy the calibration con-
straints (4.1). The goal is to determine a set of cal-
ibrated weights w̃k that is close (in a sense that we
define below) to the set of pre-calibrated weights dk ,
which ensures that the resulting calibration estimator
will be design-consistent.

As a measure of closeness between the pre-calibrated
weights and the calibrated weights, we consider the
distance function G(w̃k/dk) such that G(w̃k/dk) ≥ 0,
G(1) = 0, differentiable with respect to w̃k , strictly
convex with continuous derivatives g(u) = ∂G(u)/∂u

and g(1) = 0. The calibration problem may be formu-
lated as follows: we seek a calibrated weighting system
{w̃k;k ∈ S} that minimizes

(4.2)
∑
k∈S

dkG(w̃k/dk)

qk

subject to (4.1), where the coefficient qk is a scale fac-
tor indicating the importance of unit k in the distance
calculation. In most practical situations, the factor qk is
set to 1. Using the method of Lagrange multipliers, we
define

φ(w̃1, . . . , w̃n,λ)

= ∑
k∈S

dkG(w̃k/dk)

qk

− λ�
(∑

k∈S

w̃kxk − tx

)
,

where λ = (λ1, . . . , λJ )� is a J -vector of Lagrange
multipliers. Differentiating φ(w̃1, . . . , w̃n,λ) with re-
spect to w̃k and setting the derivative equal to zero, we
obtain

(4.3) w̃k = dkF
(
qkλ

�xk

)
,

where F(u) = g−1(u) is the inverse function of g(·),
which is often referred to as the calibration function.
Substituting (4.3) in (4.1) leads to

(4.4)
∑
k∈S

dkF
(
qkλ

�xk

)
xk = tx.

It remains to solve (4.4) for λ, which involves a system
of J equations in J unknowns. This can be achieved
using numerical methods such as the Newton–Raphson
algorithm. Let λ̂ be the solution of (4.4). The calibrated
weight attached to unit k is given by

(4.5) w̃k = dkF
(
qkλ̂

�
xk

)
.
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The calibration weights (4.5) can be thought of as the
product of the pre-calibrated weight, dk , and a cali-

bration factor, F(qkλ̂
�

xk). The latter depends on the
calibration function F(·), the characteristics of unit k

through qk and xk as well as λ̂
�

, that can be viewed as
a measure of sample imbalance. If the sample is bal-
anced with respect to the x-vector in the sense that
t̂x,π = tx, then w̃k = dkF (0) = dk for all k. An al-
ternative formulation of calibration has been given by
Deville (2002), Estevao and Särndal (2000) and Kott
(2006), among others. It consists of replacing qkxk

in (4.5) by a vector of variables zk , which have been
called instruments by these authors, and then solving
the calibration constraints (4.4). The optimal choice of
zk ends up with the so-called optimal estimator devel-
oped by Montanari (1987); see also Rao (1994).

Applying the calibrated weighting system {w̃k;k ∈
S} to the y-variable leads to the calibration estimator

(4.6) t̂y,C = ∑
k∈S

w̃kyk = ∑
k∈S

dkF
(
qkλ̂

�
xk

)
yk.

The estimator t̂y,C is generally design-biased; that is,
E(t̂y,C |�) 	= ty . However, it is design-consistent for ty
in the sense t̂y,C − ty = Op(N/

√
n); see, for example,

Deville and Särndal (1992) and Kim and Park (2010).
Now, suppose that the y-variable is linearly related to
the vector of calibration variables x and that the rela-
tionship is perfect; that is, yk = x�

k β for all k, where β

is a J -vector of unknown coefficients. In this case, t̂y,C

provides a perfect estimate of ty since

t̂y,C = ∑
k∈S

w̃kyk = ∑
k∈S

w̃kx�
k β

= ∑
k∈U

x�
k β = ∑

k∈U

yk = ty,

where the third equality follows from (4.1). Therefore,
we expect t̂y,C to be very efficient if there exists a
strong linear relationship between the y-variable and
the vector x. It is worth noting that all the calibration
estimators are asymptotically equivalent to the calibra-
tion estimator obtained through the linear method; see
(4.8) below. An expression of the asymptotic design
variance of t̂y,C is given in Breidt and Opsomer (2016).

4.1 Some Common Calibration Methods

4.1.1 Calibration estimators that do not depend on
the calibration function. Given a vector of auxiliary
variables xk , different calibration functions F(·) lead to
different calibration estimators t̂y,C , in general. There

are some exceptions to this rule; that is, there exist vec-
tors of auxiliary variables, xk , that lead to the same cal-
ibration estimator regardless of F(·). These estimators
include the Hàjek estimator (Hàjek, 1971), the ratio es-
timator and the post-stratified estimator. They are pre-
sented below:

(i) When the population size N is known, it is natu-
ral to require the estimated population size

∑
k∈S w̃k

to match the true size N . To that end, it suffices to
set xk = 1 and qk = q for all k so that

∑
k∈U xk = N .

The calibrated weight w̃k in (4.5) reduces to w̃k =
dk(N/N̂π), where N̂π = ∑

k∈S dk , and the calibration
estimator (4.6) reduces to the Hàjek estimator

t̂y,C = N
t̂y,π

N̂π

.

(ii) Suppose that a quantitative variable xk is avail-
able for all k ∈ S and the population total of the x-
values is known. Setting qk = x1

k in (4.5) leads to
w̃k = dk(tx/t̂x,π ) and the calibration estimator (4.6) re-
duces to the ratio estimator

t̂y,C = t̂y,π

t̂x,π

tx.

(iii) Suppose that a categorical variable (e.g., gen-
der, age group, etc.) with J categories is available for
all the sample units and that the vector of population
counts N = (N1, . . . ,Nj , . . . ,NJ )� is known, where
Nj denotes the number of units in the population be-
longing to the j th category. Let xk = (x1k, . . . , xJk)

�
be the J -vector attached to unit k such that xjk = 1 if
unit k belongs to the j th category and xjk = 0, other-
wise. Setting qk in (4.5) to qj if unit k belongs to the
j th category leads to the post-stratified weights

w̃k = dk

Nj

N̂j,π
(4.7)

if unit k belongs to the j th category,

where N̂j,π = ∑
k∈S∩Uj

dk represents the estimated
number of individuals belonging to the j th category
and Uj is the set of population units belonging to the
j th category. The calibration estimator (4.6) reduces to
the post-stratified estimator

t̂y,C =
J∑

j=1

Nj

N̂j,π

t̂jy,π ,

where t̂jy,π = ∑
k∈S∩Uj

dkyk . Let nj be the size of
S ∩ Uj , j = 1, . . . , J . The nj ’s are random variables,
which implies that some post-strata could be very small
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or empty; that is, nj = 0 for some j . In such cases, it is
recommended to use some form of collapsing in order
to reduce the number of post-strata; see, for example,
Fuller (1966).

4.1.2 The linear method. This method is based on
the generalized chi-square distance function

G(w̃k/dk) = 1

2

(
w̃k

dk

− 1
)2

.

The resulting calibrated weights are given by

w̃k = dk

(
1 + qkλ̂

�
xk

)
= dk

{
1 + qk(tx − t̂x,π )�

(∑
k∈S

dkxkqkx�
k

)−1
xk

}
.

With the linear method, there always exists a solution
λ̂ that satisfies (4.4). However, some weights may be
negative. Negative weights tend to occur when (i) the
size J of the vector x is large, which translates into a
large number of calibration constraints and/or (ii) when
t̂xj ,π is far from txj

for some j = 1, . . . , J . Although a
few negative weights may have little impact on the esti-
mates, their presence on the data file is usually deemed
unacceptable by data users because a negative weight
is hard to interpret. In some instances, negative weights
could lead to negative estimates of totals or means of
intrinsically nonnegative variables.

The resulting calibration estimator is

t̂y,C = ∑
k∈S

w̃kyk = t̂y,π + (tx − t̂x,π )�B̂,(4.8)

where

B̂ =
(∑

k∈S

dkxkqkx�
k

)−1 ∑
k∈S

dkxkqkyk.

The estimator (4.8) is the generalized regression esti-
mator, which has been widely studied in the context
of model-assisted estimation; see Särndal et al. (1992),
Chapter 6 and Breidt and Opsomer (2016) for discus-
sions of the generalized regression estimator.

4.1.3 The exponential method. This method is
based on the Kullback–Leibler information distance

G(w̃k/dk) = w̃k

dk

log
w̃k

dk

− w̃k

dk

+ 1.

The resulting calibrated weights are given by

(4.9) w̃k = dk exp
(
qkλ̂

�
xk

)
.

TABLE 1
Population counts in the case of two categorical variables

x1\x2 1 2 . . . J2 Margin

1 N11 N12 . . . N1J2 N1•
2 N21 N22 . . . N2J2 N2•
...

...
...

...
...

...

J1 NJ11 NJ12 . . . NJ1J2 NJ1•
Margin N•1 N•2 . . . N•J2

Although the calibrated weights (4.9) are always pos-
itive, some may be extreme, which can cause the re-
sulting estimator to be unstable especially if the cali-
bration variables are poorly related to the y-variable.
Also, a solution to (4.4) may not exist.

One special case of the exponential method arises
in the context of two categorical variables (e.g., gen-
der and age group) with J1 and J2 distinct categories,
respectively. Conceptually, the population U is parti-
tioned into J1 × J2 cells, Uj1j2 , of size Nj1j2 , j1 =
1, . . . , J1; j2 = 1, . . . , J2. If the cell counts Nj1j2 are
known, then we can construct a vector xk of size
J1 × J2 consisting of J1 × J2 − 1 entries equal to
zero and a single entry equal to 1, which identifies
the cell to which the unit k belongs. This situation is
a special case of post-stratification discussed in Sec-
tion 4.1.1. Often, the individual cell counts are un-
known, in which case post-stratification is not feasi-
ble. However, the marginal counts Nj1• = ∑J2

j2=1 Nj1j2

and N•j2 = ∑J1
j1=1 Nj1j2 are available and can be in-

corporated in the estimation procedure. Let N̂j1j2,π =∑
k∈Sj1j2

dk be the estimated counts in cell (j1, j2)

based on the basic weighting system, where Sj1j2 =
S ∩ Uj1j2 ; see Tables 1 and 2.

It is virtually certain that the estimated marginal
counts based on the basic design weights will not

TABLE 2
Estimated counts in the case of two categorical variables based on

the basic weighting system

x1\x2 1 2 . . . J2 Margin

1 N̂11,π N̂12,π . . . N̂1J2,π N̂1•,π
2 N̂21,π N̂22,π . . . N̂2J2,π N̂2•,π
...

...
...

...
...

...

J1 N̂J11,π N̂J12,π . . . N̂J1J2,π N̂J1•,π
Margin N̂•1,π N̂•2,π . . . N̂•J2,π
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match the known population marginal counts; that is,
N̂j1•,π 	= Nj1• and N̂•j2,π 	= N•j2 . Let δj1•k be the row
indicator for unit k such that

δj1•k =
{

1, if k belongs to row j1,

0, otherwise.

Similarly, define the column indicator δ•j2k as

δ•j2k =
{

1, if k belongs to column j2,

0, otherwise.

We define xk = (δ1•k, . . . , δJ1•k, δ•1k, . . . , δ•J2k)
� of

size J1 + J2. The vector of known marginal population
counts is given by

tx = ∑
k∈U

xk = (N1•, . . . ,NJ1•,N•1, . . . ,N•J2)
�.

Under this set-up, the calibration weights (4.9) reduces
to the raking ratio weights and are identical to those
generated by the iterative proportional fitting procedure
of Deming and Stephan (1940). The calibration estima-
tor

t̂y,C = ∑
k∈S

dk exp
(
qkλ̂

�
xk

)
yk

reduces to the well-known raking ratio estimator.
When there are more than two categorical calibration
variables, the resulting estimator is often referred to as
the generalized raking estimator; for example, Deville
et al. (1993).

4.1.4 The empirical likelihood method. This meth-
od is based on the inverse Kullback–Leibler informa-
tion distance

G(w̃k/dk) = w̃k

dk

log
w̃k

dk

− w̃k

dk

+ 1.

The resulting calibrated weights are given by

(4.10) w̃k = dk

1 − qkλ̂
�

xk

.

Although the calibrated weights (4.10) are always pos-

itive, some may be extreme when λ̂
�

xk is close to q−1
k .

Also, a solution to (4.4) may not exist. The weight
(4.10) is often encountered in the context of empirical
likelihood estimation; see, for example, Wu and Rao
(2006).

4.1.5 The truncated linear and the logit methods.
The truncated linear and the logit methods can be used
in order to ensure that the calibration adjustment fac-
tors lie between pre-specified lower and upper bounds.
The use of these methods may help avoiding the oc-
currence of negative or extreme weights. The truncated
linear method is based on the following distance func-
tion:

G(w̃k/dk) =
⎧⎪⎨
⎪⎩

1

2

(
w̃k

dk

− 1
)2

, L <
w̃k

dk

< M,

∞, otherwise,

for constants L and M , representing the lower and up-
per bounds, respectively. The corresponding calibra-
tion function is given by

F
(
qkλ

�xk

)

=

⎧⎪⎪⎨
⎪⎪⎩

1 + qkλ
�xk, (L − 1) ≤ qkλ

�xk ≤ (M − 1),

M, qkλ
�xk > (M − 1),

L, qkλ
�xk < (L − 1).

The logit method is based on the following distance
function:

G(w̃k/dk)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
ak log

ak

1 − L
+ bk log

bk

M − 1

)
dk

A
,

L <
w̃k

dk

< M,

∞, otherwise,

where

ak = w̃k

dk

− L, bk = M − w̃k

dk

,

A = M − L

(1 − L)(M − 1)
.

The corresponding calibration function is given by

F
(
qkλ

�xk

)
(4.11)

= L(M − 1) + M(1 − L) exp(Aqkλ
�xk)

M − 1 + (1 − L) exp(Aqkλ
�xk)

.

Examples of intervals [L,M] used in practice include
[1/2,2], [1/3,3], [1/4,4]. Imposing bounds restricts
the solution space, and hence lowers the possibility of
the existence of a solution to the calibration equations.
Therefore, the tighter the interval the less of a chance
that a solution exists. If an interval is too small, the
weights will have a tendency to amass at the bounds
if a solution exists. The larger the sample size n, the
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more restrictive the chosen interval can be. An exam-
ination of the distribution of w̃k/dk is needed in order
to identify the most appropriate interval. Folsom and
Singh (2000) proposed an extension of (4.11) to allow
for nonuniform bounds (L,M) for different subgroups
of weights.

4.1.6 Choice of the distance function. The calibra-
tion function is usually chosen so that the distribution
of the calibration factors w̃k/dk is “cosmetically attrac-
tive”, which we characterize as a distribution with no
negative or extreme weights and that does not amass
at the bounds. In practice, we suggest following these
steps for choosing the calibration function: Start with
the linear method and check whether or not there are
negative calibration factors. If any, use the exponential
method or the empirical likelihood method that ensure
positive weights. Check whether or not the selected
method has generated some extreme weights. If so, use
any method that permits to bound the weights such as
the truncated linear function or the logit function in or-
der to ensure that the calibration adjustment factors lie
between pre-specified lower and upper bounds.

4.2 Choice of Auxiliary Variables

At the estimation stage, there are two conflicting re-
quirements. On the one hand, survey managers may
be tempted to ensure consistency between survey esti-
mates and known totals for a large vector x of auxiliary
variables. On the other hand, survey statisticians strive
for efficient point estimators. If the number of auxil-
iary variables is large, the resulting calibrated weights
are likely to be highly dispersed, leading to unstable
estimates for characteristics of interest poorly related
to the calibration variables. To overcome this prob-
lem, Silva and Skinner (1997) suggested performing
variable selection procedures to identify the calibration
variables that are related to the characteristics of inter-
est (or at least, a subgroup). They proposed a forward
selection procedure that consists of starting with a non-
calibrated estimator and adding the calibration variable
that leads to a calibrated estimator with the smallest es-
timated mean square error. This procedure is repeated
until the mean square error starts to increase, at which
point the subset of the calibration variables leading to
the smallest estimated mean square error, is selected.
An alternative is ridge calibration, whereby a cost is as-
signed to each calibration constraint. On the one hand,
assigning a large cost to a given constraint means that
it is desired to stay close to the calibration constraint.
In the extreme case, one can assign an infinite cost to

a given constraint if one wishes to exactly satisfy that
constraint. On the other hand, with a small cost, one is
willing to tolerate a potentially large discrepancy be-
tween the survey estimate and the corresponding pop-
ulation total. In the extreme case, one can assign a cost
value of zero in order to discard a constraint. Ridge cal-
ibration can also be used to satisfy pre-specified lower
and upper bounds on the weights. The reader is referred
to Chambers (1996), Beaumont and Bocci (2008) and
Breidt and Opsomer (2016) for a discussion of ridge
calibration.

4.3 Calibration for Two-Stage Sampling

In the context of two-stage sampling, some complex-
ity arises because two types of sampling units are con-
sidered: the primary sampling unit (p.s.u.) such as a
household or a business and the secondary sampling
unit (s.s.u.) such as an individual or an employee. This
structure generates two levels of auxiliary information.
For instance, in a survey of individuals, we may have
auxiliary information at the household level such as the
number of individual in the household, the number of
individuals in each age group and the owner/renter sta-
tus. We may also have auxiliary information at the in-
dividual level such as gender, age group of each indi-
vidual in the household and profession of each indi-
vidual. The reader is referred to Estevao and Särndal
(2006) for an excellent discussion of calibration pro-
cedures in the context of two-stage/phase sampling. In
the presence of two-level information, it seems desir-
able to simultaneously calibrate on known totals both
at the p.s.u. and s.s.u. levels.

Many surveys using two-stage sampling serve a dou-
ble objective: (i) provide estimates of totals for the pop-
ulation of s.s.u.’s; and (ii) provide estimates of totals
for the population of p.s.u.’s. Examples of characteris-
tics of interest at the s.s.u. level include individual in-
come and job status. We denote these variables by y(e).
Examples of characteristics of interest at the p.s.u. level
include household income and household spending. We
denote these variables by y(c). The interest lies in esti-
mating two types of totals: ty(e)

= ∑M
i=1

∑Ni

k=1 y(e)k and
ty(c)

= ∑M
i=1 y(c)i , where Ni is the size of the ith p.s.u.,

i = 1, . . . ,M .
The design weight of the kth s.s.u. in the ith p.s.u. is

given by

dk = π−1
i π−1

k|i
(4.12)

if the kth s.s.u. belongs to the ith p.s.u.;
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see Section 2.1. Expansion types estimators of ty(e)
and

ty(c)
are given by

t̂y(e),π = ∑
i∈S1

∑
k∈Si

dky(e)k, t̂y(c),π = ∑
i∈S1

π−1
i y(c)i ,

respectively.
Let x1i be a vector of p.s.u.-level auxiliary variables

of size J1 such that x1i is observed for all i ∈ S1 and∑M
i=1 x1i is known. Let x2k be a vector of s.s.u.-level

auxiliary variables of size J2 such that x2k is observed
for all k ∈ ⋃M

i=1 Si and
∑M

i=1
∑Ni

k=1 x2k is known. Let
w̃i be the calibrated weight for the ith p.s.u. and w̃k be
the calibrated weight for the kth s.s.u.

Mimicking (4.12), we impose the following relation-
ship between w̃i and w̃k :

w̃k = w̃iπ
−1
k|i

(4.13)
if the kth element belongs to the ith cluster.

When a convenient relationship such as (4.13) is im-
posed, we have integrated weighting, a term coined
by Lemaître and Dufour (1987). Estevao and Särndal
(2006) discuss alternatives to (4.13). The effect of in-
tegrated weighting on the efficiency of calibration esti-
mators was discussed in Steel and Clark (2007).

The calibration constraints are given by

∑
i∈S1

w̃ix1i =
M∑
i=1

x1i ,(4.14)

∑
i∈S1

∑
k∈Si

w̃kx2k =
M∑
i=1

Ni∑
k=1

x2k.(4.15)

Thanks to (4.13), the constraints (4.14) and (4.15) can
be compactly written as

∑
i∈S1

w̃i

(
x1i

x̂2i

)
=

⎛
⎜⎜⎜⎜⎜⎝

M∑
i=1

x1i

M∑
i=1

Ni∑
k=1

x2i

⎞
⎟⎟⎟⎟⎟⎠ ,(4.16)

where

x̂2i = ∑
k∈Si

x2k

πk|i
.

From (4.16), the calibration procedure can be realized
in a single step. The goal is to obtain a set of cali-
brated weights w̃i as close as possible to the design
weights π−1

i subject to (4.16). Any calibration method
presented in Section 4.1 can be used. Calibration esti-
mators of ty(e)

and ty(c)
are given by

t̂y(e),C
= ∑

i∈S1

∑
k∈Si

w̃ky(e)k, t̂y(c),C
= ∑

i∈S1

w̃iy(c)i .

REMARK 4.1. If all the elements in a selected
p.s.u. are selected, then πk|i = 1 and the weight of all
the s.s.u.’s belonging to the p.s.u. are all equal to the
weight of that p.s.u. This is a desirable property.

REMARK 4.2. Nonintegrated weighting consists
of performing two independent calibration without im-
posing a relationship such as (4.13). That is, starting
with the weights π−1

i as the initial weights, compute
the calibration weights w̃i subject to (4.14). In a second
independent calibration, starting with the weights dk ,
compute the calibration weights w̃k subject to (4.15).
A consequence of nonintegrated calibration is the po-
tential inconsistency between estimates at the element
level obtained using the sets of weights: w̃iπ

−1
k|i and

w̃k . That is,

∑
i∈S1

∑
k∈Si

w̃iπ
−1
k|i x2k 	= ∑

i∈S1

∑
k∈Si

w̃kx2k =
M∑
i=1

Ni∑
k=1

x2k,

which is somehow embarrassing.

4.4 Calibration for Two-Phase Sampling Designs

As in two-stage sampling, there are two levels of
auxiliary information in two-phase sampling designs.
The notation in this section follows closely the one in
Estevao and Särndal (2006). We distinguish between
two types of auxiliary variables: (i) a vector of auxil-
iary variables x∗

k of size J ∗ and (ii) a vector of auxiliary
variables xo

k of size J o. The availability of the auxil-
iary information is as follows: (a) For every k ∈ S1, we
observe xo

k . (b) For every k ∈ S2, we observe both x∗
k

and xo
k . (c) The vector of population totals,

∑
k∈U x∗

k ,
is known but the vector of population totals

∑
k∈U xo

k

is unknown. Available to us is the vector of estimated
totals

∑
k∈S1

π−1
1k xo

k .
A vector of auxiliary variables, xk , of size J = J ∗ +

J o, is constructed by stacking the auxiliary information
to obtain

xk =
(

x∗
k

xo
k

)
.

There exist at least three alternatives to obtain the
calibrated weights w̃k . Here, we focus on the so-
called single-step calibration; see Estevao and Särn-
dal (2006) for alternative procedures. Starting with the
initial weights d̃k = 1/{π1kπ2k(I1)} (see Section 3.4),
compute the calibrated weights w̃k for k ∈ S2 subject
to the calibration constraints

∑
k∈S2

w̃kxk =

⎛
⎜⎜⎝

∑
k∈U

x∗
k∑

k∈S1

π−1
1k xo

k

⎞
⎟⎟⎠ .
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Any calibration method covered in Section 4.1 can be
used. The resulting calibration estimator of ty is given
by

t̂y,C = ∑
k∈S2

w̃kyk.

The material presented in this section provides a plat-
form for single-step weighting often used for treating
unit nonresponse; see Section 5.

4.5 Model Calibration

We argued that the conventional calibration estima-
tors (see Section 4.1) are efficient when the y-variable
is linearly related to x and the relationship is strong.
The procedures presented previously are thus efficient
when a linear regression model fits the data well. If the
y-variable is not continuous, a linear regression model
may not be appropriate and the resulting calibration
may be inefficient. To cope with this problem, Wu and
Sitter (2001) introduced the concept of model calibra-
tion, which may improve the efficiency of estimators
when the relationship between y and x is not well de-
scribed by a linear regression model. Suppose that the
relationship between y and x can be modelled by

E(yk|xk) = μ(xk,β), V (yk|xk) = σ 2ck,

where μ(·,β) is a known function, β is a vector of un-
known coefficients, σ 2 is an unknown parameter and ck

is a known factor attached to unit k. The above model
includes two important special cases: (i) linear regres-
sion models and (ii) generalized linear and other non-
linear regression models. Let μ(xk, β̂) denote the fitted
values k = 1, . . . ,N , where β̂ is a design-consistent es-
timator of β . Wu and Sitter (2001) proposed the fol-
lowing model calibration estimator of ty :

t̂y,MC = ∑
k∈S

w̃kyk,

where the calibrated weights w̃k are as close as possi-
ble to the design weights dk subject to∑

k∈S

w̃k = N,
∑
k∈S

w̃kμ(xk, β̂) = ∑
k∈U

μ(xk, β̂).

Once again, any calibration method F(·) described in
Section 4.1 can be used. The estimator t̂y,MC is design-
consistent for ty irrespective of whether the model
holds.

Wu (2003) showed that the method of Wu and Sitter
(2001) is optimal among a class of calibration estima-
tors in the sense of minimising the expected asymptotic

design variance under a superpopulation model and the
sampling design.

While conventional calibration methods require the
auxiliary information to be recorded for the sample
units only and population quantities imported from
external sources, model calibration requires xk to be
recorded for all k ∈ U , which is often referred to as
complete auxiliary information. This is a fairly restric-
tive requirement because most often, the values of xk

are not available individually for the nonsample units.
Montanari and Ranalli (2005) extended the model cal-
ibration procedure of Wu and Sitter (2001) to handle
nonparametric models.

5. WEIGHTING SYSTEM ADJUSTED FOR UNIT
NONRESPONSE

The main issue with nonresponse is the bias intro-
duced when the respondents are different from the non-
respondents with respect to the survey variables. An
additional component of variance is also added due to
the observed sample size, nr , that is smaller than the
initially planned sample size, n. The key to reducing
both nonresponse bias and variance is to use nonre-
sponse weighting methods that take advantage of aux-
iliary information available for both respondents and
nonrespondents.

5.1 The Double Expansion Estimator

Unit nonresponse is often viewed as a second phase
of sampling (e.g., Särndal and Swensson, 1987) with
the main difference that the response mechanism is un-
known. Let rk , k ∈ S, be response indicators such that
rk = 1, if unit k responds, and rk = 0, otherwise, and let
RS be the vector containing rk in its kth element. Note
that, in Section 2.2, we used the notation I2 instead of
RS when we introduced two-phase sampling. We use a
different notation in this section to emphasize that non-
response is a special second phase of sampling. The set
of respondents, denoted by Sr , is the subset of S which
contains all the units k ∈ S such that rk = 1. The re-
sponse mechanism is the distribution of RS given I. By
analogy with sampling, we may assume that the true
unknown response mechanism depends only on a cer-
tain vector of variables ṽk , k ∈ S. We denote by ṼS ,
the matrix containing ṽ�

k in its kth row. The response
mechanism can thus be denoted by F(RS |I, ṼS) and
the response probability by pk = P(rk = 1|I, ṼS). If
the response probabilities pk were known and greater
than 0 for all k ∈ S, the double expansion estimator
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could be used. Using the above notation, it is written
as

t̂y,DE = ∑
k∈Sr

d̃kyk = ∑
k∈S

rkd̃kyk,

where d̃k = dkak and ak = 1/pk is a nonresponse
weight adjustment for unit k. The double expansion
estimator is conditionally unbiased in the sense that
E(t̂y,DE − t̂y,π |I,�) = 0, where � is here any quan-
tity involved in the inference but the vectors I and RS .
As a result, the double expansion estimator is also un-
conditionally unbiased for ty . This follows from the
unbiasedness property of the simple expansion estima-
tor t̂y,π .

5.2 The Empirical Double Expansion Estimator

The response probabilities pk are never known in
practice. This problem has often been addressed in the
literature by determining a model for the response indi-
cators rk , called a response model, and then obtaining
the estimated probabilities p̂k using the model (e.g.,
Särndal and Swensson, 1987; Ekholm and Laaksonen,
1991). This approach leads to the empirical double ex-
pansion estimator

t̂y,EDE = ∑
k∈Sr

ˆ̃
dkyk = ∑

k∈S

rk
ˆ̃
dkyk,

where ˆ̃
dk = dkâk and âk = 1/p̂k is the nonresponse

weight adjustment for unit k. The empirical double
expansion estimator is also known as the propensity
score adjusted estimator. Beaumont (2005a) and Kim
and Kim (2007) showed that estimating response prob-
abilities often leads to a smaller nonresponse variance
than using the true response probabilities; that is, often
we have V (t̂y,EDE|I,�) ≤ V (t̂y,DE|I,�). As shown be-
low, the estimation of response probabilities may lead
to an implicit calibration of weights, which stabilizes
the estimators of totals.

The modelling task normally involves two main
steps. The first step consists of selecting a vector of
explanatory variables, vk , that are predictive of the re-
sponse indicator rk . The goal of that step is to find ṽk

or at least a good proxy for ṽk . The use of explana-
tory variables that are highly predictive of response
tends to yield some small estimated response prob-
abilities, and thus large nonresponse weight adjust-
ments âk . This may lead to an unstable empirical dou-
ble expansion estimator. Little and Vartivarian (2005)
and Beaumont (2005b) argued that vk should contain

explanatory variables that are related to both the re-
sponse indicator and the variables of interest. Explana-
tory variables that are related only to the response in-
dicator but not to any variable of interest should not
be used in the estimation of response probabilities as
they do not contribute to reducing the nonresponse
bias of the empirical double expansion estimator and
may increase substantially its nonresponse variance,
V (t̂y,EDE|I,�), especially when there are some rela-
tively large nonresponse weight adjustments. The sec-
ond modelling step consists of determining a suitable
model for the relationship between the response in-
dicator rk and the selected explanatory variables, vk .
In addition, the response indicators are typically as-
sumed to be mutually independent. The latter assump-
tion may be violated in practice in the context of two-
stage sampling designs because sample units within
the same cluster (e.g., household) may not respond in-
dependently of one another. The reader is referred to
Skinner and D’Arrigo (2011) and Kim et al. (2016) for
a discussion of estimation procedures accounting for
the possible intra-cluster correlation. The next two sub-
sections are devoted to the modelling and estimation of
response probabilities pk under this independence as-
sumption.

5.3 Estimation of Response Probabilities Under
a Missing at Random Response Model

Let us start by assuming that pk = P(rk = 1|I,
ṼS) = P(rk = 1|Ik = 1,vk) and that vk , k ∈ S, do not
contain any missing values. In that case, the missing
y values are said to be missing at random (see Rubin,
1976). A simple parametric response model is the lo-
gistic regression model

pk = ρ(vk;α) = exp(v�
k α)

1 + exp(v�
k α)

,

k ∈ S, where ρ is the logistic function and α is a vector
of unknown model parameters. We focus on the logis-
tic function in this paper because it is widely used in
practice. There are of course other functions ρ that may
be suitable for the modelling of response probabilities
and that can be found in standard textbooks on cate-
gorical data. The estimator of the response probability
pk is denoted by p̂k = ρ(vk; α̂), where α̂ is an estima-
tor of α. There are many possible estimators of α. The
most natural one is obtained through maximum likeli-
hood estimation. The maximum likelihood estimator α̂
satisfies the equation∑

k∈S

(
rk − ρ(vk; α̂)

)
vk = 0.
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Iannacchione et al. (1991) suggested another estimat-
ing equation. Their estimator α̂ satisfies the equation

∑
k∈S

dk

(rk − ρ(vk; α̂))

ρ(vk; α̂)
vk = 0.

This estimating equation is unbiased for α provided
that the design weight dk is independent of the re-
sponse indicator rk after conditioning on vk . This im-
plies that the design weight should be considered as
a potential explanatory variable. The estimating equa-
tion suggested by Iannacchione et al. (1991) has a nice
calibration property since it can be easily shown that
the resulting weight adjustment âk = 1/p̂k satisfies the
calibration equation∑

k∈Sr

(dkâk)vk = ∑
k∈S

dkvk.

This is a calibration constraint with benchmark totals
estimated from the full sample S. For the v variables,
the nonresponse error completely disappears. We may
thus expect a low nonresponse bias and variance for y

variables that are highly correlated with v.
We might also considered the following unweighted

version of the estimating equation proposed by Iannac-
chione et al. (1991):

∑
k∈S

(rk − ρ(vk; α̂))

ρ(vk; α̂)
vk = 0.

The resulting weight adjustments satisfy the following
calibration equation:∑

k∈Sr

(dkâk)(πkvk) = ∑
k∈S

dk(πkvk).

Should the design weights dk be used when estimating
α? It seems to really depend on whether it is prefer-
able to use the calibration variables vk or the calibra-
tion variables πkvk . Although there is no definite an-
swer to this question, calibration on vk may be more
meaningful in general unless the variables in vk have
already been multiplied by the design weight. This sug-
gests that using a weighted estimating equation may be
preferable in many cases.

There are two main practical issues associated with
the use of a parametric model, such as the logistic
model. First, the logistic function ρ may not be ap-
propriate for describing the relationship between the
response indicator and the explanatory variables and
there may be missing interactions in the model that
were not detected during model selection. In other
words, the model may fail, even though careful model

selection and validation have been done, and we may
want to find a procedure that is robust to model mis-
specifications. Second, the logistic model tends to yield
some estimated response probabilities, p̂k , that are rel-
atively small resulting in very large weight adjustments
âk and potentially unstable estimates. A possible so-
lution to these issues is obtained through the creation
of classes homogeneous with respect to the propen-
sity to respond using the so-called score method (e.g.,
Little, 1986, Eltinge and Yansaneh, 1997; or Haziza
and Beaumont, 2007). It can be implemented using the
following steps: (i) Obtain estimated response prob-
abilities, p̂LR

k , k ∈ S, from a logistic regression. (ii)
Order the sample from the lowest estimated response
probability computed in step (i) to the largest. (iii)
Form a certain number of classes homogeneous with
respect to p̂LR

k , k ∈ S. Classes of equal size can be
formed or a clustering algorithm can be used. The num-
ber of classes should be as small as possible but large
enough to capture most of the variability of p̂LR

k , k ∈ S.
(iv) Compute the final estimated response probability,
p̂k , for a unit k in some homogeneous class c as the
weighted (or unweighted) response rate within class c.
Forming homogeneous classes using the above proce-
dure provides some robustness to model misspecifica-
tions and is less prone to extreme weight adjustments
than directly using p̂LR

k . If the creation of classes does
not remove all the extreme weight adjustments, then
weight trimming or collapsing classes are possible so-
lutions.

The above score method is one method of form-
ing homogeneous classes. There are other methods
such as the CHi square Automatic Interaction Detec-
tion (CHAID) algorithm developed by Kass (1980) and
regression trees (Phipps and Toth, 2012). In stratified
business surveys, classes are sometimes taken to be
the strata for simplicity and because there may be no
other explanatory variable available. Da Silva and Op-
somer (2006, 2009) described a nonparametric regres-
sion method using kernel smoothing as an alternative to
forming classes. Nonparametric methods are expected
to provide some robustness if the form of ρ(·) is mis-
specified and protect (to some extent) against the non-
inclusion of predictors accounting for curvature or in-
teractions.

5.4 Estimation of Response Probabilities Under
a Missing Not at Random Response Model

We have assumed so far that the explanatory vari-
ables were observed for all sample units. There are
cases where it might be more reasonable to assume that
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the variables explaining response are indeed some of
the survey variables, which are subject to missing val-
ues. This is a case where data are said to be missing not
at random. An example would be a survey on income
where people refusing to answer the survey are those
who have a low or large income. Generalized calibra-
tion can be used in this context (e.g., Deville, 1998,
Sautory, 2003; and Kott, 2006). To understand the
idea, suppose that the vector of explanatory variables
is v�

k = (v�
1kv�

2k), where v1k is a vector of explana-
tory variables observed for all sample units and v2k

contain survey variables observed only for the respon-
dents. The above logistic function can again be used
to model the response probability pk = ρ(vk;α) but
the estimation of α is more difficult because of miss-
ing values in vk . The solution obtained through gener-
alized calibration makes use of a vector of instrumen-
tal variables, observed for all sample units, vI

2k , as a
substitute for v2k . For efficiency considerations, the in-
strumental variables should be associated as much as
possible with their corresponding variables in v2k . For
validity considerations, they should also be indepen-
dent of the response indicator after conditioning on vk .
Generalized calibration is based on an estimating equa-
tion very similar to the one proposed in Iannacchione
et al. (1991). The resulting estimator of α satisfies the
equation:

∑
k∈S

dk

(rk − ρ(vk; α̂))

ρ(vk; α̂)
vI
k = 0,

where vI�
k = (v�

1kvI�
2k ). An equivalent expression is

∑
k∈Sr

dk

ρ(vk; α̂)
vI
k − ∑

k∈S

dkvI
k = 0.

It is interesting to note that this equation does not use
the values of v2k , k ∈ S − Sr , and that the resulting
weight adjustments, âk = [ρ(vk; α̂)]−1, satisfy the cal-
ibration equation:∑

k∈Sr

(dkâk)vI
k = ∑

k∈S

dkvI
k .

The explanatory variables in the response model are
vk and contain variables subject to missing values. The
instrumental variables vI

2k are also calibration variables
like v1k . Chang and Kott (2008) considered the exten-
sion to the case where there are more calibration vari-
ables than model parameters to be estimated (i.e., the
dimension of vI

k is larger than the dimension of vk).

Note that Deville (1998, 2002), Estevao and Särndal
(2000), Kott (2006) and Chang and Kott (2008) defined
vk as the vector of instrumental variables. We prefer to
call vk the vector of explanatory variables of the re-
sponse model as it better reflects its role. Our defini-
tion of instrumental variable is different than the pre-
vious authors but is in line with the econometric liter-
ature where instrumental variables have been used for
decades (e.g., Kmenta, 1971).

In practice, generalized calibration and methods that
handle data that are not missing at random are rarely
used. The additional complexity and lack of software
may be part of the explanation. More importantly, it
seems almost impossible to validate the logistic func-
tion through model diagnostics because the explana-
tory variables are not observed for the nonrespondents.
A score method cannot be used to obtain some ro-
bustness to model failures because the response prob-
abilities cannot be estimated for the nonrespondents.
Generalized calibration may thus yield extreme weight
adjustments with the logistic function. Also, appropri-
ate instrumental variables may not be easy to find in
practice. All these reasons may explain why general-
ized calibration have not been used more often so far.
This does not mean that generalized calibration should
not be used. There are cases where it may be reasonable
to assume that response depends directly on some of
the survey variables and failure to account for that de-
pendence would lead to significant nonresponse bias.
This may happen in surveys collecting information on
sensitive topics.

5.5 Nonresponse Weighting Through Calibration

We have seen earlier that nonresponse weight adjust-
ment methods often lead to an implicit calibration. We
may then wonder why not consider directly calibrat-
ing as in Section 4.4, without modelling the response
indicator rk . This calibration approach was advocated
in Lundström and Särndal (1999), Folsom and Singh
(2000) and Särndal and Lundström (2005). It is cer-
tainly a valid point of view. However, we prefer a re-
sponse model approach because it allows us to justify
the choice of calibration variables and the form of the
weight adjustment necessary to cope with the nonre-
sponse bias. A large number of model diagnostics are
available in the literature to come up with a suitable
weight adjustment. Of course, nothing precludes an ad-
ditional calibration step after nonresponse weight ad-
justment to further increase the efficiency of the esti-
mators, like in two-phase sampling.
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6. WEIGHT TRIMMING AND WEIGHT SMOOTHING

As we argued throughout the paper, estimators may
suffer from inefficiency when the weights are highly
dispersed and exhibit a poor correlation with the char-
acteristics of interest. Early references on the topic in-
clude Rao (1966) and Basu (1971). This issue is com-
mon in multipurpose surveys. In such cases, the final
weights may undergo further modification through the
use of weight trimming or weight smoothing methods
in order to improve the efficiency of point estimators.

6.1 Weight Trimming

Units exhibiting a large weight are deemed harmful
because they lead to highly dispersed weights, which
can potentially cause the estimators to be unstable.
The rationale behind weight trimming is to modify the
survey weights so that the resulting estimators (called
trimmed estimators) have a lower mean square error
than that of commonly used estimators (e.g., expansion
estimators, calibration estimators, etc.). This is gener-
ally achieved at the expense of introducing a bias.

A number of weight trimming methods have been
considered in the literature. All rely on a specification
of a threshold, w0 above which a unit is identified as
problematic. The idea is to force the weights above this
threshold to this value. Let wk and wk,t be the weights
associated with unit k before and after trimming, re-
spectively. We have

(6.1) wk,t =
{
w0, if wk ≥ w0,

γwk, if wk < w0,

where γ is a rescaling factor that ensures that∑
k∈S

wk,t = ∑
k∈S

wk.

That is, the excess weight is redistributed among the
units below the threshold so that the sum of the weights
after trimming is still a valuable estimate of the popu-
lation size. The resulting trimmed estimator of ty is

t̂y,trim(w0) = ∑
k∈S

wk,tyk.

The choice of the threshold w0 is very important be-
cause a bad choice may potentially lead to a trimmed
estimator with a mean square error larger than that of
the untrimmed estimator. The choice of w0 has been
discussed by Potter (1990); see also Chen et al. (2016)
for a description of weight trimming procedures. If the
trimmed weights wk,t are modified through some form
of calibration, some calibrated weights may be larger

than the threshold w0. An alternative to weight trim-
ming followed by calibration consists of minimizing
(4.2) subject to (4.1) and additional constraints on the
weights.

6.2 Weight Smoothing

Weight smoothing was introduced by Beaumont
(2008). The choice of a threshold for trimming weights
may prove difficult in multipurpose surveys, since an
appropriate threshold for one characteristic of interest
may be inappropriate for another. Unlike weight trim-
ming procedures, weight smoothing does not require
the specification of a threshold. Gains in efficiency are
achieved at the expense of introducing a model for the
survey weights.

Our discussion focusses on the design weights but
weight smoothing can naturally be applied to other
types of weights (e.g., weights adjusted for nonre-
sponse and final weights) or to nonresponse adjust-
ment factors and calibration adjustment factors. Weight
smoothing starts by postulating a model linking the de-
sign weights to the characteristics of interest:

(6.2) dk = f (yk;γ ) + εk,

where yk = (y1k, . . . , ypk)
� and γ is a p-vector of un-

known coefficients. Model (6.2) suggests that a portion
of the weight dk is explained by (some of) the charac-
teristics of interest, while the other portion corresponds
to random noise. The smoothed weights are given by
d̂k = f (yk; γ̂ ), where γ̂ is a suitable estimator (e.g., the
generalized least square estimator) of γ . The rationale
behind weight smoothing is to “get rid” of the portion
of the weight dk corresponding to random noise while
preserving the portion which is related to the charac-
teristics of interest. The resulting smoothed expansion
estimator is t̂y,smooth = ∑

k∈S d̂kyk and is unbiased (or
at least approximately unbiased) for ty in the sense that
E(t̂y,smooth|�) = ty , where � is used to denote any
quantity involved in the inference except the vectors
I and Z. The properties of the smoothed estimator de-
pend on the validity of the postulated model. Classical
model selection and validation techniques can be used
to determine an appropriate model. If (6.2) is a linear
regression model, then V (t̂y,smooth|�) ≤ V (t̂y,π |�).
That is, the smoothed estimator t̂y,smooth is more ef-
ficient than the expansion estimator. The reader is re-
ferred to Beaumont (2008) for more details on the the-
oretical properties of smoothed estimators.
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7. DISCUSSION

Recently, the “culture” of a unique weighting system
has been criticized by a number of authors, including
Salgado et al. (2012) and Gelman (2007). In large-scale
surveys, there is often a rich source of auxiliary vari-
ables, which could be used to produce tailor-made esti-
mates for every parameter of interest. Such estimation
procedures have the potential to be more efficient than
a procedure based on a unique weighting system.

For specific purposes, we agree that tailor-made esti-
mation procedures can be useful. This is customary in
small area estimation (Rao and Molina, 2015), where
it is usually not always possible to obtain estimates us-
ing a single set of weights. There are other instances
for which using specialized estimation procedures may
be desirable in terms of efficiency. It occurs, for ex-
ample, when the y-variable contains a large number of
zeroes (Kalberg, 2000) or when one is in the presence
of a nonlinear relationship (Firth and Benett, 1998).
Also, for the variable selection procedure of Silva and
Skinner (1997) discussed in Section 4.2, the set of se-
lected calibration variables is specific to a particular
y-variable and the same set applied to another variable
may lead to an unstable estimate. For most surveys,
the amount of work required for developing special-
ized estimation procedures for the production of every
estimate of interest seems to be a considerable task. For
these reasons, a single set of weights seems to be neces-
sary to obtain the vast majority of the estimates in a rea-
sonable amount of time. In addition, a unique weight-
ing system permits two intuitively appealing properties
to be satisfied: (i) the internal consistency property and
(ii) the external consistency property. These are dis-
cussed below.

Let {w̃k;k ∈ S} be the unique weighting system con-
sisting of final weights. Assume we have G character-
istics of interest, y1, . . . , yG, and that yG = ∑G−1

g=1 yg .
For instance, y1 and y2 may represent the profit and
costs of a business, respectively. Its turnover, y3,
can then be expressed as y3 = y1 + y2. If we are
interested in estimating the population totals tyg =∑

k∈U ygk, g = 1, . . . ,G, we have the relationship:

tyG
= ∑

k∈U

yGk = ∑
k∈U

G−1∑
g=1

ygk =
G−1∑
g=1

tyg .

This property is often referred to as internal consis-
tency. It seems desirable that this property also holds
at the estimate level. With a single weighting system

{w̃k;k ∈ S} applied to y1, . . . , yG, we obtain G esti-
mates t̂yg = ∑

k∈S w̃kygk satisfying the relationship

t̂yG
=

G−1∑
g=1

t̂yg .

In this case, we say that the system of estimates
{t̂y1, . . . , t̂yg , . . . , t̂yG

} is internally consistent. Had dif-
ferent weighting systems been used for different vari-
ables, the internal consistency would have been vio-
lated.

We now turn to domain estimation. In virtually all
surveys, estimates are needed for domains. A domain
is any subpopulation for which we require an esti-
mate. For instance, we may be interested in average
income by gender or by age group. We assume that
the population U of size N is divided into D mutu-
ally disjoint domains of interest, U1, . . . ,Ud, . . . ,UD

of size N1, . . . ,Nd, . . . ,ND , respectively. We have⋃D
d=1 Ud = U and

∑D
d=1 Nd = N . Let Sd = S ∩ Ud

denote the set of sample units falling in domain d . Let
td = ∑

k∈Ud
yk be the total of the y-values in the do-

main d . Estimating a domain total is straightforward
as td can be expressed as td = ∑

k∈U δkyk = ∑
k∈U y̆k ,

where δk is a domain indicator attached to unit k such
that δk = 1 if unit k belongs to the domain d and
δk = 0, otherwise, and y̆k = δkyk . Therefore, estimat-
ing td is equivalent to estimating the population total of
the y̆-values. If ty denotes the overall population total,
we have the relationship:

ty = ∑
k∈U

yk =
D∑

d=1

td .

That is, the sum over the domains equals the overall
population total. This property is often referred to as
external consistency. Once again, it seems desirable
that this property also holds at the estimate level. With
a single weighting system {w̃k;k ∈ S} applied to to the
y̆-values, we obtain D estimates, which are naturally
consistent.

In the context of domain estimation, it is possi-
ble to develop domain-specific weighting systems.
Hidiroglou and Patak (2004) showed empirically that
domain-specific estimators are often more efficient
than those based on a single weighting system. But
with domain-specific estimators, the external consis-
tency property is no longer satisfied, in general.

In conclusion, we believe that a single weighting sys-
tem is generally effective in practice, achieving internal
and external consistency and a manageable workload
for the survey statisticians.
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