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Abstract: This paper considers functional models for longitudinal data
with subject and group specific trends modelled using Gaussian processes.
Fitting Gaussian process regression models is a computationally challeng-
ing task, and various sparse approximations to Gaussian processes have
been considered in the literature to ease the computational burden. This
manuscript builds on a fast non-standard variational approximation which
uses a sparse spectral representation and is able to treat uncertainty in the
covariance function hyperparameters. This allows fast variational computa-
tional methods to be extended to models where there are many functions to
be estimated and where there is a hierarchical model involving the covari-
ance function parameters. The main goal of this paper is to implement this
idea in the context of functional models for longitudinal data by allowing
individual specific smoothness related to covariates for different subjects.
Understanding the relationship of smoothness to individual specific covari-
ates is of great interest in some applications. The methods are illustrated
with simulated data and a dataset of streamflow curves generated by a rain-
fall runoff model, and compared with MCMC. It is also shown how these
methods can be used to obtain good proposal distributions for MCMC
analyses.

Keywords and phrases: Functional data, Gaussian processes, longitudi-
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1. Introduction

This paper considers functional models for longitudinal data where the subjects
are divided into groups, with group specific and individual specific trends de-
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scribed by Gaussian processes. The computational challenges of dealing with
Gaussian processes for regression are well known (see, e.g. Rasmussen and
Williams, 2006). Here we consider a non-standard variational approximation
developed in Tan et al. (2015), which relies on a sparse spectral representation.

Variational approximation methods try to convert problems of posterior inte-
gration into optimization problems. The basic idea is to consider some tractable
class of densities for approximating the true posterior distribution, and then via
an appropriate optimization method find the density which is best in that class,
where best is usually in the sense of minimizing the Kullback-Leibler divergence.
Further discussion and references to the literature are given in Section 3.

The approach of Tan et al. (2015) for applying variational methods to Gaus-
sian process regression is unique as far as we know in that it allows covariance
function hyperparameter uncertainty to be handled within a fast determinis-
tic variational inference scheme. This allows hierarchical models involving the
covariance hyperparameters to be handled within this framework. The main
contribution of this paper is to exploit this feature in the longitudinal setting to
develop fast inferential methods in a functional model which allows individual
specific smoothness of trends to be related to covariates. Modelling covariate de-
pendent individual specific smoothness is of great interest in some applications.

There is a large literature on semiparametric methods for longitudinal data
that allow flexible subject specific trends – see, for example, Zeger and Diggle
(1994) for one early contribution which uses Gaussian processes within a mixed
model framework. However, as noted recently by Zhu and Dunson (2012), there
is a much smaller literature which deals with the study of dynamic properties
of longitudinal models in the functional setting. Wang et al. (2008) propose a
second order differential equation model suitable for capturing the dynamics of
online auctions. Müller and Yao (2010) represent functional data using stochas-
tic ordinary differential equations with time varying coefficients and a smooth
drift process. Their empirical approach to examining the underlying dynamics
avoids the need to specify any parametric form for a differential equation de-
scribing the dynamics. Reithinger et al. (2008) use a boosting algorithm to fit a
semiparametric mixed model which accounts for dependence between functional
observations and can handle irregularly spaced observations. Zhu, Taylor and
Song (2011) consider modelling of the rate function (the derivative of the mean
with respect to time) and its dependence on covariates, with the rate functions
being modelled by stochastic differential equations. Zhu and Dunson (2012) use
hierarchical stochastic differential equations for functional data allowing volatil-
ity to depend on covariates. By volatility they mean the conditional variance of
changes in the trajectory over an infinitesimal interval. Goldsmith, Wand and
Crainiceanu (2011) consider functional regression models including models for
longitudinal data involving parametric random effects. They use fast variational
Bayes methods for inference similar to those considered here but their work does
not focus on dynamic properties of the trends and how these might vary between
subjects in relation to covariates.

Here we consider subjects divided into groups, with flexible trends at the
level of the group and individual, with stationary Gaussian process priors for
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the trend functions. We consider models for individual level covariance function
hyperparmaters that relate them to covariates. Since the covariance function hy-
perparameters are naturally thought of as relating to the variance of the process
derivative, our approach relates the dynamic behaviour of trends for individual
subjects to covariates. Gaussian processes are an increasingly popular approach
to the modelling of functional data. Shi, Murray-Smith and Titterington (2005)
consider modelling functional data using a mixture of Gaussian processes ap-
proach and use Hamiltonian Monte Carlo methods for computation. Shi et al.
(2012) consider a semiparametric approach which combines a parametric mixed
effects model with a Gaussian process functional regression model. Wang and
Khardon (2012) consider a Gaussian process mixed effects model with group
specific trends and where the group membership is unobserved. Their work is
similar in its objectives to ours in considering sparse approximations to Gaus-
sian processes and variational ideas to speed up computations. However, the
focus of our work is different since interest centres on the case where group
membership is observed and there is a model which allows individual specific
smoothness related to covariates. Shi and Choi (2011) is a recent monograph
length treatment of the Gaussian process approach to functional data analysis.

In Section 2 our functional model is described. Section 3 briefly describes
variational Bayes methods and the non-standard variational Bayes approach
that we use to handle the Gaussian process elements in our hierarchical model.
Application of these ideas to our longitudinal model is given in Section 4, some
examples are given in Section 5 and Section 6 concludes.

2. Functional model for longitudinal data

We consider grouped longitudinal data in which a response yi = (yi1, . . . , yini)
T

is observed for individual i. The response yij is associated with a time tij and
the ith individual is in group g(i), where there are k groups, g(i) ∈ {1, . . . , k}.
Similar to Zhu and Dunson (2012), we consider a model

yij = Gg(i)(tij) + Si(tij) + εij , (1)

where Gg(t), g = 1, . . . , k, are a collection of group specific trends and Si(t), i =
1, . . . , n, are individual specific trends. The errors εij are independent, N(0, σ2

ε ).
We consider Gaussian process priors (Rasmussen and Williams, 2006) on the

functional terms,

Gg(t) ∼ GP(0, κg(t, t
′)) and Si(t) ∼ GP(0, τi(t, t

′)),

where GP(μ(t), C(t, t′)) denotes the Gaussian process with mean function μ(t)
and covariance function C(t, t′). The covariance functions κg(·, ·) and τi(·, ·)
are chosen to have a stationary parametric form. In what follows, we use the
Gaussian covariance function,

r(t− t′;σ2, θ2) = σ2 exp
(
−θ2|t− t′|2

)
, (2)



530 D. K. Mensah et al.

where σ2 > 0 is the variance and θ is a spatial dependence parameter. Note that
following standard results on Gaussian processes, the derivative of a Gaussian
process with covariance function (2) exists in mean square and it is a Gaus-
sian process with covariance function r

′′
(h;σ2, θ2). The process derivative has

variance σ2θ4 which shows how the spatial dependence parameter relates to the
dynamic properties of the trends. We let

κg(t, t
′) = r(t− t′;σ2

κg, θ
2
g), g = 1, . . . , k,

and
τi(t, t

′) = r(t− t′;σ2
τi, λ

2
i ), i = 1, . . . n.

We choose half-t priors for σε, σκg and στi such that σε ∼ Half-t(Aε, bε),
σκg ∼ Half-t(Aκg , bκg ) and στi ∼ Half-t(Aτi , bτi), where all hyperparameters are
known and Half-t(A, b) denotes the half-t distribution with scale A and degrees
of freedom b. We consider normal priors on the spatial dependence parameters,
θg ∼ N(μθ0, σ

2
θ0), where μθ0 and σ2

θ0 are known, and λi ∼ N(υT
i β, σ

2
λ) where

υi = (υi1, . . . , υir)
T is a set of individual specific covariates, β is a vector of co-

efficients given a normal prior β ∼ N(μβ0,Σβ0) where μβ0 and Σβ0 are known,
and σ2

λ is given an inverse gamma prior, σ2
λ ∼ IG(aλ, bλ) where aλ and bλ are

known. A half-t distribution can expressed as a scale mixture of inverse gamma
distributions (Wand et al., 2011) and writing uε,uτi and uκg for appropriate
auxiliary variables, the half-t priors can be equivalently expressed as σ2

ε |uε ∼
IG(bε/2, bε/uε), σ2

τi |uτi ∼ IG(bτi/2, bτi/uτi), σ2
κg
|uκg ∼ IG(bκg/2, bκg/uκg ),

uε ∼ IG(1/2, 1/A2
ε), uτi ∼ IG(1/2, 1/A2

τi) and uκg ∼ IG(1/2, 1/A2
κg
). We use

these alternative forms of the Half-t priors to simplify our computations.

3. Variational Bayes for Gaussian processes

We give a brief introduction to variational Bayes methods before applying them
to our functional model. With data y, a likelihood p(y|ξ) with parameter ξ, and
p(ξ) as the prior, the posterior distribution is p(ξ|y) ∝ p(ξ)p(y|ξ). In variational
Bayes (Attias, 2000; Waterhouse, Mackay and Robinson, 1996), the posterior
distribution (which is usually intractable for complex models) is approximated
with a distribution q(ξ) belonging to some tractable class Q. We can assume
that q(ξ) takes some parametric form such as multivariate normal, or we might
split ξ into blocks and assume posterior independence between the blocks. We
then choose q ∈ Q to approximate p(ξ|y) as well as possible, usually in the sense
of minimizing the Kullback-Leibler divergence,

KL(q(ξ)||p(ξ|y)) =
∫

log
q(ξ)

p(ξ|y)q(ξ)dξ. (3)

Since p(y) = p(ξ)p(y|ξ)/p(ξ|y) for all ξ, where p(y) =
∫
p(ξ)p(y|ξ)dξ is the

marginal likelihood, multiplying and dividing the right hand side of this expres-
sion by q(ξ), taking logs, multiplying by q(ξ) and then integrating gives

log p(y) =

∫
log

p(ξ)p(y|ξ)
q(ξ)

q(ξ)dξ +

∫
log

q(ξ)

p(ξ|y)q(ξ)dξ. (4)
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Since the Kullback-Leibler divergence is non-negative,

L(q) = Eq

(
log

p(ξ)p(y|ξ)
q(ξ)

)

is a lower bound on log p(y) (where Eq(·) denotes expectation with respect to
q(ξ)), and minimizing the Kullback-Leibler divergence between q(ξ) and p(ξ|y)
is equivalent to maximizing the lower bound L(q). When q(ξ) = p(ξ|y), L(q) =
log p(y). Otherwise, the lower bound will be close to log p(y) and is a good
approximation to it for purposes such as Bayesian model choice if q(ξ) is close
to the posterior. For more background on variational Bayes methods, see Bishop
(2006) and Ormerod and Wand (2010). Tan et al. (2015) discuss a non-standard
variational approximation for Gaussian process regression models which makes
use of the sparse spectral approximation of Lázaro-Gredilla et al. (2010). We
explain how the approach of Tan et al. (2015) works for a simple Gaussian
process model in Section A of the supplementary material (see Mensah et al.
(2016)). In the next section, we extend this approximation to the functional
model.

4. Variational approximation for functional model

For the functional model in (1), let yi = (yi1, . . . , yini)
T , Gi = (Gg(i)(ti1), . . . ,

Gg(i)(tini))
T , Si = (Si(ti1), . . . , Si(tini))

T and εi = (εi1, . . . , εini)
T . Then we

have

yi = Gi + Si + εi, εi ∼ N(0, σ2
ε Ini). (5)

From Lázaro-Gredilla et al. (2010), the terms Gg(t) and Si(t) can be approxi-
mated using spectral approximations. We have

Si(t) ≈
m∑
r=1

air cos(2πλitωr) + bir sin(2πλitωr) for i = 1, . . . , n,

where air, bir are independent N(0, σ2
τi/m) for r = 1, ...,m, and ω1, . . . , ωm, are

generated independently from the spectral density of r(h; 1, 1). Similarly,

Gg(t) ≈
m∑
r=1

αgr cos(2πθgtωr) + βgr sin(2πθgtωr) for g = 1, . . . , k,

where αgr, βgr are independent N(0, σ2
κg/m) and ω1, . . . , ωm are defined as

above. The relationship between these representations and the Gaussian pro-
cesses they approximate is explained in Section A of the supplementary ma-
terial. A non-random choice for the frequencies ω1, . . . , ωm, involves using the
expected order statistics for a sample of size m from the spectral density of
r(h; 1, 1) or some approximation to these. If the spectral distribution function
is F (ω), we use

ωr = F−1

(
r

m+ 1

)
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for r = 1, . . . ,m. The spectral density of the Gaussian covariance with σ2 =
θ2 = 1 is N(0, 1/(2π2)) so ωr can be computed easily.

We write our model as

yi = Zλici +Wθiγg(i) + εi, (6)

with

ci = (ai1, . . . , aim, bi1, . . . , bim)T ∼ N(0, σ2
τi/mI2m), i = 1, . . . , n,

and

γg = (αg1, . . . , αgm, βg1, . . . , βgm)T ∼ N(0, σ2
κg/mI2m), g = 1, . . . , k,

where Zλi is the ni × 2m matrix with lth row

(cos(2πλitilω1), . . . , cos(2πλitilωm), sin(2πλitilω1), . . . sin(2πλitilωm)),

and Wθi is the ni × 2m matrix with lth row

(cos(2πθg(i)tilω1), . . . , cos(2πθg(i)tilωm), sin(2πθg(i)tilω1), . . . , sin(2πθg(i)tilωm)).

The priors are as stated in Section 2.
Writing ξ for the full set of parameters in the model, we consider the following

variational approximation q(ξ) to the posterior distribution p(ξ|y),

q(ξ) = q(β)q(σ2
ε )q(σ

2
λ)q(uε)

×
{

n∏
i=1

q(λi)q(σ
2
τi)q(uτi)q(ci)

}{
k∏

g=1

q(σ2
κg
)q(uκg )q(θg)q(γg)

}
, (7)

where q(λi) ∼ N(μq
λi
, σq

λi

2
), q(σ2

ε ) ∼ IG(aqε , b
q
ε), q(σ

2
λ) ∼ IG(aqλ, b

q
λ), q(σ

2
τi) ∼

IG(aqτi , b
q
τi), q(σ

2
κg
) ∼ IG(aqκg

, bqκg
), q(θg) ∼ N(μq

θg, σ
q
θg

2
), q(β) ∼ N(μq

β ,Σ
q
β),

q(uκg ) ∼ IG(aquκg
, bquκg

), q(uτi) ∼ IG(aquτi
, bquτi

), q(uε) ∼ IG(aquε
, bquε

), q(γg) ∼
N(μq

γg
,Σq

γg
) and q(ci) ∼ N

(
μq
ci ,Σ

q
ci

)
. Let ϑ denote the set of all variational

parameters in q(ξ). We will denote the dependence q(ξ) = q(ξ|ϑ) explicitly when
needed. With the above variational posterior, the lower bound can be evaluated
in closed form (see Section C of the supplementary material for details). We
optimize this lower bound with respect to the variational parameters ϑ via
nonconjugate variational message passing as described next.

4.1. Nonconjugate variational message passing

Suppose the variational posterior distribution factorizes into independent terms
for different blocks of parameters such that

q(ξ) =

p∏
i=1

q(ξi), (8)
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where ξ = (ξT1 , . . . , ξ
T
p )

T . The optimal choice of the factor q(ξj) (with q(ξi) fixed
for i �= j ), in terms of minimizing the Kullback-Leibler divergence to the true
posterior, is

q(ξj) ∝ exp
(
E−ξj (log p(ξ, y))

)
, (9)

where E−ξj (·) denotes expectation with respect to
∏

i �=j q(ξi) and p(ξ, y) is the
joint distribution of (ξ, y). An iterative coordinate ascent optimization based on
(9) yields the mean field variational Bayes algorithm; see for example Water-
house, Mackay and Robinson (1996), Attias (2000) and Ghahramani and Beal
(2001). There are also some extensions of the approach which relax the product
restriction in various ways. For a certain type of conjugate exponential model,
Winn and Bishop (2005) developed an algorithmic implementation of mean field
variational Bayes called variational message passing (VMP), where the factors
q(ξj) are in the exponential family. In VMP, the updates in (9) reduce to up-
dating the natural parameters in the appropriate exponential family and these
updates can be computed using local operations on the directed graph describing
conditional independencies in the model. Knowles and Minka (2011) introduce
nonconjugate variational message passing (NCVMP) as an extension of VMP
to deal with nonconjugate models. An approximation of the form (8) is assumed
and q(ξi) = q(ξi|ϑi) has exponential family form

q(ξi|ϑi) = exp(ϑT
i t(ξi)−m(ϑi)),

where ϑi denotes a vector of natural parameters and t(ξi) are the sufficient
statistics. A well known property of exponential families is that the covariance
matrix of t(ξi) is

K(ϑi) =
∂2m(ϑi)

∂ϑi∂ϑT
i

.

Suppose p(ξ, y) =
∏s

f=1 pf (ξ, y). A factor pf is said to be in the neighbourhood
of ξi if pf (ξ, y) depends on ξi and we denote this by f ∈ N(ξi). NCVMP gives a
recipe for updating the natural parameter of the factor q(ξj). The update rule
is

ϑi ←
∑

f∈N(ξi)

K(ϑi)
−1 ∂Sf (ϑi)

∂ϑi
, (10)

where Sf (ϑi) = Eq(log pf (ξ, y)) and Eq(·) denotes expectation with respect to
q(ξ).

The NCVMP algorithm initializes the parameters ϑi and then uses the update
rule (10), cycling through the factors q(ξj |ϑj) until convergence in an iterative
coordinate ascent algorithm. Knowles and Minka (2011) show that NCVMP
reduces to standard VMP when all factors are conjugate. They also show that if
NCVMP converges to a fixed point, then it is a stationary point of the Kullback-
Leibler divergence and will be a minimum in practice. As NCVMP updates are
based on fixed point iterations and convergence is not guaranteed, Knowles and
Minka (2011) suggest using damping to fix any convergence problems. Tan and
Nott (2014) show that the NCVMP algorithm can be interpreted as a natural
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gradient descent algorithm with step size 1. See Rohde and Wand (2015) for
further discussion of NCVMP and related algorithms.

From Knowles and Minka (2011), the updates in (10) for a univariate normal

factor qi(ξi) = N(μq
ξi
, σq

ξi

2
) can be written in terms of the means and variances as

σq
ξi

2 ← −1

2

⎧⎨
⎩

∑
b∈N(ξi)

∂Sb(μ
q
ξi
, σq

ξi

2
)

∂σq
ξi

2

⎫⎬
⎭

−1

and

μq
ξi

← μq
ξi
+ σq

ξi

2
∑

b∈N(ξi)

∂Sb(μ
q
ξi
, σq

ξi

2
)

∂μq
ξi

. (11)

Wand (2014) gives a rigorous derivation of computationally efficient updates in
the multivariate normal case. The NCVMP updates for nonconjugate factors
in our model (those involving the spatial dependence parameters) involve only
univariate normal factors. The derivation of these updates is given in Section
D of the supplementary material. The remaining updates are conjugate and
may be obtained in closed form directly by optimizing the lower bound given
in Appendix C. The complete set of updates is given in Algorithm 1, where the
following notation is used;

For g(i) = g, write θi = θg, Wi = Eq(Wθi), W ∗
i = Eq(W

T
θi
Wθi), Zi =

Eq(Zλi), Z∗
i = Eq(Z

T
λi
Zλi), Ziμq

c
= Ziμ

q
ci , Wiμq

γ
= Wiμ

q
γg
, Σq

μc
= μq

cμ
q
c
T + Σq

c ,

μq
yi

= μq
ci +Wiμ

q
γg(i)

, Σq
μγ

= μq
γμ

q
γ
T +Σq

γ , b∗ε =
(bεa

q
uε

)

bquε
, Dθg = 1

σ2
θ0

(
μq
θg

− μθ0

)
,

Dλi =
aq
λ

bqλ

(
μq
λi

− υT
i μ

q
β

)
, Hg = {i : g(i) = g} and N =

n∑
i=1

ni. Then we have

Ai = ∂
(
Zi, μ

q
λi

)
, Bi = ∂

(
Z∗
i , μ

q
λi

)
, Mi = ∂

(
Zi, σ

q
λi

2
)
, Ni = ∂

(
Z∗
i , σ

q
λi

2
)
,

Fi = ∂
(
Wi, σ

q
θi

2
)
, Ri = ∂

(
W ∗

i , σ
q
θi

2
)
, Ui = ∂

(
Wi, μ

q
θi

)
, and Qi =

∂
(
W ∗

i , μ
q
θi

)
and ∂(a, b) = ∂a

∂b . The expectations in the above definitions can be
evaluated using Lemma 1 of Section B in the supplementary material.

4.2. Acceleration of the basic algorithm

The independence assumptions implicit in factorized mean field approximations
can be detrimental to convergence of variational Bayes algorithms. In our model,
there is strong coupling between spatial dependence parameters and the cor-
responding spectral basis function coefficients, as well as between group and
individual trends. We now explore ways to accelerate convergence of the basic
NCVMP algorithm.

4.2.1. Directional adaptive nonconjugate variational message passing

Inspired by the work of Salakhutdinov and Roweis (2003) andWang et al. (2006),
Tan et al. (2015) accelerated convergence of their algorithm with an adaptive
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Algorithm 1 NCVMP scheme for functional model in (5)

Initialize: bqε = 0.5
∑n

i=1 y
′
iyi, Σ

q
β = Σβ0, μ

q
β = μβ0, μ

q
λi

= v
′
iμβ0

, σq
λi

2
= bλ

aλ
,

bqτi = 1,μq
ci = 0 for i = 1, . . . , n and bqκg = 1, μq

θg
= μθ0 , σ

q
θg

2
= σ2

θ0
, for g = 1, . . . , k,

bqλ = bλ.

Set aqλ =
(aλ+n)

2
, aqε ← bε

2
+ N

2
, aqτi = m+

bτi
2

, for i = 1, . . . , n, aqκg = m+
bκg

2
for

g = 1, . . . , k, aquε =
(bε+1)

2
, aquκg

=
(bκg+1)

2
, aquτi

=
(bτi+1)

2
.

Do until the change in the lower bound is less than a specified tolerance:

• For i = 1, . . . , n, g = 1, . . . , k,

bquκg
←

(bκgaq
κg

)

b
q
κg

+ 1
A2

κg

bquτi
← (bτia

q
τi

)

b
q
τi

+ 1
A2

τi

bquε
← (bε aq

ε )

b
q
ε

+ 1
A2

ε

• For g = 1, . . . , k,

Σq
γg

←
[
m

aq
κg

b
q
κg

I2m +
aq
ε

b
q
ε

( ∑
i∈Hg

W ∗
i

)]−1

μq
γg

← Σq
γg

(
aq
ε

b
q
ε

∑
i∈Hg

WT
i

) [
yT
i − Ziμ

q
ci

]
• For i = 1, . . . , n,

Σq
ci ←

[
m

aq
τi

b
q
τi

I2m +
aq
ε

b
q
ε
Z∗

i

]−1

μq
ci ← Σq

ci(
aq
ε

b
q
ε
ZT

i )
[
yT
i −Wiμ

q
γg(i)

]
• For i = 1, . . . , n,

bqε ← 1
2

n∑
i=1

{
yT
i yi − 2yT

i μ
q
yi + tr

(
Σq

μci
Z∗

i

)
+ tr

(
Σq

μγg
W ∗

i

)
+ 2Ziμ

q
c
WT

i μ
q
γ

}
+ b∗ε

• bqλ ← 1
2

n∑
i=1

((
μq
λi

− υT
i μ

q
β

)2

+ σq
λi

2 + υT
i Σ

q
βυi

)
+ bλ

• For i = 1, . . . , n,

bqτi ← m
2

[
μq
ci

Tμq
ci + tr(Σq

ci)
]
+

(bτia
q
uτi

)

b
q
uτi

• For g = 1, . . . , k,

bqκg
← m

2

[
μq
γg

Tμq
γg

+ tr(Σq
γg
)
]
+

(bκgaq
uκg
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scheme that employs the variational lower bound to determine whether to in-
crease or decrease a step size. The adaptive step is utilized only in the non-
conjugate updates and the step size is magnified by a pre-specified factor when
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the lower bound increases, reverting to 1 when it decreases. We adapt the ap-
proach of Tan et al. (2015) here. The difference between our algorithm and theirs
is that the adaptive step is applied to the updates of all parameters and not
just those in the non-conjugate updates. We also experimented with a method
based on the pattern search algorithm of Honkela, Valpola and Karhunen (2003).
However, this requires line searches which we find do not result in a favourable
trade-off between iterations to convergence and computational effort per itera-
tion.

Recall that ϑ denotes the set of all variational parameters. At iteration t of
Algorithm 1, ϑ(t) is updated to ϑ(t+1). We can consider a more general update
of the form

ϑ(t+1) = ϑ(t) + dt(ϑ
(t+1) − ϑ(t)),

where dt is a step size. Clearly dt = 1 corresponds to the original update. Tan
et al. (2015) adapt step sizes by increasing step sizes by a multiplicative factor
as long as the lower bound is increasing and reverting to dt = 1 when the lower
bound decreases. As the NCVMP algorithm is not guaranteed to converge, it
may also be of interest to consider step sizes less than one to fix convergence
problems. However, we did not found any need for this in our examples. Let
the multiplicative factor we use to increase step sizes be δ > 0. We initialize
d1 = 1. Then at iteration t, we set dt+1 = δdt if a step of size dt+1 results
in an increase in the lower bound, otherwise dt+1 = 1. Note that the same
step size is applied to all variational parameters to circumvent the difficulty of
adapting step size parameters in the NCVMP updates for each λi, i = 1, . . . , n
and θg, g = 1, . . . , k. We have experimented with δ ∈ {1.01, 1.02, 1.08, 1.2}.
When all parameters are being adapted at once, and ϑ is high-dimensional, a
small value value of δ seems to work best, with 1.02 being close to optimal
over a range of examples. We also experimented with a step halving scheme
when the lower bound decreases, but the additional lower bound evaluations
are not worthwhile compared with the simpler strategy of reverting to step
size 1. Following Honkela, Valpola and Karhunen (2003), we transform positive
parameters by logs to ensure positivity. Specifically if ζ is a positive parameter,
the update at iteration t is ζ̃(t+1) = exp(log ζ(t) + dt(log ζ

(t+1) − log ζ(t))). We
did not transform the covariance matrix parameters in the updates as this did
not cause any violations of the positive definiteness condition in our examples.
When this strategy is employed, it is advisable to check for positive definiteness
of covariance matrix parameters and to revert the step size to 1 in the case of
any violation. Alternatively, the covariance matrices could be reparametrized in
terms of, for example, the Cholesky factor.

5. Posterior inference via MCMC

A standard approach to Bayesian inference in complex models is to use Monte
Carlo methods such as Markov chain Monte Carlo (MCMC) to generate samples
from the posterior distribution, which can then be used to approximate relevant
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expectations and probabilities. See Gelman et al. (2013) for an introductory ac-
count. A common algorithm for conditionally conjugate models popular for its
automated character is the Gibbs’ sampler, where we update parameter blocks
by sampling from their posterior full conditional distributions. For the model
we have considered here, a natural choice of blocks leads to tractable Gibbs’
updates for most parameter blocks. However, the full conditional distributions
for the parameters λi, i = 1, . . . , n and θg, g = 1, . . . , k do not have a standard
form and it is natural to update them using Metropolis-Hastings steps, resulting
in a so-called Metropolis within Gibbs scheme. Readers unfamiliar with these
algorithms are referred to Gelman et al. (2013) for further background and dis-
cussion. For the Metropolis-Hastings steps, a proposal distribution is required
and variational Bayes approximations have been suggested as one way to obtain
good proposals (de Freitas et al., 2001). Another possibility is to use a so-called
adaptive MCMC scheme where a good proposal value is learnt from the samples
as the algorithm proceeds. See Andrieu and Thoms (2008) for a review of adap-
tive MCMC and some discussion of what is required for validity of these schemes.
Adaptive schemes usually require some initialization of proposal variances and
recovery from a poor initial choice can be very slow. We consider initializing an
adaptive MCMC scheme using the variational posterior. The detailed algorithm
is given in Section E of the supplementary material. Although there are many
adaptive MCMC schemes in the literature, the adaptive steps that we employ
are similar to Algorithm 5 of Andrieu and Thoms (2008). However, we do not
adapt the scaling parameter in the proposal along with the proposal mean and
variance. Andrieu and Thoms (2008) is also a good introduction to adaptive
MCMC methods generally and describes a unifying stochastic approximation
framework for such algorithms.

6. Examples

We evaluate the performance of the proposed methods in comparison with
MCMC through simulation studies and then apply the methodology to a dataset
of streamflow curves generated from a rainfall-runoff model. The initialization
of the directional adaptive algorithm in all examples follows the default in the
basic algorithm except Σq

ci , μ
q
ci and Σq

γj
, for which we used one step of their

NCVMP updates starting from the prior while bquλ
, bquκg

, bquτi
and bquε

are set

to 1/A2
λ, 1/A

2
κg
, 1/A2

τi and 1/A2
ε for i = 1, . . . , n, g = 1, . . . , k respectively in

addition to the defaults in Algorithm 1. The algorithms are stopped when the
relative change in the variational lower bound is less than 10−4 for the sim-
ulated examples. For the streamflow application the tolerance is set to 10−5.
Initialization of the adaptive variational MCMC algorithm uses the variational
posterior mean values as starting values and the variational posterior variances
as initial proposal variances. All codes were written in R and run on an Intel (R)
quadruplet processor Windows PC 3.40 GHz workstation. R code to implement
the methods is available upon request.
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6.1. Simulated dataset

This example considers a dataset of 100 functional curves comprising 30 observa-
tions per subject on 100 subjects generated from model (1). We set υi = (υi1, υi2)
where υi1 = 1 if g(i) = 1, otherwise 0, and υi2 = 1 − υi1. The vector of regres-
sion coefficients β is set as (0.8, 0.5). With υi and β given, the spatial depen-
dence parameters, λi and θg, are drawn independently from N(υT

i β, 0.01
2) for

i = 1, . . . , n, andN(0.7, 0.01) for g = 1, . . . , k, respectively. Then Si(t) and Gg(t)
are drawn from their Gaussian process conditional prior distributions with these
covariance hyperparameters. We consider a two group model with g(i) = 1 for
i = 1, . . . , 50, and g(i) = 2 for i = 51, . . . , 100. We use 30 equally spaced time
points in the interval [−5, 5] for all subjects. In simulating the Gaussian process
functional parameters, we used σ2

τi = 0.5 for i = 1, . . . , n, and σ2
κg

= 0.25 for

g = 1, . . . , k. Finally, the observations are drawn from model (1) with σ2
ε set as

0.022. For the normal priors, we used θg ∼ N(0.92, 0.32) and βr ∼ N(0.92, 0.32)
independently for r = 1, 2. These priors were chosen to give probability 0.95 to
lag 1 correlations of the Gaussian processes being in the range [0.1, 0.9]. Note
that if we were to use a very diffuse prior, that prior would correspond to strong
prior information, putting a large prior mass on very weak dependence.

For the inverse gamma hyperparameters, we set σ2
λ ∼ IG(3, 0.045). Note

that σ2
λ controls the amount of variation of individual specific covariance hy-

perparameters around the conditional prior mean υT
i β. The elements of β in

this application are the group means for these hyperparameters with prior stan-
dard deviation 0.3. The hyperparameters for σ2

λ are chosen so that E(σ2
λ) =

(0.5× 0.3)2 = 0.0225, which roughly makes the variation about the conditional
mean υT

i β in the prior similar in magnitude to the standard deviation. For the
half-t scale parameters, we use Aε = Aτi = Aκg = 25 and we set the degree of
freedom parameters bε = bτi = bκg = 1 for i = 1, . . . , n, g = 1, 2.

Figure 1 shows a plot of the simulated data set. The two groups are evident
with one group having higher frequency individual specific variations about
the group trends. We fit model (6) using our MCMC approach and the varia-
tional algorithms with spectral samples of size m ∈ {20, 30, 40, 50, 60}. For the
MCMC simulation, we use chains of length 40000 with a burnin of size 10000
for posterior analysis, and 30000 with a burnin of size 10000 for computational
time comparisons.

First, we examine the performance of Algorithm 1 and its MCMC counterpart
in recovering the underlying trends. The first two rows of Figure 2 shows for
the run corresponding to m = 40, a plot of the trends of four subjects together
with 95% Bayesian credible intervals, two per group over time. The two subjects
plotted in each group are those for which the true λi takes its minimum and
maximum value within that group. The third row shows a similar plot for the
estimated group specific trends. We are able to recover the group and individual
specific trends well with both NCVMP and MCMC. However, the VB credible
intervals are narrow and often fail to capture the underlying true trends as
compared to the MCMC-based credible intervals. Although VB performs poorly
here in terms of posterior inference it does give good point predictions. Hence for
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Fig 1. Plot of simulated dataset.

problems where interest centres on predictive inference and for which speed is
important, the VB approach might be preferred. VB can also be used to obtain
good proposal distributions for MCMC, and this point is illustrated later.

Figure 3 shows the estimated marginal variational posterior distributions for
β1 and β2 estimated by variational Bayes and MCMC. For comparison, the
marginal variational posterior distribution of the intercept parameter in an in-
tercept only model for λi is shown as well. Although predictive inference of
individual curves is not affected much by the omission of covariates the re-
gression model helps us to understand differences in smoothness between the
functional groups, something that is very important in the application of the
next section.

Figure 4 shows for the run with m = 40, the attained lower bound at each
iteration for Algorithm 1 and its adaptive variant (left), as well as the step size
at each iteration for the adaptive algorithm using δ = 1.02 (right).

The efficiency of the basic scheme and its adaptive variant in terms of the
lower bound attained at convergence and the number of iterations required
for convergence over a range of spectral basis frequencies (m) is illustrated in
Figure 5. The directional adaptive NCVMP requires fewer iterations to converge
on the average, yielding a significant reduction in computation time as compared
to NCVMP. We have also found in other experiments that sometimes better
local modes can be attained although the two algorithms perform similarly
here. The additional computational effort in the adaptive scheme corresponds
essentially to just one additional lower bound evaluation per iteration so that the
number of iterations to convergence is a good guide to the total computational
effort.

Table 1 reports the time to convergence for NCVMP, its adaptive variant
with δ = 1.02 and the variational MCMC sampler. It is apparent that NCVMP
and its adaptive variant are faster than MCMC by an order of magnitude, and
the directional adaptive scheme improves upon NCVMP.
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Fig 2. Simulated data. NCVMP and MCMC-based Bayesian credible intervals for m = 40.
Red and green solid curves show 95% Bayesian credible intervals for MCMC and NCVMP
respectively. Red dashed and black dotted curves are the MCMC and NCVMP fitted trends
respectively while the black solid curves correspond to the true trends. The first two rows are
subject specific trends, two per group corresponding respectively to minimum and maximum
value of λi within each group. The third row gives group specific trends for group 1 (left) and
group 2 (right).
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Fig 3. Simulated data. Marginal variational posterior distribution of β1 (top) and β2 (mid-
dle) obtained using variational Bayes (solid curves) and MCMC (dashed curves) for model
including covariates, and for intercept in an intercept only model (bottom).

6.2. French Broad River catchment streamflow dataset

Hydrologic models take as input time series of climatic variables (typically rain-
fall and evapotranspiration) to simulate time series of streamflow. These mod-
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Fig 4. Simulated data. Plot of lower bound (left) and adaptive step size dt (right) against
iterations in the directional adaptive scheme with m = 40. Dashed line is DANCVMP with
δ = 1.02 and solid line is NCVMP.

Fig 5. Simulated data. Plot of lower bound attained at convergence (left) and iterations to
converge (right) versus number of spectral basis frequencies m. In each plot, solid line is
NCVMP and dashed line is DANCVMP with δ = 1.02.

Table 1

Comparison of variational Bayes and MCMC for simulated dataset. First three columns
gives the time to convergence of NCVMP, its adaptive variant and MCMC (30000

iterations) in seconds. The fourth column gives the ratio of the times to convergence for
NCVMP against DANCVMP. The last two columns give the ratios of the time to

convergence for variational MCMC against those for NCVMP and DANCVMP respectively

Time

m NCVMP DANCVMP MCMC Ratio 1 Ratio 2 Ratio 3
20 2757.71 2159.01 48844.30 1.28 17.71 22.62
30 9598.91 7818.13 99438.91 1.23 10.36 12.72
40 14848.83 8246.37 188324.94 1.80 12.68 22.84
50 20177.43 10384.00 237140.91 1.94 11.75 22.84
60 29089.80 18603.74 381902.00 1.56 13.13 20.53

els aim to mathematically represent common hydrologic processes such as soil
water storage, surface runoff and baseflow. Hydrologic models are used for ap-



Functional longitudinal modelling 543

plications such as flood forecasting, climate change impact studies, or predic-
tions in ungauged basins. Fitting models such as the ones we have developed
here to streamflow data for different catchments can be a way of assessing dif-
ferent ways of grouping the catchments in terms of their dynamic properties;
such groupings can be used as a surrogate for regions without data. This re-
lates to the problem of prediction in ungauged basins, as we discuss further
below. Our model provides a formal way of assessing the meaningfulness of
catchment groupings in terms of representing different dynamics in such an
application.

Characterizing the uncertainties affecting hydrologic models is a considerable
challenge in hydrologic science and practice (Renard et al., 2010). Of particular
concern is the impact of uncertain rainfall inputs (due to measurement error or
inadequate spatial sampling) on parameter estimates and runoff forecasts. Rain-
fall errors can be modelled via storm-dependent multiplicative terms, where it
may be assumed that rainfall multipliers follow a lognormal distribution (Kavet-
ski, Kuczera and Franks, 2006).

For this study, we sample a series of storms from six-hourly rainfall data and
evapotranspiration estimates for the French Broad River at Asheville, North
Carolina. The data are modelled via a widely used hydrologic model known as
the Probability Distribution Model (PDM). The PDM uses inputs of rainfall and
evapotranspiration to produce time series of streamflow. The model represents
the spatial variability of soil water capacity via a Pareto distribution, and our
version of the model additionally incorporates parameters representing fast and
slow reservoir routing (Smith and Marshall, 2009). This version of the PDM
consists of 6 model parameters, of which 3 were kept fixed for all catchments
in the study. (See Smith and Marshall, 2009, for a complete description of the
model and parameters). A more detailed description of the model is given in
Section F of the supplementary material.

To represent a collection of catchments, we specified three different groups
of catchments with 100 members for each group. Recent research in hydrol-
ogy has sought to classify catchments in this way, such that members of each
group could be considered to have similar hydrologic processes and thus sim-
ilar modelled behaviour (Sawicz et al., 2011; Wagener et al., 2007). For this
study, we fixed three PDM parameters and allowed three parameters to vary
between each catchment: the maximum storage capacity (Cmax), the surface
runoff outflow rate (Tq), and the baseflow outflow rate (Ts). Assuming groups
were normally distributed, a mean and standard deviation was specified for each
group (see Table 1 of supplementary material). These values were selected based
on the physical bounds and typical values of these parameters in other hydro-
logic studies. One hundred parameter sets were then randomly sampled within
each group representing individual catchments. Streamflow was then simulated
with the PDM for every catchment using the same rainfall.

To represent different levels of measurement uncertainty in the rainfall data
for each catchment, we specified a lognormal distribution of multiplicative rain-
fall errors that were storm dependent (i.e. the same rainfall multiplier is used
over a whole storm and storms are defined as a period of continuing rain with
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Fig 6. Plot of streamflow dataset.

no breaks). The mean of the sampled rainfall multipliers was kept fixed at 1.0,
but the variance of the multipliers varied between groups. For simplicity, the
“true” rainfall was assumed to be the same for each catchment.

Denoting the streamflow output as y, we use y as the response. We fit our
model to a subset of the data for 40 time steps chosen to cover a major rainfall
event using algorithm 1. We use the simulated hydrologic catchment parameters,
namely, the maximum storage capacity Cmax, the surface runoff outflow rate Tq

and the baseflow outflow rate Ts as well as catchment group indicators as co-
variates. Precisely, we set υi = (υi1, υi2, υi3, υi4, υi5, υi6) where υi1, υi2, υi3 are
indicators for the catchment groups and υi4, υi5 and υi6 are respectively centred
and scaled versions of Cmax, Tq and Ts. For the prior distributions, we used the
same prior settings as in example 1 except for the regression coefficients corre-
sponding to υi4, υi5 and υi6 which were set as N(0, 0.32) independently. For this
application we initialized the NCVMP algorithm with the default settings except
bqτi and bqκg

which were set as half the scale parameter values of σ2
τi and σ2

κg
.

Figure 6 shows a plot of the streamflow data set. A referee has pointed out
that this data contains non-stationary features, and this is certainly the case.
However, we emphasize that although our prior distributions on functional terms
are stationary, the corresponding posterior distributions after updating are not.
In any case very flexible non-stationary models may be difficult to fit in longi-
tudinal models with few observations per functional term. The three catchment
groups are evident in the plot of the data; the groups exhibit different levels
of high frequency variability following the different noise levels in the rainfall
inputs. We report results here for our model using m = 90 spectral points.

Figures 7 and 8 show variational Bayes estimates of the posterior distributions
of regression coefficients. The coefficients β1, β2, β3 represent the mean of λi for
the three different groups for average values of the other covariates. We see in
particular that the third catchment group contains much smoother functional
observations, something that is expected here on hydrological grounds.

Figures 9 shows the fitted catchment group specific trends and Figure 10
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Fig 7. Streamflow data. Plot of marginal variational posterior distributions of regression
coefficients for the catchment indicators.

Fig 8. Streamflow data. Plot of marginal variational posterior distributions of regression
coefficients β4, β5 and β6.

plots catchment specific trends for the first three catchments in each catchment
group. The varying smoothness between the 3 groups is evident. MCMC results
from this application are similar (Results not presented).

The ability to identify group-specific trends in measurement error and stream-
flow dynamics is particularly important from a hydrologic standpoint. A recent
and ongoing concern in hydrologic science is streamflow forecasting in catch-
ments without available observations (Sivapalan et al., 2003). To address this,
a myriad of studies have focused on regionalization methods that aim to iden-
tify natural catchment groupings (as expressed in streamflow dynamics) so that
catchment groups may act as surrogates for regions without data (e.g. Wagener
and Wheater, 2006). These methods are often impacted by the presence of po-
tentially strong measurement error, affecting the ability to appropriately identify
catchment groups and to estimate typical group behavior or functioning. The
methods presented here provide insight to how catchment groups vary in terms
of their streamflow dynamics and could thus be related to catchment physical
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Fig 9. Streamflow data. Plot of fitted group specific streamflow from Algorithm 1 (NCVMP)
with m = 90. Arranged from left to right are Groups 1, 2 and 3, x-axis are time points and
y-axis are fitted values. MCMC results are similar.

Fig 10. Streamflow data. Plot of fitted catchment specific streamflow from Algorithm 1
(NCVMP), x-axis are time points and y-axis are fitted values. Solid curves correspond to
observed streamflow and dash curves represent fitted streamflow. The three catchments pre-
sented in each group are the first three in each catchment group.

properties. The ability to identify trends in measurement error between groups
is particularly novel and can suggest how errors impact subsequent hydrologic
models and forecasts. Of interest would then be the natural extension of these
methods to varying input rainfall.
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7. Conclusion

We have presented a novel Gaussian process approach to grouped functional
modelling for longitudinal data. This approach models subject and group specific
trends with Gaussian processes and relates individual specific smoothness to
covariates for different subjects. We have developed fast variational inference
methods using a sparse spectral approximation. We have also explored the joint
use of variational Bayes methods and MCMC sampling algorithms. A referee has
suggested looking at the inclusion of covariates into the model at the observation
level. We agree that this is a worthy extension but also believe it will be a non-
trivial one, due to the way the additional flexibility may make it more difficult
to identify subject specific smoothness depending on covariates.

Supplementary Material

Supplementary material for “Functional models for longitudinal data
with covariate dependent smoothness”
(doi: 10.1214/16-EJS1113SUPPA; .pdf).
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