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Abstract: The detection of change-points in a spatially or time-ordered
data sequence is an important problem in many fields such as genetics and
finance. We derive the asymptotic distribution of a statistic recently sug-
gested for detecting change-points, thus establishing its validity. Simulation
of its estimated limit distribution leads to a new and computationally ef-
ficient change-point detection algorithm, which can be used on very long
signals. To finish, we briefly assess this new algorithm on one- and multi-
dimensional data.
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1. Introduction

When met with a data set ordered by time or space, it is often important to
predict when or where something “changed” as we move temporally or spatially
through it. In biology, for example, changes in an array Comparative Genomic
Hybridization (aCGH) or Chip-Seq data signal as one moves across the genome
can represent an event such as a change in genomic copy number, which is ex-
tremely important in cancer gene detection [20, 25]. In the financial world, de-
tecting changes in multivariate time-series data is important for decision-making
[30]. Change-point detection can also be used to detect financial anomalies [4]
and significant changes in a sequence of images [14].

Change-point detection analysis is a well-studied field and there are numer-
ous approaches to the problem. Its extensive literature ranges from parametric
methods using log-likelihood functions [5, 16] to nonparametric ones based on
Wilcoxon-type statistics, U-statistics and sequential ranks. The reader is referred
to the monograph [6] for an in-depth treatment of these methods.

In change-point modeling it is generally supposed that we are dealing with
a random process evolving in time or space. The aim is to develop a method
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to search for a point where possible changes occur in the mean, variance, dis-
tribution, etc. of the process. All in all, this comes down to finding ways to
decide whether a given signal can be considered homogeneous in a statistical
(stochastic) sense.

The present article builds upon an interesting nonparametric change-point
detection method that was recently proposed by Matteson and James [18]. Their
method uses U-statistics (see [11]) as the basis of a change-point test. Its interest
lies in its ability to detect quite general types of change in distribution, rather
than only changes in mean. Several theoretical results are presented in [18]
to highlight some of the mathematical foundations of their method. These in
turn lead to a simple and useful data-driven statistical test for change-point
detection. The authors then apply this test successfully to simulated and real-
world data.

There are however several weaknesses in [18] both from theoretical and prac-
tical points of view. Certain fundamental theoretical considerations are incom-
pletely treated, especially the assertion that a limit distribution exists for the
important statistic, upon which the rest of the approach hangs. On the prac-
tical side, the method is computationally prohibitive for signals of more than
a few thousand points, which is unfortunate because real-world signals can be
typically much longer.

The main objective of our paper is to provide a full theoretical justification of
the results in [18], including a derivation of the limit distribution of the statistic.
This requires the effective application of large sample theory techniques, which
were developed to study degenerate U-statistics. Though applications are not
our first priority, we nevertheless provide a method to simulate from an ap-
proximate version of the limit distribution. This leads to a new computationally
efficient strategy for change-point detection that can be run on much longer
signals.

The article is structured as follows. In Section 2 we provide some context and
present the main theoretical results. In Section 3 we show how to approximate
the limit distribution of the statistic, which leads to a new test strategy for
change-point detection. We then show how to extend the method to much longer
sequences. Though not the focus of this theoretical paper, several simulations on
one- and multi-dimensional data are provided in Section 4. A short discussion
follows in Section 5, and a proof of the paper’s main result is given in Section 6.
Some important technical results are detailed in the Appendix.

2. Theoretical results

2.1. Measuring differences between multivariate distributions

Let us first briefly describe the origins of the nonparametric change-point detec-
tion method described in [18]. For random variables Y, Z taking values in R

d,
d ≥ 1, let φY and φZ denote their respective characteristic functions. A measure
of the divergence (or “difference”) between the distributions of Y and Z is as
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follows:

D(Y, Z) =

∫
R

|φY (t)− φZ(t)|2 w(t)dt,

where w(t) is an arbitrary positive weight function for which this integral exists.
It turns out that for the specific weight function

w(t;β) =

(
2π1/2Γ(1− β/2)

β2βΓ ((d+ β)/2)
|t|d+β

)−1

,

which depends on a β ∈ (0, 2), one can obtain a not immediately obvious but
very useful result. Let Y, Y ′ be i.i.d. FY and Z,Z ′ be i.i.d. FZ , with Y, Y ′, Z
and Z ′ mutually independent. Denote by |·| the Euclidean norm on R

d. Then,
if

E(|Y |β + |Z|β) < ∞, (1)

Theorem 2 of [28] yields that

D(Y, Z;β) = E(Y, Z;β) := 2E |Y − Z|β − E |Y − Y ′|β − E |Z − Z ′|β ≥ 0, (2)

where we have written D(Y, Z;β) instead of D(Y, Z) to highlight dependence
on β. Therefore (1) implies that E(Y, Z;β) ∈ [0,∞). Furthermore, Theorem 2 of
[28] says that E(Y, Z;β) = 0 if and only if Y and Z have the same distribution.
This remarkable result leads to a simple data-driven divergence measure for
distributions. Seen in the context of hypothesizing a change-point in a signal of
independent observations X = (X1, . . . , Xn) after the k-th observation Xk, we
simply calculate an empirical version of (2):

Ek,n(X;β) =
2

k(n− k)

k∑
i=1

n∑
j=k+1

|Xi −Xj |β −
(
k

2

)−1 ∑
1≤i<j≤k

|Xi −Xj |β

−
(
n− k

2

)−1 ∑
1+k≤i<j≤n

|Xi −Xj |β . (3)

Matteson and James [18] state without proof that under the null hypothesis of
X1, . . . , Xn being i.i.d. (no change-points), the sample divergence given in (3)

scaled by k(n−k)
n converges in distribution to a non-degenerate random variable

as long as min{k, n−k} → ∞. Furthermore, they state that if there is a change-
point between two distinct i.i.d. distributions after the k-th point, the sample

divergence scaled by k(n−k)
n tends a.s. to infinity as long as min{k, n−k} → ∞.

These claims clearly point to a useful statistical test for detecting change-points.
However, we cannot find rigorous mathematical arguments to substantiate them
in [18], nor in the earlier work [28].

As this is of fundamental importance to the theoretical and practical valid-
ity of this change-point detection method, we shall show the existence of the
non-degenerate random variable hinted at in [18] by deriving its distribution.
Our approach relies on the asymptotic behavior of U-statistic type processes,
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which were introduced for the first time for change-point detection in random
sequences in [7]; see also Chapter 2 of the book [6]. We also show that in the
presence of a change-point the correctly-scaled sample divergence indeed tends
to infinity with probability 1.

2.2. Main result

Let us first begin in a more general setup. Let X1, . . . , Xn be indepen-
dent R

d-valued random variables. For any symmetric measurable function
ϕ : Rd × R

d → R, whenever the indices make sense we define the following four
terms:

Vk(ϕ) :=

k∑
i=1

n∑
j=k+1

ϕ(Xi, Xj),

Un (ϕ) :=
∑

1≤i<j≤n

ϕ(Xi, Xj),

U
(1)
k (ϕ) :=

∑
1≤i<j≤k

ϕ(Xi, Xj),

U
(2)
k (ϕ) :=

∑
k+1≤i<j≤n

ϕ(Xi, Xj).

Otherwise, define the term to be zero; for instance, U
(1)
1 (ϕ) = 0 and U

(2)
k (ϕ) = 0

for k = n− 1 and n. Note that in the context of the change-point algorithm we
have in mind, ϕ(x, y) = ϕβ(x, y) := |x−y|β , β ∈ (0, 2), but the following results
are valid for the more general ϕ defined above. Notice also that the last three
terms are U-statistics absent their normalization constants. Next, let us define

Uk,n(ϕ) :=
2

k(n− k)
Vk(ϕ)−

(
k

2

)−1

U
(1)
k (ϕ)−

(
n− k

2

)−1

U
(2)
k (ϕ).

Observe that Uk,n(ϕ) is a general version of the empirical divergence given in
(3). Notice that

Vk (ϕ) = Un (ϕ)− U
(1)
k (ϕ)− U

(2)
k (ϕ) . (4)

While Uk,n(ϕ) is not a U-statistic, we can use (4) to express it as a linear
combination of U-statistics. Indeed, we find that

Uk,n(ϕ) =
2(n− 1)

k(n− k)

(
Un(ϕ)

n− 1
−
(
U

(1)
k (ϕ)

k − 1
+

U
(2)
k (ϕ)

n− k − 1

))
.

Therefore, we now have an expression for Uk,n(ϕ) made up of U-statistics, which
will be useful in the following.

Our aim is to use a test based on Uk,n(ϕ) for the null hypothesis H0 :
X1, . . . , Xn have the same distribution, versus the alternative hypothesis H1

that there is a change-point in the sequence X1, . . . , Xn, i.e.,

H1 : There is a γ ∈ (0, 1) such that P(X1 ≤ t) = · · · = P(X�nγ� ≤ t),
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P(X�nγ�+1 ≤ t) = · · · = P(Xn ≤ t), t ∈ R
d,

and P(X�nγ� ≤ t0) �= P(X�nγ�+1 ≤ t0) for some t0.

For u, v ∈ R
d, u ≤ v means that each component of u is less than or equal to

the corresponding component of v. Also note that for any z ∈ R, �z	 stands for
its integer part.

Let us now examine the asymptotic properties of Uk,n(ϕ). We shall be using
notation, methods and results from Section 5.5.2 of monograph [24] to provide
the groundwork. In the following, we shall denote by F the common (unknown)
distribution function of the Xi under H0, X a generic random variable with
distribution function F , and X ′ an independent copy of X. We assume that

Eϕ2(X,X ′) =

∫
Rd

∫
Rd

ϕ2(x, y)dF (x)dF (y) < ∞, (5)

and set Θ = Eϕ(X,X ′). We also denote ϕ1(x) = Eϕ(x,X ′), and define

h(x, y) = ϕ(x, y)− ϕ1(x)− ϕ1(y), h̃2(x, y) = h(x, y) + Θ. (6)

With this notation, we see that Eh(X,X ′) = −Θ, and therefore that
Eh̃2(X,X ′) = 0. Furthermore,

Uk,n(ϕ) = Uk,n(h) = Uk,n(h̃2), (7)

since

Un(Θ)

n− 1
−
(
U

(1)
k (Θ)

k − 1
+

U
(2)
k (Θ)

n− k − 1

)
=

Un(ψ)

n− 1
−

(
U

(1)
k (ψ)

k − 1
+

U
(2)
k (ψ)

n− k − 1

)
= 0,

where ψ(x, y) := ϕ1(x) + ϕ1(y). As in Section 5.5.2 of [24], we then define the
operator A on L2(R

d, F ) by

Ag(x) :=

∫
Rd

h̃2(x, y)g(y)dF (y), x ∈ R
d, g ∈ L2(R

d, F ). (8)

Let λi, i ≥ 1, be the eigenvalues of this operator A with corresponding orthonor-
mal eigenfunctions φi, i ≥ 1. Since for all x ∈ R

d,∫
Rd

h̃2(x, y)dF (y) = 0,

we see with φ1 := 1, Aφ1 = 0 =: λ1φ1. Thus (0, 1) = (λ1, φ1) is an eigenvalue
and normalized eigenfunction pair of the operator A. This implies that for every
eigenvalue and normalized eigenfunction pair (λi, φi), i ≥ 2, where λi is nonzero,

E (φ1(X)φi(X)) = Eφi(X) = 0.

Moreover, we have that in L2(R
d × R

d, F × F ),

h̃2(x, y) = lim
K→∞

K∑
i=1

λiφi(x)φi(y).
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From this we get that

Eh̃2
2(X,X ′) =

∞∑
i=1

λ2
i . (9)

For further details and theoretical justification of these claims, refer to Section
5.5.2 of [24] and both Exercise 44 on pg. 1083 and Exercise 56 on pg. 1087 of
[8]. In fact, we shall assume further that

∞∑
i=1

|λi| < ∞. (10)

It is crucial for the change-point testing procedure that we shall propose that the
function h̃2(x, y) defined as in (10) with ϕ(x, y) = ϕβ(x, y) = |x−y|β , β ∈ (0, 2),
satisfies (10) whenever (5) holds. A proof of this is given in the Appendix.

Next, for any fixed 2
n ≤ t < 1− 2

n , n ≥ 3, set

Yn(h̃2, t) :=
(�nt	 (n− �nt	))2

n2(n− 1)
U�nt�,n(h̃2) (11)

=
2�nt	 (n− �nt	)

n2

⎛
⎝Un(h̃2)

n− 1
−

⎛
⎝U

(1)
�nt�(h̃2)

�nt	 − 1
+

U
(2)
�nt�(h̃2)

n− �nt	 − 1

⎞
⎠
⎞
⎠ .

We define U
(1)
0 (h̃2) = 0, U

(2)
0 (h̃2) = Un(h̃2), U

(1)
1 (h̃2)/0 = 0, and U

(2)
n−1(h̃2)/0 =

0 , which gives

Yn(h̃2, t) = 0 for t ∈
[
0,

1

n

)
,

Yn(h̃2, t) =
2(n− 1)

n2

(
Un(h̃2)

n− 1
− U

(2)
1 (h̃2)

n− 2

)
for t ∈

[
1

n
,
2

n

)
,

Yn(h̃2, t) =
4(n− 2)

n2

(
Un(h̃2)

n− 1
−

U
(1)
n−2(h̃2)

n− 3
− U

(2)
n−2(h̃2)

)

for t ∈
[
1− 2

n
, 1− 1

n

)
, and

Yn(h̃2, t) =
2(n− 1)

n2

(
Un(h̃2)

n− 1
−

U
(1)
n−1(h̃2)

n− 2

)

for t ∈
[
1− 1

n
, 1

)
; and Yn(h̃2, 1) = 0.

One can readily check that Yn(h̃2, ·) ∈ D1[0, 1], the space of bounded mea-
surable real-valued functions defined on [0, 1] that are right-continuous with left-
hand limits. Notice that on account of (7) we can also write Yn(h̃2, ·) = Yn(ϕ, ·),
and we will do so from now on. In the following theorem, {B(i)}i≥1 denotes a
sequence of independent standard Brownian bridges.
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Theorem 2.1. Whenever Xi, i ≥ 1 are i.i.d. F and ϕ satisfies (5) and (10),
Yn(ϕ, ·) converges weakly in D1[0, 1] to the tied down mean zero continuous
process Y defined on [0, 1] by

Y(t) :=
∞∑
i=1

λi

(
t (1− t)−

(
B
(i) (t)

)2
)
.

In particular,

sup
t∈[0,1]

|Yn(ϕ, t)| D−→ sup
t∈[0,1]

|Y(t)| .

The proof of this theorem is deferred to Section 6.

Remark 2.1. Note that a special case of Theorem 2.1 says that for each t ∈
(0, 1),

(�nt	 (n− �nt	))2

n2(n− 1)
U�nt�,n(ϕ)

D−→ Y(t). (12)

This fixed t result can be derived from part (a) of Theorem 1.1 of [19]. [27]
point out that convergence in distribution of a statistic asymptotically equivalent
to the left side of (12) to a nondegenerate random variable should follow from
[19] under the null hypothesis of equal distributions in the two sample case that
they consider. Also see [21]. ([21] also discuss the consistency of their statistic.)
To the best of our knowledge, we are the first to identify the limit distribution
of the U�nt�,n(ϕ). We should point out here that the weak convergence result
in Theorem 2.1 does not follow from Neuhaus’ theorem [19], since his result is
based on two independent samples, whereas ours concerns one sample.

As suggested in [18], under the following assumption, a convergence with
probability 1 result can be proved for the empirical statistic Ek,n(X;β) in (3).
We shall show that this is indeed the case.

Assumption 1. Let Yi, i ≥ 1, and Zi, i ≥ 1, be independent i.i.d. sequences,
respectively FY and FZ . Also let Y, Y ′ be i.i.d. FY and Z,Z ′ be i.i.d. FZ , with
Y, Y ′, Z and Z ′ mutually independent. Assume that for some β ∈ (0, 2), E(|Y |β+
|Z|β) < ∞. Choose γ ∈ (0, 1). For any given n > 1/γ, let Xi = Yi, for i =
1, . . . , �nγ	, and Xi+�nγ� = Zi, for i = 1, . . . , n− �nγ	.

Lemma 2.1. Whenever for a given β ∈ (0, 2) Assumption 1 holds, with proba-
bility 1 we have:

E�nγ�,n(X;β) → E(Y, Z;β). (13)

The proof of this can be found in the Appendix. Next, let ϕ(x, y) = |x− y|β ,
β ∈ (0, 2). We see that for any γ ∈ (0, 1) for all large enough n,

sup
t∈[0,1]

|Yn(ϕ, t)| ≥
(�nγ	 (n− �nγ	))2

n2(n− 1)
E�nγ�,n(X;β),
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where it is understood that Assumption 1 holds. Thus by Lemma 2.1, under
Assumption 1, whenever FY �= FZ , with probability 1,

sup
t∈[0,1]

|Yn(ϕ, t)| → ∞.

This shows that change-point tests based on the statistic supt∈[0,1] |Yn(ϕ, t)|,
under the sequence of alternatives of the type given by Assumption 1, are con-
sistent. This also has great practical use when looking for change-points. Intu-
itively, the k ∈ {1, . . . , n} that maximizes (3) would be a good candidate for a
change-point location.

3. From theory to practice

Theorem 2.1 and the consistency result that follows it lay a firm theoretical foun-
dation to justify the change-point method introduced in [18]. For the present
article, since we are not aware of a closed form expression for the distribution
function of the limit process, we may imagine that this asymptotic result is
of limited practical use. Remarkably, it turns out that we can efficiently ap-
proximate via simulation the distribution of its supremum, leading to a new
change-point detection algorithm with similar performance to [18] but much
faster for longer signals. For instance, finding and testing one change-point in
a signal of length 5 000 takes eight seconds with our method and eight minutes
using [18].

To simulate the process Y we need true or estimated values of the λi. Recall
that these are the eigenvalues of the operator A defined in (8). Following [15],
the (usually infinite) spectrum of A can be consistently approximated by the
(finite) spectrum of the empirical n×n matrix H̃n whose (i, j)-th entry is given
by

H̃n(Xi, Xj) =
1

n
(ϕ(Xi, Xj)− μ(i)− μ(j) + η) ,

where μ is the vector of row means (excluding the diagonal entry) of matrix
ϕ(Xi, Xj) and η the mean of its upper-diagonal elements.

In our experience, the λi estimated in this way tend to be quite accurate for
even small n. We assert this because upon simulating longer and longer i.i.d.
signals, rapid convergence of the λi is clear. Furthermore, as there is an expo-
nential drop-off in their magnitude, working with only a small number (say 20
or 50) of the largest ones appears to be sufficient for obtaining good results. We
illustrate these claims in Section 4. Let us now present our basic algorithm for
detecting and testing for one potential change-point.

Algorithm for detecting and testing one change-point

1. Given signal X1, . . . , Xn, n ≥ 4, find the 2 ≤ k ≤ n − 2 that maximizes
the original empirical divergence given in (3) multiplied by the correct
normalization given in (11), i.e., k2(n − k)2/n2(n − 1), and denote the
value of this maximum t�.
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2. Calculate the m largest (in absolute value) eigenvalues of the matrix H̃n,
where ϕ(Xi, Xj) = |Xi −Xj |β and β ∈ (0, 2).

3. Simulate R times the m-truncated version of Y(t) using the m eigenvalues
from the previous step. Record the R values s1, . . . , sR of the (absolute)
supremum of the process obtained.

4. Reject the null hypothesis of no distributional change (at level α) if tcrit ≤
α, where tcrit :=

1
R

∑R
r=1 1{sr>t�}. In this case, we deduce a change-point

at the k at which t� is found. Typically, we set α = 0.05.

Remark 3.1. One may imagine extending this approach to the multiple change-
point case by simply iterating the above algorithm to the left and right of the
first-found change-point, and so on. However, as soon as we suppose there can
be more than one change-point, the assumption that we may have X1, . . . , Xk

i.i.d., with a different distribution to Xk+1, . . . , Xn i.i.d., is immediately bro-
ken. Therefore the theory we have presented does not directly follow over to the
multiple change-point case. It would be interesting to cleanly extend the results
to this, but this would require further theory and multiple testing developments,
which are out of the scope of the present article. For references in this direction,
see [10].

The E-divisive algorithm described in [18] follows a similar logic to our approach
except that tcrit is calculated via permutation (see [22]). Instead of steps 2 and
3, the order of the n data is permuted R times and for the r-th permuted signal,
1 ≤ r ≤ R, step 1 is performed to obtain the absolute maximum sr. The same
step 4 is then used to accept or reject the change-point.

The permutation approach (E-divisive) of [18] is effective for short signals. In-
deed, [12] showed that if one can perform all possible permutations, the method
produces a test that is level α. However, a signal with n = 10 points already
implies more than three million permutations, so a Monte Carlo strategy (i.e.,
subsampling permutations with replacement) becomes necessary, typically with
R = 499. This also gives a test that is theoretically level α (see [22]) but with
much-diminished power.

One could propose increasing the value of R but there is an unfortunate
computational bottleneck in the approach. Usually, one stores in memory the
matrix of |Xi−Xj |β in order to efficiently permute rows/columns and therefore
recalculate t� each time. But for more than a few thousand points, manipulat-
ing this matrix is slow if not impossible due to memory constraints. The only
alternative to storing and permuting this matrix is simply to recalculate it each
time for each permutation, but this is very computationally expensive as n in-
creases. Consequently, the E-divisive approach is only useful for signals up to a
few thousand points.

In contrast to this, our algorithm, based on an asymptotic result, risks un-
derperforming on extremely short signals, and its performance will also depend
on our ability to estimate well the set of largest λi. In reality though, it works
quite well, even on short signals. The matrix with entries |Xi−Xj |β needs only
to be stored once in memory, and all standard mathematical software (such as
Matlab and R) have efficient functions for finding its largest m eigenvalues (the
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eigs function in Matlab and the eigs function in the R package rARPACK).
Each iteration of the algorithm’s simulation step requires summing the columns
of an m × T matrix of standard normal variables, where m is the number of
λi retained and T the number of grid points over which we approximate the
Brownian bridge processes between 0 and 1. For m = 50 and T = 1000 it takes
about one second to perform this R = 499 times, and is independent of the
number of points in the signal. In contrast, the E-divisive method takes about
ten seconds for n = 1000, one minute for n = 2000, eight minutes for n = 5000,
etc. One clearly sees the advantage of our approach for longer signals.

4. Experimental validation and analysis

Though our main objective in the paper is theoretical, we provide here a series
of simulations to look at the method’s performance in practice. As the multiple
change-point theory is beyond the scope of the paper, we concentrate on the
one change-point algorithm, for both one- and multi-dimensional signals.

4.1. Simulated examples

We start with the simplest possible case in order to demonstrate the fundamental
validity of the method. Our basis for comparison is the E-divisive method from
[18], for which we earlier provided theoretical underpinning. In [18], E-divisive
is compared with three methods: MultiRank [17], PELT [13], and KCP [1].
They showed that E-divisive performed best in almost every case, except for
ever-so-slightly worse than PELT when detecting changes in variance. In the
following, the comparison with E-divisive is therefore by default also with these
three methods.

We first consider signals of length n ∈ {10, 100, 1 000, 10 000} for which either
the whole signal is i.i.d. N (0, 1) or else there is a change-point of height c ∈
{0.1, 0.2, 0.5, 1, 2, 5} after the (n/2)-th point, i.e., the second half of the signal
is i.i.d. N (c, 1).

In the former case, we look at the behavior of the Type I error, i.e., the
probability of detecting a change-point when there was none. We have fixed
α = 0.05 and want to see how close each method is to this as n increases. In the
latter case, we look at the power of the test associated to each method, i.e., the
probability that an actual change-point is correctly detected as n and c increase.
We averaged over 1 000 trials. In the following, unless otherwise mentioned we
fix β = 1. For the asymptotic method, the Brownian bridge processes were
simulated 499 times; similarly, for E-divisive we permuted 499 times. Both null
distributions were therefore estimated using the same number of repeats. Note
that we did not test the E-divisive method for n = 10 000 because each of the
1 000 trials would have taken around two hours to run. All times given in this
paper are with respect to a laptop with a 2.13 GHz Intel Core 2 Duo processor
with 4Gb of memory. Results are presented in Figure 1.
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Fig 1. Statistical power of the asymptotic (solid line) and E-divisive (dotted line) methods for
detecting change c in mean in a Gaussian signal of length n. The first n/2 points are i.i.d.
N (0, 1) and the last n/2 points i.i.d. N (c, 1). The Type I error is also shown (c = 0). Results
are averaged over 1 000 trials.

For the Type I error, we see that both methods hover around the intended
value of .05, except for extremely short signals (n = 10). As for the statistical
power, it increases as n and c increase. Furthermore, the asymptotic method
rapidly reaches a similar performance as E-divisive: for n = 10, E-divisive is
better (but still with quite poor power), for n = 100 the asymptotic method
has almost caught up, and somewhere between n = 100 and n = 1000 the
results become essentially identical; the asymptotic method has a slight edge at
n = 1000.

Let us now see to what extent our method is able to detect changes
in variance and tail shape. We considered Gaussian signals of length n ∈
{10, 100, 1 000, 10 000} for which there is a change-point after the (n/2)-th point,
i.e., the first half of the signal is i.i.d. N (0, 1) and the second half either i.i.d.
N (0, σ2) for σ2 ∈ {2, 5, 10} or i.i.d. Student’s tv distributions with v ∈ {2, 8, 16}.
Results were averaged over 1 000 trials and are shown in Figure 2.

As before, the statistical power tends to increase as n increases and either σ2

increases or v decreases. The asymptotic method matches or beats the perfor-
mance of E-divisive starting somewhere between n = 100 and n = 1000.

Next, we take a look at the performance of the algorithm when the change-
point location moves closer to the boundary. As an example, we work with
sequences of length 1 000 and either place the change-point after the 100th,
300th or 500th point. Figure 3 shows histograms of 1 000 repetitions for the pre-
dicted location of the change-point, here a change in mean of c = 0.5 (hardest),
c = 1 (medium) and c = 2 (easiest). We see that moving towards the boundary
increases the variance and bias in the prediction. However, as the problem be-
comes easier (bigger jump in mean), both the variance and bias decrease. Similar
results are found when looking at change in variance and tail distribution.
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Fig 2. Statistical power of the asymptotic method (solid line) and E-divisive method (dotted
line) for detecting change in variance (left) and tail (right) in a signal of length n. The first
n/2 points are i.i.d. N (0, 1) and the last n/2 points either i.i.d. N (0, σ2), σ2 ∈ {2, 5, 10}
(left) or from a Student’s tv distribution with v degrees of freedom, v ∈ {2, 8, 16} (right).
Results are averaged over 1 000 trials.

Fig 3. Detecting change in mean of c = 0.5, 1 or 2 located at different distances to the
boundary (change-point location cp = 100, 300, 500) in standardized Gaussian signals with
1 000 points. Plots show histograms of predicted change-point location over 1 000 trials.

4.2. Multi-dimensional change-point detection

Here, we look at the ability of the algorithm to detect a single multi-dimensional
change-point as the data dimension d increases. While for real data sets it would
be interesting to extend this to multiple change-point detection, for consistency
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Fig 4. One change-point detection in 1 000 point long d-dimensional Gaussian signals with
change in mean or covariance. The first 500 points of each signal are i.i.d. d-dimensional
Gaussians with d-dimensional mean μ(d) = (0, 0, . . . , 0) and identity covariance matrix.
Left: change-point in mean only – last 500 points have d-dimensional mean of μ(d) =
(0.1, 0.1, . . . , 0.1). Center: change-point in covariance only; off-diagonal covariance of 0.1
for last 500 points. Right: change-point in covariance only; off-diagonal covariance of 0.4 for
last 500 points.

we stick to the theoretical, one change-point context presented in the paper.
First, we simulated d-dimensional i.i.d. Gaussian signals with identity covari-
ance matrices, of length 1 000, with d-dimensional mean μ(d) = (0, 0, . . . , 0)
for the first 500 points and μ(d) = (0.1, 0.1, . . . , 0.1) for the last 500. We let
d ∈ {1, 5, 20, 50, 100, 200, 500, 1 000}, and ran one thousand trials to find the
first change-point. Figure 4 (left) shows the mean error over the 1 000 trials: if
ci ∈ {1, . . . , 999} is the predicted change point in trial i, the mean error me is:

me =
1

1000

1000∑
i=1

|ci − 500|.

The shaded zone represents one standard deviation in this error. We see a dra-
matic improvement in prediction quality and drop in variance as d increases.
Next, we repeated the same trial structure but with a change in covariance
matrix after the 500th d-dimensional point, from uncorrelated d-dimensional
mean-zero i.i.d. Gaussian points to ones with a covariance matrix with off-
diagonal values of 0.1 (Figure 4, center) or 0.4 (Figure 4, right). We see that for
the low-covariance case of 0.1, the prediction quality increases but the variance
remains high as d increases. In contrast, both the mean error and variance drop
close to zero in the high-covariance case of 0.4 as d increases.
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Fig 5. Long-signal change-point detection. Left: Computing time for signals with 1 000 to 10
million points. Right: Variance in first change-point prediction over 1 000 trials after scaling
signals to the interval [0, 1].

4.3. Algorithm for long signals

Remember that as it currently stands, the longest signal that we can treat de-
pends on the largest matrix that can be stored, which depends in turn on the
memory of a given computer (memory problems for simply manipulating a ma-
trix on a standard PC typically start to occur around n = 10 -15 000). For this
reason, we now propose a modified algorithm that can treat vastly longer signals.

Long-signal algorithm

1. Extract sub-signal of equidistant points of length 2 000.
2. Run the one change-point algorithm on this. If the null hypothesis is re-

jected, output the index k of the predicted change-point in this sub-signal.
Otherwise, state that no change-point was found.

3. If a change-point was indeed predicted, get the location k′ in the original
signal corresponding to k in the sub-signal and repeat step 1 of the one
change-point algorithm in the interval [k′ − z, k′ + z] to refine the pre-
diction, where z is user-chosen. If � is the length of the interval between
sub-signal points, one possibility is z := min(2�, 1 000), where the 1 000
simply ensures this refining step receives a computationally feasible signal
length of at most 2 000 points.

We tested this strategy on simulated standard Gaussian signals of length
103, 104, 105, 106 and 107 with one change-point at the midpoint, a jump of 1
in the mean. Figure 5 (left) shows the time required to locate the potential
change-point.
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Clearly, this is rapid for even extremely long signals. Looking at the algo-
rithm, we see that it merely involves finding a change-point twice, once in the
sub-signal, then once in a contiguous block of the original signal of at most
length 2 000. As these two tasks are extremely rapid, the increase in computa-
tion time seen mostly comes from the computing overhead of having to extract
the sub-signal from longer and longer vectors in memory. In Figure 5 (right), we
plot the log signal length against the normalized variance, which means that we
calculate the variance in predicted change-point location over 1 000 trials after
first dividing the predictions by the length of the signal. Thus all transformed
predictions are in the interval [0, 1] before their variance is taken. This shows
that relative to the length of the signal, subsampling does not deteriorate the
change-point prediction quality. Instead, what deteriorates due to subsampling
is the absolute prediction quality, i.e., the variance in predicted change-point
location does increase as the signal length increases. However, we cannot get
around this without introducing significantly more sophisticated subsampling
procedures, beyond the scope of the work here.

5. Discussion

We have derived the asymptotic distribution of a statistic that was previously
used to build algorithms for finding change-points in signals. Our new result
led to a novel way to construct a practical algorithm for general change-point
detection in long signals, which came from the surprising realization that it
was possible to approximately simulate from this quite complicated asymptotic
distribution. Furthermore, the method appears to have higher power (in the
statistical sense) than previous methods based on permutation tests for signals
of a thousand points or more. We tested the algorithm on several simulated data
sets, as well as a subsampling variant for dealing with extremely long signals.

An interesting line of future research would be to find ways to segment the
original signal without requiring stocking a matrix in memory with the same
number of rows and columns as there are points in the signal, currently a bottle-
neck for our approach and even more so for previous permutation approaches.
Furthermore, the pertinent choice of the power β ∈ (0, 2) remains an open ques-
tion. Lastly, theoretically valid and experimentally feasible extensions of this
framework to the multiple change-point case could be a fruitful line of future
research.

6. Proof of Theorem 2.1

To prove Theorem 2.1, we require a useful technical result. Let us begin with
some notation. For each integer K ≥ 1, let DK [0, 1] denote the space of
bounded measurable functions defined on [0, 1] taking values in R

K that are

right-continuous with left-hand limits. For each integer n ≥ 1, let V
(k)
n , k ≥ 1,

be a sequence of processes taking values in D1[0, 1] such that for some M > 0,
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uniformly in k ≥ 1 and n ≥ 1,

E

(
sup

t∈[0,1]

∣∣∣V(k)
n (t)

∣∣∣
)

≤ M. (14)

For each integer K ≥ 1, define the process taking values in DK [0, 1] by

Vn,K =
(
V

(1)
n , . . . ,V(K)

n

)
.

Assume that for each integer K ≥ 1, Vn,K converges weakly as n → ∞ to the
DK [0, 1]–valued process VK defined as

VK :=
(
V

(1), . . . ,V(K)
)
,

where V(k), k ≥ 1, is a sequence of D1[0, 1]–valued processes such that for some
M > 0, uniformly in k ≥ 1,

E

(
sup

t∈[0,1]

∣∣∣V(k)(t)
∣∣∣
)

≤ M. (15)

We shall establish the following useful result.

Proposition 6.1. With the notation and assumptions introduced above, for
any choice of constants am, m ≥ 1, satisfying

∑∞
m=1 |am| < ∞, the sequence of

D1[0, 1]–valued processes

Tn :=

∞∑
m=1

amV
(m)
n

converges weakly in D1[0, 1] to the D1[0, 1]–valued process

T :=

∞∑
m=1

amV
(m).

Proof. Notice that by (14)

E

( ∞∑
m=1

|am| sup
t∈[0,1]

∣∣∣V(m)
n (t)

∣∣∣
)

≤ M
∞∑

m=1

|am| < ∞.

From this we get that with probability 1, for each n ≥ 1,

∞∑
m=1

|am| sup
t∈[0,1]

∣∣∣V(m)
n (t)

∣∣∣ < ∞,

which in turn implies that with probability 1, for each n ≥ 1,

lim
K→∞

sup
t∈[0,1]

∣∣∣T (K)

n (t)
∣∣∣ = 0, (16)
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where

T
(K)

n (t) :=
∞∑

m=K+1

amV
(m)
n (t).

Since for each n ≥ 1 and K ≥ 1, T
(K)
n ∈ D1[0, 1], where T

(K)
n :=

∑K
m=1 amV

(m)
n ,

by completeness of D1[0, 1] in the supremum metric (see page 150 of monograph
[3]), we infer that Tn ∈ D1[0, 1]. In the same way we get using (15) that

lim
K→∞

sup
t∈[0,1]

∣∣∣T (K)
(t)

∣∣∣ = 0, (17)

where

T
(K)

(t) :=

∞∑
m=K+1

amV
(m)(t),

and thus that T ∈ D1[0, 1]. Also, since by assumption for each integer K ≥ 1,
Vn,K converges weakly as n → ∞ to the DK [0, 1]–valued process VK , we get

that T
(K)
n converges weakly in D1[0, 1] to T (K), where

T (K)
n :=

K∑
m=1

amV
(m)
n and T (K) :=

K∑
m=1

amV
(m).

We complete the proof by combining this with (16) and (17), and then appealing
to Theorem 4.2 of [3]. �

We are now ready to prove Theorem 2.1. It turns out that it is more conve-
nient to prove the result for the following version of the process Yn, namely

Ỹn(h̃2, t) :=
2�nt	 (n− �nt	)

n3
Un(h̃2)−

2 (n− �nt	)
n2

U
(1)
�nt�(h̃2)−

2�nt	
n2

U
(2)
�nt�(h̃2),

which is readily shown to be asymptotically equivalent to Yn(h̃2, t). Following
pages 196-197 of [24], we see that

2Un(h̃2)

n
=

∞∑
k=1

λk

⎡
⎣( n∑

i=1

φk(Xi)/
√
n

)2

− 1

n

n∑
i=1

φ2
k(Xi)

⎤
⎦ =:

∞∑
k=1

λkΔk,n,

2U
(1)
�nt�,n(h̃2)

n
=

∞∑
k=1

λk

⎡
⎢⎣
⎛
⎝�nt�∑

i=1

φk(Xi)/
√
n

⎞
⎠

2

− 1

n

�nt�∑
i=1

φ2
k(Xi)

⎤
⎥⎦ =:

∞∑
k=1

λkΔ
(1)
k,n(t),

and

2U
(2)
�nt�,n(h̃2)

n
=

∞∑
k=1

λk

⎡
⎢⎣
⎛
⎝ n∑

i=1+�nt�
φk(Xi)/

√
n

⎞
⎠

2

− 1

n

n∑
i=1+�nt�

φ2
k(Xi)

⎤
⎥⎦
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=:

∞∑
k=1

λkΔ
(2)
k,n(t).

Thus,

Ỹn(h̃2, t) =

∞∑
k=1

λk

(
�nt	 (n− �nt	)

n2
Δk,n − (n− �nt	)

n
Δ

(1)
k,n(t)−

�nt	
n

Δ
(2)
k,n(t)

)

=:
∞∑
k=1

λkV
(k)
n (t). (18)

Let {W(i)}i≥1 be a sequence of standard Wiener processes on [0, 1]. Write

Y(t) :=

∞∑
k=1

λkV
(k)(t),

where, for k ≥ 1,

V
(k)(t) = t(1− t)

((
W

(k)(1)
)2

− 1

)
− (1− t)

((
W

(k)(t)
)2

− t

)

− t

((
W

(k)(1)−W
(k)(t)

)2

− (1− t)

)

= t(1− t)

((
W

(k)(1)
)2

+ 1

)
− (1− t)

(
W

(k)(t)
)2

− t
(
W

(k)(1)−W
(k)(t)

)2

. (19)

A simple application of Doob’s inequality shows that there exists a constant

M > 0 such that (14) and (15) hold, for V
(k)
n and V

(k) defined as in (18) and
(19).

For any integer K ≥ 1, let U1 be the random vector such that U
T
1 =

(φ1(X1), . . . , φK(X1)). We see that E(U1) = 0 and E(U1U
T
1 ) = IK . For any

n ≥ 1 let U1, . . . ,Un be i.i.d. U1. Consider the process defined on DK [0, 1] by

Wn,K(t) :=

⎛
⎝n−1/2

∑
j≤�nt�

φ1(Xj), . . . , n
−1/2

∑
j≤�nt�

φK(Xj)

⎞
⎠

=:
(
W

(1)
n (t), . . . ,W(K)

n (t)
)
,

where for any i ≥ 1,

W
(i)
n (t) := n−1/2

∑
j≤�nt�

φi(Xj).

Notice that as processes in t ∈ [0, 1],

Wn,K(t) :
D
= n−1/2

∑
j≤�nt�

Uj .
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Clearly by Donsker’s theorem the process (Wn,K(t))0≤t≤1 converges weakly as
n → ∞ to the RK–valued Wiener process (WK(t))0≤t≤1, with mean vector zero
and covariance matrix (t1 ∧ t2)IK , t1, t2 ∈ [0, 1], where

WK(t) :=
(
W

(1)(t), . . . ,W(K)(t)
)
.

Using this fact along with the law of large numbers one readily verifies

that for each integer K ≥ 1, (V
(1)
n , . . . ,V

(K)
n ) converges weakly as n → ∞

to (V(1), . . . ,V(K)), where V
(i)
n and V

(i) are defined as in (18) and (19). All
the conditions for Proposition 6.1 to hold have been verified. Thus the proof of
Theorem 2.1 is complete, after we note that a little algebra shows that Y(t) is
equal to

∞∑
i=1

λi

(
t(1− t)−

(
W

(i)(t)− tW(i)(1)
)2

)
=

∞∑
i=1

λi

(
t(1− t)−

(
B
(i)(t)

)2
)
,

where B(i)(t) = W
(i)(t)−tW(i)(1), i ≥ 1, are independent Brownian bridges. �

Appendix

A.1. Proof of Lemma 2.1

Notice that for each n > 1, E�nγ�,n(X;β) is equal to the statistic in (3) with
k = �nγ	. By the law of large numbers for U-statistics (see Theorem 1 of [23])
for any γ ∈ (0, 1), with probability 1,

(
�nγ	
2

)−1 ∑
1≤i<j≤�nγ�

|Yi − Yj |β → E |Y − Y ′|β

and (
n− �nγ	

2

)−1 ∑
1≤i<j≤n−�nγ�

|Zi − Zj |β → E |Z − Z ′|β .

Next for any M > 0, write

|y − z|β = |y − z|β 1 {|y| ≤ M, |z| ≤ M}+ |y − z|β 1 {|y| ≤ M, |z| > M}
+ |y − z|β 1 {|y| > M, |z| ≤ M}+ |y − z|β 1 {|y| > M, |z| > M} .

Applying the strong law of large numbers for generalized U-statistics given in
Theorem 1 of [23], we get for any M > 0, with probability 1,

2

�nγ	 (n− �nγ	)

�nγ�∑
i=1

n−�nγ�∑
j=1

|Yi − Zj |β 1 {|Yi| ≤ M, |Zj | ≤ M}

→ 2E
(
|Y − Z|β 1 {|Y | ≤ M, |Z| ≤ M}

)
.
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Also observe that

2

�nγ	 (n− �nγ	)

�nγ�∑
i=1

n−�nγ�∑
j=1

|Yi − Zj |β 1 {|Yi| ≤ M, |Zj | > M}

≤ 2

�nγ	 (n− �nγ	)

�nγ�∑
i=1

n−�nγ�∑
j=1

(M + |Zj |)β 1 {|Zj | > M}

=
2

n− �nγ	

n−�nγ�∑
j=1

(M + |Zj |)β 1 {|Zj | > M} .

By the usual law of large numbers for each M > 0, with probability 1,

2

n− �nγ	

n−�nγ�∑
j=1

(M + |Zj |)β 1 {|Zj | > M} → 2E
(
(M + |Z|)β 1 {|Z| > M}

)

≤ 2β+1
E

(
|Z|β 1 {|Z| > M}

)
.

Thus, with probability 1, for all M > 0,

lim sup
n→∞

2

�nγ	 (n− �nγ	)

�nγ�∑
i=1

n−�nγ�∑
j=1

|Yi − Zj |β 1 {|Yi| ≤ M, |Zj | > M}

≤ 2β+1
E

(
|Z|β 1 {|Z| > M}

)
.

In the same way we get that, with probability 1,

lim sup
n→∞

2

�nγ	 (n− �nγ	)

�nγ�∑
i=1

n−�nγ�∑
j=1

|Yi − Zj |β 1 {|Yi| > M, |Zj | ≤ M}

≤ 2E
(
(|Y |+M)

β
1 {|Y | > M}

)
≤ 2β+1

E

(
|Y |β 1 {|Y | > M}

)
.

Finally, note that, by the cr-inequality,

2

�nγ	 (n− �nγ	)

�nγ�∑
i=1

n−�nγ�∑
j=1

|Yi − Zj |β 1 {|Yi| > M, |Zj | > M}

≤ 2β

�nγ	 (n− �nγ	)

�nγ�∑
i=1

n−�nγ�∑
j=1

(
|Yi|β + |Zj |β

)
1 {|Yi| > M, |Zj | > M}

≤ 2β

�nγ	

�nγ�∑
i=1

|Yi|β 1 {|Yi| > M}+ 2β

n− �nγ	

n−�nγ�∑
j=1

|Zj |β 1 {|Zj | > M} .

By the law of large numbers this converges, with probability 1, to

2βE
(
|Y |β 1 {|Y | > M}

)
+ 2βE

(
|Z|β 1 {|Z| > M}

)
.
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Obviously as M → ∞,

2E
(
|Y − Z|β 1 {|Y | ≤ M, |Z| ≤ M}

)
→ 2E |Y − Z|β

and
3 · 2βE

(
|Y |β 1 {|Y | > M}

)
+ 3 · 2βE

(
|Z|β 1 {|Z| > M}

)
→ 0.

Putting everything together we get that (13) holds. �

A.2. A technical result

Let X and X ′ be i.i.d. F and let ϕ be a symmetric measurable function from
R

d ×R
d → R such that Eϕ2(X,X ′) < ∞. Recall the notation (6). Let A be the

operator defined on L2(R
d, F ) as in (8).

Notice that

E
(
g(X)h̃2(X,X ′)g(X ′)

)
=

∫
Rd

g(x)Ag(x)dF (x) =: 〈g,Ag〉.

Let us now introduce some useful definitions. Given β ∈ (0, 2) and ϕβ(x, y) =
|x− y|β , define as in (6),

h2,β(x, y) = ϕβ(x, y)−ϕ1,β(x)−ϕ1,β(y) and h̃2,β(x, y) = hβ(x, y)+Eϕβ(X,X ′).

The aim here is to verify that the function h̃2,β(x, y) satisfies the conditions of
Theorem 2.1 as long as

E|X|2β < ∞. (20)

Let Ãβ denote the integral operator

Ãβg(x) =

∫
Rd

h̃2,β(x, y)g(y)dF (y), x ∈ R
d, g ∈ L2(R

d, F ).

Clearly (20) implies (5) with ϕ = ϕβ , which, in turn, by (9) implies

Eh̃2
2,β(X,X ′) =

∫
Rd

∫
Rd

h̃2
2,β(x, y)dF (x)dF (y) =

∞∑
i=1

λ2
i < ∞,

where λi, i ≥ 1, are the eigenvalues of the operator Ãβ , with corresponding
orthonormal eigenfunctions φi, i ≥ 1.

Next we shall prove that when (20) holds then the eigenvalues λi, i ≥ 1,
of this integral operator Ãβ satisfy (10). This is summarized in the following
lemma, whose proof is postponed to the next paragraph.

Lemma A.1. Whenever for some β ∈ (0, 2), (20) holds, the eigenvalues λi,
i ≥ 1, of the operator Ãβ satisfy (10).

The technical results that follow will imply that λi ≤ 0 for all i ≥ 1 and∑∞
i=1 λi is finite, from which we can infer (10), and thus Lemma A.1. Let us

begin with two definitions.
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Definition A.1. Let X be a nonempty set. A symmetric function K : X ×X →
R is called positive definite if

n∑
i=1

n∑
j=1

cicjK(xi, xj) ≥ 0

for all n ≥ 1, c1, . . . , cn ∈ R and x1, . . . , xn ∈ X .

Definition A.2. Let X be a nonempty set. A symmetric function K : X ×X →
R is called conditionally negative definite if

n∑
i=1

n∑
j=1

cicjK(xi, xj) ≤ 0

for all n ≥ 1, c1, . . . , cn ∈ R such that
∑n

i=1 ci = 0 and x1, . . . , xn ∈ X .

Next, we shall be using part of Lemma 2.1 on page 74 of [2], which we state
here for convenience as Lemma A.2.

Lemma A.2. Let K be a symmetric function on X ×X . Then, for any x0 ∈ X ,
the function

K̃(x, y) = K(x, x0) +K(y, x0)−K(x, y)−K(x0, x0)

is positive definite if and only if K is conditionally negative definite.

The following lemma can be proved just as Corollary 2.1 in [9].

Lemma A.3. Let H : Rd × R
d → R be a symmetric positive definite function

in the sense of Definition A.1. Assume that H is continuous and EH2(X,X ′) <
∞, where X and X ′ are i.i.d. F . Then E(g(X)H(X,X ′)g(X ′)) ≥ 0 for all
g ∈ L2(R

d, F ), i.e., H is L2-positive definite in the sense of [9].

We recall that an operator L on L2(R
d, F ) is called positive definite if for all

g ∈ L2(R
d, F ), 〈g, Lg〉 ≥ 0.

Proposition A.2. Let ϕ : Rd × R
d → R be a symmetric continuous function

that is a conditionally negative definite function in the sense of Definition A.2.
Assume that ϕ(x, x) = 0 for all x ∈ R

d and Eϕ2(X,X ′) < ∞. Then ϕ defines a
positive definite operator L on L2(R

d, F ) given by

Lg(x) = −
∫
Rd

h(x, y)g(y)dF (y), x ∈ R
d, g ∈ L2(R

d, F ),

where h is defined as in (6). Furthermore the operator L̃ on L2(R
d, F ) given by

L̃g(x) = −
∫
Rd

(h(x, y) + Eϕ(X,X ′)) g(y)dF (y), x ∈ R
d, g ∈ L2(R

d, F ),

is also a positive definite operator on L2(R
d, F ).
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Proof. We must show that for all g ∈ L2(R
d, F ),

〈g, Lg〉 = −E(g(X)h(X,X ′)g(X ′)) ≥ 0.

For any u ∈ R
d, let us write

ϕ(x, y, u) := ϕ(x, u) + ϕ(y, u)− ϕ(u, u)− ϕ(x, y)

= ϕ(x, u) + ϕ(y, u)− ϕ(x, y).

Since ϕ is assumed to be conditionally negative definite, by Lemma A.2 we have
that for any fixed u ∈ R

d, ϕ(x, y, u) is positive definite in the sense of Definition
A.1. Hence, since ϕ is also assumed to be continuous, by Lemma A.3 for all
g ∈ L2(R

d, F ),

E (g(X)ϕ(X,X ′, u)g(X ′)) ≥ 0.

Noting that if U has distribution function F , Eϕ(x, y, U) = −h(x, y), we get,
assuming that X, X ′ and U are independent, that

E (g(X)ϕ(X,X ′, U)g(X ′)) = −E (g(X)h(X,X ′)g(X ′)) ≥ 0.

Next, notice that for any eigenvalue and normalized eigenfunction (λ̃i, φ̃i) pair,
i ≥ 1, of the operator L̃, we have

λ̃iφ̃i(x) = L̃φ̃i(x) = −
∫
Rd

(h(x, y) + Eϕ(X,X ′)) φ̃i (y) dF (y).

Now, ∫
Rd

(h(x, y) + Eϕ(X,X ′)) dF (y) = 0, for all x ∈ R
d,

implies that (λ̃1, φ̃1) := (0, 1) is an eigenvalue and normalized eigenfunction pair
of L̃. From this we get that whenever λ̃i �= 0, Eφ̃i(X) = 0, i ≥ 2, which says
that for such λ̃i,

λ̃iφ̃i(x) = −
∫
Rd

h(x, y)φ̃i(y)dF (y).

This implies that whenever for some i ≥ 1, (λ̃i, φ̃i), with λ̃i �= 0, is an eigenvalue
and normalized eigenfunction pair of the operator L̃, it is also an eigenvalue and
normalized eigenfunction pair of the operator L. Moreover, since the integral op-
erator L is positive definite on L2(R

d, F ), this implies that for any such nonzero
λ̃i (where necessarily i ≥ 2)

−
∫
Rd

∫
Rd

φ̃i(x) (h(x, y) + Eϕ(X,X ′)) φ̃i(y)dF (x)dF (y)

= −
∫
Rd

∫
Rd

φ̃i(x)h(x, y)φ̃i(y)dF (x)dF (y) = λ̃i ≥ 0,

which says that the operator L̃ is positive definite on L2(R
d, F ). �
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A.3. Proof of Lemma A.1

A special case of Theorem 3.2.2 in [2] says that the function ϕβ(x, y) = |x−y|β ,
β ∈ (0, 2), is conditionally negative definite. Also see Exercise 3.2.13b in [2]
and the discussion after Proposition 3 in [29]. Therefore by Proposition A.2 the
integral operator Lβ defined by the function

Kβ (x, y) = −h2,β (x, y)

is positive definite as well as the integral operator L̃β = −Ãβ defined by the
function

K̃β (x, y) = −h2,β(x, y)− Eϕβ(X,X ′).

Next, as in the proof of Proposition A.2, any eigenvalue and normalized
eigenfunction (

λ̃i, φ̃i

)
= (−λi,−φi)

pair, with λ̃i �= 0, i ≥ 1, of the operator L̃β = −Ãβ is also an eigenvalue and
normalized eigenfunction pair of the operator Lβ .

We shall apply Theorem 2 of [26] to show that uniformly on compact subsets
D of Rd,

Kβ (x, y) =
∞∑
i=1

ρiψi(x)ψi(y), (x, y) ∈ D ×D,

where ρi ≥ 0, i ≥ 1, are the eigenvalues of the operator Lβ = −Aβ with
corresponding normalized eigenfunctions ψi, i ≥ 1. In particular

Kβ (x, x) =

∞∑
i=1

ρiψ
2
i (x), x ∈ D,

and thus since Eψ2
i (X) = 1, i ≥ 1, and EKβ (X,X) < ∞, we get

∞∑
i=1

ρi < ∞.

Therefore since, as pointed out above, the eigenvalue and normalized eigenfunc-
tion pairs (−λi,−φi) of L̃β = −Ãβ , with λi �= 0, are also eigenvalue and nor-
malized eigenfunction pairs of the operator Lβ this implies that

∑∞
i=1 |λi| < ∞.

Our proof will be complete once we have checked that Lβ satisfies the condi-
tions of Theorem 2 of [26].

Since the function ϕβ(x, y) = |x − y|β , β ∈ (0, 2), is conditionally negative
definite, by Lemma A.2 the function Kβ (x, y) is positive definite. To see this
note that by Lemma A.2 for any fixed u ∈ R the function

ϕβ (x, u) + ϕβ (u, y)− ϕβ (x, y)− ϕβ (u, u) = ϕβ (x, u) + ϕβ (u, y)− ϕβ (x, y)

is positive definite. Therefore we readily see that

Kβ(x, y) =

(∫
Rd

ϕβ (x, u) + ϕβ (u, y)− ϕβ (x, y)

)
dF (u)
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is positive definite. In addition, Kβ (x, y) is symmetric and continuous, and thus
Kβ (x, y) is a Mercer kernel in the terminology of [26]. We must also verify the
following assumptions.

Assumption A. For each x ∈ R
d, Kβ (x, ·) ∈ L2(R

d, F ).

Assumption B. Lβ is a bounded and positive definite operator on L2(R
d, F )

and for every g ∈ L2(R
d, F ), the function

Lβg(x) =

∫
Rd

Kβ(x, y)g(y)dF (y)

is a continuous function on R
d.

Assumption C. Lβ has at most countably many positive eigenvalues and or-
thonormal eigenfunctions.

Since ϕβ is a symmetric continuous function that is conditionally negative
definite in the sense of Definition A.2 satisfying ϕβ(x, x) = 0 for all x ∈ R

d

and Eϕ2
β(X,X ′) < ∞, we get by Proposition A.2 that Lβ is a positive definite

operator on L2(R
d, F ). Also (20) obviously implies that Assumption A holds

and

EK2
β(X,X ′) =

∫
Rd

∫
Rd

K2
β(x, y)dF (x)dF (y) < ∞,

which by Proposition 1 of [26] implies that the operator Lβ is bounded and
compact. (From Sun’s Proposition 1 one can also infer that Lβ is positive defi-
nite. However, he does not provide a proof. Therefore we invoke our Lemma A.3
here.) An elementary argument based on the dominated convergence theorem
implies that Lβg(x) is a continuous function on R

d. Thus Assumption B is sat-
isfied. Finally, since the operator Lβ is compact, Theorem VII.4.5 of [8] implies
that Assumption C is fulfilled. Thus the assumptions of Theorem 2 of [26] hold.
This completes the proof of Lemma A.1. �
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