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Abstract: Various forms of penalty functions have been developed for
regularized estimation and variable selection. Screening approaches are of-
ten used to reduce the number of covariate before penalized estimation.
However, in certain problems, the number of covariates remains large af-
ter screening. For example, in genome-wide association (GWA) studies, the
purpose is to identify Single Nucleotide Polymorphisms (SNPs) that are
associated with certain traits, and typically there are millions of SNPs and
thousands of samples. Because of the strong correlation of nearby SNPs,
screening can only reduce the number of SNPs from millions to tens of thou-
sands and the variable selection problem remains very challenging. Several
penalty functions have been proposed for such high dimensional data. How-
ever, it is unclear which class of penalty functions is the appropriate choice
for a particular application. In this paper, we conduct a theoretical anal-
ysis to relate the ranges of tuning parameters of various penalty functions
with the dimensionality of the problem and the minimum effect size. We
exemplify our theoretical results in several penalty functions. The results
suggest that a class of penalty functions that bridges L0 and L1 penalties
requires less restrictive conditions on dimensionality and minimum effect
sizes in order to attain the two fundamental goals of penalized estimation:
to penalize all the noise to be zero and to obtain unbiased estimation of
the true signals. The penalties such as SICA and Log belong to this class,
but they have not been used often in applications. The simulation and real
data analysis using GWAS data suggest the promising applicability of such
class of penalties.
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1. Introduction

In genome-wide association (GWA) studies, the goal is to identify the genetic
factors such as single nucleotide polymorphisms (SNPs) that are associated with
diseases. With the availability of a dense map of SNPs, it is statistically very
challenging to select the important SNPs from millions of SNPs using only a
couple of thousand samples. Regularized estimation procedures can be applied
for simultaneous selection of important variables (SNPs) and estimation of their
effects for high dimensional data in GWA studies. The objective function of the
regularized estimation is composed of a model fitting metric (e.g., likelihood
function) and a penalty function for the parameters subject to regularization.
Prior to the usage of regularized estimation, screening can be applied to reduce
the number of SNPs to be considered for penalized estimation. However, due
to the high correlation of neighboring SNPs, the number of SNPs that pass
a reasonable screening criterion is often larger than or much larger than the
sample size.

We use the real SNP genotype data from a recent study (Wright et al., 2014)
to illustrate the correlation structure of genotype data. We take the genotypes
of 645,316 SNPs in chromosome 1 from 1,198 samples, and randomly pick 30
SNPs as important variables to simulate the response under the linear model.
The effect size is simulated as 0.7 and the residual errors are standard normal
variables. Figure 1 shows a Manhattan plot of the marginal association p-values.
The 30 important SNPs are labeled by grey vertical lines. It is obvious that
the high correlation among nearby SNPs leads to small p-values for those SNPs
which are close to the 30 important SNPs. If we apply screening using the p-value
cut-off 10−4, 3,087 SNPs will be selected which include 20 of the 30 important
SNPs. Alternatively, if the p-value cut-off is 10−8, 991 SNPs will be selected,
which include only 13 of the 30 important SNPs. Thus screening method can be
helpful to certain extend, and screening with stringent threshold would lead to
many false negatives. This conclusion is consistent with the extensive empirical
study by Bühlmann and Mandozzi (2012). Therefore, the penalty function itself
is still the key for high dimensional data analysis, and it is desirable to identify
penalty functions that can tolerate higher dimension.

Several penalty functions have been proposed for high dimensional data anal-
ysis. One of the most popular penalty functions is the Lasso penalty (Tibshi-
rani, 1996). The variable selection consistency of the Lasso requires the irrep-
resentable condition (Zhao and Yu, 2006) that there is no strong correlation
between the “important covariates” that have non-zero effects and the “unim-
portant covariates” that have zero effects. This condition may not be satis-
fied in some applications, such as GWA studies. Recent studies have shown
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Fig 1. Marginal association p-values for 645,316 SNPs on chromosome 1. The grey vertical
lines denote the positions of 30 important SNPs. The genomic location spans 248,484,829
base-pairs. Note that a SNP is at a single base-pair location.

that a class of folded concave penalties can achieve variable selection consis-
tency without requiring such an irrepresentable condition (Fan and Lv, 2010).
These folded concave penalties include, but are not limited to SCAD (Smoothly
Clipped Absolute Deviation) (Fan, 1997; Fan and Li, 2001), MCP (Minimax
Concave Penalty) (Zhang, 2010), SICA (Smooth Integration of Counting and
Absolute deviation) (Lv and Fan, 2009), and a Log penalty (Friedman (2008),
Sun, Ibrahim and Zou (2010)).

A common concern in real data applications of penalized estimation is to tune
the regularization parameters to achieve the two fundamental goals of penalized
estimation: to penalize all the noise to be zero and to obtain an unbiased esti-
mation of the true signals. However, it may not be clear whether such “optimal”
tuning is possible, and this is the focus of our study. Mazumder, Friedman and
Hastie (2011) study the non-convex optimization problem for SCAD, MCP and
Log penalties, but they did not address the roles of tuning parameters of those
penalties in variable selection. Moreover, all the aforementioned folded-concave
penalties have two tuning parameters, and thus in practice, the immediate ques-
tions concern whether they both should be tuned, and what is the consequence
of tuning only one of them in order to improve computational efficiency. Previous
work has provided recommendations regarding the choice of tuning parameters,
but there is no systematic asymptotic studies on the roles of multiple tuning
parameters. To address those issues, we will relate the choice of tuning param-
eters to the difficulty of the variable selection problem, namely the minimum
effect size and the dimensions, i.e., the number of important and unimportant
covariates.

The results suggest that a class of penalty functions that bridges L0 and L1

penalties such as Log and SICA requires less restrictive conditions on dimen-
sionality and minimum effect sizes, while achieving the two fundamental goals
of penalized estimation. For the tuning of the regularization parameters, our
study shows that both SICA and Log penalties have very limited performance
if only one of the two regularization parameters is tuned, while tuning both reg-
ularization parameters can significantly improve their performances, although
at the price of heavier computational burden. Our results are also insightful for
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designing other penalty functions. For example, our results imply that two tun-
ing parameters are sufficient to achieve the two fundamental goals. Therefore,
penalties with more than two regularization parameters may not be needed due
to the substantial increase of computational cost.

We conducted empirical analyses of the penalty functions using both simu-
lated data and real data in GWA settings. Those empirical results support the
idea that the class of penalty functions that bridges L0 and L1 holds promise
for genomic studies.

2. Theoretical results

2.1. Notations and problem setup

Let p�(β) be a penalty function of β, where � are regularization parameters
with arbitrary dimension. p�(β) is referred to as a folded concave penalty if it
satisfies the following condition:

Condition 1. p�(β) is concave in β ∈ [0,∞), with continuous derivative p′�(β) ≥
0, and p′�(0+) > 0.

We formulate the effects of the covariates via a generalized linear regression
model, permitting continuous and discrete outcome variables. Consider a sample
of n responses, y = (y1, . . . , yn)

T, where each yi, i = 1, . . . , n, is independently
generated from an exponential family distribution with a density: p(yi|θi) =
exp {[yiθi − b(θi)]/φ+ c(yi, φ)}, where θi is the canonical parameter and φ ∈
(0,∞) is the dispersion parameter. Let xij be the value of the j-th covariate
in the i-th sample, and let X = (xij) be a n × p matrix of the covariates’
values. We assume that X has been normalized such that

∑n
i=1 x

2
ij = n, for j =

1, . . . , p. Under the assumed generalized linear model, θi =
∑p

j=1 xijβj , where

βj ’s are regression coefficients. Let E(y) = μ(θ) = (∂θ1b(θ1), . . . , ∂θnb(θn))
T

and Σ(θ) = diag
{
∂2
θ1
b(θ1), . . . , ∂

2
θn
b(θn)

}
. We maximize the penalized likelihood

Qn(β) = ln(β) −
∑p

j=1 p�(|βj |), where ln(β) = n−1
[
yTθ − 1Tb(θ)

]
is an affine

transformation of the log-likelihood.

Without loss of generality, we assume that the first s covariates of X are
important (i.e., having non-zero effect on the response variable) and denote them
collectively by X1, and then denote the remaining p− s unimportant covariates
by X2, such that X = (X1, X2). Similarly, we partition β for the important
and unimportant covariates such that β = (βT

1 , β
T
2 )

T. Let β0 = (βT
01, β

T
02)

T =
(β01, . . . , β0p)

T be the true coefficients, such that β02 = 0. Let θ0 be the true
values of θ such that θ0 = Xβ0.

It is difficult to analytically study the global maximizer of the penalized
likelihood. Following the previous work (Fan and Lv, 2011), we study the local
maximizer of the penalized likelihood that satisfies a set of sufficient and almost
necessary conditions specified in Theorem 1 (see Appendix).
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2.2. The role of the tuning parameters

The dimension of the regression problem and the minimum effect size are as-
sumed to satisfy the following conditions:

Condition 2.1. log p = O(nα) and s = O(nν), respectively, with 0 ≤ α < 1 and
0 ≤ ν < 1/2.

Condition 2.2. dn ≡ 2−1 min1≤j≤s{|βj0|} = O(n−γ0(logn)1/2) for some γ0 ∈
(ν, 1/2).

The restriction of γ0 > ν (which is equivalent to s < nγ0) in Condition 2.2 can
be understood as an identifiability condition so that dns = O(nν−γ0(log n)1/2)
can be bounded by a constant. Otherwise the response variable is unbounded,
with non-trivial probability.

A maximizer of the penalized likelihood, β̂ = (β̂T
1 , β̂

T
2 )

T, is considered to

have weak oracle property if β̂2 = 0 with probability tending to 1 as n →
∞, and β̂1 is consistent under L∞ loss (Lv and Fan, 2009). We will study
the role of tuning parameters by studying the conditions for the weak oracle
property. To this end, we generalize the conditions for the weak oracle property
in Fan and Lv (2011) to impose constraints on the penalty function rather than
particular tuning parameters, which gives the following Conditions 3.1–3.3. This
generalization is necessary because the original conditions are too stringent for
any penalty function whose p′�(0+) involves more than one tuning parameter.
For example, the Log penalty cannot satisfy the original conditions for the
weak oracle property. After generalizing the conditions, we can show that the
Log penalty can indeed fulfill the conditions of the weak oracle property.

Condition 3.1. p′�(dn) � b−1
s dn, where bs ≡ O(nγs) = O(n‖[XT

1 Σ(θ0)X1]
−1‖∞)

with γs ≥ 0. A corollary of Condition 3.1 is p′�(dn) � dn.

Condition 3.2.

∥∥XT
2 Σ(θ0)X1[X

T
1 Σ(θ0)X1]

−1
∥∥
∞ ≤ min {Kp′�(0+)/p′�(dn), O(nν)}

for K ∈ (0, 1).

Condition 3.3. p′�(0+) 
 max(n−2γ0+2ν log n, nν−1/2(log n)1/2) and p′�(0+) >
ηpσ

−1/2(1−K)−1, where K is defined in Condition 3.2, σ is a constant that is
defined based on the range of the response variable y (see proposition A1 in the
Supplementary Materials for details), and ηp = n−1/2+α/2(logn)1/2.

Condition 3.1 requires the derivative of the penalty function (i.e., the increase
of penalization as the regression coefficient increases) for important covariates
to be small enough. Condition 3.2 says that the ratio of the penalties’ derivatives
for unimportant covariates and for important ones (p′�(0+)/p′�(dn)) should be
large enough relative to the maximum correlation between important and unim-
portant covariates, which is a generalization of the irrepresentable condition for
Lasso (Zhao and Yu, 2006). Condition 3.3 requires the derivative of the penalty
function for unimportant covariates to be large enough. In contrast to the condi-
tions for the weak oracle property in Fan and Lv (2011), a critical modification
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is that we restrict the size of p′�(0+) in Condition 3.3, which replaces the condi-
tion λn 
 n−α(log n)2 stated in equation (18) of Fan and Lv (2011). For SCAD
and MCP, p′�(0+) = λn, and thus constraints on λn or p′�(0+) are equivalent.
However, for Log and SICA, p′�(0+) = O(λn/τn). Therefore, the generalized
condition only requires the ratio of the two regularization parameters to be large
enough instead of imposing a constraint on λn itself. Given Conditions 2.1–2.2,
Conditions 3.1–3.3, and Conditions 4.1–4.4 (presented in the Appendix), which
are for the design matrix X, we have the weak oracle property (Theorem 2 in
the Appendix).

One immediate conclusion from Conditions 3.1–3.3 is that the constraints
on the penalty function p�(β) are applied on the two quantities p′�(0+) and
p′�(dn). With an appropriate design, two tuning parameters can give enough
degrees of freedom on these two quantities so that Conditions 3.1–3.3 are satis-
fied.

Next we discuss the implications of Conditions 3.1–3.3 for the four folded
concave penalties: SCAD, MCP, Log, and SICA. It is more convenient to define
SCAD and MCP by their derivatives.

p′SCAD(|βj |;λ, a) = {λI(|βj | ≤ λ) + [(aλ− |βj |)/(a− 1)]I(λ < |βj | < aλ)} ,

where λ > 0 and a > 2 are two regularization parameters.

p′MCP(|βj |;λ, a) = I(|βj | < aλ)(aλ− |βj |)/a,

where λ > 0 and a > 0 are two regularization parameters. The Log and SICA
penalties are defined as

plog;λ,τ (|βj |) = λ log(|βj |+ τ), and

pSICA(|βj |;λ, τ) = λ {I(|βj | �= 0)|βj |/(|βj |+ τ) + τ |βj |/(|βj |+ τ)} ,

respectively, where λ > 0 and τ > 0 are two regularization parameters. In the
following discussions, the tuning parameters employed by a penalty are indi-
cated by subscripts. For example, the SCAD penalty with one tuning parame-
ter λn (the other regularization parameter a being set as constant) is denoted
by SCADλn and the SCAD penalty with two tuning parameters λn and an is
denoted by SCADλn,an .

Let ηp = n−1/2+α/2(log n)1/2, which is a monotone transformation of di-
mension log(p) = O(nα). Let ηd = min(nγ0/2(logn)−1/4, n−γ0+1/2), which, by
Condition 2.2, is a function of the minimum effect size: dn ≡ min1≤j≤s{|βj0|} =
O(n−γ0(log n)1/2). In the following propositions, we will discuss the properties
of different penalties with respect to s (the number of non-zero coefficients), dn,
ηd, and ηp.

Proposition 1 (SCADλn , SCADλn,an , or MCPλn). If dn 
 ηp and s � ηd,
there exist λn such that dn 
 λn > ηp to satisfy Conditions 3.1–3.3 for the
weak oracle property. However, there is no such tuning parameter if dn � ηp.
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Proposition 2 (MCPλn,an). There are tuning parameters that satisfy Condi-
tions 3.1–3.3 for the weak oracle property without further constraints other than
s � nγ0 , as is specified in Condition 2.2.

Proposition 3 (SICAλn or Logλn). There are tuning parameters that satisfy
Conditions 3.1–3.3 for the weak oracle property if dn 
 ηp, s � ηd, and

∥∥XT
2 Σ(θ0)X1(X

T
1 Σ(θ0)X1)

−1
∥∥
∞ ≤ K (dn/τ + 1)

2
,

where K ∈ (0, 1) was defined in Condition 3.3. There is no such tuning param-
eter if dn � ηp.

Proposition 4 (SICAλn,τn or Logλn,τn). There are tuning parameters that sat-
isfy Conditions 3.1–3.3 for the weak oracle property without further constraints
other than s � nγ0 , as is specified in Condition 2.2.

Corollary 1 (Restriction on tuning parameter if dn � ηp). To satisfy Condition
3.1–3.3 requires an → 0+ for MCPλn,an , and τn → 0+ for SICAλn,τn and
Logλn,τn .

The proofs of Propositions 1–4 and Corollary 1 are presented in the Supple-
mentary Materials (Chen et al., 2016).

By Proposition 1, if dn 
 ηp or dn � ηp, SCAD has similar theoretical
properties when one or two tuning parameters are used. This conclusion is con-
sistent with many previous works where SCAD has satisfactory performance
when the regularization parameter a is set to be a constant, e.g., 3.7. Using
two tuning parameters (λn and an) does have some advantage over one tuning
parameter (λn) when dn = O(ηp). However, since the situation of dn = O(ηp)
only covers a negligible part of the space for dn, we do not discuss it further
here. Proposition 1 also states that if dn � ηp (the effect size is not large
enough relative to the dimension), then there is no tuning parameter of SCAD
to satisfy Conditions 3.1–3.3. Specifically, Condition 3.1 requires p′�(dn) � dn,
and Condition 3.3 requires p′�(0+) > cηp, where c is a constant. These two
conditions cannot both be satisfied if dn � ηp. Specifically, if SCAD satisfies
Condition 3.3, then p′�(0+) = λn > cηp. Given dn � ηp and ηp < λn/c, we
have dn � λn, and then we can show that p′�(dn) = λn, which contradicts
Condition 3.1. In addition, we can see that in this situation, both p′�(0+) and
p′�(dn) are functions of λn so that a plays no role in fulfilling Conditions 3.1
and 3.3. Therefore, tuning only one regularization parameter is sufficient and
can be a computational advantage of SCAD.

By Propositions 1 and 2, tuning both λn and an significantly improves the
performance of MCP if dn � ηp. Specifically, if MCP satisfies Condition 3.3,
then p′�(0+) = λn > cηp. Then given dn � ηp, we have dn � λn. However,
given a properly tuned an = o(1) such that dn ≥ anλn, we have p′�(dn) = 0,
which allows MCP to satisfy Condition 3.1.

By Proposition 3, if we set τ = O(1) and only tune the regularization param-
eter λ, then SICAλn and Logλn require the following condition to achieve the
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weak oracle property:

∥∥XT
2 Σ(θ0)X1(X

T
1 Σ(θ0)X1)

−1
∥∥
∞ ≤ K (dn/τ + 1) .

This condition is similar to the irrepresentable condition of Lasso because when
τ = O(1), dn/τ + 1 → 1. Therefore, asymptotically SICAλn and Logλn would
perform in a way similar to Lasso. If dn � ηp, then SICAλn and Logλn can-
not simultaneously satisfy Conditions 3.1 and 3.3, even if the irrepresentable
condition is satisfied.

By Proposition 4, tuning both λn and τn significantly improves the per-
formance of SICA and Log. Specifically, SICA and Log can have satisfactory
variable selection performances even if the minimum effect size is much smaller
with respect to the dimension of the problem: dn � ηp. This can be justified
by the following arguments. For Log penalty, p′�(dn) = p′�(0+)/(dn/τn + 1).
Even Condition 3.3 requires a large value of p′�(0+); a small enough τn can
help p′�(dn) to satisfy Condition 3.1. SICA has similar properties since it has
p′�(dn) = p′�(0+)/(dn/τn + 1)2. Therefore, the implications of Proposition 3
and Proposition 4 for the practical use of SICA and Log penalties would be
that we should not treat τ as a constant.

Corollary 1 shows that for a difficult variable selection problem where dn �
ηp, the tuning parameter an of MCP or τn of SICA or Log should be on the scale
of o(1). Zhang (2010) suggests that a larger tuning parameter a in MCP leads
to a bigger bias and less accurate variable selection, a = 1 leads to a singularity
problem, and a < 1 leads to a dramatic increase in computational cost. Simi-
larly, Lv and Fan (2009) suggest that for penalized estimates using SICA, the
bias decreases to 0 as τn goes to 0+, but the computational difficulty increases
because the maximum concavity goes to infinity. Similar conclusions apply to
Log penalty. Although MCPλn,an , SICAλn,τn , and Logλn,τn have similar theo-
retical properties by Propositions 2 and 4, the following numerical studies show
that the computation cost for SICA and Log is more affordable than that of
MCP.

3. Algorithm and tuning parameter selection

We obtain the penalized estimates using SCAD or MCP by the coordinate de-
scent algorithms implemented in the R package ncvreg (Breheny and Huang,
2011). We implement the penalized estimation using SICA and Log penalties by
a combination of the coordinate descent algorithm and Local Linear Approxi-
mation (LLA) (Zou and Li, 2008). Specifically, we update the estimate of each
regression coefficient sequentially (which is the coordinate decent part), and the
solution of each coefficient is obtained after applying a local linear approxima-
tion. The details can be found in the Supplementary Materials.

We select a particular combination of tuning parameters from the initial
tuning parameter pool using the extended BIC (Chen and Chen, 2008, 2012).
As discussed in Chen and Chen (2008), if log p/logn > 0.5, the conventional
BIC (Schwarz, 1978) is not consistent. In all the scenarios considered in this
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paper, log p/ log n > 1. Our empirical studies confirm that in these scenarios
the conventional BIC tends to be too liberal, and the extended BIC performs
satisfactorily. The extended BIC for the linear model m is:

BIC	(m) = −2 log ln{θ̂(m)}+ dfm log n+ 2� log ς(Sdfm),

where dfm is the degrees of freedom for model m and ς(Sdfm) is the number
of the models containing dfm covariates. We take the number of the nonzero
coefficient estimates in the model m as dfm and set ς(Sdfm) =

(
p

dfm

)
, the number

of combinations of dfm covariates chosen from p covariates. In addition, we set
� � 1 − 1/(2log p/logn) as � > 1 − 1/(2log p/logn) is suggested in Chen and
Chen (2008). The extended BIC for a generalized linear model m is:

BIC	(m) = −2 log ln{θ̂(m)}+ dfm logn+ 2dfm� log p,

where dfm is the number of nonzero coefficient estimates, and similar to the
above � � 1− 1/(2log p/logn), as suggested in Chen and Chen (2012).

4. Simulation

We evaluated those four penalties using a set of simulated data for multiple
loci mapping problems. Specifically, the response variable is either a continuous
trait (linear regression) or the case/control status (logistic regression), and the
covariates are the genotypes of the SNPs. One particular challenge in a multiple
loci mapping problem is that nearby SNPs often have correlated genotypes due
to linkage disequilibrium, and such correlations may violate the irrepresentable
condition, which is needed for the consistency of Lasso. To faithfully reproduce
such correlation structure, we directly used genotype data of European Ances-
try (EA) samples from a GWAS study of schizophrenia (Shi et al., 2009). The
dataset was obtained from NCBI dbGaP, which includes GAIN (Genetic Asso-
ciation Information Network) samples (2,686/2,656: cases/controls, dbGaP Ac-
cession: phs000021.v3.p2) and non-GAIN samples (1,217/1,442: cases/controls,
dbGaP Accession: phs000167.v1.p1) genotyped by Affymetrix 6.0 SNP arrays
with ∼900,000 SNPs.

To compare the performances of those penalty functions, we use two criteria
to select the tuning parameters. One is the extended BIC as introduced earlier,
and the other is an oracle criterion that uses the knowledge of the true model to
select the tuning parameters. Certainly the oracle criterion is not applicable in
practice when the true model is unknown. However, in simulation studies, the
oracle criterion permits us to evaluate the performance of a penalty function
rather than the combined outcome of a penalty function and a tuning parameter
selection method. The oracle criterion is defined as follows. Let D be the number
of discoveries, i.e., the covariates with non-zero regression coefficient estimates.
D = TD+ FD, where TD and FD are the number of true discoveries and false dis-
coveries, respectively. The oracle criterion evaluates a model based on the three
measures, the false discovery rate FD/D, power TD/s, and the sum of squared
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error of regression coefficient estimates
∑p

j=1 |β̂j − β0j |2, where β0j is the true

value of βj . The model with the minimum of wt(FD/D−TD/s)+
∑p

j=1 |β̂j−β0j |2
is selected, where wt is a weight to balance the number of true/false discover-
ies and bias. Models selected with larger wt tend to have more true discoveries
and fewer false discoveries, but have a larger bias in their regression coefficient
estimates.

4.1. Linear model

For computational efficiency when there are a large number of simulations, we
randomly selected n = 222 samples and 12,656 SNPs with no missing values,
and with a minor allele frequency greater than 5% on chromosome 20. The
response variables y were simulated by y = Xβ + ε, where ε ∼ N(0, In×n). We
considered 3 situations involving different combinations of p and s: p = 12,656
and s = 12, 16, or 20. Let uT

1 = (0.5,−0.5, 0.4,−0.4). When s = 12, 16, and 20,
β0 are set by repeating u1 three, four, and five times, respectively. In addition,
we considered null situations with s = 0 and p = 12,656.

The tuning parameter grids were chosen as follows: a = (2.1, 2.5, 3.0, 3.7,
4.5, 6.0) for SCAD, a = (1.1, 2.0, 3.0, 4.0, 5.0, 6.0) for MCP, and 6 τ ’s for Log
and SICA as described in the Supplementary Materials. We also applied Lasso
implemented in R/glmnet. For each of these five penalties, 100 λ’s uniformly
distributed on a log scale were generated as described in the Supplementary
Materials.

We used the extended BIC and oracle criteria 10(FD/D− TD/s) +
∑p

j=1 |β̂j −
βj0|2 to select the tuning parameters. We give the term (FD/D− TD/s) a larger
weight of 10 so that the oracle criterion selects the model with the smaller false
discovery rate FD/D, greater power TD/s first, and use the sum of squared error

of regression coefficient estimates
∑p

j=1 |β̂j − βj0|2 as a secondary criterion.
Additional simulation results using various values of weight can be found in the
Supplementary Materials.

For null simulation situations, all penalties have at most 1 or 2 false discover-
ies by the extended BIC tuning parameter selection criterion. Table 1 summa-
rizes the simulation results in non-null situations with 12, 16, or 20 important
covariates. The folded concave penalties perform better than the Lasso penalty.
Among the four folded concave penalties, SICA, Log and MCP have compara-
ble performance, and are better than SCAD when the tuning parameters are
selected by the oracle criterion. When the tuning parameters are selected by
the extended BIC, SICA and Log have comparable performance, and are better
than SCAD and MCP. In additional simulation studies that are presented in the
Supplementary Materials, SCAD and MCP with one tuning parameter (λ) have
slightly worse performance than the situations with two tuning parameters. In
contrast, Log and SICA with one tuning parameter (λ) have much worse per-
formance than the situations with two tuning parameters. Therefore, the extra
tuning parameter (a or τ) gives SCAD and MCP limited additional advantage,
but significantly improves the performances of Log and SICA.
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Table 1

Simulation results for penalized linear regression with (n=222, p = 12,656). The headers
indicate the tuning parameter selection criterion (Oracle or the extended BIC) and the
numbers in parentheses are the number of important covariates. For each penalty, we

present the median of the number of true discoveries, false discoveries (in parentheses), and
average bias of the true discoveries (in brackets) across 100 simulations.

Oracle (12) Ext BIC (12) Oracle (16) Ext BIC (16) Oracle (20) Ext BIC (20)
Lasso 11 (8) [0.33] 0 (0) [−] 7 (3) [0.39] 0 (0) [−] 14 (112) [0.34] 0 (0) [−]
SCAD 11 (3) [0.28] 0 (0) [−] 15 (25) [0.13] 0 (0) [−] 19 (27) [0.12] 0 (0) [−]
MCP 11 (1) [0.08] 10 (20) [0.08] 14 (2) [0.07] 11 (39) [0.10] 17 (3) [0.08] 5 (39) [0.11]
Log 11 (1) [0.07] 10 (3) [0.07] 14 (3) [0.07] 11 (7) [0.07] 17 (3) [0.08] 8 (10) [0.08]
SICA 11 (1) [0.06] 10 (3) [0.06] 14 (2) [0.06] 11 (6) [0.07] 17 (4) [0.07] 5 (7) [0.08]

4.2. Simulation for logistic model

For penalized logistic regression, a larger sample size is needed for simulations
with reasonable effect sizes. We randomly selected 10,156 SNPs (with a minor
allele frequency larger than 5%) from chromosomes 1 to 22 and X and 750
samples (with a missing values percent smaller than 3%). We simulated the
individual SNP effect so that the disease odds ratios are 2.0, corresponding to
regression coefficients of 0.7. The binary response variables y were simulated
based on the logistic regression model: log{Pr(y = 1)/Pr(y = 0)} = Xβ, where
s = 4, 8, or 12. In addition, the null model where s = 0 was simulated. The
intercept was set as −2, corresponding to a disease prevalence of 0.12. The initial
pool of tuning parameters were generated in the same way as linear regression,
and then a particular combination of tuning parameters was selected to minimize
the extended BIC, or an oracle criterion 10(FD/D− TD/s) +

∑p
j=1 |β̂j − βj0|2.

For the simulation of null models, all penalties have at most 1 or 2 false
discoveries by the extended BIC tuning parameter selection criterion. The sim-
ulation results of non-null models are shown in Table 2. In general, the results
of logistic model simulation have a trend similar to that of linear model simula-
tion. When the oracle criterion is used, all penalties have satisfactory variable
selection performances though SICA and Log have a smaller bias on effect size
estimation. It can be observed that the models chosen by the oracle criterion
are different from those selected by the extended BIC for SCAD and MCP. This
is because the models chosen by the oracle criterion tend to have larger biases,

Table 2

Simulation results for penalized logistic regression (n=750, p = 10,156). The headers
indicate the tuning parameter selection criterion (Oracle or the extended BIC) and the
numbers in parentheses are the number of important covariates. For each penalty, we

present the median of the number of true discoveries, the number of false discoveries (in
parentheses), and the average bias of true discoveries (in brackets) across 100 simulations.

Oracle (4) Ext BIC (4) Oracle (8) Ext BIC (8) Oracle (12) Ext BIC (12)
Lasso 4(0) [0.49] 4 (0) [0.47] 7(0) [0.55] 6 (0) [0.53] 11(2) [0.59] 0 (0) [−]
SCAD 4 (0) [0.48] 4 (0) [0.39] 7 (0) [0.53] 6 (0) [0.43] 11(2) [0.58] 0 (0) [−]
MCP 4 (0) [0.093] 4 (0) [0.097] 7 (0) [0.25] 6 (1) [0.14] 11(1) [0.32] 11 (7) [0.25]
Log 4 (0) [0.085] 4 (0) [0.096] 7 (0) [0.085] 7 (1) [0.09] 11(1) [0.10] 11 (1) [0.10]
SICA 4 (0) [0.084] 4 (0) [0.094] 7 (0) [0.095] 7 (1) [0.099] 11(1) [0.12] 11 (1) [0.096]
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Table 3

Running time rounded to minutes per simulation (n=750, s = 12, p = 10,156) for 100 λ’s
and a fixed a of MCP or τ of Log and SICA.

MCP 21.1 (a = 1.1) 5.2 (a = 2.0) 7.1 (a = 3.0) 6.3 (a = 4.0) 9.7 (a = 5.0)
Log 2.1 (τ = 10−6) 1.9 (τ = 10−5) 1.9 (τ = 10−4) 1.9 (τ = 10−3) 1.8 (τ = 0.6)
SICA 2.0 (τ = 10−6) 2.1 (τ = 10−5) 1.9 (τ = 10−4) 1.8 (τ = 10−3) 1.8 (τ = 0.6)

which reduces the likelihood, and thus increases the realized value of the ex-
tended BIC. On the other hand, for Log and SICA, the models chosen by the
oracle criterion are similar to those chosen by the extended BIC since they have
a smaller bias on effect size estimation. Additional simulations presented in the
Supplementary Materials confirm that SCAD with one or two tuning param-
eters have similar performance, and an additional tuning parameter improves
MCP’s performance. The additional tuning parameter significantly improves the
performance of the SICA and Log penalties.

Finally, Table 3 presents the comparison of the computational burden for
MCP, Log and SICA across various values of a and τ , respectively. It can be
observed that the computation time of Log and SICA is much less than that of
MCP.

In summary, Log and SICA have a smaller bias for the coefficient estimates
of important covariates, and therefore, more accurate estimates of the likelihood
function. In addition, they have lower computational burden compared to MCP.
As a consequence, Log and SICA penalties have advantages in empirical usage.

5. Real data analysis

We analyzed the data of GWA studies of schizophrenia on European-ancestry
samples (2,195 cases vs. 2,617 controls). The missing genotypic data were im-
puted using BEAGLE software (Browning and Browning, 2007), and 677,163
autosome SNPs with minor allele frequency no less than 5% were selected for
the analysis. We included 23 principle components (PCs) of genotype data in
the model to account for possible population stratification. First, a univariate
logistic regression is conducted on the case-control status for each of the 677,163
SNPs, conditioning on the covariates: age, gender and 23 PCs. Using the result-
ing 677,163 p-values, we calculated a genomic control factor of 1.0445 (Devlin
and Roeder, 1999), implying that there is no strong population stratification
not accounted for in our model. The 7,984 SNPs with p-values smaller than
0.01 were selected for the following variable selection. We applied the penalized
logistic regression on the 7,984 SNPs and 4,812 samples with the four folded-
concave penalties, while accounting for the effects of age, gender and 23 PCs,
by including them as unpenalized covariates.

We applied SCAD with a = 3.7 and MCP with a = 3, the default value of
R package ncvreg, and chose to use two tuning parameters for SICA and Log.
Using the extended BIC for tuning parameter selection, the penalized logistic
regressions with Log and SICA selected 38 and 22 SNPs, respectively (Supple-
mentary Table 1–2). However, penalized logistic regressions with both MCP and
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Fig 2. GWA marginal p-values (colored circles) and the 38 SNPs (black crosses) identified
by penalized logistic regression using Log penalty.

SCAD selected the null model since the null model has the lowest value of the
extended BIC.

A joint model was fitted by a logistic regression using the 38 SNPs identi-
fied by the Log penalty together with age, gender, and 23 PCs to obtain the
p-values for the 38 SNPs. The results are illustrated in Figure 2, together with
the marginal p-values for the 677,163 SNPs. There are 43 genes within 10kb dis-
tance of these 38 SNPs, and among them 21 are in the Database for Annotation,
Visualization and Integrated Discovery (DAVID) (Huang, Sherman and Lem-
picki, 2008). By functional category enrichment analysis at the DAVID website,
16 of the 21 genes are bound by transcription factor FOXO1, with significant
enrichment p-value after a Benjamini correction. Recent studies have shown
that FOXO1 regulates neuroblastoma differentiation (Mei et al., 2012), which
is relevant to schizophrenia. In contrast, we also did the functional category
analysis for those genes within 10 kb of the 38 SNPs with the smallest marginal
p-values, but no functional category was significantly over-represented.

6. Conclusion and discussion

Although the methods with folded concave (nonconvex) penalties may not be
desirable in terms of computational efficiency, they may lead to nice statisti-
cal properties in high dimensional setting (Fan and Li, 2001). To investigate
the applicability of the nonconvex penalty functions in challenging high dimen-
sional settings such as genomic studies, we conducted a theoretical analysis on
the roles of tuning parameters with respect to the dimension of the problem
and minimum effect size. The results suggest that the derivatives of the penalty
function around 0 and the minimum effect size are two important quantities to
be considered. A good performance of the penalized estimation requires that
these two quantities be asymptotically different. Among the four penalties dis-
cussed in this paper, tuning one regularization parameter is sufficient to exploit
the advantages of SCAD. In contrast, MCP, SICA and Log’s performances can
be significantly improved if two instead of one (λ) regularization parameter is
tuned. These theoretical conclusions are well supported in the empirical studies.
In the simulations, we also observe that a penalized estimation using SICA or
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Log appears to be computationally more efficient than using MCP. The good
performance of tuning two regularization parameters comes with the cost of
added computational time. In real data analysis, one needs to judge the diffi-
culty of the penalization problem in terms of effect size and dimensionality in
order to choose whether one or two regularization parameters are needed, and
the theoretical results of this paper can guide such choices. These theoretical
results are based on the sufficient conditions of the weak oracle property, and
thus they could be refined if the sufficient and necessary conditions of the weak
oracle property are available.

For the future work, it will be of great interest to study if the regularized
methods using those four nonconvex penalties achieve feature selection consis-
tency under the necessary and sufficient condition derived by Shen et al. (2013).
Furthermore, Shen et al. (2013) have demonstrated that constrained approaches
may offer both theoretical and computational advantages. Therefore, our follow-
ing study may derive the constrained counterpart approaches for Log or SICA to
enhance better empirical performances. In addition, Wang, Kim and Li (2013)
have proposed an calibrated CCCP algorithm that produces a consistent solu-
tion path which contains the oracle estimator with probability approaching one.
They also proposed a high-dimensional BIC criterion and showed that it can
be applied to the solution path to select the optimal tuning parameter which
asymptotically identifies the oracle estimator. Take the penalty SCAD at a fixed
tuning value of a = 3.7 for example. The calibrated CCCP algorithm introduces
another parameter τ , and then two convex minimization problems using τλ and
λ are solved sequentially. For penalties that are sufficient to use one tuning pa-
rameter such as SCAD, the calibrated CCCP algorithm is ready to be applied.
However, for the penalties required the usage of both of the tuning parameters
such as Log penalty, it warrants future research on how to calibrate the two
tuning parameters simultaneously in an efficient way. After the algorithm has
been built, it will be interesting to see how different high-dimensional BIC crite-
ria may influence the empirical performances and how the new devised methods
perform in the genetic studies.

Appendix

We present the following Theorem 1 of Fan and Lv (2011) for the self-com-
pleteness of this paper. This Theorem gives a set of sufficient and almost nec-
essary conditions of a local maximizer of the penalized likelihood.

Theorem 1 (Characterization of PMLE). β̂ ∈ Rp is a strict local maximizer
of the non-concave penalized likelihood Qn(β) = ln(β)−

∑p
j=1 p�(|βj |) if

XT
1 μ(θ̂)−XT

1 y + np′�(β̂01) = 0 (1)

‖XT
2 (y − μ(θ̂))‖∞ − np′�(0+) < 0 (2)

λmin

(
XT

1 Σ(θ̂)X1

)
− nκ(p�, β̂01) > 0. (3)
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The following Conditions 4.1–4.4 are for the design matrix X, and they
are essentially the same as the corresponding conditions from Fan and Lv
(2011). We first define a few notations used in the following regularity con-
ditions. L∞ norm of a matrix is the maximum of the L1 norm of each row.
λmax()/λmin() denotes the maximum/minimum eigen-value of a symmetric ma-
trix, respectively. Denote a neighborhood of the non-zero coefficients as N0 =
{δ ∈ Rs : ‖δ − β01‖∞ ≤ dn}.
Condition 4.1. ‖[XT

1 Σ(θ0)X1]
−1‖∞ = O(bsn

−1), where

bs = O(nγs) � min(n1/2−γ0 , nγ0−ν(log n)−1/2) and γs ≥ 0.

Condition 4.2. maxδ∈N0 maxpj=1 λmax[X
T
1 |xj |diag{|μ′′(X1δ)|}X1]=O(n), where

the derivative μ′′(X1δ) is taken component-wise.

Condition 4.3. maxpj=1 ||xj ||∞ = o(n(1−α)/2(log n)−1/2) if the responses are un-
bounded.

Condition 4.4. maxδ∈N0 κ(p�, δ) ≤ minδ∈N0 λmin[n
−1XT

1 Σ(X1δ)X1], where
κ(p�, δ) is defined as the local concavity of a penalty function at v=(v1, . . . , vq)

T:

κ(p�, v) = lim
ε→0+

max
1≤j≤q

sup
t1<t2∈(|vj |−ε,|vj |+ε)

−p′�(t2)− p′�(t1)

t2 − t1
.

For the penalties with continuous second derivatives,

κ(p�, v)= max
1≤j≤q

−p′′�(vj).

Given Conditions 1 to 4, we have the following weak oracle property.

Theorem 2 (Weak oracle property). Given the Conditions 1 to 4, with proba-
bility at least Pconverage = 1− 2

[
sn−1 + (p− s) exp (−nα logn)

]
, there exists

a penalized likelihood estimator β̂ = (β̂T
1 , β̂

T
2 )

T which satisfies

(a) Sparsity: β̂2 = 0, (b) L∞ loss: ‖β̂1 − β10‖∞ = o(n−γ0
√
logn).
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