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On the Sensitivity of the Lasso to the
Number of Predictor Variables
Cheryl J. Flynn, Clifford M. Hurvich and Jeffrey S. Simonoff

Abstract. The Lasso is a computationally efficient regression regulariza-
tion procedure that can produce sparse estimators when the number of pre-
dictors (p) is large. Oracle inequalities provide probability loss bounds for
the Lasso estimator at a deterministic choice of the regularization parame-
ter. These bounds tend to zero if p is appropriately controlled, and are thus
commonly cited as theoretical justification for the Lasso and its ability to
handle high-dimensional settings. Unfortunately, in practice the regulariza-
tion parameter is not selected to be a deterministic quantity, but is instead
chosen using a random, data-dependent procedure. To address this shortcom-
ing of previous theoretical work, we study the loss of the Lasso estimator
when tuned optimally for prediction. Assuming orthonormal predictors and
a sparse true model, we prove that the probability that the best possible pre-
dictive performance of the Lasso deteriorates as p increases is positive and
can be arbitrarily close to one given a sufficiently high signal to noise ratio
and sufficiently large p. We further demonstrate empirically that the amount
of deterioration in performance can be far worse than the oracle inequalities
suggest and provide a real data example where deterioration is observed.

Key words and phrases: Least absolute shrinkage and selection operator
(Lasso), oracle inequalities, high-dimensional data.

1. INTRODUCTION

Regularization methods perform model selection
subject to the choice of a regularization parameter, and
are commonly used when the number of predictor vari-
ables is too large to consider all subsets. In regularized
regression, these methods operate by minimizing the
penalized least squares function

(1.1)
1

2
‖y − Xβ‖2 + λPen(β),
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where y is a n × 1 response vector, X is a n × p de-
terministic matrix of predictor variables, β is a p × 1
vector of coefficients and Pen(·) is a penalty function.
A common choice for the penalty function is the l1
norm of the coefficients. This penalty function was
proposed by Tibshirani (1996) and termed the Lasso
(Least absolute shrinkage and selection operator). The
solution to the Lasso is sparse in that it automatically
sets some of the estimated coefficients equal to zero,
and the entire regularization path can be found us-
ing the computationally efficient Lars algorithm (Efron
et al., 2004). Given its computational advantages, un-
derstanding the theoretical properties of the Lasso is an
important area of research.

This paper focuses on the predictive performance
of the Lasso and the impact of regularization. To that
end, we evaluate the Lasso-estimated models using the
l2-loss function. We assume that the true data generat-
ing process is

(1.2) y = μ + ε,
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where μ is a n × 1 unknown mean vector and ε is a
n × 1 random noise vector. Then the l2-loss is defined
as

(1.3) Lp(λ) = ‖μ − μ̂λ‖2

n
= ‖μ − Xβ̂λ‖2

n
,

where β̂λ is the Lasso estimated vector of coefficients
for a specific choice of the regularization parameter
λ ∈ [0,∞) and ‖ · ‖2 is the squared Euclidean norm.
Here, we subscript the loss by p to emphasize that the
loss at a particular value of λ depends on the number of
predictor variables. If the true model is included among
the candidate models, then μ = Xβ0 for some un-
known true coefficient vector β0 and the l2-loss func-
tion takes the form

Lp(λ) = ‖X(β0 − β̂λ)‖2

n
.

To be consistent with most modern applications, we
allow β0 to be sparse and assume that it has p0 ≤ p

nonzero entries.
Probability loss bounds exist for the Lasso in this

setting (e.g., Candès and Plan, 2009, Bickel, Ritov and
Tsybakov, 2009 and Bühlmann and van de Geer, 2011).
Roughly, for a particular deterministic choice, λ0, of λ,
these probability bounds are of the form

(1.4) Lp

(
λ0) ≤ kσ 2 log(p)p0

n

(Bühlmann and van de Geer, 2011, page 102). Here,
σ 2 is the true error variance, and k is a constant that
does not depend on n or p. These bounds are com-
monly termed “oracle inequalities” since, apart from
the log(p) term and the constant, they equal the loss
expected if an oracle told us the true set of predic-
tors and we fit least squares. In light of this connec-
tion, it is commonly noted in the literature that the
“log(p)-factor is the price to pay by not knowing the
active set” (Bühlmann, 2013) and “it is also known that
one cannot, in general, hope for a better result” (Candès
and Plan, 2009). Under certain assumptions and an ap-
propriate control of the number of predictor variables,
these bounds establish l2-loss consistency in the sense
that the l2-loss will tend to zero asymptotically. Sim-
ilar upper bounds exist for the expected value of the
loss (Bunea, Tsybakov and Wegkamp, 2007a) as well
as lower bounds when X is nonsingular (Chatterjee,
2014). Bunea, Tsybakov and Wegkamp (2006) and
Bunea, Tsybakov and Wegkamp (2007b) further es-
tablished bounds on the loss for random designs and
Thrampoulidis, Panahi and Hassibi (2015) studied the

asymptotic behavior of the normalized squared error of
the Lasso when p → ∞ and σ → 0 under the assump-
tion of a Gaussian design matrix. In related work on
predictive performance, Greenshtein and Ritov (2004)
and Greenshtein (2006) also studied the “persistence”
of the Lasso estimator and showed that the difference
between the expected prediction error of the Lasso es-
timator at a particular deterministic value of λ and
the optimal estimator converges to zero in probability.
Thus, the “Lasso achieves a squared error that is not far
from what could be achieved if the true sparsity pattern
were known” (Vidaurre, Bielza and Larrañaga, 2013).

Unfortunately, there is a disconnect between these
theoretical results and the way that the Lasso is im-
plemented in practice. In practice, λ is not taken to
be a deterministic value, but rather it is selected us-
ing an information criterion, such as Akaike’s informa-
tion criterion (AIC; Akaike, 1973), the corrected AIC
(AICc; Hurvich and Tsai, 1989), the Bayesian infor-
mation criterion (BIC; Schwarz, 1978), or Generalized
cross-validation (GCV; Craven and Wahba, 1978), or
by using (k-fold) cross-validation (CV) (see, e.g., Fan
and Li, 2001, Leng, Lin and Wahba, 2006, Zou, Hastie
and Tibshirani, 2007, Yu and Feng, 2014, Flynn, Hur-
vich and Simonoff, 2013 and Homrighausen and Mc-
Donald, 2014). Since the existing theoretical results do
not apply to a data-dependent choice of λ (Chatterjee,
2014), it is not clear how well the oracle inequalities
represent the performance of the Lasso in practice.

This motivates us to study the behavior of the
loss at a data-dependent choice of the regulariza-
tion parameter. We define the random variable λ∗

p =
argminλ Lp(λ) to be the optimal (infeasible) choice of
λ that minimizes the loss function over the regular-
ization path. In what follows, we focus on the loss of
the Lasso evaluated at λ∗

p . This selector provides in-
formation about the performance of the method in an
absolute sense, and it represents the ultimate goal for
any model selection procedure designed for prediction.

By the definition of the optimal loss, the oracle in-
equalities in the literature also apply to Lp(λ∗

p). It is
therefore tempting to use the oracle inequalities in the
literature to describe the behavior of the optimal loss.
The work on persistency has also led to conclusions
such as “there is ‘asymptotically no harm’ in intro-
ducing many more explanatory variables than obser-
vations” (Greenshtein and Ritov, 2004), and that “in
some ‘asymptotic sense’, when assuming a sparsity
condition, there is no loss in letting [p] be much larger
than n” (Greenshtein, 2006). More generally, when
working in high-dimensional settings these results are
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interpreted to imply that “having too many components
does not degrade forecast accuracy” (Hyndman, Booth
and Yasmeen, 2013) and “it will not hurt to include
more variables” (Lin, Foster and Ungar, 2011). How-
ever, it is important to remember that the existing the-
oretical results are based on inequalities, not equali-
ties, so they do not necessarily describe the behavior
of the optimal loss or the cost of working in high-
dimensional settings. To our knowledge, this is the first
explicit study of the sensitivity of the best-case predic-
tive performance to the number of predictor variables.

The remainder of this paper is organized as follows.
Section 2 presents some theoretical results on the be-
havior of the Lasso based on a data-dependent choice
of λ and proves that the best-case predictive perfor-
mance can deteriorate as the number of predictor vari-
ables is increased, in the sense that best-case perfor-
mance worsens as superfluous variables are added to
the set of predictors. In particular, under the assump-
tion of a sparse true model and orthonormal predic-
tors, we prove that the probability of deterioration is
nonzero. In the special case where there is only one
true predictor, we further prove that the probability
of deterioration can be arbitrarily close to one for a
sufficiently high signal to noise ratio and sufficiently
large p, and that the expected amount of deterioration
is infinite. Section 3 investigates the amount of deterio-
ration empirically and shows that it can be much worse
than one might expect from looking at the loss bounds
in the literature. Section 4 presents an analysis of HIV
data using the Lasso and exemplifies the occurrence
of deterioration in practice. Finally, Section 5 presents
some final remarks and areas for future research. The
Appendix includes some additional technical and sim-
ulation results.

2. THEORETICAL RESULTS

Here, we consider a simple framework for which
there exists an exact solution for the Lasso estimator.
We assume that

y = Xβ0 + ε,

where y is the n × 1 response vector, X is a n × p

matrix of deterministic predictors such that XT X = I
(the p × p identity matrix), β0 = (β1, . . . , βp)T is the
p × 1 vector of true unknown coefficients and ε is a

n × 1 noise vector where εi
i.i.d.∼ N(0, σ 2). Under the

orthonormality assumption, we require p ≤ n.
We define p0 to be the number of nonzero true coef-

ficients, where 1 ≤ p0 ≤ p. Without loss of generality,

we assume that βj 	= 0 for 1 ≤ j ≤ p0 and βj = 0 for
p0 < j ≤ p. We further assume that there is no inter-
cept.

By construction, z = XT y is the vector of the
least squares-estimated coefficients based on the full
model. It follows that the zj ’s are independent for all
1 ≤ j ≤ p, and that

(2.1) zj ∼ N
(
βj , σ

2)
for 1 ≤ j ≤ p0 and

(2.2) zj
i.i.d.∼ N

(
0, σ 2)

for p0 < j ≤ p. For a given λ, the Lasso estimated co-
efficients are

β̂λj = sgn(zj )
(|zj | − λ

)
+

for j = 1, . . . , p (Fan and Li, 2001). We use Lp(λ) to
measure the performance of this estimator. Under our
set-up,

(2.3) Lp(λ) = 1

n

p0∑
j=1

(βj − β̂λj )
2 + 1

n

p∑
j=p0+1

β̂2
λj .

We wish to study the sensitivity of the Lasso to the
number of predictor variables and to investigate the oc-
currence of deterioration in practice. Recall that dete-
rioration is defined to be the worsening of best-case
performance as superfluous variables are added to the
set of predictors. Thus, deterioration occurs when the
optimal loss ratio

Lp(λ∗
p)

Lp0(λ
∗
p0

)
> 1

for p > p0.
In what follows, we establish that the best case pre-

dictive performance of the Lasso deteriorates as p in-
creases with nonzero probability. For ease of presenta-
tion, the proofs for the technical results in this section
are presented in Appendix A.

THEOREM 2.1. For all 1 ≤ p0 < p ≤ n,

(2.4) Pr
(

Lp(λ∗
p)

Lp0(λ
∗
p0

)
> 1

)
> 0.

To prove Theorem 2.1, we make use of the following
lemma, which establishes the conditions under which
deterioration occurs.

LEMMA 2.1. For all 1 ≤ p0 < p ≤ n,

Lp(λ∗
p)

Lp0(λ
∗
p0

)
> 1
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if and only if

λ∗
p0

< max
1≤j≤p0

|zj |
and

λ∗
p0

< max
p0<j≤p

|zj |.
To understand the results of Lemma 2.1, first note

that for all p > 0, Lp(λ∗
p) ≤ 1

n

∑p0
j=1 β2

j , because there
always exists a λ such that all of the estimated coeffi-
cients are shrunk to zero. Thus, no deterioration occurs
in the extreme case where λ∗

p0
is equal to such a value.

In particular, this occurs if λ∗
p0

≥ max1≤j≤p0 |zj |. Out-
side of this case, the optimal loss will deteriorate if we
cannot set the estimated coefficients for the extraneous
predictors equal to zero without imposing more shrink-
age on the estimated coefficients for the true predictors.
This occurs if λ∗

p0
≥ maxp0<j≤p |zj |.

In the special case where p0 = 1, it is further possi-
ble to derive a simple exact expression for the proba-
bility of deterioration.

THEOREM 2.2. For p0 = 1 and for all 1 < p ≤ n,

(2.5) Pr
(

Lp(λ∗
p)

Lp0(λ
∗
p0

)
> 1

)
= �

( |β1|
σ

)
− 1

2p
,

where �(·) is the cumulative distribution function of a
standard normal random variable.

In Appendix A, we establish that when p0 = 1
nLp(λ∗

p) = β2
1 for all p > 0 if the sign of z1 is in-

correct. This means that no deterioration occurs in this
case. With this result in place, the two terms on the
right-hand side of equation (2.5) can be explained intu-
itively. The first term reflects the increasing likelihood
that the sign of z1 is correct as the signal-to-noise ra-
tio increases, and the second term reflects the decreas-
ing probability of no deterioration in this case as p

increases. This result establishes that deterioration oc-
curs with probability arbitrarily close to one for an ap-
propriately high signal to noise ratio and large p when
p0 = 1, and the following theorem establishes that the
expected amount of deterioration is infinite.

THEOREM 2.3. For p0 = 1 and for all 1 < p ≤ n,

E
(

Lp(λ∗
p)

Lp0(λ
∗
p0

)

)
= ∞.

The result of Theorem 2.3 follows from the fact that
the case where Lp0(λ

∗
p0

) = 0 and Lp(λ∗
p) > 0 occurs

with nonzero probability when p0 = 1. We further in-
vestigate the amount of deterioration in the more gen-
eral p0-sparse case using simulations in Section 3.

As an alternative to loss, performance could also be
measured based on Mean Squared Error (MSE). Under
the assumption of a deterministic design matrix,

MSEp(λ) = E∗
(‖y∗ − μ̂λ‖2

n

)
= ‖μ − μ̂λ‖2

n
+ σ 2

n

= Lp(λ) + σ 2

n
,

where y∗ is from an independent test set and the expec-
tation E∗ is taken with respect to this independent test
set. Thus, Theorems 2.1–2.2 also apply to MSE. Since
MSE also includes the error variance, the relative dete-
rioration of MSE is expected to be less than that of loss
when using the one correct predictor. We discuss this
further in our real data application in Section 4 where
we study deterioration in average squared prediction
error.

EXAMPLE. To demonstrate the implications of
Theorem 2.2, consider an ANOVA model based on
an orthonormal regression matrix. Specifically, assume
that we have p binary predictor variables, each of
which is coded using effects coding, and a balanced de-
sign with an equal number of observations falling into
each of the 2p combinations. If we scale these predic-
tors to have unit variance, then an ANOVA model on
only the main effects is equivalent to a regression on
these predictors. Similarly, if we consider all pairwise
products and then standardize, a regression including
them as well as the main effects is equivalent to an
ANOVA with all two-way interactions. We can con-
tinue to add higher-order interactions in a similar man-
ner, where a model with all k-way interactions includes∑k

i=1
(p
i

)
predictors.

Assume that only the main effect of the first predic-
tor has a nonzero effect, β1 = 3 and that σ = 1. Then
applying the result of Theorem 2.2, Table 1 shows that
the probability of deterioration can be close to one for
even a moderate number of predictor variables.

3. EMPIRICAL STUDY

This section empirically investigates the cost of not
knowing the true set of predictors when working with
high-dimensional data. We assume that y is generated
by the model in (1.2). The Lasso regressions are fit us-
ing the R glmnet package (Friedman, Hastie and Tib-
shirani, 2010). We use the default package settings and
include an intercept in the model. We consider two sim-
ulation set-ups. The first studies the performance of the
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TABLE 1
The probability of deterioration when only the main effect of the
first predictor has a nonzero effect, β1 = 3, σ = 1, and higher

order interactions are included

Probability of deterioration

Model p = 2 p = 4 p = 6 p = 8 p = 10

Main Effects 0.7487 0.8737 0.9154 0.9362 0.9487
Two-Way Interactions 0.8362 0.9487 0.9749 0.9848 0.9896
Three-Way Interactions − 0.9602 0.9865 0.9933 0.9958
Four-Way Interactions − 0.9630 0.9898 0.9956 0.9974

Lasso when the columns of X are trigonometric predic-
tors. Since these predictors are orthogonal, this setting
requires p < n. To allow for situations with p > n, we
also study the case where the columns of X are inde-
pendent standard normals.

The main goal of our simulations is to understand the
behavior of the infeasible optimal loss for the Lasso as
p and n vary. To measure the deterioration in optimal
loss, we consider the optimal loss ratio

(3.1)
Lp(λ∗

p)

Lp0(λ
∗
p0

)
,

which compares the minimum loss based on p predic-
tors to the minimum loss based on the true set of p0
predictors. These p0 predictors have nonzero coeffi-
cients. All other coefficients are zero. Here, p0 < p and
the p0 true predictors are always a subset of the p pre-
dictors. We focus on cases where p is large or grows
with n in order to be consistent with high-dimensional
frameworks.

By the definition of λ∗
p , the oracle inequalities in the

literature also apply to Lp(λ∗
p). In what follows, we

compare the empirical performance of the optimal loss
(computed over the default grid of λ values) to two es-
tablished bounds. First, by applying Corollary 6.2 in
Bühlmann and van de Geer (2011),

(3.2) Lp

(
λ∗

p

) ≤ 64σ 2p0
t2 + 2 log(p)

nψ2
0

with probability greater than 1 − 2e−t2/2 for any con-
stant t > 0, where ψ0 is a constant that satisfies a com-
patibility condition. This condition places a restriction
on the minimum eigenvalue of XT X/n for a restricted
set of coefficients and it is sufficient to take ψ0 = 1 for
an orthogonal design matrix. Second, by Theorem 6.2
in Bickel, Ritov and Tsybakov (2009),

(3.3) Lp

(
λ∗

p

) ≤ 16A2σ 2p0
log(p)

nκ2

with probability at least 1 − p1−A2/8 for any constant
A > 0, where κ is a constant tied to a restricted eigen-
value assumption. For orthogonal predictors, κ = 1. In
the simulations, t and A are both set so that the bounds
hold with at least 95 percent probability. Since these
bounds also depend on p, we study if the deterioration
in optimal loss is adequately predicted by these bounds
by comparing the observed optimal loss ratio to the loss
bound ratio. Here, we define the loss bound ratio to be
the ratio that compares each bound based on p predic-
tors to the corresponding bound based on p0 predic-
tors. The results based on (3.2) and (3.3) are similar
in the simulation examples in Sections 3.1 and 3.2, so
only the results for (3.2) are reported.

In addition to the infeasible optimal loss, we also
consider the performance of the Lasso when tuned
using 10-fold CV. For each simulation, we denote
the CV-selected λ by λCV

p with corresponding loss
Lp(λCV

p ). The CV loss ratio is then computed as

Lp(λCV
p )

Lp0(λ
CV
p0

)
.

Although the bounds in equations (3.2) and (3.3) are
not guaranteed to hold for λCV

p , we compare the ob-
served CV loss ratios to the loss bound ratios to deter-
mine how well they predict the Lasso’s performance in
practice.

3.1 Orthogonal Predictors

Define the true model to be

yi = 6xi,1 + 5xi,2 + 4xi,3 + 3xi,4 + 2xi,5
(3.4)

+ xi,6 + εi

for i = 1, . . . , n, where εi
i.i.d.∼ N(0, σ 2). We compare

σ 2 = 4 and σ 2 = 400 in order to study the impact of
varying the signal-to-noise ratio (SNR). We refer to
these cases as “High SNR” and “Low SNR,” respec-
tively.

The columns of X are trigonometric predictors de-
fined by

xi,2j−1 = sin
(

2πj

n
(i − 1)

)
and

xi,2j = cos
(

2πj

n
(i − 1)

)
for j = 1, . . . , p/2 and i = 1, . . . , n. The columns of X
are orthogonal under this design and the true model is
always included among the candidate models.

We first compute the optimal loss, Lp(λ∗
p), for vary-

ing values of p over 1000 realizations. Figure 1 plots
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FIG. 1. Optimal loss percentiles over 1000 realizations as a function of p for n = 100 and p0 = 6. The number of predictor variables p is
varied from 6 to 100. The “High SNR” and “Low SNR” settings correspond to σ 2 = 4 and σ 2 = 400, respectively.

the percentiles of the optimal losses as a function of p.
In both the high and low SNR settings, there are signs
of deterioration in optimal performance as the num-
ber of predictor variables increases, as evidenced by
the positive slopes of the percentiles as p increases. To
compare this deterioration to the bounds, Figure 2 plots
the percentiles of the optimal loss ratios over 1000 re-

alizations and the ratio suggested by the loss bound
for varying values of p. In both plots, the loss ratios
implied by assuming that the bound equals the opti-
mal loss typically under-estimate the observed optimal
loss ratio. Comparing the two plots, the deterioration is
worse in the high SNR case. This is consistent with our
theoretical results, which established that we are more

FIG. 2. Percentiles of the optimal loss ratios over 1000 realizations as a function of log(p) for n = 100 and p0 = 6. The number of
predictor variables p is varied from 6 to 100. The “High SNR” and “Low SNR” settings correspond to σ 2 = 4 and σ 2 = 400, respectively.
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likely to observe deterioration when the SNR is high.
When the SNR is low, it is more likely that the opti-
mal loss will equal the loss for λ = λmax

p , where λmax
p

is equal to the value of λ that sets all of the p esti-
mated coefficients equal to zero. When this is the case,
no further deterioration can occur when adding more
superfluous variables.

Clearly, the amount of deterioration is typically far
worse than is suggested by the bounds for both choices
of the SNR. For example, looking at the median opti-
mal loss ratio, if we include n = 100 predictors in the
high SNR case, then the loss bounds suggest we should
be about 50 percent worse off than if we knew the true
set of predictors, but in actuality we are typically more
than 300 percent worse off. This discrepancy is a con-
sequence of the fact that the bounds are inequalities
rather than equalities.

To emphasize the danger of over-interpreting the
bounds, Figure 3 plots the ratio of the bounds to the
optimal loss percentiles for varying values of p. These
plots suggest that the bounds are overly conservative
when compared to the optimal loss and the degree of
conservatism depends on both p and the SNR. Thus,
although the bounds apply, the slope of the optimal loss
as a function of p is different than the slope suggested
by the bound. As a result of this behavior, the amount
of deterioration in optimal loss can be much worse than
the bounds suggest. To provide further insight, Figure 4
plots the average ratio of λ0 to λ∗

p plotted on a log-scale

[recall that λ0 is the deterministic choice of λ used in
the oracle inequality (1.4)]. These plots indicate that
λ∗

p is typically much smaller than λ0.
The optimal selector provides the best-case perfor-

mance of the Lasso, but it is infeasible in practice. This
motivates us to also study the performance of the Lasso
when λ is selected in a feasible manner using 10-fold
CV. Figure 5 compares the CV loss ratios to the bound
ratios for varying values of p in the high and low SNR
settings. Similar to the optimal loss, we observe dete-
rioration in the CV loss as p increases that is typically
worse than the deterioration suggested by the bounds
in both SNR settings.

The results presented thus far suggest that the perfor-
mance of the Lasso deteriorates for fixed n as p varies.
In order to investigate its behavior when n varies, we
compare p1 = 2 log(n) against p2 = n and define the
optimal loss ratio to be

Lp2(λ
∗
p2

)

Lp1(λ
∗
p1

)
.

Under this set-up, p increases as n increases, which
is consistent with the standard settings in high-dimen-
sional data analysis. Figure 6 compares the percentiles
of the optimal loss ratios over 1000 realizations to the
optimal loss ratio suggested by the bounds. These plots
suggest that the deterioration persists as n increases,
and that the bounds under-predict the observed dete-
rioration. Since the slopes with respect to n are higher

FIG. 3. Ratio of the loss bounds to the observed optimal loss percentiles over 1000 realizations as a function of p for n = 100. The “High
SNR” and “Low SNR” settings correspond to σ 2 = 4 and σ 2 = 400, respectively.
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FIG. 4. Average ratio of λ0 to the observed selected λ∗
p over 1000 realizations as a function of p for n = 100 plotted on a log-scale. The

“High SNR” and “Low SNR” settings correspond to σ 2 = 4 and σ 2 = 400, respectively.

than the bounds imply, this further suggests that the de-
terioration gets worse for larger samples.

3.2 Independent Predictors

Here, we again assume that y is generated from
the model given by (3.4) except in this section the
columns of X are independent standard normal random

variables. This allows us to consider situations where
p > n. This matrix is simulated once and used for all
realizations. We consider both a high and low SNR set-
ting by taking σ 2 = 9 and σ 2 = 625, respectively.

Figure 7 compares the percentiles of the optimal and
CV loss ratios over 1000 realizations to the optimal

FIG. 5. Percentiles of the CV loss ratios over 1000 realizations as a function of log(p) for n = 100 and p0 = 6. The number of predictor
variables p is varied from 6 to 100. The “High SNR” and “Low SNR” settings correspond to σ 2 = 4 and σ 2 = 400, respectively.
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FIG. 6. Percentiles of the optimal loss ratios for p2 = n predictors compared to p1 = 2 log(n) predictors over 1000 realizations as a
function of n. The “High SNR” and “Low SNR” settings correspond to σ 2 = 4 and σ 2 = 400, respectively.

loss ratio suggested by the bound (3.2). We vary p

from six to 1000, and denote the point where p = n

by the vertical line. In all four plots, the loss ratios pre-
dicted by the bound typically under-estimate the ob-
served optimal and CV loss ratios. As in the orthogonal
design case, these plots show that the bound does not
adequately measure the deterioration in performance,
and that the optimal and practical performance of the
Lasso are sensitive to the number of predictor vari-
ables. These plots further indicate that deterioration oc-
curs when p > n, though the deterioration pattern is
less well-behaved.

4. REAL DATA ANALYSIS

In numerous applications, it is desirable to model
higher-order interactions; however, the inclusion of
such interactions can greatly increase the computa-
tional burden of a regression analysis. The Lasso pro-
vides a computationally feasible solution to this prob-
lem.

As an example of this, Bien, Taylor and Tibshirani
(2013) used the Lasso to investigate the inclusion of
all pairwise interactions in the analysis of six HIV-1
drug datasets. The goal of this analysis was to un-
derstand the impact of mutation sites on antiretroviral
drug resistance. These datasets were originally studied
by Rhee et al. (2006) and include a measure of (log)
susceptibility for different combinations of mutation

sites for each of six nucleoside reverse transcriptase in-
hibitors. The number of observations (n) and the num-
ber of mutation sites (p) for each dataset are listed in
Table 2.

In their analysis, Bien, Taylor and Tibshirani (2013)
compared the performance of the Lasso with only main
effects included in the set of predictors (MEL) to its
performance with main effects and all pairwise interac-
tions included (APL). Although not the focus of their
analysis, we show here that this application demon-
strates the sensitivity of the procedure to the number
of predictor variables, which can result in deteriorat-
ing performance in the absence of strong interaction
effects.

Since the true data-generating mechanism is un-
known, we cannot compute the optimal loss ratios for
this example. As an alternative, to measure deteriora-
tion we randomly split the data into a training- and
test-set. We then fit the Lasso using the training-set and
evaluate the predictive performance on the test-set by
computing the average predictive square error (APSE),
which is defined as the average squared error between
the values of the dependent variable on the test set and
the values predicted by the model fit to the training set.
We then study the APSE ratio, which compares the op-
timal APSE for APL to the optimal APSE for MEL.
It is important to note that both the numerator and de-
nominator in the APSE ratio include additional terms
that depend on the noise term, which are not included
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FIG. 7. Percentiles of the optimal and CV loss ratios over 1000 realizations as a function of log(p) for n = 100 and p0 = 6. The number
of predictor variables p is varied from 6 to 1000, and the vertical line indicates the point where p = n. The “High SNR” and “Low SNR”
settings correspond to σ 2 = 9 and σ 2 = 625, respectively.

in the loss. Thus, the loss in estimation precision can
be less apparent. To exemplify this, Appendix B stud-
ies the optimal APSE ratio in the context of the inde-
pendent predictors example given in Section 3.2.

Figure 8 plots the ratios of the minimum test-set
APSE obtained using the APL to that obtained using
the MEL based on 20 random splits of the data for each
of the six drugs.

TABLE 2
The number of observations and mutation sites in each of the six

HIV-1 drug datasets

Drug

3TC ABC AZT D4T DDI TDF

n 1057 1005 1067 1073 1073 784
p 217 211 218 218 218 216
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FIG. 8. The ratio of the minimum test-set APSE obtained using
the APL to that obtained using the MEL based on 20 random splits
of the data for each of the six drugs.

For the “3TC” drug, the inclusion of all pairwise
interactions results in a dramatic improvement in per-
formance. In particular, there are five interactions that
are included in all twenty of the selected models:
“p62:p69,” “p65:p184,” “p67:p184,” “p184:p215” and
“p184:p190”. This suggests that there is a strong inter-
action effect in this example, and that the interactions
between these molecular targets are useful for the pre-
dicting drug susceptibility.

On the other hand, in four of the five remaining
drugs—“ABC,” “D4T,” “DDI” and “TDF”—the inclu-
sion of all pairwise interactions results in a significant
deterioration in performance. Here, significance is de-
termined using a Wilcoxon signed-rank test performed
at a 0.05 significance level. Thus, although the MEL is
a restricted version of the APL, we still observe dete-
rioration in the best-case predictive performance. This
suggests that although the Lasso allows the modeling
of higher-order interactions, their inclusion should be
done with care as doing so can hurt overall perfor-
mance.

5. DISCUSSION

The Lasso allows the fitting of regression models
with a large number of predictor variables, but the re-
sulting cost can be much higher than the loss bounds in
the literature would suggest. We have proven that when
tuned optimally for prediction the performance of the
Lasso deteriorates as the number of predictor variables
increases with probability arbitrarily close to one un-
der the assumptions of a sparse true model with one

true predictor and an orthonormal deterministic design
matrix. Our empirical results suggest that this deterio-
ration persists as the sample size increases, and carries
over to more general contexts.

In classical all-subsets regression, deterioration in
the optimal loss does not occur, because it is always
possible to recover the estimated true model while ig-
noring the extraneous predictors. This is not possible
with the Lasso, because the only way to exclude extra-
neous predictors is to increase the amount of regular-
ization imposed on all the estimated coefficients. This
property is not unique to the Lasso, and preliminary
results suggest that deterioration also occurs when us-
ing other regularization procedures. For example, Fig-
ure 9 plots the percentiles of the optimal loss ratios
for SCAD (Fan and Li, 2001) under the set-up of Sec-
tion 3.1 with orthogonal predictors. In both plots, there
is evidence of deterioration. However, comparing Fig-
ure 9 to Figure 2, the degree of deterioration is typically
less severe for SCAD than for the Lasso, especially in
the High SNR setting. This partly due to the fact that
the SCAD penalty imposes less shrinkage on the esti-
mated coefficients. In the context of categorical predic-
tors, Flynn, Hurvich and Simonoff (2016) also found
evidence of deterioration when working with the group
Lasso and the ordinal group Lasso. However, since the
group Lasso and the ordinal group Lasso both impose
more structure on the estimated coefficients, they re-
duce the effective degrees of freedom and the result-
ing observed deterioration for both methods is typically
less severe than the deterioration observed when using
the ordinary Lasso.

In light of the deterioration in performance, data ana-
lysts should be careful when using the Lasso and other
regularization procedures as variable selection and esti-
mation tools with high-dimensional data sets. One pos-
sible modification is to use the regularization procedure
as a subset selector, but not as an estimation proce-
dure. One implementation of this is the extreme version
of the Relaxed Lasso (Meinshausen, 2007), which fits
least squares regressions to the Lasso selected subsets.
Returning to the orthogonal predictors example in Sec-
tion 3.1, we investigate the performance of this simple
two-step procedure. Figure 10 plots the median optimal
loss for the Lasso and the median optimal loss for the
two-stage procedure for varying values of p. In this ex-
ample, the two-stage procedure improves performance
when the SNR is high, but not when the SNR is low.
However, the improvement in performance in the high
SNR case is more than the worsening of performance
in the low SNR case. These preliminary results suggest
that a two-stage procedure that imposes no shrinkage
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FIG. 9. Percentiles of the optimal loss ratios for SCAD over 1000 realizations as a function of p for the orthogonal predictors example
with n = 100 and p0 = 6. The “High SNR” and “Low SNR” settings correspond to σ 2 = 4 and σ 2 = 400, respectively.

on the estimated coefficients can help improve perfor-
mance when the SNR is sufficiently high.

Another possible solution is to screen the predictor
variables before fitting the Lasso penalized regression.
In screening, the typical goal is to reduce from a huge
scale to something that is o(n) (Fan and Lv, 2008).
However, our results suggest that it is not enough to
merely reduce the number of predictors, which implies
that how to optimally tune the number of screened pre-
dictors is an interesting model selection problem.

One may also consider alternatives to regulariza-
tion. For example, Ando and Li (2014) achieved good
performance in high-dimensional regression problems
using a simple model averaging technique. More re-
cently, Bertsimas, King and Mazumder (2016) devel-
oped a Mixed Integer Optimization approach to best
subset selection, which they found could outperform
the Lasso in numerical experiments. Further investiga-
tion into all of these techniques is an interesting area
for future research.

FIG. 10. Median optimal loss for the Lasso and Lasso + OLS over 1000 realizations as a function of p for the orthogonal predictors
example with n = 100 and p0 = 6. The “High SNR” and “Low SNR” settings correspond to σ 2 = 4 and σ 2 = 400, respectively.
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APPENDIX A: TECHNICAL RESULTS

In this Appendix, we provide the proofs for the the-
oretical results presented in Section 2.

First, we prove the results for the more general
p0-sparse case.

PROOF OF LEMMA 2.1. First, note that
nLp(λ∗

p) ≤ ∑p0
j=1 β2

j , because for any λ∗
p ≥

max1≤j≤p |zj |, nLp(λ∗
p) = ∑p0

j=1 β2
j . If λ∗

p0
≥

max1≤j≤p0 |zj |, then nLp0(λ
∗
p0

) = ∑p0
j=1 β2

j and the
optimal λ will be one such that all of the estimated co-
efficients equal zero. No deterioration will occur in this
case.

For the remainder of the proof, assume that λ∗
p0

<

max1≤j≤p0 |zj |. In this case, nLp0(λ
∗
p0

) <
∑p0

j=1 β2
j .

Consider

nLp

(
λ∗

p

) = nLp0

(
λ∗

p

) +
p∑

j=p0+1

(|zj | − λ∗
p

)2
+

≥ nLp0

(
λ∗

p

) ≥ nLp0

(
λ∗

p0

)
.

The optimal loss does not deteriorate when equal-
ity holds. This occurs if and only if λ∗

p0
= λ∗

p and
nLp(λ∗

p0
) = nLp0(λ

∗
p0

).
If λ∗

p0
≥ maxp0<j≤p |zj |, then

nLp0

(
λ∗

p0

) = nLp0

(
λ∗

p0

) +
p∑

j=p0+1

(|zj | − λ∗
p0

)2
+

= nLp

(
λ∗

p0

)
.

This implies that nLp(λ∗
p) = nLp0(λ

∗
p0

) and no deteri-
oration occurs.

Alternatively, if λ∗
p0

< maxp0<j≤p |zj |, then

nLp0

(
λ∗

p0

)
< nLp0

(
λ∗

p0

) +
p∑

j=p0+1

(|zj | − λ∗
p0

)2
+

= nLp

(
λ∗

p0

)
,

so the optimal loss deteriorates.
It follows that deterioration occurs if and only if

λ∗
p0

< max1≤j≤p0 |zj | and λ∗
p0

< maxp0<j≤p |zj |. �
PROOF OF THEOREM 2.1. By Lemma 2.1,

Pr
(

Lp(λ∗
p)

Lp0(λ
∗
p0

)
> 1

)

= Pr
(
λ∗

p0
≤ max

1≤j≤p0
|zj |, λ∗

p0
≤ max

p0<j≤p
|zj |

)

≥ Pr
(
0 ≤ max

1≤j≤p0
|zj |,0 ≤ max

p0<j≤p
|zj |, λ∗

p0
= 0

)

= Pr
(
λ∗

p0
= 0

)
.

Therefore, it is sufficient to show that Pr(λ∗
p0

= 0) > 0
to show that the probability of deterioration is nonzero.

Consider the set

S ≡ {zj ,1 ≤ j ≤ p0 :
β1 > z1 > β2 > z2 > · · · > βp0 > zp0 > 0}.

Assume that zj ,1 ≤ j ≤ p0 ∈ S . This implies that∑k
j=1(βj − zj ) > 0 for all 1 ≤ k ≤ p0.
For any λ ∈ [0, zp0),

nLp0(λ) =
p0∑

j=1

(
βj − (zj − λ)

)2
,

and

∂nLp0(λ)

∂λ
= 2

p0∑
j=1

(βj − zj ) + 2p0λ.

Since the derivative is an increasing function of λ and it
is nonnegative at λ = 0, the minimum occurs at λ = 0.

Next, for any 1 < k ≤ p0, consider λ ∈ Ik =
(zk, zk−1). Over this interval,

nLp0(λ) =
k−1∑
j=1

(
βj − (zj − λ)

)2 +
p0∑

j=k

β2
j ,

and

∂nLp0(λ)

∂λ
= 2

k−1∑
j=1

(βj − zj ) + 2(k − 1)λ.

Since the derivative is an increasing function of λ

and it is nonnegative at λ = zk , the minimum occurs at
λ = zk . However, for any 1 < k ≤ p0,

nLp0(zk) =
k−1∑
j=1

(
βj − (zj − zk)

)2 +
p0∑

j=k

β2
j

>

p0∑
j=1

(βj − zj )
2 = nLp0(0).

Thus, λ∗
p0

/∈ Ik for any 1 < k ≤ p0.
Finally, for any λ ∈ [z1,∞),

nLp0(λ) =
p0∑

j=1

β2
j >

p0∑
j=1

(βj − zj )
2 = nLp0(0).

It follows that λ∗
p0

= 0 on S .
Since the zj ’s, 1 ≤ j ≤ p0 are independent normal

random variables, it follows that

Pr
(
λ∗

p0
= 0

) ≥ Pr(S) > 0.

Thus, equation (2.4) is satisfied. �
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Next, to prove Theorem 2.2, we establish the fol-
lowing four lemmas. First, note that one can always
choose λ ≥ max1≤j≤p |zj |, which will shrink all of
the estimated coefficients to zero. Thus, for all p > 0,
nLp(λ∗

p) ≤ β2
1 . The following lemma establishes that

equality always occurs if the sign of z1 is incorrect.

LEMMA A.1. If sgn(β1) 	= sgn(z1), then
nLp(λ∗

p) = β2
1 for all 0 < p ≤ n.

PROOF. If sgn(β1) 	= sgn(z1), then for any λ <

max1≤j≤p |zj |,
nLp(λ) = (

β1 − sgn(z1)
(|z1| − λ

)
+

)2

+
p∑

j=2

(|zj | − λ
)2
+

≥ β2
1 +

p∑
j=2

(|zj | − λ
)2
+ ≥ β2

1 .

Thus, nLp(λ∗
p) = β2

1 . �
Lemma A.1 establishes that if the sign of z1 is incor-

rect, Lp(λ∗
p) = L1(λ

∗
1) for all p > 1, so no deteriora-

tion will occur.
Next, we focus our attention on the situation where

the sign of z1 is correct. The following lemma estab-
lishes the optimal loss for the Lasso when only the one
true predictor is used.

LEMMA A.2. If sgn(β1) = sgn(z1), then

nL1
(
λ∗

1
) =

{
0, if |β1| ≤ |z1|,
(β1 − z1)

2, otherwise.

PROOF. Without loss of generality, assume that
β1 > 0 and, therefore, z1 > 0. Consider

nL1(λ) = (
β1 − (z1 − λ)+

)2
.

First, consider λ ∈ I = [0, z1). Since nL1(λ) is a con-
vex function for λ ∈ I , the minimum occurs at a place
where the derivative is zero or when λ = 0. Taking the
derivative with respect to λ ∈ I ,

∂nL1(λ)

∂λ
= 2

(
β1 − (z1 − λ)

)
.

Since the derivative is an increasing function of λ, a
minimum occurs at λ = 0 if the derivative is nonneg-
ative at that point. In other words, a minimum occurs
at λ = 0 if β1 ≥ z1. Otherwise, a minimum occurs at a
point where the derivative is zero. Thus,

argmin
λ∈I

nL1(λ) =
{
z1 − β1, if 0 ≤ β1 < z1,

0, if z1 ≤ β1,

and

min
λ∈I

nL1(λ) =
{

0, if 0 ≤ β1 < z1,

(β1 − z1)
2, if z1 ≤ β1.

Next, for λ ≥ z1, nL(λ) = β2
1 . Since minλ∈I nL(λ) <

β2
1 for all β1 > 0, it follows that

nL1
(
λ∗

1
) =

{
0, if 0 ≤ β1 < z1,

(β1 − z1)
2, if z1 ≤ β1. �

In this case, when the model includes superfluous
predictors, the optimal level of shrinkage is determined
by balancing the increase in loss due to the bias in-
duced from over-shrinking the true estimated coeffi-
cient with the increase in loss due to under-shrinking
the estimated coefficients for the superfluous predic-
tors. The next two lemmas establish necessary and suf-
ficient conditions on the zj ’s for deterioration to occur.

LEMMA A.3. Assume that sgn(β1) = sgn(z1). If
max2≤j≤p |zj | < |z1|, then Lp(λ∗

p) = L1(λ
∗
1) if and

only if |β1| < |z1| − max2≤j≤p |zj |.
PROOF. Without loss of generality, assume that

β1 > 0 and, therefore, z1 > 0. Also assume that |z2| >

· · · > |zp|. Consider

nLp(λ) = (
β1 − (z1 − λ)+

)2 +
p∑

j=2

(|zj | − λ
)2
+.

First, consider λ ∈ I = [0, z1). Since nLp(λ) is a
continuous differentiable function for λ ∈ I , local ex-
trema occur at points where the derivative is zero or
at a boundary point. Taking the derivative with respect
to λ,

∂nLp(λ)

∂λ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
(
β1 − (z1 − λ)

)
,

if |z2| ≤ λ < z1,

2
(
β1 − (z1 − λ)

) − 2
k∑

j=2

(|zj | − λ
)
,

if |zk+1| ≤ λ < |zk|,
for k = 2, . . . , p − 1,

2
(
β1 − (z1 − λ)

) − 2
p∑

j=2

(|zj | − λ
)
,

if 0 ≤ λ < |zp|.
Since the derivative is a strictly increasing function of
λ, a minimum occurs at λ = 0 if the derivative is non-
negative at that point. Hence, a minimum occurs at
λ = 0 if β1 >

∑p
j=1 |zj |. Otherwise, a minimum oc-

curs at a point where the derivative is zero. Define

λ∗
I ≡ argmin

λ∈I

nLp(λ).
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It follows that

λ∗
I =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 − β1, if 0 < β1 ≤ z1 − |z2|,∑k
j=1 |zj | − β1

k
,

if
k∑

j=1

|zj | − k|zk| < β1 ≤
k∑

j=1

|zj | − k|zk+1|,

for k = 2, . . . , p − 1,∑p
j=1 |zj | − β1

p
,

if
p∑

j=1

|zj | − p|zp| < β1 ≤
p∑

j=1

|zj |,

0, if
p∑

j=1

|zj | < β1.

Next, for λ ≥ z1, nLp(λ) = β2
1 . Thus

nLp

(
λ∗

p

) = min
(
β2

1 , nLp

(
λ∗

I

))
.

To compare nLp(λ∗
p) to nL1(λ

∗
1), first note that

nL1(λ
∗
1) < β2

1 . Next, comparing nLp(λ∗
I ) to nL1(λ

∗
1) it

is clear that nL1(λ
∗
1) = nLp(λ∗

I ) = 0 if 0 < β1 ≤ z1 −
|z2|. However, if z1 − |z2| < β1 ≤ z1, then λ∗

I < |z2|
and

nLp

(
λ∗

I

)
>

(|z2| − λ∗
I

)2
> 0 = nL1

(
λ∗

1
)
.

Similarly, if z1 < β1, then either λ∗
I > 0 so that

nLp

(
λ∗

I

)
>

(
β1 − (

z1 −λ∗
I

))2
> (β1 − z1)

2 = nL1
(
λ∗

1
)
,

or λ∗
I = 0 and

nLp

(
λ∗

I

) = (β1 − z1)
2 +

p∑
j=2

|zj |2 > (β1 − z1)
2

= nL1
(
λ∗

1
)
.

Hence, nL1(λ
∗
1) = nLp(λ∗

p) if and only if 0 < β1 ≤
z1 − |z2|. �

LEMMA A.4. Assume that sgn(β1) = sgn(z1). If
max2≤j≤p |zj | > |z1|, then Lp(λ∗

p) > L1(λ
∗
1) for all

β1 	= 0.

PROOF. Without loss of generality, assume that
β1 > 0 and, therefore, z1 > 0. Also assume that |z2| >

· · · > |zp|. Consider

nLp(λ) = (
β1 − (z1 − λ)

)2 +
p∑

j=2

(|zj | − λ
)2
+.

Define

k̃ = max
2<k≤p

{
k : |zk| > z1

}
.

The derivative of nLp(λ) does not exist at λ = z1.
However, by a similar argument to that used in the
proof of Lemma A.1, λ = z1 is never globally optimal
since

nLp(z1) = β2
1 +

k̃∑
j=2

(|zj | − z1
)2

> β2
1 .

To determine the optimal values of λ, we consider
the intervals I1 = [0, z1), I2 = (z1, |z2|], and I3 =
(|z2|,∞) separately. Define

λ∗
Ij

= argmin
λ∈Ij

nLp(λ)

for j = 1,2,3.
First, for λ ∈ I1, nLp(λ) is a continuous differen-

tiable function and

∂nLp(λ)

∂λ
= 2

(
β1 − (z1 − λ)

) − 2
p∑

j=2

(|zj | − λ
)
+.

Since the derivative is a strictly increasing function
of λ, a minimum occurs at λ = 0 if the derivative is
nonnegative at that point. Thus, a minimum occurs at
λ = 0 if β1 >

∑p
j=1 |zj |. Similarly, a local minimum

occurs at λ = z1 if

lim
λ→z−

1

∂nLp(λ)

∂λ
< 0,

which holds if 0 < β1 ≤ ∑k̃
j=1 |zj | − k̃z1. Otherwise, a

minimum occurs at a point where the derivative is zero.
It follows that

λ∗
I1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1, if 0 < β1 ≤
k̃∑

j=1

|zj | − k̃z1,

∑k̃
j=1 |zj | − β1

k̃
,

if
k̃∑

j=1

|zj | − k̃z1 < β1 ≤
k̃∑

j=1

|zj | − k̃|z
k̃+1|,∑k

j=1 |zj | − β1

k
,

if
k∑

j=1

|zj | − k|zk| < β1 ≤
k∑

j=1

|zj | − k|zk+1|,

for k = k̃ + 1, . . . , p − 1,∑p
j=1 |zj | − β1

p
,

if
p∑

j=1

|zj | − p|zp| < β1 ≤
p∑

j=1

|zj |,

0, if
p∑

j=1

|zj | < β1.
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Next, for λ ∈ I2, nLp(λ) is a continuous differen-
tiable function and

∂nLp(λ)

∂λ
= −2

p∑
j=2

(|zj | − λ
)
+.

Since the derivative is negative for all λ ∈ I2, a local
minimum occurs at λ = |z2|, thus nLp(λ∗

I2
) = β2

1 .

Lastly, for all λ ∈ I3, nLp(λ) = β2
1 . It follows that

nLp

(
λ∗

p

) = min
(
β2

1 , nLp

(
λ∗

I1

))
.

By a similar argument to that used in the proof of
Lemma A.3, it follows that nLp(λ∗

p) > nL1(λ
∗
1). �

It follows that deterioration occurs unless it is pos-
sible to shrink z1 optimally while at the same time
shrinking all of the estimated coefficients for the super-
fluous predictors to zero. In particular, by Lemmas A.3
and A.4, when the sign of z1 is correct, Lp(λ∗

p) >

L1(λ
∗
1) unless |β1| < |z1| − max2≤j≤p |zj |.

PROOF OF THEOREM 2.2. By Lemma A.1,

Pr
(
nLp

(
λ∗

p

)
> nL1

(
λ∗

1
))

= Pr
(
nLp

(
λ∗

p

)
> nL1

(
λ∗

1
)| sgn(z1) = sgn(β1)

)
· Pr

(
sgn(z1) = sgn(β1)

)
.

Without loss of generality, assume that β1 > 0. By
Lemmas A.3–A.4, this is equal to

(
1 − Pr

(
nLp

(
λ∗

p

)
= nL1

(
λ∗

1
)|z1 > 0

))
Pr(z1 > 0)

=
(
1 − Pr

(
β1 < z1 − max

2≤j≤p
|zj ||z1 > 0

))
· Pr(z1 > 0).

We can evaluate these probabilities explicitly. First,
consider

(A.1) Pr(z1 > 0) = �

(
β1

σ

)
.

Next,

Pr
(
β1 < z1 − max

2≤j≤p
|zj ||z1 > 0

)

= Pr({β1 < z1 − max2≤j≤p |zj |} ∩ {z1 > 0})
Pr(z1 > 0)

= Pr(β1 < z1 − max2≤j≤p |zj |)
Pr(z1 > 0)

,

where the second equality follows from the fact that
β1 > 0 implies that z1 > 0. By (2.1) and (2.2),

Pr
(
β1 < z1 − max

2≤j≤p
|zj |

)

= Pr

( p⋂
j=2

{
β1 < z1 − |zj |}

)

=
∫ z1=∞
z1=β1

[∫ z2=z1−β1

z2=−(z1−β1)
f2(z2)dz2

]p−1
f1(z1)dz1

=
∫ ∞
β1

[
2�

(
z1 − β1

σ

)
− 1

]p−1
f1(z1)dz1

= 1

σ

∫ ∞
β1

[
2�

(
z1 − β1

σ

)
− 1

]p−1
φ

(
z1 − β1

σ

)
dz1,

where f1(·) and f2(·) are the probability distribution
functions (p.d.f.) of z1 and z2, respectively, and φ(·) is
the p.d.f. of the standard normal distribution. Substitut-
ing

w = 2�

(
z1 − β1

σ

)
− 1,

Pr
(
β1 < z1 − max

2≤j≤p
|zj |

)
= 1

2

∫ 1

0
wp−1 dw = 1

2p
.

Thus,

(A.2) Pr
(
β1 < z1 − max

2≤j≤p
|zj ||z1 > 0

)
=

1
2p

�(
β1
σ

)
.

From (A.1) and (A.2), it follows that

Pr
(
Lp

(
λ∗

p

)
> L1

(
λ∗

1
)) = �

(
β1

σ

)
− 1

2p
. �

Lastly, we provide the proof for Theorem 2.3.

PROOF OF THEOREM 2.3. Without loss of gener-
ality, assume that β1 > 0. Define

A := {z1, z2 : z2 > z1 > β1}.
Note that Pr((z1, z2) ∈ A) > 0. By Lemmas A.2
and A.4, for (z1, z2) ∈ A, L1(λ

∗
1) = 0 and Lp(λ∗

p) >

L1(λ
∗
1). Thus,

Lp(λ∗
p)

L1(λ
∗
1)

= ∞.

It follows that

E
(

Lp(λ∗
p)

L1(λ
∗
1)

)

=
∫ zp=∞
zp=−∞

· · ·
∫ z1=∞
z1=−∞

Lp(λ∗
p)

L1(λ
∗
1)

df1(z1) · · ·dfp(zp)
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FIG. A.1. Optimal APSE ratio for p predictors compared to the 6 true predictors over 1000 realizations as a function of p. The “High
SNR” and “Low SNR” settings correspond to σ 2 = 9 and σ 2 = 625, respectively.

≥
∫ zp=∞
zp=−∞

· · ·
∫∫

(z1,z2)∈A

Lp(λ∗
p)

L1(λ
∗
1)

df1(z1) · · ·dfp(zp)

= ∞. �

APPENDIX B: OPTIMAL APSE RATIO

Here, we return to the independent predictors exam-
ple in Section 3.2. To study the behavior of the optimal
APSE, we evaluate the APSE for each realization on a
simulated test set. Figure A.1 presents boxplots of the
ratios of the estimated optimal APSE with p predictors
to the estimated optimal APSE with the six true pre-
dictors where p is taken to be 100, 250, 500 and 1000
and n = 100. A comparison of this figure to the median
optimal loss ratios presented in Figure 7 demonstrates
that while deterioration is still observed, the optimal
APSE ratios can be smaller than the optimal loss ra-
tios. To understand why this is the case, note that the
APSE is equal to

1

n

∥∥y∗ − ŷ
∥∥2 = 1

n

(∥∥μ∗ − μ̂
∥∥2 +2

(
μ∗ − μ̂

)T
ε∗ +∥∥ε∗∥∥2)

,

where ·∗ is with respect to an independent test set.
Thus, the optimal APSE ratios can be smaller than the
optimal loss ratios due to the presence of additional
terms in both the numerator and denominator of the
APSE ratio.

These figures also suggest that the deterioration pat-
tern is less well-behaved when p > n than it is when

p < n, which is consistent with the results found in
Section 3.2.
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