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Abstract: A new method of hypothesis testing is proposed ensuring that
as the sample size grows, the probability of a type I error will become arbi-
trarily small by allowing the significance level to decrease with the number
of observations in the study. Furthermore, the corresponding sequence of
hypothesis tests will make only a finite number of errors with probability
one, under mild regulatory conditions, including both i.i.d. and strongly
mixing processes. It can be used as an alternative to arbitrary fixed signif-
icance levels such as 0.05 or 0.01.

This approach resolves the Jeffreys-Lindley paradox. It is also robust to
multiple comparisons, and to a lesser extent, optional stopping making it
somewhat robust to data fishing or p-hacking.

As an example of the practical applications of this technique, it is used
as a lag order selection mechanism in simulations. It performs well relative
to other model selection criteria. In another simulation, hypothesis tests
and confidence intervals for the mean are investigated, demonstrating the
improved performance even in small samples. We also show that under mild
regularity conditions, any sequence of two-sided hypothesis tests with fixed
significance level will make an infinite number of mistakes with positive
probability.

MSC 2010 subject classifications: Primary 60K35, 60K35; secondary
60K35.
Keywords and phrases:Hypothesis testing, Edgeworth expansions, model
selection, p-hacking.

Received August 2015.

1. Introduction

For the frequentist, the basic framework of hypothesis testing has changed little
since the pioneering work of Pearson and Neyman nearly 80 years ago. One
chooses both a null hypothesis and an alternative. If the probability of observing
the test statistic under the null hypothesis is smaller than some significance level,
which is usually 0.05 or 0.01, then the null is rejected in favor of the alternative.

Furthermore, one may invert the test statistic to create a confidence interval
that will contain the parameter of interest with a large probability. Under suit-
able conditions, the sample mean, x, can be used to construct a 95% confidence
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interval for the mean, μ, and as the sample size grows

Pr
(
|x− μ| < σ̂n−.51.96

)
→ 0.95 (1.1)

where σ̂2 is a consistent estimator of the variance. In this case, the probability
that the 95% confidence interval contains μ approaches 0.95. Many results in
statistics focus on issues relating to the rejection of the null when it is false.
However, Fisher, who introduced the term null hypothesis, did not even specify
an alternative, instead focusing on a well-defined null, see [10]. In this paper, we
will be primarily focused on hypothesis testing that performs well, regardless of
the validity of the null.

In general, the sequence of confidence intervals under a fixed significance
level, like in Eq. (1.1), will collapse around the true population parameter, but
there will be an infinite number of confidence intervals that do not contain
the population parameter. This concept is not entirely new. In [9], this issue is
discussed, and conditions for the existence of a sequence of tests that address
this issue is proved.

The choice of significance level is essentially arbitrary, but it does not have
to be. Recall the consistency of the sample mean: for any ε > 0,

Pr (|x− μ| ≥ ε) → 0

and consider the interval given by Iε = (x− ε, x+ ε), which has the following
property.

Pr (μ ∈ Iε) → 1

In some sense, Iε is a better predictor of the mean because the probability that
the mean is in the interval converges to one. The downside is: the interval never
gets any smaller as the sample size increases.

However, it is possible to have the best of both worlds. If one allows the
significance level to decrease as the sample size gets larger by choosing a band-
width, h, depending on the sample size and a function, f , decreasing in h such
that

Pr
(
|x− μ| < σ̂n−.5f (h)

)
≈ 1− h

with h → 0 and n−.5f (h) → 0, then the sequence collapses around the mean,
and the intervals contain the mean with probability approaching unity. Even
with this improvement, the sequence could still have an infinite number of con-
fidence intervals that do not contain the mean. However, if the bandwidth falls
off rapidly enough, we will show that there will be a finite number of errors
made with probability one.

The problem with fixed significance level confidence intervals is that the se-
quence of intervals is collapsing too quickly, so it does not catch an infinite
number of errors. By allowing the critical values to diverge slowly, one may
catch almost all the errors.
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In statistical inference, asymptotic theory plays a central role. It will often
be said that some property holds as the sample size approaches infinity. But
hypothesis testing is stuck in a static setting where the size of the test is fixed,
and everything else is allowed to change as the sample size grows. Keeping the
significance level fixed leads to what is known as the Jeffreys-Lindley paradox.

The paradox is that under certain conditions, for any fixed significance level,
α, one can find a sample size such that there is a statistically significant effect,
but the posterior probability of the null hypothesis is approximately 1−α. This
is in direct conflict with the frequentist approach. However, [21] recognized the
source of the paradox was keeping the significance level fixed saying, “the theory
does not justify the practice of keeping the significance level fixed” and even
“some computations by Prof. Pearson in the discussion to that paper emphasized
how the significance level would have to change with the sample size, if the losses
and prior probabilities were kept fixed.” While the paradox is of secondary
importance, we will show that this approach allows the significance levels to
change with the sample size in a way that resolves the paradox.

This paradox is not just of interest to theoretical statistics, but has tangible
empirical implications. In particle physics, a result is not considered a discovery
unless the estimate is 5 standard deviations away from the null hypothesis. This
is an arbitrary choice, but researchers noticed that even 3 standard deviations
may result in spurious results, see [4]. In fact, [23] states that the significance
level should “decrease with increasing amount of data. However, there appears
to be no obvious way of implementing this, and Particle Physics tends to use
fixed levels of cuts, independent of the data size.” The role of the paradox in
physics is also discussed in [7]. This approach solves that problem by allowing
the significance level to decrease as the number of observations grows.

We will also provide a methodology that allows for the construction of a se-
quence of confidence intervals such that only a finite number of the confidence
intervals in the sequence fail to contain the population parameter with proba-
bility one. A similar result will hold for hypothesis testing, and the probability
of a type I or type II error will converge to zero. This results in an arbitrarily
small probability of making a mistake in inference as the sample size grows. In
addition, any sequence of hypothesis tests with fixed significance level will make
an infinite number of mistakes with positive probability.

For example, a 95% confidence interval has the interpretation that if the
interval was recomputed on a large number of samples, then roughly 95% of the
calculated confidence intervals would contain the true population parameter.
Instead of thinking about what happens for a large number of repeated samples
of a confidence interval with fixed sample size, consider a sequence of confidence
intervals for a single data set as the sample size grows. In application, it is
often the case that data comes as a stream in daily, monthly or yearly rates.
More generally, as our sample size increases, there is nothing to stop us from
performing statistical inference each time the data set grows. If we have yearly
data, confidence intervals can be calculated every year, and there will be a
sequence of confidence intervals corresponding to each year we recomputed a
confidence interval.
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In practice, the example above is not usually how inference is done. There is
not a sequence of tests, but rather a single sample for which inference is made.
This example is given solely to fix ideas.

However, even though we may only observe a fixed sample size for any given
study, it is still possible to discuss notions of almost sure convergence of a
confidence interval, or a hypothesis test, just as we do with the almost sure
convergence of other statistics like the sample mean.

As another example of the power of this approach, if an academic journal only
accepts papers with p-values less than 0.05, then roughly 1 in 20 independent
studies of the same effect would find a significant result when there was none.
However, if the journal required a minimum sample size of 100, and results would
only be accepted using this paper’s methodology, then one would expect roughly
1 in 250 studies would find an effect when there was none (if the minimum sample
size was 1, 000, it would be 1 in 4, 000).1

It will also be shown that unlike fixed significance level testing, this method-
ology is robust to multiple comparisons. It is also somewhat robust to optional
stopping, which occurs when one increases the sample size, and retests the hy-
pothesis repeatedly, until a statistically significant result is found. This is im-
portant because, in empirical work, researchers sometimes unwittingly perform
multiple comparisons or optional stopping without proper corrections. The ap-
proach is robust to a certain level of data fishing or p-hacking.

One can even use this approach for lag order selection in autoregressive mod-
els. In simulations, almost sure (A.S.) hypothesis testing picks the correct lag
more often than other popular lag selection mechanisms. In other simulations,
the effectiveness of A.S. hypothesis tests is compared with standard approaches
in terms of size and power.

A.S. hypothesis testing is applicable not only to sample means, but any esti-
mators that fall under the smooth function model including correlations, maxi-
mum likelihood, and regressions. It is a much more powerful tool for inference.

2. The normal case with known variance

2.1. One-sided hypothesis tests

First, we consider the simplest of cases to make the methodology more clear.
Suppose xi = μ + εi where {εi}i∈N

is an i.i.d. sequence of standard normal
random variates. It is of interest to test

H0 : μ ≤ t

H1 : μ > t
(2.1)

1This assumes the suggested bandwidth in Eq. (3.5) is used, and all of the studies are at
the minimum sample size. If the bandwidth in Eq. (3.8) is used (which will have better small
sample performance with regard to type I error when multiple comparisons are a concern) one
would expect roughly 1 in 10, 000 studies would find an effect when there was none (if the
minimum sample size was 1, 000, it would be 1 in 1, 000, 000).



1530 M. Naaman

which is a one-sided test that will reject H0 whenever

(x− t)
√
n > Φ−1(1− α)

for a size α test and Φ−1 is the inverse of the normal distribution function.
This generates a sequence of hypothesis tests based on the sample size, which
is denoted in the following way.

H0n : μ ≤ t

H1n : μ > t
(2.2)

The probability of a type I error, which is rejecting the null hypothesis when
it is true, is given below.

Pr
(
(x− μ)

√
n > Φ−1 (1− α)− (μ− t)

√
n
)

≤ Pr
(
(x− μ)

√
n > Φ−1 (1− α)

)
= α

So the null hypothesis is rejected incorrectly up to α percent of the time. Instead
of choosing a fixed type I error rate, α, consider choosing a smoothing parameter,
h, that is chosen to converge to zero.

Unfortunately, this means the critical values will diverge to infinity, so if
a smoothing parameter is chosen to converge to zero, then the corresponding
confidence interval might blow up. Fortunately, this is not necessarily the case.

Lemma 2.1. Let h(n) satisfy 0 ≤ h(n) ≤ 1 for all n and zh = Φ(1−h). Suppose

lim
n→+∞

ln(h)

n
= 0 (2.3)

then
lim

n→+∞
zh√
n
= 0 (2.4)

Proof.
zh = Φ−1 (1− h) =

√
2erf−1(2 (1− h)− 1)

=
√
2erfc−1(2h) ≤

√
−2ln(2h)

for all n ≥ N such that h(N) ≤ 1
2 . The inequality follows from Chernoff’s

bound, which is derived in [6].

lim
n→∞

zh√
n

≤ lim
n→∞

√
−2ln (2h)

n
= 0 (2.5)

This implies that even though the critical values of the test are diverging,
the sequence of confidence intervals will still collapse around μ, albeit with a
slower rate of convergence. A sufficient but not necessary condition for Eq. (2.3)
to hold is h ∝ n−p with p > 0.

Of course, any choice of h that converges to zero results in the probability of
a type I error vanishing asymptotically. But this has not completely solved the
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problem, as we could still have an infinite number of type I errors with some
positive probability.

Let’s examine the sequence of hypothesis tests that could be performed as the
sample size grows. Consider the sequence of not necessarily independent events
defined by the realization of a type I error. We will use the indicator function

An = 1
(
(x− t)

√
n > Φ−1 (1− h)

)
(2.6)

where a type I error occurs when An = 1. If h satisfies
+∞∑
i=1

h (i) < +∞, then the

Borel-Cantelli lemma can be applied.

Pr

(
lim

n→+∞
supAn = 1

)
= 0 (2.7)

The implication is that probability of an infinite number of type I errors
is zero, so we may sometimes say that the sequence makes a finite number
of errors without reference to probabilities. It is important to realize that no
assumptions about independence have been made. The Borel-Cantelli lemma
allows for arbitrary dependence of the events; indeed, the sequence of tests
will be highly dependent. As more data becomes available, and new hypothesis
tests are made, not only will the inference become arbitrarily accurate, but the
sequence of tests as a whole will be very accurate. A sufficient but not necessary
condition for this limit to hold is h ∝ n−p with p > 1.

Of course, we have yet to consider the number of type II errors that occur.
It will be useful to write the power function in terms of the Q-function, which
is defined by Q (x) ≡ 1− Φ(x). The power of the test is given by

βn= Q
(
zh − (μ− t)

√
n
)
≥ Q (zh) = h

whenever the null hypothesis is false. Notice that when the null hypothesis is
false, our previous bound will be flipped; however, the following holds

lim
n→+∞

zh − (μ− t)
√
n =

⎧⎨
⎩

+∞ μ < t
+∞ μ = t
−∞ μ > t

which is the result of Lemma 2.1 and convergence of the power function is given
below.

βn −→

⎧⎨
⎩

0 μ < t
0 μ = t
1 μ > t

Using this scheme as the sample size grows, the probability of a type I or type
II error goes to zero asymptotically. Again we would like to show that the sum
of the probabilities of a type II errors is finite.

Theorem 2.1. Let xi = μ + εi where {εi}i∈N
is an i.i.d. sequence of standard

normal random variates and the sequence of hypothesis tests in (2.2) have crit-
ical values given by zh = Φ−1(1 − h). Suppose h ∝ n−p with p > 1, then with
probability 1 the sequence of hypothesis test will make a finite number of errors.
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Proof. It has already been shown that there are a finite number of type I er-
rors. As with the type I error, define a sequence of events that determines the
probability of a type II error using the indicator function.

Bn = 1
(
(x− μ)

√
n < Φ−1 (1− h)− (μ− t)

√
n
)

where Bn = 1 means that a type II error has occurred. It must be shown that
the sum of the probabilities of a type II error is finite. The probability of a type
II error can be bounded for all n > N where N is chosen large enough for the
following to hold.

Pr (Bn = 1) = 1− βn = Q ((μ− t)
√
n− zh)

≤ 1
2e

− ((μ−t)
√

n−zh)
2

2 ≤ e−
(μ−t)2

√
n

4

The first inequality is the Chernoff bound for the Q-function, and it will be
valid whenever (μ− t)

√
n − zh > 0. The second inequality follows because

(μ− t)
√
n− zh > (μ− t)

√
n/2 for suitably large n which means

+∞∑
i=N

1− βi ≤
+∞∑
i=N

e−
(μ−t)2

√
n

4 ≤ M +

∫ +∞

N

e−
(μ−t)2

√
x

4 dx < +∞

for some M > 0 and N suitably large. Since
∑+∞

i=N 1− βi ≤ +∞, then the
Borel-Cantelli lemma can be applied again to conclude

Pr

(
lim

n→+∞
supBn = 1

)
= 0

which shows almost sure convergence and it follows that the number of type I
and II errors must be finite.

This demonstrates that by choosing the smoothing parameter appropriately,
inference will not only become arbitrarily accurate as the sample size grows, but
the entire sequence of tests will also perform very well in terms of type I error.

2.2. Two-sided hypothesis tests

The two-sided case is nearly a trivial extension, but there are slight differences.
As in the previous section, it is of interest to construct the following sequence
of two-sided tests.

H0n : μ = t

H1n : μ �= t
(2.8)

The incorrect rejection of the null can be written with the indicator function

Cn = 1
(
|x− μ|

√
n > zh/2

)
(2.9)
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where 1−Φ
(
zh/2

)
= h/2. Of course, this means we will reject the null incorrectly

h percent of the time when the null hypothesis is true, i.e. the probability of a
type I error will be Pr (Cn) = h.

As with the one-sided test, if h ∝ n−p with p > 1, there can be only a finite
number of type I errors. The probability of a type II error for the two-sided test
is described below.

1− βn = Pr
(
|x− t| √n ≤ zh/2

)
= Φ

(
zh/2 + (μ− t)

√
n
)
+Φ

(
zh/2 − (μ− t)

√
n
)
− 1

The power of the two-sided test will converge to one for all alternatives. The sum
of the probabilities of type II error will also converge, by a similar argument, as
in the one-sided case, so the conclusion of Theorem 2.1 is valid for the two-sided
case.

With this result in hand, we are able to resolve the Jeffreys-Lindley paradox,
see [21]. Suppose the assumptions of Theorem 2.1 hold, except one is interested
in the two-sided test given by Eq. (2.8). If one assumes a uniform prior density
for μ over some interval (t+ I/2, t− I/2) centered at t with a prior probability
of H0 given by π0. Under these conditions, if it happens to be the case that
|x− t| = zh/2/

√
n, then the posterior probability of the null hypothesis, H0, is

Pr (H0 | x1, ..., xn) =
Iπ0φ(zh/2)

√
n

Iπ0φ(zh/2)
√
n+ 1− π0

→ 1 (2.10)

as n → +∞ whenever π0 > 0 and h = α is fixed. Since the posterior probability
converges to one, there will be some n suitably large such that H0 is rejected
at the α significance level. But the posterior probability that the null is true is
approximately 1−α. This puts the Bayesian and frequentist approach in direct
conflict, which is the paradox.

But this paradox will not occur for A.S. hypothesis testing that sets h =
n−p with p > 1. First, note the Q-function satisfies the following well-known
inequality,2

z2h/2

1 + z2h/2
φ(zh/2) ≤ zh/2Q(zh/2) ≤ φ(zh/2)

whenever zh/2 > 0. Since zh/2 is increasing in n, it follows

1

kn
(
zh/2

) ≡
zh/2Q(zh/2)

φ(zh/2)
→ 1 (2.11)

as n → +∞ and Q(zh/2) = h/2, so Eq. (2.10) can be rewritten as

Pr (H0 | x1, ..., xn) =
Iπ0zh/2hkn

√
n

Iπ0zh/2hkn
√
n+ 2 (1− π0)

→ 0

as n → +∞ whenever π0 > 0 and h = n−p with p > 1/2, which follows from
Lemma 2.1. The posterior probability that the null hypothesis is true goes to

2See [14] for a similar discussion of the Q-function.
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zero, which agrees with the frequentist rejection of the null. Thus, there is no
paradox using A.S. hypothesis testing.

Now suppose the sequence of two-sided hypothesis tests are pairwise inde-
pendent, such as the case would be if there was a sequence of hypothesis tests
based on independent samples, but the size of each sample was growing. In
this scenario, under any fixed significance level, we have

∑+∞
i=1 h (i) = +∞. This

allows the second Borel-Cantelli lemma to be applied.

Pr

(
lim

n→+∞
supCn = 1

)
= 1 (2.12)

If the significance level is fixed for such a sequence of tests, the sequence of
tests will make an infinite number of errors, under the null, with probability
one. Furthermore, one can always increase the sample size and retest until a
statistically significant result is found, which is known as optional stopping.

However, in the present context, one cannot assume the samples are inde-
pendent, but as Lindley points out in [21], the law of the iterated logarithm can
be used when the independence assumption is dropped. To see why this is the
case: assume μ = t = 0, then we have the following modification of the law of
the iterated logarithm

Pr

(
lim sup
n→+∞

√
n |x| − zh/2√

ln lnn
=

√
2

)
= 1

whenever h = α is fixed. This implies
√
n |x| − zh/2 > 0 infinitely often with

probability one, so one can increase the sample size until statistical significance
is found with probability one. However, once the significance level is allowed to
decrease with the sample size

Pr

(
lim sup
n→+∞

√
n |x| − zh/2√

ln lnn
= −∞

)
= 1

whenever h = n−p with p > 0. This is because zh/2 ≈
√
2p ln(n) for large n,

see [14], and 2p ln(n)/ ln lnn → +∞, so A.S. hypothesis testing will be more
robust to optional stopping. Of course, this is not too surprising because we
have already shown that when p > 1,

√
n |x| − zh/2 > 0 at most a finite number

of times with probability one.
For example, suppose a researcher performed an experiment with a sample

size of 10 and found no statistically significant result. Then suppose she decided
to add one more observation, and retest continuing this process until a significant
result was found. Under this scenario,3 given the initial batch of 10 observations
resulted in an insignificant result, the probability that the experiment will be
stopped at some finite sample size, Ns, can be bounded using Boole’s inequality

Pr (Ns < +∞) <

∞∑
n=11

h < 0.0952

3A similar process is considered by [11] for a simulation in the context of animal testing.
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where h = n−2. This compares favorably with fixed significance level testing,
which has a finite stopping time with probability one; however, this bound will
not be meaningful for all bandwidths, as the above sum can be greater than
one (the bandwidth in Eq. (3.5) would be one example). But even using that
bandwidth, if the testing was done in batches of 10, then

Pr (Ns < +∞) <

∞∑
i=2

(10i)
−1.2

< 0.3

which results in a relatively large probability that the process will never end.
Of course, these bounds rely on the assumption of normality, which can be
untenable in many cases.

3. The general case with i.i.d. data

The analysis up to this point has assumed normality with unit variance for
the special case of the sample mean, which is not very helpful for real world
applications, which brings us to the main results.

3.1. Hypothesis testing

If the data is not normal, then the test statistics are only valid asymptotically, so
another approach must be taken. The Edgeworth expansion is a natural choice
because it allows the finite sample distribution of the test statistic to be approx-
imated by a normal distribution function. Furthermore, the smooth function
model of the Edgeworth expansion is quite general and includes statistics such
as means, variances, and even M-estimators with appropriate modifications.

Following the formulation in [14], suppose {Xi}i∈N
is a sequence of i.i.d.

distributed d-dimensional vectors satisfying EX1 = μ with sample mean given
by X̄n = 1

n

∑
i Xi. Let g and h be smooth functions satisfying g, h : Rd → R.

Suppose θ̂ = g
(
X̄n

)
is an estimator of some parameter of interest, θ0 = g (μ).

Similarly, σ̂ = h(X̄n) is some consistent estimator of the asymptotic variance

of θ̂
√
n and define the relevant studentized test statistic by Sn

√
n =

(θ̂−θ0)
√
n

σ̂ ,
then under the following conditions:

Assumption 1. Let {Xi}i∈N
be a sequence of i.i.d. distributed d-dimensional

vectors satisfying E‖X1‖4 < +∞, lim sup
‖t‖→+∞

∣∣∣E (
eit

′X1

)∣∣∣ < 1, σ̂ →p σ > 0 and

Sn has 4 continuous derivatives in a neighborhood of μ with ∇g (μ) �= 0

there exists an Edgeworth expansion of the studentized statistic given by

sup
|y|<+∞

∣∣∣∣Pr (Sn

√
n ≤ y

)
− Φ (y)− π1 (y)φ(y)√

n
− π2 (y)φ(y)

n

∣∣∣∣ = O(n− 3
2 ) (3.1)

where πj is a polynomial of degree 3j − 1. This kind of expansion is quite
general, and the assumptions can be modified so that Eq. (3.1) may also be
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applied to studentized regression estimates, see [14, 25]. Continuing with the
smooth function model, the main results are discussed below.

Theorem 3.1. Suppose Assumption 1 is satisfied and define the sequence of
hypothesis tests by

H0n : θ0 ≤ t
H1n : θ0 > t

using the test statistic Sn
√
n with critical values given by zh = Φ−1(1− h) and

h ∝ n−p with p > 1, then with probability 1 the sequence of hypothesis test will
make a finite number of errors.

Proof. The probability of a type I error can be bounded

Pr

(
Sn

√
n > zh +

√
n (t− θ0)

σ̂

)
≤ P

(
Sn

√
n > zh

)
because

√
n (t− θ0) ≥ 0 under the null hypothesis. Using Eq. (3.1) and

Eq. (2.11), we have the following

Pr (Sn
√
n > zh) ≤ Cn− 3

2 + h
[
1 +

|π1(zh)|zhkn(zh)√
n

+
|π2(zh)|zhkn(zh)

n

]
where π1 and π2 are polynomials of degree two and five respectively andQ (zh) =
h. Since zh is increasing and kn (zh) → 1, the leading term of the polynomial
dominates, which means a constant, D > 0, can be chosen such that,

|π1|zhkn(zh)√
n

<
Dz3

h√
n

≤ D(−2 ln(2h))
3
2√

n
= o(1)

for any h ∝ n−p and n sufficiently large. A similar argument will hold for π2

which means

P
(
Sn

√
n > zh

)
≤ Cn− 3

2 + h + o(h) (3.2)

for sufficiently large n. Thus almost sure convergence will follow from the summa-
bility of h. The probability of a type II error can be bounded similarly

1− βn ≤ Cn− 3
2 +Q(wn) +

|π1 (wn) |φ (wn)√
n

+
|π2 (wn) |φ (wn)

n

where wn = (θ0−t)
√
n

σ̂ − zh = (θ0−t)
√
n

σ + o (
√
n) and the order of convergence

will now be
√
n, so for suitably large N, q, and M > 0.

∞∑
n=N

|π1 (wn) |φ (wn)√
n

≤ |π (wN )|φ (wN )N−.5+

∫ +∞

N

M(θ0 − t)
2q
xq−1/2e−

(θ0−t)2
√

x

2σ2 dx < ∞

Similar arguments can be made for the other two terms of the expansion, so
the probabilities of both a type I and type II error are summable, allowing the
Borel-Cantelli lemma can be applied justifying the claim.
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The two-sided test is a trivial extension of the previous result. Theorem 3.1
relies not only on the moments of the random variables, but also on the smooth-
ness of the distribution, which manifests itself in the following condition.

lim sup
‖t‖→+∞

∣∣∣E (
eit

′X1

)∣∣∣ < 1 (3.3)

This condition requires that at least one of the d random variables is absolutely
continuous. In many practical applications such as randomized experiments, one
cannot expect such an assumption to hold.

Nevertheless, as demonstrated in [14] and [3], an Edgeworth expansion can
still be constructed for lattice random variables with some modifications, so
Theorem 3.1 remains true by replacing Condition 3.3 with the following

Pr (X1i = ai + jbi) = 1 (3.4)

where j = ±1,±2, ... and i = 1, ..., d. To see why this is the case, the one term
Edgeworth expansion for a lattice random variable in one dimension is

Pr
(
Sn

√
n ≤ y

)
= Φ(y) +

π1 (y)φ(y)√
n

+
bR

(
b−1y

√
n− b−1an

)
φ(y)√

n
+O(n−1)

where R(y) = [y] − y − 1/2 and [y] is the floor function. Since |R| < 3/2, the
summability in Theorem 3.1 will not be affected; however, the small sample
performance for lattice random variates may not be as good.

The proof of Theorem 3.1 provides some guidance as to the choice of p.
As one can see from Eq. (3.2), under the null the bandwidth will be a tight
approximation of the type I error in the following sense

P (Sn
√
n > zh)

h
= O (1)

as long as p ≤ 3/2. If p > 3/2, then one may require additional assumptions in
order to be sure the bandwidth accurately reflects the probability of rejection
under the null hypothesis.

There is also a trade-off between type I and type II errors. For any fixed
sample size, as p approaches one from above, the probability of a type I error
increases, but so does the power. It would seem a choice of p closer to one would
strike a balance between type I and type II errors. The following bandwidth
seems to perform well in simulations.

h1 = n− 6
5 (3.5)

Table 1 shows various critical values for the one-sided and two-sided A.S.
hypothesis tests with smoothing parameter defined by Eq. (3.5). It may seem
unsettling that the critical values these hypothesis tests are based upon are
diverging to infinity, but the rate of growth is very slow.

Even with a million observations, the critical value for the two-sided test
is only about three times as large as the normal critical value associated with
0.05 level test. The hurdle that researchers must overcome is bigger, but not
excessive.
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Table 1

Critical values

N One-sided Two-sided Digit rule
5 1.06 1.46 2
10 1.53 1.86 3
15 1.76 2.07 3
25 2.03 2.31 3
50 2.36 2.61 3
100 2.65 2.88 4
1,000 3.48 3.66 5
10,000 4.16 4.32 6
100,000 4.75 4.89 7
1,000,000 5.28 5.41 8

Another interesting thing to notice is that the growth of the critical values
is roughly proportional to the number of digits in the sample size. For example,
when the sample size is 9, 999, there are 4 digits in the number representing the
sample size, while the critical value for this sample size is 4.32 for the two-sided
test. If, for simplicity, we took the number of digits plus one as our critical value,
then almost sure convergence would be guaranteed.

When researchers are reading papers, they might be interested to know if
some statistical test is significant in the A.S. hypothesis setting, which we call
A.S. significance. If the test statistic is available, then a simple test can be used
to verify A.S. significance. We say that the “digit-rule”is the critical value given
by the number of digits in the sample size plus one.

Since the digit-rule only increases at a new order of magnitude, it is suffi-
cient to compare the critical values right before the next order of magnitude is
reached. So the digit-rule for a sample size of 99 would be 3, and one can infer
from Table 1 that the critical value for the digit-rule is greater than the critical
value for the bandwidth in Eq. (3.5), and a similar argument can be made for
the other orders of magnitude, which implies A.S. significance. As the sample
size grows, the digit-rule becomes increasingly conservative, and relatively less
powerful, so it should be used with caution in large samples.

Previously, we used the law of the iterated logarithm to argue that using a
fixed significance level results in an infinite number of type I errors with proba-
bility one. However, the law of the iterated logarithm is not directly applicable
to the studentized statistic. Nevertheless, a similar result can be proven: recall
the Kochen-Stone lemma, see [1] or [17].

Lemma 3.1. Suppose E1, E2, ... are events satisfying
+∞∑
n=1

Pr(En) = +∞

lim inf
k→+∞

k∑
n=1

k∑
m=1

Pr (En

⋂
Em)

(
k∑

n=1
Pr(En)

)2 < +∞

then infinitely many of the events take place with positive probability.
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Now we may demonstrate any sequence of tests with fixed significance level
will make an infinite number of mistakes, at least with positive probability.

Lemma 3.2. Suppose Cn = 1
(
|Sn|

√
n > zh/2

)
with h = α fixed under the null

and the assumptions of Theorem 3.1 are satisfied, then an infinite number of
errors are made with positive probability.

Proof. From equation (3.1), it is clear that Pr(Cn) = α − o
(

1√
n

)
, so Pr(Cn)

converges to α which means there exists an N such that Pr(Cn) > α
2 for all

n > N giving
∑+∞

n=1 Pr(Cn) = +∞, so the first part of the Lemma 3.1 is
satisfied, furthermore, it follows that there exists some c > 0 such that

1

k

k∑
n=1

Pr(Cn) > c

for all k ≤ +∞. For the second part, using Boole’s inequality

k∑
n=1

k∑
m=1

Pr (Cn

⋂
Cm)

(
k∑

n=1
Pr(Cn)

)2 < 2k

k∑
n=1

Pr (Cn)(
k∑

n=1
Pr(Cn)

)2 ≤ 2

1
k

k∑
n=1

Pr(Cn)

<
2

c

upon taking limits the result follows.

3.2. Confidence intervals

Confidence intervals play a central part in most problems of statistical infer-
ence, so it is useful to demonstrate that the approach can be used to construct
a sequence of confidence intervals that cover the true parameter all but a fi-
nite number of times, which we call an A.S. confidence interval. Consider the
following one-sided and two-sided confidence intervals.

I1n (h) =
(
−∞, θ̂ + n−.5σ̂zh

)
(3.6)

I2n (h) =
(
θ̂ − n−.5σ̂zh/2, θ̂ + n−.5σ̂zh/2

)
(3.7)

Again, an Edgeworth expansion can be used to demonstrate these confidence
intervals are, in fact, A.S. confidence intervals.

Theorem 3.2. Suppose the conditions of Theorem 3.1 are satisfied, then

Pr (θ0 ∈ I1n (h)) → 1

Pr (θ0 ∈ I2n (h)) → 1

and with probability 1 there are only a finite number of confidence intervals which
do not contain θ0.
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Proof. It follows from Theorem 3.1

Pr (θ0 ∈ I1n) = Pr
(
θ0 ≤ θ̂ + n−1/2σ̂zh

)
= Pr (Sn > −zh)

= 1− Φ (−zh)− n−1/2π1 (−zh)φ(−zh)− n−1π2 (−zh)φ(−zh) +O(n−3/2)

= 1− h+O(n−3/2)

and the Pr (θ0 �∈ I1n) will be summable demonstrating the result. As for the
two-sided confidence interval,

Pr (θ0 ∈ I2n) = Pr
(
Sn > −zh/2

)
+ Pr

(
Sn > zh/2

)
= 1− h+ 2n−1π2

(
zh/2

)
φ
(
zh/2

)
+O(n−2) = 1− h+O(n−2)

because π1 and π3 are odd functions resulting in a cancellation, so Pr (θ0 �∈ I2n)
is summable.

The interpretation is the same as the previous results. As the sample size gets
large, the probability that the confidence interval will not cover θ0 goes to zero;
furthermore, there will be only a finite number of times that this confidence
interval will fail to contain θ0.

3.3. Multiple comparisons

In standard hypothesis testing, an issue of multiple comparisons arises when a
large number of hypothesis tests are conducted. Since the type I error is fixed,
a large number of hypothesis tests results in the high likelihood of finding a sta-
tistically significant effect which is spurious, sometimes called a false discovery.

For example, if one performs 100 two-sided hypothesis tests with a signifi-
cance level of 0.05, then one would expect that at least one of the tests would find
a significant result when there was none; however, we will show A.S. hypothesis
testing is robust to such multiple comparisons.

Of course, one can directly control for multiple comparisons with a bandwidth
of the form

h ∝ n−p

m

where p > 1 and m is the number of comparisons, which would be similar to a
Bonferroni correction. For the above example, if we also assumed a sample size
of 150 with the bandwidth in Eq. (3.5), this would result in a critical value of
4.22 compared to 3.03 without the correction. Meanwhile, using a Bonferroni
correction with a significance level of 0.05 results in a critical value of 3.48. So
even in this simple example, one can see that A.S. critical values change less
than under a fixed significance level when a correction for multiple comparisons
is used. In this section, we will mainly focus on the role of multiple comparisons
for confidence intervals, but the results hold for hypothesis testing as well.
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If, for some reason, a researcher was unaware of exactly how many compar-
isons were made, this approach still works without any modifications. Instead of
a single sequence of confidence intervals, we allow for a family of m sequences of
confidence intervals. If the same bandwidth is used for each of the m sequences
of confidence intervals, then each of the m sequences will make a finite number
of errors with probability one, so one would expect that all of the m sequences
will make a finite number of errors with probability one. This intuition is verified
below.

Lemma 3.3. Let the conditions of Theorem 3.1 be satisfied for m sequences of
two-sided confidence intervals

I2ni (h) =
(
θ̂i − n−.5σ̂izh/2, θ̂i + n−.5σ̂izh/2

)
and i = 1, ..,m, then with probability 1 the family of confidence intervals makes
only a finite number of errors.

Proof. It follows from Theorem 3.1 that

Pr (θ0i ∈ I2in (h)) = 1− h+ o(h)

and the probability that at least one of the members of the family of confidence
intervals makes an error can be bounded by Boole’s inequality.

Pr

(⋃
i

[θ0i �∈ I2ni (h)]

)
≤ mh+ o(h)

which will be summable for fixed m as long as h ∝ n−p with p > 1.

Even with a fixed number of confidence intervals, Lemma 3.3 may have poor
small sample performance unless m � n. For instance, continuing with the pre-
vious example, if there are 100 independent hypothesis tests with a sample size
of 150 for each test, the probability of finding a false discovery will be approx-
imately 0.24 using Eq. (3.5), so one may find better small sample performance
in terms of type I error by setting the bandwidth in the following manner:

h2 = n−2 (3.8)

resulting in a critical value of 4.08 for the example above. This is similar to
controlling for the number of comparisons directly, which has a critical value of
4.22. The rationale of Eq. (3.8) is that in smaller samples whenever m ≈ n, one
would still have a small probability of false discovery, mh ≈ n−1.

3.4. Simulations

Since all of the previous results are asymptotic, it is important to see how well
the approach holds up in finite samples. The first simulation compares the size
of A.S. hypothesis testing with a standard significance level and compares the
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Fig 1. Frequency of type I errors for two-sided hypothesis test.

empirical coverage probabilities of the 95%, almost sure, and digit-rule two-
sided confidence intervals. The second simulation will compare the power of the
two approaches. The third simulation compares A.S. hypothesis testing for lag
selection in an autoregressive model with other lag selection criteria.4

Consider the following sequence of two-sided hypothesis tests, where under
the null the mean, θ0, will be 1 and under the alternative the mean will be 2.

H0n : θ0 = 1
H1n : θ0 = 2

For the first simulation, 200 independent draws are made from a Chi-square
distribution with one degree of freedom to simulate the case when the null is
true. We proceed by performing a sequence of hypothesis tests for every sample
size between 3 and 200 and then repeat the process for 1, 000 sequences of
hypothesis tests and the frequency of type I errors are tabulated in Figure 1.

As one can see from the graph, the number of type I errors for the A.S. hy-
pothesis test converges to zero while the hypothesis tests with a 5% significance
level fall to around the 5% mark as expected. Except in very small samples,
A.S. hypothesis testing performs better than the standard approach in terms of
type I error.

In Figure 2 using the same simulated data, a sequence of two-sided confidence
intervals are computed using the 95%, almost sure, and digit-rule. The frequency
of errors for the 95% confidence interval approaches 5% from above. Meanwhile,
both the digit-rule and A.S. confidence intervals have failures that are converging
to zero quite quickly. The digit-rule covers the mean more often than the A.S.
confidence interval because it has larger critical values.

The second simulation is performed in the same fashion as the first except the
alternative hypothesis is imposed by taking draws from a Chi-square distribution

4Except for the digit-rule, all simulations will use the bandwidth in Eq. (3.5).
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Fig 2. Percentage of two-sided confidence intervals that failed to cover the mean.

with 2 degrees of freedom. Generally, the power of the A.S. hypothesis test will
be less than with a fixed significance level.5 This is due to the divergence of the
critical values with the A.S. approach making the tests generally less powerful
relative to some fixed significance level. The rejection frequencies under the
alternative are compared in Figure 3.

As expected, the power under the fixed significance level is generally greater
than the A.S. test; however, the power of the A.S. test is still acceptable. The
reason the A.S. test is more powerful in small samples is because the critical
values happen to be smaller than 1.96, but as the sample grows the fixed sig-
nificance level becomes more powerful. Regardless, depending on the problem,
A.S. hypothesis testing could suffer from low power in small samples and one
should proceed with caution in such cases.

For the final simulation, consider the problem of estimating an AR(p) process
with unknown lag length.

yi =

p∑
j=1

γjyi−j + εi (3.9)

One way to determine the lag length is to chose some large fixed lag length, L,
and then perform backward elimination to eliminate extraneous lags utilizing
an appropriate hypothesis test, the likelihood ratio test (LR) is an example of
this approach. In general, this will not produce a consistent estimate of the lag
length, p.

Suppose L = p+1 and a significance level of 0.05 is used, then in large samples
the probability of rejecting the null for the p+1 lag will be approximately 0.05

5In small samples, depending on the bandwidth, the A.S. critical value may be smaller
than the critical value for some fixed significance level in which case the power may be greater
for the A.S. hypothesis test.
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Fig 3. Rejection frequency under the alternative.

even with an infinite sample size, which is a type I error. Furthermore, in finite
samples, there is a nonzero probability that the null for the pth lag will not be
rejected, which is a type II error. In this case, both type I and type II errors
need to be small to make for a reliable test of the lag length.

The standard approach to overcome this issue is to minimize some sort of
information criteria, which amounts to choosing the model that minimizes the
sum of squared residuals subject to some penalty for the number of parameters
in the model. Common criteria include final prediction error (FPE), Akaike’s
information criterion (AIC), Schwarz bayesian information criterion (SBIC),
and Hannan-Quinn information criterion (HQIC). The different merits of these
information criteria are discussed in [20, 22, 8]. Like the LR approach, both
the FPE and AIC overestimate the true lag with positive probability while the
SBIC and HQIC are consistent, see [22].

As discussed previously, A.S. hypothesis testing may suffer from low power;
however, this certainly doesn’t preclude its use even when power is important. If
we assume the residuals in Eq. (3.9) are i.i.d., then OLS can be applied. If the lag
length, L, does not depend on the sample size, then the Edgeworth expansion
results of [14] can be applied to the OLS estimates. If an A.S. hypothesis test
is used in the example above, then in large samples the probability of rejecting
the null for the p+1 lag will be arbitrarily small; however, the power of the test
still comes into play because one must reject the null for the pth lag. For the
A.S. hypothesis approach, the bandwidth in Eq. (3.5) is used for a two-sided
test with backward elimination, like the LR approach.

In order to compare these different lag selection mechanisms, a simulation
is conducted similar in nature to the simulations in [20, 8]. First we generate
an AR(2) series and estimate the lag length in the 6 ways outlined above using
a maximum lag of 10 at various points in the sample. This is similar to the
choice made in [20]. We also allow the second coefficient, γ2, to be small, but
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Table 2

Comparison of different lag selection mechanisms

N FPE AIC HQIC SBIC LR A.S.
25 15.7% 15.7% 11.3% 14.5% 9.0% 34.8%
50 39.5 % 39.5 % 43.0 % 42.7 % 28.2% 44.0%
100 57.1% 57.1% 65.0% 64.0% 35.6% 58.6%
500 69.7% 69.7% 88.2% 91.9% 38.3% 87.5%
1,000 71.4% 71.4% 94.0% 97.6% 38.6% 94.5%
5,000 70.9% 70.9% 94.5% 99.5% 38.1% 100.0%
10,000 72.8% 72.8 % 94.9% 99.8% 38.5% 100.0%

not arbitrarily close to zero.

1. Repeatedly draw γ1 and γ2 from the uniform distribution in the range
(−1, 1) until the following conditions are met: |γ1 + γ2| < 1 and |γ2| > 0.1

2. Generate an AR(2) process according to yi = 1 + γ1yi−1 + γ1yi−2 + εi,
where {εi} is an i.i.d. sequence of uniformly distributed random variables
on (−4, 4)

3. Discard the first 20, 000 observations

(a) Compute the 6 lag order selection mechanism and tabulate the results
for the first N observations using a maximum lag of 10

(b) Repeat for the 6 different sample sizes

4. Repeat 1000 times and tabulate the results

The results of the simulation are reported in Table 2.6 The LR approach,
which uses the 5% significance level, is the only other sequential hypothesis test
and it performs the worst; however, the sequential testing approach goes from
the worst performing to arguably the best using the A.S. methodology.

In small samples, the A.S. approach selects the correct lag more often than
any other lag selection criteria. Since there are 10 lags, there are as few as 15
observations in the regressions. It dominates the AIC, FPE, and LR for all of
the tabulated sample sizes. This should be expected because the LR, AIC, and
FPE model selection criteria are inconsistent.

The HQIC and SBIC are consistent estimators of the lag length. Both of these
criteria are dominated by the A.S. approach in very small and very large samples.
One could also use the A.S. critical values to determine the lag length without
backward elimination and perform a single regression instead. In simulations
this approach was less effective than using backwards elimination, but A.S. still
dominated in very large samples.

4. Extension to the strongly mixing process

In many circumstances, the assumption of an i.i.d. process is far too strong,
especially in a time series settings. In the previous section, we described how an

6In other variations of the simulation, the maximum lag was allowed to increase with the
sample size. Alternative distributions were used for the error term. The assumption that the
autoregressive coefficients being not arbitrarily close to zero was also dropped. In each of the
variations, the effectiveness of the A.S. approach was similar to the results in Table 2.
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Edgeworth expansion could be applied to the studentized statistic. In the case
of the sample mean, the studentized statistic can be written in the following
manner.

Sn =

√
nxn√

1
n

∑
i x

2
i − xn

The studentized statistic is a smooth function of xn and 1
n

∑
i x

2
i , so the standard

approach applies. However, even if the process is stationary, the estimation
problem becomes more difficult.

For a covariance stationary process with summable autocovariances, the
asymptotic variance will be

V ar
(√

nxn

)
→ γ (0) + 2

∞∑
i=1

γ (i) (4.1)

where γ (i) = Cov (x1, xi+1) is the lag-covariance. The asymptotic estimate now
depends on an infinite number of parameters. Obviously one cannot construct
an infinite number of estimates in any finite sample, so the asymptotic variance
in Eq. (4.1) must be approximated by a truncated estimate

V ar
(√

nxn

)
≈ γ̂ (0) + 2

l∑
i=1

γ̂ (i) (4.2)

where γ̂ (i) = n−1
∑n−i

j=1 xjxj+i −x2
n and l is a bandwidth parameter that tends

to infinity as the sample size grows. The approximation results in a biased
estimator, but it can be shown the estimate is consistent. Even though there
are only a finite number of estimates, the dimension of the estimation problem
is unbounded, so alternative methods must be used.

The Edgeworth expansion for studentized statistics when the data is a strongly
mixing process with an exponential decay rate has been derived in [19]; how-
ever, the results of the paper hold more generally under polynomial decay, see
[18]. According to [19, 5], the assumptions for this Edgeworth expansion can
be modified, so the following results are also applicable for a large class of M-
estimators.

The assumptions used to derive the expansion in [19] are quite intricate. Since
the Edgeworth expansion is of secondary interest, results will be demonstrated
for the vector linear process, as the expansions are the same for the more general
case.

Assumption 2. Let {Xi}i∈Z
be a d-dimensional random vector generated by

a sequence of nonrandom matrices, {Ai}i∈Z
, and i.i.d. d-dimensional vectors,

{εi}i∈Z
in the following way

Xi = μ+
∑
j∈Z

Ajεi−j (4.3)
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Suppose ‖Ai‖ = O
(
e−κ|i|) for some κ ∈ (0, 1) as |i| → 0 and

∑
i∈Z

Ai is
nonsingular. Further suppose that ε1 is absolutely continuous with 0 mean and
E‖ε1‖12+δ < +∞. Finally assume gn has has 4 continuous derivatives in a
neighborhood of μ with ∇gn (μ) �= 0.

Under the smooth function model discussed in the previous section, we con-

sider the studentized statistic given by Tn
√
n =

(θ̂−θ0)
√
n

τ̂ . The estimated vari-
ance, τ̂ , is constructed in the following manner

τ̂2 = max

{
g
(
Xn

)′ [
Γ̂ (0) +

l∑
i=1

k

(
i

l

)(
Γ̂ (i) + Γ̂ (i)

′
)]

g
(
Xn

)
,
1

n

}
(4.4)

where Γ̂ (i) = 1
n

∑n−i
j=1

(
Xj −Xn

) (
Xi+j −Xn

)
and k is a weighting function.

In the case of the sample mean, one could simply take the average of the au-
tocovariances, but now we must estimate a matrix that grows arbitrarily large,
so a weighting function must be used to obtain consistent estimation. We will
consider the bounded kernel framework of [2]. This includes the most popular
choices such as the Bartlet, Parzen and QS spectral kernel, but more general
weighting schemes are also possible.

Assumption 3. Let equation (4.4) be used as the studentizing factor where the
kernel, k : [−1, 1] → R, is an even function continuous at 0 and at all but a
finite number of points. Suppose k(0) = 1 and

∫
x2kdx < +∞, furthermore,

assume the lag parameter, l, is chosen so that Bias
(
τ̂2
)

= O
(
n−1/3

)
with

κ lnn < l ≤ κ−1n1/3 for some κ ∈ (0, 1) and all suitably large n.

This assumption is not necessary, but includes many of the common kernels
used in application.

Theorem 4.1. Under Assumptions 2 and 3, define the sequence of hypothesis
tests

H0n : θ0 ≤ t
H1n : θ0 > t

using the test statistic Tn
√
n with critical values given by zh = Φ−1(1− h) and

h ∝ n−p with p > 1, then the sequence of hypothesis test will make a finite
number of errors with probability 1.

Proof. Under Assumptions 2 and 3, [19] proves the following expansion

sup
|y|<+∞

∣∣P (
Tn

√
n ≤ y

)
− Φ (y)−Ψ(y)

∣∣ = O

((n
l

)−3/2

ln (n)
−2

)
(4.5)

where

Ψ (y) = φ (y)

[
ya−1

n − y3a−2
n

2
+

y3
(
y2 − 1

)
a−3
n

6
+

6∑
i=1

cinpin (y)

]
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where Bias
(
τ̂2
)
= a−1

n = O
(
n−1/3

)
, cin = o

(
n−.5

)
and pin is a polynomial with

bounded coefficients. Notice Ψ (zh) = o(h), so we can focus on the summability
of the right hand side of Eq. (4.5). By assumption, the lag length must be no
greater than l = O

(
n1/3

)
, which means

+∞∑
n=2

(n
l

)−3/2

ln (n)
−2 ≤ .5

ln(2)2
+

∫ +∞

2

x−1 ln (x)
−2

dx =
.5 + ln(2)

ln(2)2
(4.6)

and we may conclude that a type I error occurs at most a finite number of times.
The rest of the argument follows in the same fashion as Theorem 3.1.

For example, if one were to use the Parzen kernel, then the optimal lag
parameter would be l = O

(
n1/5

)
and the error of the Edgeworth expansion in

Eq. (4.5) would be approximately O
(
n−6/5 ln (n)

−2
)
ensuring the bandwidth

in Eq. (3.5) is appropriate. A notable exception is the Bartlet kernel which
requires an optimal lag parameter to be l = O

(
n1/3

)
, so in that case additional

assumptions may be needed to justify the bandwidth in Eq. (3.5).

5. Conclusions

There is still more work to be done on this topic. It seems likely that this
approach can be used in a bootstrap setting as well. The assumptions in this
paper are far from minimal. The result could also be generalized to other test
statistics such as an F-test.

A.S. hypothesis testing has similar critical values to the standard approach,
but it is less reliant on arbitrary choices of significance level such as 0.05 or 0.01.
Furthermore, using A.S. critical values resolves the Jeffreys-Lindley paradox and
it is robust to multiple comparisons. A simple rule of thumb was also given that
we call the digit-rule, which ensures almost sure convergence.

A.S. hypothesis testing was used as a lag order selection mechanism and in
simulations the approach performed very well relative to other popular model
selection criteria. Simulations were also conducted comparing the power and
frequency of type I error with a fixed significance level.

The rates of convergence for the power and coverage probability may dif-
fer, but the procedure allows hypothesis testing and confidence intervals to be
computed in such a way that the correct decision will be reached with a prob-
ability approaching one as the sample size increases. Despite the complexity of
Edgeworth expansions, A.S. hypothesis testing can be conducted quite simply,
so this approach has broad appeal.
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